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Abstract Metamodels are widely used in the industry to predict the output of an expensive computer
code. As the computer code involves a large amount of input variables, rather than directly creating one
big metamodel depending on the whole set of inputs, industrials proceed sequentially, building metamodels
depending on nested sets of inputs (the variables that are set aside are fixed to nominal values), i.e. the
dimension of the input space is progressively increased. But at each step, the previous information is lost
as a new Design of Experiment (DoE) is built to train the new metamodel. In this paper, an alternative
approach is introduced, based on all the DoEs rather than just the last one. This metamodel uses Gaussian
process regression and is called seqGPR (sequential Gaussian process regression). At each step n, the output
is supposed to be the realization of the sum of two independent Gaussian processes Yn−1 +Zn. The first one
Yn−1 models the output at step n− 1. It is defined on the input space of step n− 1 which is a subspace of
the one of step n. The second Gaussian process Zn is a correction term defined on the input space of step n.
It represents the additional information provided by the newly released variables. Zn has the particularity of
being null on the subspace where Yn−1 is defined so that there is a coherence between the steps. First, some
candidate Gaussian processes for the Zk are suggested, which have the property of being null on an infinite
continuous set of points. Then an EM (Expectation-Maximization) algorithm is implemented to estimate
the parameters of the processes. Finally the metamodel seqGPR is compared to a classic kriging metamodel
where the output is assumed to be the realization of one second order stationary Gaussian process. The
comparison is made on two analytic examples, one with two steps up to dimension 4, and the second one
with three steps up to dimension 15. The introduced methodology is also tested on an industrial example
that goes from dimension 11 to dimension 15. In all these test cases, seqGPR performs as good as or better
than kriging.

Keywords : Metamodel, Kriging, Gaussian Process Regression, High dimension, Infinite conditionning,
Multifidelity, Nested spaces, Variable-size design space problems

1 Introduction
In the industry, numerical codes are well spread to model physical phenomena at stake in the products.
Computer experiments make easier the control of product performance as they are less complex to set up
and run than physical experiments. However, computer codes are confronted to some limitations. Firstly,
they can’t be self-sufficient as they are often computationally expensive. This problem is already solved
by the use of metamodels [Forrester et al., 2008], [Sacks et al., 1989]. A metamodel is a simpler statistical
model, like radial basis neural networks [Cheng and Titterington, 1994], kriging models [Santner et al., 2003],
[Roustant et al., 2012], support vector regression [Clarke et al., 2005] trained on a sample of well-chosen runs,
also called design of experiments DoE [Pronzato and Müller, 2012], [Dupuy et al., 2015]. Metamodels give
fast approximations of the code outputs and are complementary to numerical codes. Indeed, they have a
proactive role as they help to select relevant combinations of input variables to run by the computer code (for
example solutions of optimization problems [Simpson et al., 2008]). Thus, the computer code is used with
more efficiency.

The second issue faced by numerical codes is their complexity due to the fact that they involve lots
of variables : geometrical parameters, environmental ones... Complex engineering systems involving un-
certainty can be found in [Makowski et al., 2006], [Lefebvre et al., 2010], [Auder et al., 2012]. One re-
current issue faced by the surrogate models is to deal with high dimension [Ulaganathan et al., 2016],
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[Shan and Wang, 2010]. Dimension reduction is a common approach to deal with it. It consists in con-
sidering only the influent inputs. The influent inputs are often detected by sensitivity analysis methods
([Saltelli, 2000],[Sobol, 1993],[Iooss and Prieur, 2019]). The problem with this approach lies in the fiability
of the metamodel on which is performed the sensivity analysis. An alternative approach usually chosen in
the industry to have a better understanding of the output behaviour is to act step by step. The first studies
done on the code focus on a small amount of variables assumed important from a physical point of vue. The
other variables are fixed to nominal values. A metamodel is trained and exploited only for these variables
until the understanding of their influence is sufficient. Then, to obtain better performances than those offered
by this set of variables, finer studies are done in which new variables are added progressiveley. The classical
approach is to start from scratch at each step, i.e. generate a new independent space-filling design in the
current space on which a metamodel is trained without taking into account the runs of the previous studies.
This approach has the drawback of being greedy in simulations, because the number of simulations needed
to train a metamodel increases with the number of variables. Furtheremore, this approach is not optimal in
the way the information is treated as the previous DoEs are not exploited.

The purpose of the work described in this paper is to find a way to inject the information from the
previous steps into the current step. To do that, the chosen approach consists in creating dependent
metamodels for each step. The metamodel is based on Gaussian process regression [Santner et al., 2003]
[Williams and Rasmussen, 2006]. One way of taking into account the different designs could be to use a
multifidelity model for which the levels are not defined on the same input space. That is what is done in
[Hebbal et al., 2021] with deep Gaussian processes. But this model is really expensive to train. Furthermore,
the multifidelity context is not suitable since the runs obtained at the previous studies have the same accu-
racy level. Another way could be to define a virtual categorical input, equal to the number of the step, that
influences the choice of the input variables to consider. [Pelamatti et al., 2021] defines a Gaussian process
that depends on this categorical input and has its set of inputs that vary with the values of this categorical
input. This modelization is complex and general. It does not take into account the fact that the input sets are
included in each other from one step to another. This particularity can lead to a simpler modelization. The
approach chosen in this work, that is called seqGPR (sequential Gaussian process regression), is based on a
recursive statistical model inspired from the autoregressive multifidelity model [Kennedy and O’Hagan, 2000]
but taking into account that the accuracy of the runs of each step is the same and that the input space di-
mension is increasing. The output of the code at a given step is modeled as the realization of a Gaussian
process being the sum of the Gaussian process that models the previous step and a correction term. The
correction term stands for the information provided by the new variables.

Considering this probabilistic model, one first difficulty is to build an appropriate correction term to
represent the gap between the same numerical model observed on two nested subspaces. Thus, the correction
process must be null on the subspace corresponding to the previous step. As this subspace is composed of
an infinite continuous set of points, the question is then how to build a Gaussian process null on an infinite
continuous set of points with a numerically computable covariance kernel. One idea could be to define the
correction process in a finite dimensional way, with adequate basis functions, to impose the nullity constraint,
as it is done in [Maatouk and Bay, 2017], [Lopera, 2019], [Bachoc et al., 2020] to ensure some properties of
monotonicity, boudedness, convexity. But this approach is greedy as the number of basis functions increases
with the dimension. Instead of imposing the nullity a priori, it can be imposed a posteriori in the prediction
by adding a finite number of relevant points from the subspace to the training sample. This technique is
used in [Da Veiga and Marrel, 2012] in the context of monotonicity, boundedness, convexity constraints. One
drawback is the greediness of the method, another is that the constraint cannot be verified everywhere, and
similarly, the nullity would not be verified in the whole subspace. [Gauthier and Bay, 2012] have worked on
such Gaussian processes, null on an infinite continuous set of points. They generalize the notion of condi-
tionning to any set of points (even infinite continuous) and define a latent process conditioned to be null on
the subspace. That is one of the candidates that are retained in this paper for the correction process.

