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Abstract: 

Tm
3+

 doped and Tm
3+

, Pr
3+

 co-doped Lu3Al5O12 (LuAG) single crystals have been 

successfully grown by the micro-pulling-down (μ-PD) method. The absorption spectra, 

fluorescence spectra and lifetimes were investigated at room temperature. In the absorption 

spectra, the transition centered at 782 nm matches well with the GaAlAs LDs laser pumping. 

The incorporation of Pr
3+

 into Tm
3+

-doped LuAG crystals significantly enhanced the intensity 

of 1.5 μm emission and decreased the fluorescence lifetime of the lower energy level for 1.5 

μm emission from 10.427 ms to 2.603 ms. The results indicate that Tm,Pr:LuAG crystal can 

be promising candidate for near infrared 1.5 μm laser materials. 
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1. Introduction 

Laser sources operating at 1.5 μm region have attracted much attention due to the use for 

remote sensing, biomedical systems, optical subscriber networks, telecommunication industry, 

and so on [1-3]. Using an AlGaAs diode laser as pump source, trivalent thulium (Tm
3+

) can 

provide laser oscillation at this specific wavelength through the 
3
H4→

3
F4 transition channel. 

However, the transition of Tm
3+

 that generates emission around 1.5 μm is considered to be 

self-terminating, for the lifetime of 
3
F4 energy level is much longer than that of 

3
H4 energy 

level [4]. In order to deal with the unfavorable population bottleneck and depopulate the 
3
F4 

state efficiently, co-doping sensitive ions like Tb
3+

, Ho
3+

 and Pr
3+ 

ions were proposed to 

quench the terminal 
3
F4 level and increase the emission intensity at around 1.5 μm by means 

of energy transfer [5-9].  

Lu3Al5O12 (LuAG) is a promising laser host material due to its relatively high thermal 

conductivity, chemical and physical stability [10]. Tm:LuAG crystal can be easily grown by 

the Czochralski method [11] and micro-pulling-down method [12]. In 1995, A diode-pumped 

Tm:LuAG laser was demonstrated with a relatively low optical-to-optical efficiency of 7.3% 

[13]. For continuous-wave operation, a maximum output power of 4.91 W was reported with 

a slope efficiency of 25.3 % [14]. To the best of our knowledge, there has no research about 

the growth and performance of Tm,Pr:LuAG crystal. 

In this work, Tm,Pr:LuAG crystal was grown by the micro-pulling-down method. The 

spectroscopic properties of Tm,Pr:LuAG crystal were reported and Pr
3+

 ion was demonstrated 

to be an efficient deactivated ion for Tm
3+

 ion by effective energy transfer from Tm
3+

:
3
F4 level 

to Pr
3+

:
3
F2 level.  

 

2. Experiments 

2.1 Crystal growth 

The 2.0 at.% Tm
3+

, 0.2 at.% Pr
3+

 co-doped LuAG and 2.0 at.% Tm
3+

 single doped LuAG 

single crystals were grown by the μ-PD method [15, 16]. The Tm2O3, Lu2O3, Al2O3 and Pr6O11 

powders with purity of 99.999% were prepared as raw materials. After being mixed, the 

mixtures were shaped into a rod and pressed by cold isostatic, then sintered at 1300°C for 12 

h in a muffle furnace. A <111> oriented LuAG crystal was used as seed and the pulling rate 

was 0.3 mm/min. The growth atmosphere was high-purity flowing argon. Fig.1 shows the 

obtained Tm:LuAG and Tm,Pr:LuAG crystals with diameter of about 2 mm. The crystals are 

transparent and colorless with homogeneous diameter and free of macroscopic defects. 

 

 



(a) 

 

(b) 

Fig. 1. Photographs of the as-grown 2.0 at.% Tm:LuAG (a) and 

 2.0 at.% Tm, 0.2 at.% Pr:LuAG (b) single crystals. 

