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Abstract: In the present work macrosegregation during solidification of a 2.45 ton steel ingot is
simulated with a pure equiaxed model, which was tested previously via modeling of a benchmark
experiment. While the columnar structure is not taken into account, a packed layer formed over
inner walls of the mold at an early stage of solidification reproduces to some extent phenomena
generally related to zones of columnar dendrites. Furthermore, it is demonstrated that interaction
of free-floating equiaxed grains with ascending convective flow in the bulk liquid results in flow
instabilities. This defines the irregular form of the negative segregation zone, the formation of
which at the ingot bottom corresponds to experimental observation. Vertical channels reported in
experimental measurements are reproduced in simulations. It is confirmed that intensification of
ingot cooling may decrease segregation in the ingot.

Keywords: ingot; equiaxed grain; solidification; macrosegregation; surface cooling intensity

1. Introduction

Manufacturing of large-size ingots is a fundamental process in industrial production
of heavy machinery. The first thorough study of segregation in a large number of ingots
ranging from 14 cwts. (765 kg) to 172 tons was presented in the first report of a special
committee of the Iron and Steel Institute of Great Britain [1]. Apart from “the very thin
extreme outer skin of true chill crystals,” three zones were revealed in the ingots studied.
The zone adjacent to the outer thin layer (zone 1) consisted of columnar grains directed
inward, while the thickness of the zone was found to be dependent on casting conditions
and steel composition. The second zone (zone 2) beyond zone 1, proceeding inward in a
radial direction, was reported to be richer in segregates with an annular inner boundary
“having roughly the form of a truncated cone or pyramid.” In addition, A-shape segregates
were documented for this zone. Furthermore, sulfur prints and etching revealed a central
zone (zone 3) in which solid grains could be considered to be equiaxed or, as said in the re-
port, “the crystals may cease to possess the hitherto well marked columnar form” [1]. Near
the central axis, V-shape segregates were usually present: The lowest part of the central
zone was defined as the purest, and the top of the ingot presented strong segregation.

However, according to references elsewhere [3], even prior to publishing the report in
1926 [1], the central ingot zone had been supposed to be formed from free-floating equiaxed
grains. One of the first attempts to numerically study the effect of the sedimentation of
grains on macrosegregation was made for a 4 ton ingot [15]. Simulations were conducted
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for different zones with a simplified system of equations, where only the vertical compo-
nent of velocity with a pre-calculated value was taken in the zone with the sedimentation
cone. Later, a theory developed on the basis of volume averaging (or statistical ensemble
averaging) provided a system of equations able to account for the floating equiaxed den-
drites. A detailed review of equiaxed model development can be found elsewhere [16].
However, although the formulation was available, its application required the definition of
multiple parameters for auxiliary closure equations, and this is still the case. Nevertheless,
the pure equiaxed solidification model was applied to the study of macrosegregation in
the 3.3 ton steel ingot [8,17,18]. Combeau et al. [8] numerically studied three cases, which
corresponded to the fixed solid phase, to free-floating equiaxed grains with a dendrite
structure, and to free-floating grains of globular shape. Similar to previous modeling for
steel ingots [11], the initial temperature of the melt was equal to the liquidus temperature
of the nominal composition of steel, but this time the growth kinetic was taken into account
for the solid phase. Probably due to the latter, the predicted negative segregation at the
ingot bottom was more pronounced than in previous results in the case of fixed solid
grains [11]. Qualitatively, segregation distribution obtained with free-floating dendrites
was quite similar to results with the fixed solid phase but had a more “diffused” character.
Although both cases demonstrated A-type segregation bands, the formation of which was
found sensitive to mesh, a zone with positive segregation observed in the real ingot was
only partially reproduced with free-floating grains. When the dendritic structure of grains
was ignored, the negative segregation in the ingot was seriously overestimated. The same
type of study was carried out with a slightly different formulation for momentum equation
for the solid phase and a different drag force between the solid and liquid phases [17].
In addition, formation of the shrinkage cavity was considered in one of three cases stud-
ied. Results were quite similar to those obtained by Combeau et al. [8]. In the work of
Nguyen et al. [18], a time-splitting technique was implemented in a model constructed
using the finite element method (FEM) and applied to modeling of segregation in a 3.3 ton
steel ingot accounting for different types of floating solid grains [8]. However, the study
was focused on numerical treatment of the problem using FEM.