Once a tractable candidate for the correction term is proposed, another difficulty lies in the estimation of
the hyperparameters. One way is to optimize the likelihood. This task can be numerically hard since the like-
lihood involves several sets of hyperparameters for the different processes. One way to reduce the dimension
of the optimization space is to propose nested designs as it is done in [Le Gratiet and Garnier, 2014]. In this
paper an alternative based on the expectation maximization algorithm [Friedman et al., 2001] is introduced.
It allows the reduction of the dimension with limited constraints on the designs.

The formulation of the metamodel seqGPR (sequential Gaussian process regression) is detailed in section
2. Two candidates for the correction term are proposed in section 3. An EM (expectation-maximization)
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algorithm is suggested in section 4 to estimate the model parameters. Finally, the method seqGPR is tested
on two analytic examples and one industrial case in section 5.

2 Metamodel
Underlying processes Let f : [0, 1]d → R be an output of an expensive simulation code depend-
ing on d variables. A response surface of f has to be built taking into account that N − 1 previous studies
of increasing dimension have already been done. Each of these steps is a focus on the relation between the
output and a subset of free variables. The others are temporarily fixed but then progressively released in the
further steps. The paper treats the handling of the last step, denoted by N , where all inputs are free.
Let In denote the indices of the variables that are released at step n ∈ J1, NK and dn = card(In). For every
set of indices I, let xI denote the associated subvector of x. The following framework, based on Gaussian
process regression, is introduced to model the successive studies :

• At step 1, a first series of computer code evaluations is run. The set xI1 of the first d1 components
of x, are free in [0, 1]d1 . Different values are explored. They are stored in DoE X1 ⊂ [0, 1]d1 . The
other components are fixed to preset values x̀I2∪···∪IN (entirely determined by xI1). Let f1 denote the
corresponding restriction of f on the subspace [0, 1]d1 . The function f1 is assumed to be the realization
of a stationary Gaussian process Y1 = m+ Z1 of mean m ∈ R and with Z1 : Ω× [0, 1]d1 → R
a centered Gaussian Process of covariance kernel σ2

1ρ1. Let y1 = f1(X1) represent the vector of
observations of the output on DoE X1.

• At step 2, a second range of simulations are then launched on a subspace of a higher dimension
[0, 1]d1+d2 . The variables xI2 , fixed at Step 1, are released. Different values of xI1∪I2 , stored in DoE X2,
are explored. The other variables xI3∪···∪IN are fixed to the new set of values x̀I3∪···∪IN ∈ [0, 1]d3+···+dN .
Let f2 be the corresponding restriction of f on the subspace [0, 1]d1+d2 .
The function f2 is assumed to be the realization of a Gaussian process Y2 : Ω× [0, 1]d1+d2 → R ,
which is the sum of the process at Step 1 Y1 and a correction term Z2 which represents the additional
information provided by the released variables. As f1 and f2 are restrictions of the same function f ,
Y1 and Y2 have to coincide on the subspace defined at step 1. This results in the following definition of
Y2 :

Y2(xI1 , xI2) = Y1(xI1) + Z2(xI1 , xI2), ∀(xI1 , xI2) ∈ [0, 1]d1+d2 ,

with Z2 a centered Gaussian process independent from Z1 of covariance kernel σ2
2ρ2 such that ∀xI1 ∈

[0, 1]d1 , Z2(xI1 , x̀I2) = 0. Let y2 = f2(X2) denote the vector of observations for this step.

• In the same way as previous steps, at step n ∈ J3, NK, a DoE Xn is created in the higher space
[0, 1]d1+···+dn . The variables xI1∪···∪In−1

and xIn are free and the others xIn+1∪···∪IN are set to
x̀In+1∪···∪IN ∈ [0, 1]dn+1+···+dN . The corresponding restriction of f on this subspace, fn, is evalu-
ated on Xn. The values are stored in yn = fn(Xn). The function fn is modeled as the realization of a
Gaussian process Yn : Ω× [0, 1]d1+···+dn → R . Following the same arguments as at step 2, Yn
is defined as :

Yn(xI1∪···∪In−1
, xIn) = Yn−1(xI1∪···∪In−1

) + Zn(xI1∪···∪In−1
, xIn), ∀(xI1∪···In−1

, xIn) ∈ [0, 1]d1+···+dn ,

with Zn a centered Gaussian process independent from (Z1, · · · , Zn−1) of covariance kernel σ2
nρn and

such that Zn(xI1∪···∪In−1 , x̀In) = 0,∀xI1∪···∪In−1 ∈ [0, 1]d1+···+dn−1 .

The coincidance of the (Yn)16n6N on the subspaces is illustrated on figure 1 for N = 2.

Metamodel seqGPR Finally, the problem is modeled by the following statistical model :

{
Y1(xI1) = m+ Z1(xI1), ∀xI1 ∈ [0, 1]d1 ,
Yn(xI1∪···∪In−1

, xIn) = Yn−1(xI1∪···∪In−1
) + Zn(xI1∪···∪In−1

, xIn), ∀n ∈ J2, NK,∀(xI1∪···∪In−1
, xIn) ∈ [0, 1]d1+···+dn ,

(1)
where :

• The processes (Zn)16n6N are independent Gaussian processes of law :

Zn ∼ GP(0, σ2
nρn(xI1∪···∪In , tI1∪···∪In)) ∀n ∈ J1, NK. (2)
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(a) Visualization of Y2 and Y1 (b) Isocontours of Y2 (c) Visualization of Y1

Figure 1: Illustration of the model for N = 2. f is the realization of Y2 (see panels on the left and center).
On the cross section xI2 = x̀I2 , Y2 = Y1 (see panels on the left and right)

• The processes (Zn)26n6N verify the following property :

Zn(xI1∪···In−1
, xIn) = 0, ∀n ∈ J2, NK,∀xI1∪···In−1

∈ [0, 1]d1+···+dn−1 . (3)

The same formulas of prediction than for a classic kriging metamodel apply. For every x ∈ [0, 1]d, the
prediction mean ŷ(x) and variance v̂(x) are defined by{

ŷ(x) = E [YN (x) | Y1(X1) = y1, · · · , YN (XN ) = yN] ,
v̂(x) = V ar (YN (x) | Y1(X1) = y1, · · · , YN (XN ) = yN) .

Issues This model raises two issues. The first difficulty is to build (Zn)26n6N such that they verify the
property of (3). This issue is treated in section 3. Secondly, the estimation of the parameters of Y1 and
(Zn)26n6N at step N , in the presence of training samples from the different steps, promises to be thorny. It
is detailed in section 4.