 

2.2 Spectral measurements 

The Tm:LuAG and Tm,Pr:LuAG crystal samples were cut from the as-grown crystals and 

two surfaces were polished for measurements. The absorption spectra of the samples were 

performed by a spectrometer (Lambda 900, Perkin-Elmer UV–VIS–NIR) in the wavelength 

range of 400-2100 nm. An Edinburgh Instruments FLS 980 spectrophotometer was used to 

measure the emission spectra and decay curves under the excitation of 790 nm. All the 

measurements of the samples above were taken at room temperature. 

 

3. Results and discussion 

3.1 Absorption spectra 

The room temperature absorption spectra of Tm:LuAG and Tm,Pr:LuAG single crystals 

in the wavelength range of 400-2000 nm are shown in Fig. 2. The five absorption bands of 

Tm:LuAG crystal centered at 460, 681, 782, 1178 and 1632 nm correspond to the transitions 

from the ground state 
3
H6 to the excited states 

1
D2, 

1
G4, 

3
F2,3, 

3
H4, 

3
H5 and 

3
F4, respectively. 

The absorption band centered at around 1472 nm, corresponding to the 
3
H4→

3
F4+ 

3
F3 

transition of Pr
3+

 ions, is also clearly in the absorption spectrum of Tm,Pr:LuAG crystal. As is 

known to all, the transition at 782 nm matches well with AlGaAs LDs pumping sources. The 

absorption coefficient at 782 nm of Tm:LuAG and Tm,Pr:LuAG was calculated to be 1.23 

cm
-1

 and 1.30 cm
-1

, respectively. Besides, the full width at half maximum (FWHM) of 

absorption band at 782 nm was 11.4 nm and 15.0 nm, respectively. The FWHM is larger than 

the value of Tm:LYSO (8nm at 791nm [17]), Tm:YAP (3.9 nm at 777 nm [18]) and 

Tm:KY3F10 (3.8nm at 778 nm [19]). The absorption bands of Tm:LuAG and Tm,Pr:LuAG 

crystals around 782 nm are wide enough to steadily absorb the incident pump power. 
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Fig. 2. Room temperature absorption spectra of Tm:LuAG and Tm,Pr:LuAG crystals. 

 

3.2 Fluorescence spectra 

Fig. 3 shows the fluorescence spectra of Tm:LuAG and Tm,Pr:LuAG crystals under 790 

nm excitation at room temperature. Both samples have similar emission bands around 1431 

nm, which correspond to the 
3
H4→

3
F4 transition of Tm

3+
 ions. As can be seen from Fig. 3, the 

intensity of the emission line around 1431nm increased after the introduction of Pr
3+

 ions. The 

enhanced fluorescence emission of the 
3
H4→

3
F4 transition can justify that the introduction of 

Pr
3+

 ions can depopulate the Tm
3+

:
3
F4 level effectively. The results suggest that Tm,Pr:LuAG 

crystal could be a promising material for 1.5 μm laser generation. 
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Fig. 3. Room temperature fluorescence spectra of Tm:LuAG and Tm,Pr:LuAG crystals.  

 

3.3 fluorescence lifetime  

  The room-temperature decay curves of 
3
H4 and 

3
F4 levels of Tm:LuAG and Tm, Pr:LuAG 

crystals excited by 790 nm laser are shown in Fig. 4. For Tm:LuAG crystal, the fluorescence 

lifetimes of 
3
H4 and 

3
F4 level were measured to be 378 μs and 10.427 ms, respectively. It can 

be easily found that the fluorescence lifetime of the 
3
F4 terminal level is much longer than that 

of the 
3
H4 initial level. Therefore the laser around 1.5 μm is normally self-terminating. In 

order to depopulate the lower level through the energy transfer process, we introduce Pr
3+

 ions 

into Tm:LuAG crystal. Fig. 5 shows the energy level scheme of Tm
3+

 and Pr
3+

 ions in LuAG 

crystal. Under a 790 nm LD excitation, the Tm
3+

 ions are excited from ground state 
3
H6 to the 

excited state 
3
H4. The fluorescence emission at 1.5 μm is due to the Tm

3+
: 