Finally, it should be mentioned that soon after pure equiaxed models started being
used, three-phase columnar and equiaxed models [19–22], as well as models with an even
greater number of phases [23], began to be exploited. Although these models allow some
insight into the origin of various zones that form in the ingot [1], it must be accepted that
these simulations are very sensitive to the choice made for closure relations and numerical
parameters. On the other hand, application of pure equiaxed models with regard to large
ingots was studied only for a very limited combination of parameters. In our previous
paper, we presented a three-phase equiaxed solidification model that accounted for the
growth of equiaxed grains, their motion, and the formation of macrosegregation [24]. In the
model, a specific approach to the calculation of solute diffusion length under convective
flow was applied. This model was then validated through numerical simulation for
benchmark solidification of a Sn–10 wt.%Pb alloy in the AFRODITE setup [25]. In this
study, we present the numerical simulation for the solidification of a 2.45 ton steel ingot
to study the role of equiaxed grain transportation in the formation of global segregation.
The effect of surface cooling intensity on grain growth, melt flow, and macrosegregation is
also investigated.

2. Experiment Introduction

Numerical simulation was used to predict macrosegregation in a 2.45 ton steel ingot
(Fe–0.45 wt.%C), which corresponded to a reported cast experiment [1]. The ingot was cast
in a chill mold with the inner shape of a square-based pyramid, as schematically illustrated
in Figure 1a. For the current simulation, only the ingot was considered, without the sur-
rounding multi-layer mold, and a 2D axisymmetric geometry was used to approximate the
three-dimensional shape of the ingot. The computational domain and mesh are presented
in Figure 1b. Most of the mesh cells had a general size of 5 mm × 5 mm, but the cells near
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the cooling boundary were refined to 1 mm × 5 mm to allow a more precise calculation of
the thermal gradient, the dynamic boundary layer, and the related transportation processes.
At the beginning of simulation, the hot metal in the mold was assumed to be still and to
have a uniform temperature of 1769 K, i.e., overheated by ~0.1 K with respect to its nominal
liquidus temperature. Cooling conditions were applied directly to the ingot surface and
were written via convective heat exchange with coefficients, accounting for heat transfer
through different construction elements. Similar to Li et al. [20], the ambient temperature
was set to 373 K, and two different convective heat transfer coefficients were applied:
hsup = 30 W m−2 K−1 in the upper zone and hin f = 300 W m−2 K−1 in the lower zone.
The boundary and initial conditions are provided in Figure 1b.
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Figure 1. (a) Scheme of a 2.45 ton ingot with indication of sizes and (b) corresponding calculation
domain. The initial conditions for the simulations are given, and two coefficients for convective
heat exchange, hsup and hin f , are associated with the upper and lower parts of the ingot surface,
respectively. The initial conditions for the simulations are T0 = 1769 K, c0 = 0.45 wt.%, and zero
velocities in the liquid. The two coefficients for convective heat exchange, are hsup and hin f , with the
upper and lower parts of the ingot surface defining the intensity of convective heat removal from the
ingot as hsup(T − 373 K) and hin f (T − 373 K) for these parts, respectively. The indicated points P0,
P1, and P2 serve for the analysis of the calculation results.

3. Model Description

It is assumed that solidification occurs with equiaxed dendritic grains, which are
allowed to float at the early stage of solidification and become immovable at the later
stage. The model, described in detail elsewhere [25], combines multiphase flow, energy
transportation, grain growth, and solute transportation with use of the volume average
method. The key features and assumptions are enumerated below.

(1) Three phases are defined: the solid dendrite skeleton (s-phase); liquid within the
imaginary surface (envelope), i.e., interdendritic liquid phase (d-phase); and extradendritic
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liquid phase (l-phase), as presented in Figure 2. The summation rule is satisfied for volume
fractions associated with these phases: fs + fd + fl = 1.
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Figure 2. (a) Schematic figure for the dendritic structure and grain growth process, which consists of
the expansion of the envelope (indicated by the red line), and (b) growth of the solid phase at the
expense of the interdendritic liquid.