3 Candidates for the correction process
This section answers the first issue, which is to build a process that is null on an infinite continuous set of
points. More precisely, the goal is to build a process Z : [0, 1]dJ+dI × Ω → R such that :

Z(xJ , g(xJ)) = 0 ∀xJ ∈ [0, 1]dJ , (4)

with g : [0, 1]dJ → [0, 1]dI a deterministic function. In this section, two candidates are suggested

for the process Z, both based on a latent Gaussian process
∼
Z ∼ GP

(
0, σ2r((xJ , xI), (tJ , tI))

)
of covariance

kernel σ2r.

3.1 Red (reducted) process

A natural idea to obtain the nullity property (4) is to substract from
∼
Z its value on the subspace {(xJ , g(xJ)) |

xJ ∈ [0, 1]dJ}. So the first candidate is :

ZRed(xJ , xI) =
∼
Z(xJ , xI)−

∼
Z(xJ , g(xJ)).

It is called the Red process. It is a centered Gaussian process of covariance kernel σ2ρRed with:

ρRed((xJ , xI), (tJ , tI)) = r ((xJ , xI), (tJ , tI))− r ((xJ , xI), (tJ , g(tJ)))
−r ((xJ , g(xJ)), (tJ , tI)) + r ((xJ , g(xJ)), (tJ , g(tJ)) .
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3.2 P (preconditionned) process
Another way to obtain the nullity property (4) is to use the ’conditionnal expectation’ [Gauthier and Bay, 2012].
The second candidate is defined by

ZP (xJ , xI) =
∼
Z(xJ , xI)− E

[
∼
Z(xJ , xI) |

∼
Z(sJ , g(sJ)),∀sJ ∈ [0, 1]dJ

]
. (5)

It is called the P process. The term E
[
∼
Z(xJ , xI) |

∼
Z(sJ , g(sJ)),∀sJ ∈ [0, 1]dJ

]
is the orthogonal projection

of
∼
Z(xJ , xI) in the sub Gaussian Space engendered by the

(
∼
Z(sJ , g(sJ))

)
sJ∈[0,1]dJ

. Its expression is given

by [Gauthier and Bay, 2012] :

E
[
∼
Z(xJ , xI) |

∼
Z(sJ , g(sJ)),∀sJ ∈ [0, 1]dJ

]
=

+∞∑
n=1

φn(xJ , xI)

∫
[0,1]dJ

∼
φn(sJ)

∼
Z(sJ , g(sJ))dsJ ∀(xJ , xI) ∈ [0, 1]dJ × [0, 1]dI ,

(6)
with

φn(xJ , xI) = 1
λn

∫
[0,1]dJ

σ2r((xJ , xI), (sJ , g(sJ)))
∼
φn(sJ)dsJ ∀(xJ , xI) ∈ [0, 1]dJ × [0, 1]dI ,

and (λn,
∼
φn)n>1 are solutions of the eigen problem :∫

[0,1]dJ
σ2r ((xJ , g(xJ)), (sJ , g(sJ)))

∼
φn(sJ)dsJ = λn

∼
φn(xJ) ∀xJ ∈ [0, 1]dJ ,

such that ∫
[0,1]dJ

∼
φn(sJ)

∼
φm(sJ)dsJ = δnm ∀n,m > 1,

where δnm is the Kronecker symbol. ZP is a centered Gaussian process of covariance kernel :

σ2ρP ((xJ , xI), (tJ , tI)) = σ2r((xJ , xI), (tJ , tI))−
+∞∑
n=1

λnφn(xJ , xI)φn(tJ , tI)
∀(xJ , xI) ∈ [0, 1]dJ × [0, 1]dI ,
∀(tJ , tI) ∈ [0, 1]dJ × [0, 1]dI .

This kernel can’t be used just as is in practice, because the solutions of the eigen problem are not explicit
in general and the sums are infinite. In this paper, two ways of computing this kernel are proposed. The
first is based on the discretization of the spectral decomposition. The second is based on a wise choice of r
for which an explicit formula is known.

Numerical approximation In this paragraph, a first way of computing the kernel is given by an approx-
imation based on the discretization of the spectral decomposition that reduces the functional eigen problem
to a finite dimensional one. In that case, the terms from the spectral decomposition vanish and the formula
of the resulting approximate kernel only depends on the kernel of the latent process.

Proposition 1 Let D =
(
t
(i)
J , g(t

(i)
J )
)
16i6L

be a uniform sample in the subspace {(tJ , g(tJ)), tJ ∈ [0, 1]dJ}.
Then discretizing the spectral decomposition of the P process Z by a Monte-Carlo method using D is equivalent
to approximating the P process by the process

∼
Z conditionned to be null on the points of D :

ZD =

[
∼
Z |

∼
Z(D) = 0

]
.

It is a centered Gaussian process of covariance kernel σ2ρD :

ρD(x, t) = r(x, t)− r(x,D)r(D,D)−1r(D, t) ∀x, t ∈ [0, 1]dJ+dI .

See appendix A for the proof of this proposition.

This process does not suit the original expectations as the nullity is not fully respected on the continous
set of points. The size of D must be high to approach correctly the full nullity. It is more and more difficult
as the dimension of the input space increases, and it leads to very expensive computations (with inversion
of huge matrices). So a second way of computing this kernel is proposed. It consists in finding forms of the

kernel of
∼
Z that enable the kernel of ZP to be tractable.
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(a) Visualization of Y2 and Y1 (b) Isocontours of Y2 (c) Visualization of Y1

Figure 2: Same illustration of the model than on figure 1, but this time x̀I2 is constant.

Analytical expression in the case of a product kernel

Proposition 2 Let rJ and rI be two stationary correlation kernels. If r is of the form :

r((xJ , xI), (tJ , tI)) = rJ(xJ , tJ)rI(xI − g(xJ), tI − g(tJ)),

then the P process is a centered Gaussian process equal to :

ZP (xJ , xI) =
∼
Z(xJ , xI)− rI(xI − g(xJ), 0)

∼
Z(xJ , g(xJ)),

whose covariance kernel is σ2ρP with:

ρP ((xJ , xI), (tJ , tI)) = rJ(xJ , tJ) [rI(xI − g(xJ), tI − g(tJ))− rI(xI − g(xJ), 0)rI(0, tI − g(tJ))] .

See appendix B for the proof of this proposition.

Corollary 1 If g is constant equal to c ∈ [0, 1]dI and if r is a stationary kernel of the form

r((xJ , xI), (tJ , tI)) = rJ(xJ , tJ)rI(xI , tI),

then the P process is a centered Gaussian process equal to :

ZP (xJ , xI) =
∼
Z(xJ , xI)− rI(xI , c)

∼
Z(xJ , g(xJ)),

whose covariance kernel is σ2ρP with:

ρP ((xJ , xI), (tJ , tI)) = rJ(xJ , tJ) [rI(xI , tI)− rI(xI , c)rI(c, tI)] .

The model presented in the corollary (where the variables that are released were previously fixed at a
constant value) is illustrated in figure 2.

In the following, the P processes are assumed to be built as in proposition 2 or corrollary 1.