3
H4 → 

3
F4 transition. 

For the 1.8 μm emission, the population of 
3
F4 level is based on the cross relaxation (CR) 

Tm
3+

: 
3
H4 + 

3
H6 → 

3
F4 + 

3
F4, and the cross relaxation process increased lifetime of 

3
F4 level 

[20]. Since the Pr
3+

: 
3
F2 level is adjacent to the Tm

3+
: 

3
F4 level, an effective energy transfer 

(ET) Tm
3+

: 
3
F4 + Pr

3+
: 

3
H4 → Tm

3+
: 

3
H6 + Pr

3+
: 

3
F2 will depopulate the Tm

3+
:
 3

F4 level. To 

verify the mechanism, the lifetimes of 
3
H4 and 

3
F4 levels of Tm,Pr:LuAG crystal are 

compared with those of Tm:LuAG crystal. By co-doping Pr
3+

 ions into Tm:LuAG crystals, 

the lifetime of 
3
F4 level decreased greatly to 2.603 ms, while the lifetime of 

3
H4 level 

experienced a slight decrease from 378 μs to 346 μs. The lifetime of 
3
H4 level of Tm,Pr:LuAG 

crystal is much higher than the value of 0.5% Tm, 1% Tb:YVO4 (50 μs [7), 0.5% Tm:GdScO3 

(265 μs [21]), 1% Tm:KGd(WO4)2 (175 μs [22]) and 1.5% Tm:YAG (270 μs [23]). To further 

investigate the effect of Pr
3+

 ions, the energy transfer efficiency   was calculated according 

to the flowing formula: 

                                                                  (1) 

where     and        are the fluorescence lifetimes of Tm:LuAG and Tm,Pr:LuAG 

crystals, respectively. The measured fluorescence lifetimes τ and calculated energy transfer 

efficiency η of Tm:LuAG and Tm,Pr:LuAG crystals are listed in Table 1. The he energy 

transfer efficiency from Tm
3+

:
3
F4 level to Pr

3+
:
3
F2 level was calculated to be75.0%. The 

results indicate that the co-doping of Pr
3+

 ions can effectively depopulate 
3
F4 lower level, 

while has little influence on the 
3
H4 upper level. Therefore, the co-doping of Pr

3+
 ions into 

Tm
3+

 doped crystals can be used as an effective way for 1.5 μm laser operation. 
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Fig.4. Fluorescence decay curves of the 
3
H4 and 

3
F4 mainfold of Tm:LuAG and Tm,Pr:LuAG 

crystals. 
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Fig.5. Energy level diagram of Tm
3+

,Pr
3+

 co-doped system. 

 

Table 1 Fluorescence lifetimes τ and fluorescence quantum efficiencies η for the  

Tm:LuAG and Tm, Pr:LuAG crystals. 

Tm:LuAG τ(μs) 
3
H4 τ(ms) 

3
F4 η 

3
F4 

2%Tm 378 10.427  

2%Tm, 0.2%Pr 346 2.603 75.0% 

 

 

4. Conclusion 

  In conclusion, Tm
3+

 and Tm
3+

,Pr
3+

 co-doped LuAG single crystals were successfully grown 

by the μ-PD method. Compared with Tm:LuAG crystal, the absorption coefficient and 

FWHM at 782 nm of Tm
3+

,Pr
3+

 co-doped LuAG crystal is higher. It was also demonstrated 

that after the introduction of Pr
3+

 ions, the intensity of 1.5 μm emission increased and the 

fluorescence lifetime of Tm
3+

:
3
F4 level decreased greatly from 10.427 ms to 2.603 ms, while 

the lifetime of Tm
3+

:
3
H4 level changed little from 378 μs to 346 μs. Pr

3+
 ions can efficiently 

depopulate the 
3
F4 lower level, while having little influence on the 

3
H4 upper level of Tm

3+
 

ions. All the results show that Tm,Pr:LuAG crystal could be a potential laser material for 

eye-safe 1.5 μm laser operation.  
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