(2) Solidification is composed of the growth of the solid phase at the expense of the
interdendritic liquid and expansion of the grain envelope, i.e., grain growth; see Figure 2.
The former process is defined by the solute diffusive transportation rate, and grain growth
rate is calculated using the Lipton–Glicksman–Kurz (LGK) model [26].

(3) When accounting for multiphase flow, only two moving phases are identified: the
phase corresponding to the extradendritic liquid (l-phase) and the phase corresponding to
the equiaxed grains (e-phase). The latter is actually composed of the united s-phase and the
d-phase, where the volume fraction is defined as fe = fs + fd. For free-floating grains, the
momentum exchange coefficient between the liquid and grain phases is calculated using
the Happel model [27]. When grains get packed, i.e., become immovable, permeability of
the phase corresponding to grains is evaluated by the Kozeny–Carman equation.

(4) Grains to be packed should have at least one immovable neighbor to which they
can attach. This immovable neighbor can be either a wall or an already packed region.
Once the previous condition has been satisfied, the grain phase motion is set to zero once
the phase fraction fe reaches the packing limit value f e

p.
(5) Nucleation is modeled with a source term for a grain number density of nmax per

unit time in those cells of the mesh where local temperature drops below local liquidus
temperature for the first time, or where local grain density is less than 1 m−3 and local
temperature is lower than the liquidus temperature [8].

(6) In the conservation equations, all densities are constant and equal to the reference
density, that is, ρl = ρs = ρe = ρd = ρre f . The reference density corresponds to the
liquid density, with nominal solute concentration and initial temperature. In the buoyancy
term, the solid phase inside the grain is assumed to have a larger density than the liquid
phase. In addition, a constant difference between solid phase density and reference density
is introduced. Liquid density is dependent on solute concentration and temperature,
according to the Boussinesq approach, with the values of the thermal and solutal expansion
coefficients (βT and βc) taken from elsewhere [8]. The momentum transport equations as
well as turbulent model are gathered in Appendix A.

In simulation, the multiphase flow and macroscopic transportation of energy, solute,
and grain number density are solved using ANSYS FLUENT® software (ANSYS Inc.,
Canonsburg, PA, USA), in which the modeling of the solidification at the micro scale is
implemented with user-defined functions. To simplify comparison with the results in
reference [20], maximal grain number density is set to nmax = 2× 109 m−3. The phase
diagram data and properties of the Fe-C alloy are listed in Table 1.
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Table 1. Thermodynamic and physical properties.

Property Units Quantity References

Carbon content wt.% 0.45 -
Melting point of pure iron K 1805.15 [8]

Liquidus slope K (wt.%)−1 −80.45 [8]
Equilibrium partition coefficient 1 0.314 [8]

Reference density kg m−3 7200 [28]
Solid–liquid density difference kg m−3 200 -

Specific heat J kg−1 K−1 725 [29]
Thermal conductivity W m−1 K−1 34 [8]

Latent heat J kg−1 2.72 × 105 [29]
Viscosity kg m−1 s−1 4.2 × 10−3 [8]

Thermal expansion coefficient K−1 1.07 × 10−4 [8]
Solutal expansion coefficient (wt.%)−1 1.4 × 10−2 [8]

Maximal grain number density m−3 2.0 × 109 [8]
Grain packing limit fraction 1 0.4 [8]

Secondary arm spacing m 5.0 × 10−4 [8]
Shape factor for tip growth 1 0.18 [30]

Sphericity 1 0.53 [30]
Liquid diffusion coefficient m2 s−1 2.0 × 10−8 [8]
Gibbs–Thomson coefficient m2 s−1 1.9 × 10−7 [31]