3.3 Interpretation of the candidates
An illustration of the processes at stake in the construction of P and Red processes is shown in figure 3. They
are used to build Z(x1, x2) such that Z(x1, 0) = 0. One main difference between Red and P process is that
the initial latent process is disturbed locally in the case of the P process, whereas it is disturbed globally
in the case of the Red process. Indeed,

∼
Z(x1, 0) (see panel 3a), which is used to build the Red process, is

constant in x2 and consequently generates a perturbation of
∼
Z(x1, x2) (see panel 3b) in the whole input space

[0, 1]2. On the contrary, the conditional expectation E
[
∼
Z(x1, x2) |

∼
Z(t1, 0)∀t1 ∈ [0, 1]

]
(see panel 3c), used

to build the P process, depends on x2, especially near the line x2 = 0, and tends to 0 far from the line. The
modification it implies on the latent process is therefore located almost only along the line.
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(a) Value of latent process on the border
x2 = 0

(b) Initial latent process (c) Conditionnal expectation of latent
process

Figure 3: On middle panel, a realization of the latent process from which are built the two candidates for Z1

that should be null on the line x2 = 0. On left panel, the process which is removed from the latent process
to create the Red process. On right panel, the process (denoted by E for expectation) which is removed from
the latent process to create the P process.

4 Estimation of the parameters
This section answers the second issue which is to estimate the parameters of the metamodel seqGPR defined
in section 2. An EM algorithm is presented to ease the maximization of the likelihood.

Notations At step N , the following training samples (also called observed data) are available : (X1,y1),
..., (XN ,yN). The training data can be written as :

Y1(X1) = y1,
...
YN−1(XN−1) = yN−1,
YN (XN ) = yN,

or more simply :
Y = y,

with

Y =

 Y1(X1)
...

YN (XN )

 and y =

y1

...
yN

 .

The law of Y1 (see equations (1) and (2)) depends on the parameters : m (scalar mean parameter), σ2
1

(scalar variance parameter), and θ1 (vector of covariance parameters). For all n ∈ J2, NK, Zn (see equation

(2)) is either a Red or P process build on the latent process
∼
Zn ∼ GP(0, σ2

nrn) (see section 3) of parameters :
σ2
n (scalar variance parameter), θn (vector of covariance parameters). In order to emphasize the dependence

of ρn (the covariance kernel of Zn, n ∈ J1, NK) on the parameter θn, this kernel is denoted by ρθn . The
purpose of this section is to estimate the parameters η = (m,σ2

1 , θ1︸ ︷︷ ︸
η1

, σ2
2 , θ2︸ ︷︷ ︸
η2

, · · · , σ2
n, θn︸ ︷︷ ︸
ηn

, · · · , σ2
N , θN︸ ︷︷ ︸
ηN

) based

on the observed data. The maximum likelihood estimator is used. The following loss function 1 has to be
minimized :

l(η;y) = log |Covη(Y,Y)|+ (y − Eη[Y])′Covη(Y,Y)−1(y − Eη[Y]),

with for any matrix M , M ′ denoting the transpose of M . This optimization problem is complex as η can
be of big dimension.

In what follows, the notation Xn ⊂ Xn−1 means that the submatrix of Xn composed of the columns
corresponding to xI1∪···∪In−1

is included in Xn−1. In this case, the designs Xn and Xn−1 are said nested.
1equal to twice the negative loglikelihood up to a constant
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Figure 4: Definition of the
∼
Xn (n ∈ {1, 2, 3}) when N = 3 and I1 = {1}, I2 = {2}, I3 = {3}

4.1 Nested designs
Proposition 3 If all the designs are nested : XN ⊂ · · · ⊂ X1, then the loss function can be decoupled :

l(η;y) = l1(η1;y1) +

N∑
n=2

ln(ηn; zn),

with l1(η1;y1) (respectively ln(ηn; zn), n ∈ J1, NK) the loss function associated with the training data Y1(X1) =
y1 (respectively Zn(Xn) = zn).

Proof The zn are observed because the designs are nested. The loss function can be decoupled because
(Y1, Z2, · · · , ZN ) are independent.

If all the designs are nested, the parameters ηn can be estimated separately by optimizing the loss functions
ln.

4.2 Non nested designs
If the designs are not nested, the loss function is not decoupled. An EM (Expectation-Maximization, see
[Friedman et al., 2001]) algorithm is then used to reduce the dimension of the optimization problem. To
define this algorithm, the notion of complete data is introduced.

Definition 1 (Complete data) Let
∼
Xn (∀1 6 n 6 N) denote the union of all training samples that

concern Zn.
∼
Xn is a matrix of d1 + · · · + dn columns, composed of the concatenation of the parts of

Xn, · · · ,XN corresponding to the input variables xI1∪···∪In . The complete data is the random vector :

(Y1(
∼
X1), Z2(

∼
X2), · · · , ZN (

∼
XN )).

Figure 4 gives an illustration of the different
∼
Xn for N = 3 and I1 = {1}, I2 = {2}, I3 = {3}.

In the case of not nested designs
∼
X1, · · · ,

∼
XN play the role of X1, · · · ,XN in the case of nested designs.

According to proposition 3, if the values of Y1 on
∼
X1, denoted by z1, and the values of the Zn on the

∼
Xn

(n ∈ J2, NK), denoted by zn, were observed, the loss function associated to all those training samples, denoted
by lc, could be decomposed as

lc(η; z1, · · · , zn) =

N∑
n=1

lnc (ηn; zn),
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where l1c(η1; z1) is the loss function associated to the training data Y1(
∼
X1) = z1, and lnc (ηn; zn) (n ∈ J2, NK)

is the loss function associated to the training data Zn(
∼
Xn) = zn.

As some of the complete data is not observed (missing data), an EM algorithm seems adequate to optimize
the loss function.

Definition 2 (EM algorithm) The EM algorithm is defined by

• Expectation Instead of the observed data loss function, the expectation of the complete data loss func-
tion conditionned by the observed data is considered. This quantity can be decomposed in N terms
:

Q(η, η∗) = Eη∗ [lc(η;T ) | Y = y] ,

=

N∑
n=1

Qn(ηn; η∗),

with ∀n ∈ J1, NK

Qn(ηn, η
∗) = Eη∗

[
lnc (ηn;Zn(

∼
Xn)) | Y = y

]
.

• Maximization The EM algorithm consists in building the sequence (η(i))i>0 = (η
(i)
1 , · · · , η(i)N )i>0 such

that η(0) is user defined and ∀i > 0, η(i+1) is solution of the optimization problem

min
η
Q(η, η(i)).

So, for all n ∈ J1, NK, η(i+1)
n is solution of the following optimization problem :

min
ηn
Qn(ηn, η

(i)). (7)

See appendix C for the explicit formulas of the Qn. It is known that the sequence (η(i))i>0 verifies that
(l(η(i);y))i>0 is a decreasing sequence (see appendix D). Finally, η is estimated by a term of the sequence of
sufficiently high rank, the choice of the rank being done by imposing a maximum number of iterations and
a threshold on the variation of likelihood between iterations.

Remark To optimize Qn, the matrices cov
(
Zn(

∼
Xn), Zn(

∼
Xn)

)
= σ2

nρθn(
∼
Xn,

∼
Xn) (n ∈ J1, NK) need to be

inverted. First, for all n ∈ J1, NK,
∼
Xn is assumed not having any redundant points such that the matrices

have no identical rows. This condition is sufficient for the first matrix to be invertible as long as ρθ1 is a
positive-definite kernel. As it is not the case of the ρθn (n > 2), to ensure that the matrices are not singular,

each
∼
Xn (n ∈ J2, NK) is also supposed to not contain any point on which Zn is null so there are no rows full

of zeros in the matrices.

5 Examples of application
In what follows, three metamodels are compared on three examples, two analytic functions and one output
from an industrial code :

• seqGPR : the metamodel introduced in this paper. The kernel of Y1 and the ones on which are based
(Zn)Nn=2 are stationary tensor product matern 5

2 covariance kernels.

• K_N : a classic kriging metamodel with a stationary tensor product matern 5
2 covariance kernel and a

constant mean which is trained on the last training sample (XN ,yN).

• K_tot : a classic kriging metamodel similar to K_N, but trained on all training samples
(X1,y1), · · · , (XN ,yN).

The philosophy of the method seqGPR is to explain a maximum of the data by Y1, and to correct it thanks
to the (Zn)Nn=2, so all the parameters for Y1 are estimated individually and on the contrary some parameters
of the Zn are grouped. Different parameter sparsities for the Zn are tried, to seek balance between fitting
and robustness :
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• Full : θn = (θ1n, · · · , θd1+···+dnn ), one component θin for each input variable xi.

• Robust : θn = (θI1∪···∪In−1
n , · · · , θI1∪···∪In−1

n︸ ︷︷ ︸
I1∪···∪In−1

, θ1n, · · · , θdnn︸ ︷︷ ︸
In

), with θI1∪···∪In−1
n common to all components

of xI1∪···∪In−1 , and one parameter θin for each component of xIn .

Four versions of seqGPR are compared. P_full and P_rob (resp. Red_full and Red_rob) use P (resp. Red)
processes defined in subsection 3.2 (resp. 3.1), respectively with parameter sparsity of type Full and Robust
for the (Zn)Nn=2. The metamodels are compared in terms of RMSE on a test sample. The training samples
are not nested so the EM algorithm is used to estimate the parameters of the 4 versions of seqGPR. A simple
likelihood estimation is done for the two kriging models.

5.1 Analytic example in dimension 4
The output f considered in this example is a function of 4 inputs x = (x1, x2, x3, x4) : f(x1, x2, x3, x4) =
f1(x1, x2) + f2(x1, x2, x3, x4), with

f1(x1, x2) =
[
4− 2.1(4x1 − 2)2 + (4x1−2)4

3

]
(4x1 − 2)2

+ (4x1 − 2)(2x2 − 1) +
[
−4 + 4(2x2 − 1)2

]
(2x2 − 1)2,

f2(x1, x2, x3, x4) = 4 exp
(
−‖x− 0.3‖2

)
.

The study is composed of two steps :

• At step 1, computer code evalutations are run at DoE X1 in dimension 2, such that f1(X1) = y1, with
f1 defined by f1(x1, x2) = f(x1, x2, x̀3, x̀4). Only the first two variables x1 and x2 are free and the
other two variables are fixed : x̀3 = x1+x2

2 , x̀4 = 0.2x1 + 0.7.

• At step 2, new simulations are launched at points X2, a design in dimension 4. The last two variables
(x3, x4) are now released.

The total number of variables is d = 4, the number of steps is N = 2, the index set of variables released at
step 1 is I1 = {1, 2} and the index set of variables released at step 2 is I2 = {3, 4}.

Figure 5 shows RMSE of the different methods computed on a sobol sequence of size 10000 used as a test
set. The RMSE is computed on 100 different training samples (X1,y1) and (X2,y2). The 100 RMSE’s are
represented by a boxplot for each metamodel. Different sizes of training sample are tested. The standard
deviation of the output on the test set is represented by the black horizontal line.

All metamodel performances improve with the size of the training sample. Results show that including
the previous information of (X1,y1) is useful as it improves greatly the performance of the kriging metamodel
(K_tot is better than K_2). The robust seqGPR metamodels are better than the full, they are equivalent
or better than K_tot. It seems that the cases with a small or high number of training points are more
discriminating than in the middle cases. With a small number of points (10pts-5pts), K_tot seems more
destabilized than seqGPR. With a high number of points (20pts-40pts), seqGPR is more accurate than
K_tot. Finally, seqGPR using Red are better than seqGPR using P. In the following examples, only the
robust versions of seqGPR, which are more performant and whose parameter estimation is less complex, are
compared to K_tot.

5.2 Analytic example in dimension 15
Let’s now look at an example that should be less favorable to seqGPR. The objective function considered is
in higher dimension and not decomposed as a sum of functions that respects the order in which the variables
are released

f : [−3, 3]15 → R
x 7→ a′1x+ a′2 sinx+ a′3 cosx+ x′Mx.

(8)

The function f was first used in [Oakley and O’Hagan, 2004]. The values of its coefficients a1, a2, a3
and M can be found in www.sheffield.ac.uk/st1jeo. The inputs are rescaled in [0, 1] and are rearranged by
decreasing order of sobol index.
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Figure 5: Boxplots of the metamodel RMSE’s on 100 studies, for the analytic example in 4D. In abscissa are
the sizes of the training samples.The following sizes are tested from left to right : X1 of size 10 and X2 of size
5 (10pts-5pts), X1 of size 10 and X2 of size 10 (10pts-10pts), X1 of size 10 and X2 of size 20 (10pts-20pts),
X1 of size 20 and X2 of size 10 (20pts-10pts), X1 of size 20 and X2 of size 20 (20pts-20pts), X1 of size 20 and
X2 of size 40 (20pts-40pts)

Figure 6: Sobol indices of the objective function (8).
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K_tot P_rob Red_rob
Median (·10−4) 46.039 37.135 36.903

Interquartile range (·10−4) 7.258 6.660 6.570

Table 1: Performance of the metamodels for the 100 studies made on the analytic 15D example. The
performances are shown in terms of median of RMSE’s and interquartile range (q75% − q25%).

(a) Car engine cooling system (b) Fan system

Figure 7: On left panel, diagram of the car engine cooling system. On right panel, diagram of fan system.
[Valeo, ]

In practice, the first studies are done on the most influential inputs, chosen according to experts physical
knowledge. Here, the choice of the releasing order for the inputs is done by sensitivity analysis. Following
the repartition of the sobol indices (see figure 6), a study of N = 3 steps is made, adding respectively the
groups of variables I1 = {1, 2, 3}, I2 = {4, 5, 6, 7, 8, 9}, and I3 = {10, 11, 12, 13, 14, 15}. The variables that
are fixed are set to 0.5. Three training samples, one for each step, are generated with 5 points per dimension
considered at the step : X1 ⊂ [0, 1]3 of size 15, X2 ⊂ [0, 1]9 of size 45, and X3 ⊂ [0, 1]15 of size 75. A Sobol
sequence of size 10000 in dimension 15 is used as a test sample. The study is done 100 times, each time with
new training samples.