4. Results and Discussion
4.1. Nucleation and Grain Growth

According to the variation in the convective heat exchange coefficient along the ingot
surface, the coldest zone formed at the bottom corner and the very first grains nucleated
there when local temperature dropped below the liquidus temperature. Then nucleation
extended over the bottom, sidewall, and top of the ingot, as presented in Figure 3a,b, via
the distribution of the grain number density. Although redistribution of the grain number
density due to grain sedimentation was observed near the top boundary (Figure 3a), after
a while these grains were dispersed into bulk liquid (Figure 3b,c). The liquid near the
chilled boundary and the nucleated grains moved downward, the former as a result of
buoyancy due to the temperature difference, the latter due to drag force from the liquid
and the imposed density difference between solid and liquid. Indeed, although the solid
fraction was very small at 20 s and 50 s, after cooling started, the grains moved faster than
liquid, as presented in Figure 4a,b. Due to strong cooling, the temperature near the ingot
surface decreased rapidly and melt undercooling remained high, meaning that the grains
descending along the wall grew quickly. Once grain volume fraction reached the packing
limit value, the grains became attached to the wall or to the already packed layer and
became immovable. At t = 20 s, a thin packed layer was mainly located near the bottom
and lower sidewall, as seen in Figure 4a. Some grains descended to the bottom of the
volume before being “captured” and may have accumulated there. However, the melt
flow changed direction at the bottom of the ingot, moved toward the central axis, and rose
to the middle region of the ingot. Consequently, some grains were dragged upward by
the flow (Figure 3b), but with lower velocity (Figure 4b). It can be noted that the grain
number density in the layer packed over the sidewall was slightly below the maximal
value nmax = 2× 109 m−3, whereas at the ingot bottom and central axis this value could
locally be as high as 6× 109 m−3.
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As the packing layer at the sidewall thickened, the temperature gradient and thermal
buoyancy force at the solidification frontier decreased. The downward velocity of the
liquid slowly decreased with time while the gravity force acting on the free-floating grains
increased as they grew. At t = 100 s, the equiaxed grains ahead of the packed layer
continuously descended to the bottom region, whereas the incoming flow from the upper
region had virtually no nuclei or grains. In fact, the grain number density was low in these
cells but remained above the 1 m−3 that prevents new nucleation there. Consequently, the
grain number density in the region within 1 cm to 4 cm from the lateral surface was less
than the mean value (Figure 3c). The lack of equiaxed grains in this region can explain why,
in real ingots, the corresponding location is occupied by a columnar structure. At t = 100 s,
a large grain number density was also observed in the upper region of the ingot, whereas
the grain phase was mainly concentrated in the lower region (Figure 4c), indicating that a
large number of small grains were dragged by the central upward flow. On the contrary,
some larger equiaxed grains sedimented to the bottom since the buoyancy term related
to their heavier mass prevailed over the upward drag force from the melt and piled up
at the ingot center. This could be observed by grain number density at the ingot bottom,
which was in the range of 3 × 109–6 × 109 m−3 (Figure 3c), and by the grain fraction
distribution (Figure 4c).

As discussed below, solutal convection started to affect liquid phase flow after
100 s and supported the ascending melt flow near the central axis. At the same time,
solid growth increased the mass of equiaxed grains, meaning that the grains in the up-
per region tended to fall down and continuously pile up toward the top of the ingot
(Figures 3d and 4d). At t = 400 s, equiaxed grains had filled most of the volume in the chill
mold. At a later stage, solidification slowed down as the heat transfer rate in the hot top
region was much lower. Finally, at about t = 1000 s, the whole ingot was fully filled by
packed grain, but solidification continued for a long time until the temperature dropped
below the eutectic temperature of 1461.37 K [12]. However, we stopped the calculation at
this stage because the grain distribution and macrosegregation would then barely change
due to the very weak flow of residual liquid in the packed zone.

4.2. Macrosegregation Formation

Segregation in the ingot is characterized by the segregation index (SI), calculated as
SI = (cmix − c0)/c0, where the solute concentration for the solid and liquid mixture cmix is
calculated as the sum of the averaged concentration in the grain phase and extradendritic
liquid weighted with corresponding volume fractions: cmix = fece + flcl . To understand
the evolution of the segregation pattern presented in Figure 5, it should be borne in mind
that solute is rejected at the interface between the solid phase and the interdendritic liquid
and is transported to the extradendritic liquid according to the evolution of the fraction
corresponding to the interdendritic liquid and by diffusion. In the model, the effect of
convective flow on boundary layer thickness around the envelope surface is taken into
account. Further distribution of the solute in the bulk is defined by the flow of extradenritic
liquid, which is affected by thermal and solutal buoyancy force, as well as by grain motion.
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Figure 5. Solid phase fraction distribution (left half) and distribution of the solute concentration in
the mixture overlapped by streamlines of fluid flow in the packed region and by velocity vectors of
the liquid phase in the unpacked region (right half) at different times: (a) 120 s, (b) 200 s, (c) 300 s,
and (d) 400 s. The black line indicates the interface between the packed and unpacked regions.