The performances of the metamodels are shown in table 1. All versions of seqGPR are better than the
classic kriging, with a slight improvement for the Red version in comparison with the P version. Red and
P are almost equivalent contrarily to the previous example. This can be due to the fact that the P version
disturbs less the initial stationary kernel because the variables which are fixed at a given step are set to a
constant instead of varying in function of the free variables, as it is the case in the previous example.

5.3 Industrial example : fan system in dimension 15
The industrial product which is studied in this section is the fan system which is part of a car engine cooling
system from Valeo company (see figure 7). This cooling system is composed of a cold fluid circulating in part
in the car engine to regulate its temperature and in part in a radiator where it is itself cold down. When the
car moves, the wind generated by the car speed and reaching the radiator is sufficient to evacuate the heat
from the fluid. When the car is motionless, the fan is activated to replace the wind.

The output considered here is the Pressure difference (∆P ) between the upstream and the downstream
of the air flow crossing the fan. It is function of 15 input variables. One input is the flowrate (Q). The
14 others are geometric. The fan blade geometries are supposed identical to each other. The geometry is
monitored at 5 different sections (see figure 8a). At each section, the stagger angle and the chord length are
controlled (see figure 8b). The chord is the line formed by the two borders of the blade at the considered
section. The stagger angle is the angle between the chord and the rotation axis. The sweep is manipulated at
each section. It is defined as the distance between the line formed by the rotation axis and the right border
of the first section and the right border of the considered section (see figure 8c). So at section 1, it is always
equal to 0 and therefore not kept as an input.

To summarize, the variables are

• The flowrate : Q

• The stagger angles at the five sections : Stag1, Stag2, Stag3, Stag4, Stag5
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(a) Sections (b) Chord length and stag-
ger angle at a given section

(c) Definition of the sweep
at section 5

Figure 8: On the left panel, visualization of the five sections of the blade. On the middle panel, definition
of the stagger angle and the chord length at a given section. On the right panel, definition of the sweep at
section 5.

K_tot P_rob Red_rob
Median (·10−3) 44.585 41.207 42.088

Interquartile range (·10−3) 5.892 4.657 4.609

Table 2: Performance of the metamodels for the 100 studies made on the industrial 15D example. The
performances are shown in terms of median of RMSE’s and interquartile range (q75% − q25%)

• The chord lengths at the five sections : Chord1, Chord2, Chord3, Chord4, Chord5

• The sweeps at sections 2 to 5 : Swe2, Swe3, Swe4, Swe5

In the rest of this example, all variables are adimensionalized in [0, 1] and the output ∆P is adimensionalized
in [−1, 1].

Industrial experts at Valeo have done a two steps (N = 2) study in the context of this work.

• At step 1, all the sweeps are fixed to constants : Swe2 = 0.517645, Swe3 = 0.82, Swe4 = 1, Swe5 = 1.
An OLH of size 126 has been created on the 11 free inputs (I1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}).

• At step 2, all the inputs are free (I2 = {12, 13, 14, 15}). An OLH of size 299 has been created for the
15 inputs.

In order to obtain robust results, a cross-validation procedure is done. Each OLH is decomposed in
30 subsamples of size 50 optimized for the maximin criterion (they can share common points). The 30
complementary subsamples of size 249 from the OLH of step 2 are used as test samples.

Table 2 shows performances of the different metamodels on the test samples. The metamodel seqGPR is
better than K_tot. Its version with P is this time slightly better than with Red, again probably because the
fixed inputs are constant as in the previous example.

6 Conclusion
In the framework of Gaussian process regression is studied the problem of building a metamodel on several
training samples with an increasing number of input variables (which were fixed at the begining and pro-
gressively released). To the classic kriging metamodel with a stationary covariance kernel and trained on
the reunion of all the training samples, is opposed a kriging with an unstationnary kernel, called seqGPR.
This kernel is the covariance kernel of a process defined recursively. At a given step, the process modeling
the output is equal to the sum of the process modeling the output at the previous step plus an independent
correction term.
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The correction term must be a Gaussian process which is null on a part of the input space. Two candidates
are proposed : the Red (Reducted) process, and the P (Preconditionned) process. The P process, found in
the litterature, is intractable. Two ways are tried to make it tractable. The first way is to discretize its
spectral decomposition. But this technic leads to a Gaussian process conditionned to be null on some points
of the space. This process is never exactly null everywhere in the part we want. To approach this nullity,
a lot of points are needed in the conditionning, and that is very computationally expensive. So in a second
approach, a tractable exact expression is directly sought, in exchange of a modification of the latent process
it is built upon.

Then, the issue of the parameter estimation is addressed. Instead of directly optimizing the likelihood, an
EM algorithm is implemented, which is adapted to the additive structure composed of independent processes.

Finally, the metamodel seqGPR is compared to a classic kriging metamodel on two analytic and one
industrial examples. Different levels of parameter sparsity for the correction processes are tried. The level of
sparsity that seems to always be better than classic kriging is the Robust one with either Red or P processes.
The Red version seems to have better performances than the P version most of the time, so the Red_rob
version is recommended.
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Appendix

A Proof of proposition 1
This section deals with the proof of proposition 1, which gives an approximation of the process ZP (defined
in equation (5)) by discretizing its spectral decomposition.

Proof • Approximation of (λn,
∼
φn) :

The following eigenvalue problem is considered :∫
[0,1]dJ

σ2r((xJ , g(xJ)), (sJ , g(sJ)))
∼
φ(sJ)dsJ = λ

∼
φ(xJ) ∀xJ ∈ [0, 1]dJ .

It is discretized using a Monte-Carlo method. A sample (s
(i)
J )16i6L is generated uniformly in [0, 1]dJ to

build D =
(
s
(i)
J , g(s

(i)
J )
)
16i6L

which is a discretization of the subspace {(sJ , g(sJ)), sJ ∈ [0, 1]dJ}. The

Monte-Carlo approximation of the integral is :

1

L

L∑
i=1

σ2r((xJ , g(xJ)), (s
(i)
J , g(s

(i)
J )))

∼
φ(s

(i)
J ).

Discretizing in xJ with D, the eigen problem becomes a finite dimensional one :(
1

L
σ2r(D,D)

)
∼
Φ = γ

∼
Φ. (9)

The solutions of (9) are noted (γn, Vn)16n6L. The Vn are taken such that they verify :

V ′n Vm = δnm.
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The discretization of
∼
φn (noted

∼
Φn) must verify the discrete equivalent of∫

[0,1]dJ

∼
φn(tJ)

∼
φm(tJ)dtJ = δnm,

which is
1

L

∼
Φ
′

n

∼
Φm = δnm.

So the following relation between Vn and
∼
Φn is verified : Vn = 1√

L

∼
Φn ⇔

∼
Φn =

√
LVn.

• Approximation of φn :
As

φn(xJ , xI) = 1
λn

∫
[0,1]dJ

σ2r ((xJ , xI), (sJ , g(sJ)))
∼
φn(sJ)dsJ ∀(xJ , xI) ∈ [0, 1]dJ × [0, 1]dI ,

using the same Monte-Carlo approximation and replacing (λn,
∼
φn) by (γn,

∼
Φn), the following approxi-

mation of φn is obtained :

φDn(x) = 1
γn

1
Lσ

2r(x,D)
∼
Φn ∀x ∈ [0, 1]dJ+dI .

• Decomposition of the matrix
(
σ2r(D,D)

)−1
(γn, Vn)n>1 are the eigenvalues and (orthonormal) eigenvectors of 1

Lσ
2r(D,D). So ( 1

γn
, Vn)n>1 are the

eigenvalues and (orthonormal) eigenvectors of L
(
σ2r(D,D)

)−1, and :

L
(
σ2r(D,D)

)−1
=

L∑
n=1

1

γn
VnV

′
n,

=

L∑
n=1

1

γn

(
1√
L

∼
Φn

)(
1√
L

∼
Φ
′

n

)
,

=
1

L

L∑
n=1

γn
∼
Φn
∼
Φ
′

n.

So (
σ2r(D,D)

)−1
=

1

L2

L∑
n=1

γn
∼
Φn
∼
Φ
′

n.

• Approximation of the process ZP :

The integral
∫
[0,1]dJ

∼
φn(tJ)

∼
Z(tJ , g(tJ))dtJ , involved in the formula of ZP (see (5)), is discretized the

same way as before. It becomes :
1

L

∼
Φ
′

n

∼
Z(D).

The approximation of the process is :

ZD(x) =
∼
Z(x)−

L∑
n=1

φDn(x)

(
1

L

∼
Φ
′

n

∼
Z(D)

)
,

=
∼
Z(x)−

L∑
n=1

(
1

L

1

γn
σ2r(x,D)

∼
Φn

)(
1

L

∼
Φ
′

n

∼
Z(D)

)
,

=
∼
Z(x)−

(
σ2r(x,D)

)( 1

L2

L∑
n=1

1

γn

∼
Φn
∼
Φ
′

n

)
∼
Z(D),

=
∼
Z(x)−

(
σ2r(x,D)

) (
σ2r(D,D)

)−1 ∼
Z(D),

=
∼
Z(x)− E[

∼
Z(x) |

∼
Z(D)],

=

[
∼
Z(x) |

∼
Z(D) = 0

]
.

The process approximating ZP is the conditionned (on a finite set of points) Gaussian process ZD. It is
a centered Gaussian process of covariance kernel σ2ρD with :

ρD(x, x′) = r(x, x′)− r(x,D)r(D,D)−1r(D, x′) ∀x, x′ ∈ [0, 1]dJ+dI .
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B Proof of proposition 2
This section deals with the proof of proposition 2 which gives a closed form formula of the process ZP (see

equation (5)) for a particular choice of the kernel of
∼
Z.

Proof • Eigenvalue problem :

The eigenvalue problem can be rewritten as :∫
[0,1]dJ

(
σ2r ((xJ , g(xJ)), (sJ , g(sJ)))

)∼
φn(sJ)dsJ = λn

∼
φn(xJ), ∀xJ ∈ [0, 1]dJ ,

⇔
∫
[0,1]dJ

(
σ2rJ(xJ , sJ)

)
rI (g(xJ)− g(xJ), g(sJ)− g(sJ))

∼
φn(sJ)dsJ = λn

∼
φn(xJ),

⇔
∫
[0,1]dJ

(
σ2rJ(xJ , sJ)

)
rI(0, 0)︸ ︷︷ ︸

=1

∼
φn(sJ)dsJ = λn

∼
φn(xJ),

⇔
∫
[0,1]dJ

(
σ2rJ(xJ , sJ)

)∼
φn(sJ)dsJ = λn

∼
φn(xJ).

(10)

• Expression of φn :

φn can be rewritten as :

φn(xJ , xI) = 1
λn

∫
[0,1]dJ

(
σ2r ((xJ , xI), (sJ , g(sJ)))

)∼
φn(sJ)dsJ , ∀(xJ , xI) ∈ [0, 1]dJ × [0, 1]dI ,

= 1
λn

∫
[0,1]dJ

(
σ2rJ(xJ , sJ)

)
rI (xI − g(xJ), g(sJ)− g(sJ))

∼
φn(sJ)dsJ ,

= 1
λn

(∫
[0,1]dJ

(
σ2rJ(xJ , sJ)

)∼
φn(sJ)dsJ

)
rI (xI − g(xJ), 0)) ,

= 1
λn

(
λn
∼
φn(xJ)

)
rI (xI − g(xJ), 0)) ,

=
∼
φn(xJ)rI (xI − g(xJ), 0)) .

The second last equality is due to the fact that
∼
φn is solution of the eigenvalue problem (10).

• The P process can be rewritten as :

ZP (xJ , xI) =
∼
Z(xJ , xI)−

+∞∑
n=1

φn(xJ , xI)

∫ ∼
φn(sJ)

∼
Z(sJ , g(sJ))dsJ , ∀(xJ , xI) ∈ [0, 1]dJ+dI ,

=
∼
Z(xJ , xI)−

+∞∑
n=1

∼
φn(xJ)rI (xI − g(xJ), 0))

∫ ∼
φn(sJ)

∼
Z(sJ , g(sJ))dsJ ,

=
∼
Z(xJ , xI)−

(
+∞∑
n=1

∼
φn(xJ)

∫ ∼
φn(sJ)

∼
Z(sJ , g(sJ))dsJ

)
rI (xI − g(xJ), 0)) ,

and, because
∼
Z(xJ , g(xJ)) belongs to the sub Gaussian space engendered by the {

∼
Z(sJ , g(sJ)) ∀sJ ∈

[0, 1]dJ}, its projection in this subspace is equal to itself :

∼
Z(xJ , g(xJ)) = E[

∼
Z(xJ , g(xJ)) |

∼
Z(sJ , g(sJ))∀sJ ], ∀xJ ∈ [0, 1]dJ ,

=

+∞∑
n=1

φn(xJ , g(xJ))

∫ ∼
φn(sJ)

∼
Z(sJ , g(tJ))dsJ ,

=

+∞∑
n=1

∼
φn(xJ) rI (g(xJ)− g(xJ), 0))︸ ︷︷ ︸

=1

∫ ∼
φn(sJ)

∼
Z(sJ , g(tJ))dsJ ,

=

+∞∑
n=1

∼
φn(xJ)

∫ ∼
φn(sJ)

∼
Z(sJ , g(sJ))dsJ .

The second equality is the formula of the conditional expectation (see (6)).