At the initial cooling stage, when both extradendritic liquid and grains descended
along the wall, equiaxed grains grew but the solid fraction remained small. Consequently,
little solute was rejected at this stage. The growth of the solid phase became noticeable
inside the packed layer, mainly at the bottom, leading to the emergence of a “plume”
near the central axis at 120 s, with an ascending flow as the extradendritic liquid enriched
with carbon became lighter (Figure 5a). The upward flow inside the packed layer over
the sidewall could probably be attributed to the pressure effect rather than to solutal
buoyancy. However, to confirm this statement, additional parametric studies would be
required. This flow was very weak since it occurred between grains whose fraction was
within the range of 0.6–0.9, and provided strong resistance to the flow. The instantaneous
segregation pattern presented at t = 200 s was defined by the redistribution of solute, which
was continuously rejected by the solid phase growing in a lower ingot region, due to the
upward flow of extrandendritic liquid. The latter was supported by solutal buoyancy
but was counteracted by a drag force from descending grains (Figure 5b). Since the local
value of solutal gravity was dependent on the solute distribution in the liquid and varied
with time, it may have been balanced by the downward drag force or even conceded to
the latter. This led to oscillation of the vertical component of velocity in the liquid in the
central part of the ingot, resulting in negative segregation in the form of a “Christmas tree.”
Similarly, at a later stage (300 s and 400 s, Figure 5c,d, respectively), the clockwise vortex
just above the packed layer was the result of upward solutal convection and the downward
motion of grains. Incipient formation of vertical channels could be observed at t = 300 s
(Figure 5c) at the edge of the packed layer, where the solid fraction increased (~0.3),
whereas the extradendritic liquid flow still had a velocity in the order of several millimeters
per second.

As mentioned above, we believed that the final segregation pattern could be evaluated
at t = 1000 s (Figure 6c), since by that time the ingot was filled with packed grains with a
fraction of more than 0.4 for most of the volume. Consequently, residual flow between the
grains was negligibly small (∼ 10−12 m s−1) and practically did not affect distribution of
the solute at the later solidification stage. As proof, it can be noted that the segregation
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pattern at the bottom part of the ingot did not change between t = 400 s (Figure 5d, right)
and t = 1000 s (Figure 6c, left), (note that the color scale is slightly different between the
indicated figures), but changes occurred in the upper part of the ingot where grains were
not yet packed at t = 400 s.
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Note that in Figure 6c, results obtained with two different grids with cell sizes of 5 mm
× 5 mm and 10 mm × 10 mm are presented. Similar to previously reported studies, mesh
size did not severely affect macrosegregation distribution. Rather, the difference related to
mesoscale in terms of the number and location of the segregation channels at the upper
part of the ingot and in the bottom zone of negative segregation. Thus, simulation with
both grids showed vertical segregation channels (Figure 6c), the formation of which started
at t = 300 s. However, with coarser mesh these channels were less pronounced and had
a different configuration. It should be stressed that qualitatively similar vertical segrega-
tion lines were also observed in experiments near the columnar-equiaxed transition line
(Figure 6b). The shape of the negative segregation zone obtained in the simulation was
different than the reported one. In our opinion, this can be attributed mainly to the uncer-
tainty of the boundary conditions that governed temperature distribution in the bottom
corner of the ingot. Furthermore, the lack of measurements close to the ingot bottom did
not really permit comparisons in the bottom vicinity. The discrepancy in height of the
negative segregation zone between the experiments and the calculations probably indicates
that interaction between ascending solutal flow and grain sedimentation was not extremely
well reproduced. Yet again, this can be attributed to boundary conditions, since variation
in cooling intensity clearly affected the height of that zone (Section 4.3). However, another
option is the effect of shrinkage during solidification, which was not taken into account in
the model and which could affect the flow of both phases when the solid fraction starts
to develop. Moreover, an air gap may appear between the casting and the mold due to
shrinkage, thereby increasing thermal resistance at the cooled wall and altering boundary
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conditions. Finally, it is clearly shrinkage that affected segregation at the last solidification
stage in the experiment and that defined solute distribution in the upper part of the ingot.
Consequently, comparison was not really possible for this zone. We discuss the role of
columnar dendrites in our conclusion.

A comparison of the segregation index along the central line between the calculation
and the measurement (Figure 7) shows that the calculation accurately reproduced a general
trend detectable in the measurements, i.e., negative segregation in the lower region and
positive segregation in the upper region. Macrosegregation distribution along the central
line predicted by the present model was compared with that carried out for the same-
sized ingot with a three-phase mixed columnar-equiaxed model [20], in which equiaxed
dendrites were considered globular. Similar to results reported elsewhere for 3.3 ton
ingots [12,13], negative segregation at the centerline obtained with globular equiaxed
grains was strongly overestimated [20], whereas results with the proposed description
matched more accurately with the experiment.
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4.3. Effect of Mold Cooling Intensity

It has long been understood that an increase in ingot size favors macrosegregation
formation. It has been demonstrated numerically that a special cooling procedure [22] or
an increase in cooling rate [14] could alleviate macrosegregation. However, the effect of
the cooling rate was studied with a fixed solid phase. In this section, we present a study
aimed at verifying the effect of surface cooling intensity on final carbon macrosegregation
with an equiaxed model. Initial conditions and ambient temperature remained the same
as in the previous section, but the heat transfer coefficient hin f was set to 100 W m−2 K−1,
300 W m−2 K−1, 600 W m−2 K−1, and 1000 W m−2 K−1. Although it is virtually impossi-
ble for the latter value of the heat transfer coefficient to be reached in industrial condi-
tions, because this value was considered earlier [14] it is kept here as an illustration of a
limiting case.

For all heat transfer coefficient values, the final distribution of the carbon concentration
(Figure 8) presented positive segregation at the upper region of the ingot, which remained
hot for a long time and was the last to solidify, and a negative cone near the ingot bottom.
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However, as the value of hin f increased, the volume of ingots with very low segregation,
−0.02 ≤ SI ≤ 0.03, also increased, whereas the height of the negative segregation cone at
the bottom decreased. The positive segregation channels, discussed in Section 4.2, were
also observed for higher values of the heat transfer coefficient (Figure 8c,d). However, their
locations were transferred deeper into the ingot core, i.e., they moved closer to the axis of
symmetry and farther from the top of the ingot.
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To explain the effect of the cooling rate at different solidification stages, it is appropriate
to analyze fluid flow at characteristic points P0 (0, 0.8), P1 (0.1, 0.8), and P2 (0.2, 0.8), the
positions of which are indicated in Figure 1b. In Figure 9, a comparison of the evolution
of the vertical component of liquid velocity over time at these points is presented for
considered heat transfer coefficient values. Generally, the overall flow loop descended
along the solidification front, which was parallel to the sidewall, and ascended in the ingot
core, meaning that the vertical velocity had mainly a positive value at P0 (Figure 9a) and
mainly a negative value at P2 (Figure 9c). When the grain phase was packed, liquid flow
velocity approached zero due to large flow resistance from the fixed grain network. It
is easy to observe that, at each point, the velocity obtained in the calculation with larger
cooling coefficients reverted to zero at earlier stages.
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The downward flow of liquid along the cooled sidewall intensified as the heat transfer
coefficient increased. However it should be borne in mind that higher cooling rates promote
earlier and faster growth of the solid phase, and this has a twofold effect. On the one
hand, sedimentation of grains starts earlier everywhere in the volume and should be more
intense. On the other hand, solute rejection at the solid–liquid interface also increases
and contributes more intensively to the ascending flow. As already discussed above, the
variation in the vertical component of velocity of extradendritic liquid near the axis and in
the central part of the ingot is a result of competition between solutal upward convection
and the downward drag effect from sedimenting grains.