So
ZP (x) =

∼
Z(x)− rI (xI − g(xJ), 0)

∼
Z(xJ , g(xJ)).
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C Formulas of the EM procedure
This section gives the formulas of the Qn involved in the optimization problems (7) used to estimate the

parameters ηn in the EM algorithm. 1∼
X1

is the unit column vector of size nrows
(
∼
X1

)
. Denoting by X1 and

X2 two DoE’s, 0X1,X2 is the null matrix of size nrows(X1)× nrows(X2).
Using the expectation of a quadratic form formula to Gaussian vectors :

Q1(η1, η
∗) = n∼

X1

log σ2
1 + log

∣∣∣∣ρθ1 (∼X1,
∼
X1

)∣∣∣∣
+
Tr

(
ρθ1 (

∼
X1,
∼
X1)
−1C1(η

∗)

)
σ2
1

+
(E1(η

∗)−m1∼
X1

)′ρθ1 (
∼
X1,
∼
X1)
−1(E1(η

∗)−m1∼
X1

)

σ2
1

,

∀n ∈ J2, NK,

Qn(ηn, η
∗) = n∼

Xn
log σ2

n + log

∣∣∣∣ρθn (∼Xn, ∼Xn)∣∣∣∣
+
Tr

(
ρθn (

∼
Xn,
∼
Xn)−1Cn(η

∗)

)
σ2
n

+
En(η

∗)′ρθn (
∼
Xn,
∼
Xn)−1En(η

∗)
σ2
n

,

with

E1(η∗) = m∗1∼
X1

+(σ∗1)2ρθ∗1

(
∼
X1,

∼
X1

)
Covη∗ (Y,Y)

−1
(y − Eη∗ [Y]) ,

C1(η∗) = (σ∗1)2ρθ∗1

(
∼
X1,

∼
X1

)
− (σ∗1)2ρθ∗1

(
∼
X1,

∼
X1

)
Covη∗ (Y,Y)

−1
(σ∗1)2ρθ∗1

(
∼
X1,

∼
X1

)
,

En(η∗) = Covη∗

(
Zn

(
∼
Xn
)
,Y

)
Covη∗ (Y,Y)

−1
(y − Eη∗ [Y]) , ∀n ∈ J1, NK,

Cn(η∗) = (σ∗n)
2
ρθ∗n

(
∼
Xn,

∼
Xn
)

−Covη∗
(
Zn

(
∼
Xn
)
,Y

)
Covη∗ (Y,Y)

−1
Covη∗

(
Y, Zn

(
∼
Xn
))

.

(11)

Partial analytical solution The optima m(i+1) and σ(i+1)
n (n ∈ J1, NK) have analytical forms obtained

by solving the system formed when the corresponding partial derivatives of the Qn vanish. Finally, at each
new iteration i+ 1, the goal is to find θ(i+1)

n (n ∈ J2, NK) solution of the following problem
min
θn

n∼
Xn

log

((
σ
(i+1)
n (θn)

)2)
+ log

(∣∣∣∣ρθn (∼Xn, ∼Xn)∣∣∣∣) ,
with

(
σ
(i+1)
n (θn)

)2
=

Tr

(
ρθn (

∼
Xn,
∼
Xn)−1Cn(η

(i))

)
+En(η

(i))′ρθn (
∼
Xn,
∼
Xn)−1En(η

(i))

n∼
Xn

,

and θ(i+1)
1 solution of the following problem

min
θ1

n∼
X1

log

((
σ
(i+1)
1 (θ1)

)2)
+ log

(∣∣∣∣ρθ1 (∼X1,
∼
X1

)∣∣∣∣) ,
with

(
σ
(i+1)
1 (θ1)

)2
=

Tr

(
ρθ1 (

∼
X1,
∼
X1)
−1C1(η

(i))

)
+(E1(η

(i))−m(i+1)(θ1)1∼
X1

)′ρθ1 (
∼
X1,
∼
X1)
−1(E1(η

(i))−m(i+1)(θ1)1∼
X1

)

n∼
X1

,

and m(i+1)(θ1) =
1′∼

X1

ρθ1

(
∼
X1,
∼
X1

)−1

E1(η
(i))

1′∼
X1

ρθ1

(
∼
X1,
∼
X1

)−1

1∼
X1

,
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where En(η(i)) and Cn(η(i)) (n ∈ J1, NK) are given in equation (11).

D Proof of the monotonicity of the sequence from the EM algorithm
Let Y = (Y1(X1), · · · , YN (XN )) denote the observed data. Let U =(
Z1

(
∼
X1\X1

)
, Z2

(
∼
X2\X2

)
, . . . , ZN−1

(
∼
XN−1\XN−1

))
denote the unknown data. The complete

data is equal to : T =

(
Z1

(
∼
X1

)
, · · · , ZN−1

(
∼
XN−1

)
, ZN (XN )

)
. Let y, u, and t be the realizations of

respectively Y, U, and T. By definition of the conditional density :

hY;η(y) =
hT;η(t)

hU | Y = y︸ ︷︷ ︸
∼
U

;η
(u)

.

So
L(η;y) =

Lc(η; t)

h∼
U;η

(u)
.

So (up to a constant)
l(η;y)

c
= lc(η; t) + 2 log(h∼

U;η
(u)).

Replacing the observations by the corresponding random variables

l(η;Y)
c
= lc(η;T) + 2 log(h∼

U;η
(
∼
U)).

Taking the expectation assuming η′ and conditionning by Y = y

l(η;y)
c
= Q(η, η′) + 2R(η, η′),

with
R(η, η′) = Eη′

[
log(h∼

U;η
(
∼
U)) | Y = y

]
.

The difference between the loss function taken at the updated and previous terms of the EM sequence is the
sum of two quantities.

l(η(i+1))− l(η(i)) = Q(η(i+1), η(i))−Q(η(i), η(i))︸ ︷︷ ︸
60

+2
(
R(η(i+1), η(i))−R(η(i), η(i))

)
︸ ︷︷ ︸

=R

.

The first quantity is negative by definition of the EM algorithm. The second quantity can be rewritten as :

R = R(η(i+1), η(i))−R(η(i), η(i)),

= Eη(i)
[
log

(
h∼
U;η(i+1)

(
∼
U)

)]
− Eη(i)

[
log

(
h∼
U;η(i)

(
∼
U)

)]
,

= Eη(i)

[
log

(
h∼
U;η(i+1)

(
∼
U)

h∼
U;η(i)

(
∼
U)

)]
,

6 log

(
Eη(i)

[
h∼
U;η(i+1)

(
∼
U)

h∼
U;η(i)

(
∼
U)

])
,

6 log

(∫ h∼
U;η(i+1)

(u)

h∼
U;η(i)

(u) h∼U;η(i)
(u)du

)
,

6 log
(∫

h∼
U;η(i+1)

(u)du
)
,

6 log(1),
6 0.

Indeed the inequality l(η(i+1))−l(η(i)) 6 0 is verified by the sequence
(
η(i)
)
i
built following the EM algorithm.
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