Figure 9a shows that with stronger surface cooling, the upward flow rate at the central
line monotonically increased with a maximal value of 2.27 cm s−1 for
hin f = 100 W m−2 K−1 versus 2.75 cm s−1 at t = 72 s for hin f = 1000 W m−2 K−1. That
means that solutal buoyancy was stronger with a larger hin f and that more grains, the solid
fraction of which was still small, were transported by the central flow to the upper region
under stronger cooling conditions. A decrease in velocity signified an increase in solid
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fraction at point P0, whereas, since the axial velocity remained positive, the downward
drag force from the grains was not enough to reverse the liquid motion at the early stage
of the process. Grains with a solid fraction descended, but “released” rejected solute that
again helped intensify the upward solute convection. This process was repeated twice
for hin f = 1000 W m−2 K−1 with large variations in amplitude of axial velocity, and was
stopped by the packed layer, which reached this height at ~200 s (Figure 10d). For smaller
heat transfer coefficients, competition between growth of the solid fraction followed by
descending grains and solutal convection gave rise to multiple flow oscillations that were
finally also stopped due to grain packing. These oscillations gave an irregular form to the
central zone of negative segregation.
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The results obtained at point P2, 0.2 m from the central line and about 0.03 m from
the ingot surface, are presented in Figure 9c. Here, the downward velocity value initially
increased due to development of the flow field under the action of thermal buoyancy,
before quickly reverting to zero when the packing layer reached that point. For the lowest
value of the heat transfer coefficient, the process was different and was accompanied by
flow oscillations that indicated flow instabilities similar to those described above. The
effect of these instabilities on solute distribution in the ingot was also visible in Figure 8a as
a variation in the segregation index near the ingot boundary. Finally, the flow behavior at
point P1, located 0.1 m from the central line (Figure 9b), presented a combination of effects
described for point P0 at the axis, which were followed by a change in flow direction to
a descending one due to the sedimentation of the grains, the solid fraction of which was
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sufficiently developed to counteract solutal convection. Yet with the lowest value of hin f ,
velocity oscillations persisted until the packed layer was reached.

Finally, the evolution of the location of the zone edge (the packing line) for differ-
ent cases is shown in Figure 10. The comparison was performed for periods of time,
ranging from the beginning of cooling until the moment when the equiaxed grains piled
up to the top of the mold. This took about 960 s, where hin f = 100 W m−2 K−1, 540
s where hin f = 300 W m−2 K−1, 360 s where hin f = 600 W m−2 K−1, and 300 s where
hin f = 1000 W m−2 K−1 for grains piling up the mold. After this, it took 500 more seconds
for the equiaxed grains to fill the hot top region for each case. It should be noted that
ingot solidification was still far from completion since the grains were packed at fe = 0.4,
whereas the solid fraction varied from 0.25 to 0.3.

5. Conclusions

A three-phase equiaxed solidification model was applied to study the formation of
macrosegregation in a 2.45 ton industrial steel ingot. A comparison of the calculated
macrosegregation with the reported measurements [1] showed their qualitative agree-
ment despite uncertainties in boundary conditions and a rather sizeable simplification of
physical phenomena in the model. Numerical results revealed flow instabilities related to
competition between solutal and thermal buoyancy effects in the liquid, added to which
was the gravity force acting on grains depending on the solid fraction. These instabilities
led to an irregular form of the central zone with negative segregation perturbed by hori-
zontal channels and the emergence of long vertical channels, also observed in experiments.
However, V-type channels along the axis were not reproduced. The study of the effect
of cooling intensity confirmed that stronger surface cooling relieves macrosegregation of
ingots as flow is stabilized by faster development of the packed layer. Yet, in real industrial
processes, improvement of cooling conditions is difficult because of the formation of an
air gap between the solidifying ingot and the mold due to shrinkage. Therefore, more
investigation is needed to improve the cooling conditions of chill molds.

One of the most important simplifications in the model is the absence of the shrinkage
effect, which may alter the multiphase flow during the process once the solid phase starts
to appear, and which is clearly responsible for the segregation pattern in the upper part of
the ingot. The role of columnar growth, which is not taken into account in the model, is,
however, less clear. Indeed, in simulation, a layer of packed grains along the cooled walls
and bottom appeared quite quickly once the process began and somehow corresponded to
columnar dendrites observed in various reported experiments [1,3,4,8,12] or calculations
elsewhere [19,21].
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Appendix A

Equations for momentum conservation are required only for grain phase and for
extradendritic liquid phase, and they are given with the Navier–Stokes equations coupled
with a realizable kε − ε turbulent model. Conditions for the grain packed region and
unpacked region should be distinguished. If both phases can freely move, the momentum
conservation equations are given by Equations (A1) and (A2) for the liquid and grain
phases, respectively. If the grain phase becomes packed, the equation of motion for the

grain phase reduces to
→
u e ≡

→
0 (instead of Equation (A2)) whereas the motion of the liquid

is still described by Equation (A1).

∂
(

flρl
→
u l

)
∂t

+∇
(

flρl
→
u l
→
u l

)
= − fl∇P +∇

[(
µl +

ρlCµk2
ε

ε

)
fl

(
∇→u l +

(
∇→u l

)T
)]

+
→
F Bl + Kle

(→
u e −

→
u l

)
(A1)

∂
(

feρe
→
u e

)
∂t

+∇
(

feρe
→
u e
→
u e

)
= − fe∇P +∇

[(
µe +

ρeCµk2
ε

ε

)
fe

(
∇→u e +

(
∇→u e

)T
)]

+
→
F Be + Kle

(→
u l −

→
u e

)
(A2)

where
→
F Bl represents the bouyancy force, which is treated with the Boussinesque

approximation for extradendritic liquid accounting for thermal and solutal expansion:

→
F Bl = flρl

→
g
[

βT

(
Tb

re f − Tl

)
+ βc

(
cre f

l − cl

)]
(A3)

A similar term for the grain phase takes the Boussinesque approximation for interden-
dritic liquid and contains an additional term for the solid phase:

→
F Be = fdρl

→
g
[

βT

(
Tb

re f − Tl

)
+ βc

(
cre f

l − cd

)]
+ fs∆ρ

→
g (A4)

where cl , cd, and cs are intrinsic solute concentrations associated with extradendritic liuid,
interdendritic liquid, and solid phases, respectively, ∆ρ is the difference between solid
phase density and reference density.

For the free-floating region, i.e., fe < f e
p, the momentum exchange coefficient between

the liquid and grain phases Kle is calculated with the Happel model [27]. When fe ≥ f e
p,

the coefficient Kle is evaluated with the Kozeny–Carman equation:

Kle =

 18 f 2
l fe

µl
d2

e

2+4/3 f 5/3
e

2−3 f 1/3
e +3 f 5/3

e −2 f 2
e

fe < f e
p

150µl f 2
e /
(
d2

k f 3
l
)

fe ≥ f e
p

(A5)

The governing equations for kε and ε are given below.

∂(ρmkε)

∂t
+∇ ·

(
ρm
→
u mkε

)
= ∇

[(
µm +

µt,m

σk

)
∇kε

]
+ Gk,m − ρmε (A6)

∂(ρmε)

∂t
+∇ ·

(
ρm
→
u mε

)
= ∇

[(
µm +

µt,m

σε

)
∇ε

]
+ ρmC1Sε− ρmC2

ε2

kε +
√

µt,mε/ρm
(A7)

where index m is used for the mixture of l- and e-phases, whose properties are defined as
ρm = flρl + feρe, µm = flµl + feµe,

→
u m =

(
flρl
→
u l + feρe

→
u e

)
/ρm. Closure relations and

values for the constants used in Equations (A1)–(A7) are given in Table A1.
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Table A1. Empirical constants and functions in the realizable kε − ε model.

Parameters Parameters

Gk,m = 2µtS2 S =
√

SijSij

µt,m = ρmCµk2
ε /ε C1 = max [0.43, η/(η + 5)]

Sij = 1/2
(

∂uj/∂xi + ∂ui/∂xj

)
Cµ = 1/(4.04 + AskεU∗)/ε)

η =
√

2Skε/ε ϕ = cos−1
(√

6W
)

/3

As =
√

6 cos ϕ Ωij = 1/2
(

∂uj/∂xi − ∂ui/∂xj

)
U∗ =

√
SijSij + Ω̃ijΩ̃ij W = SijSjkSki/S3

C2 = 1.9 A0 = 4.4
σk = 1.0 σε = 1.2
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