Wissam Maamar Kouadri
email: wissam.maamar_kouadri@u-paris.fr

SentiQ: A Probabilistic Logic Approach to Enhance Sentiment Analysis Tool Quality

Keywords: Machine learning → Text labelling, Neural network, Data quality, • Information systems → First order logic sentiment analysis, inconsistency , data quality , Markov logic network , logical inference

The opinion expressed in various Web sites and social-media is an essential contributor to the decision making process of several organizations. Existing sentiment analysis tools aim to extract the polarity (i.e., positive, negative, neutral) from these opinionated contents. Despite the advance of the research in the field, sentiment analysis tools give inconsistent polarities, which is harmful to business decisions. In this paper, we propose SentiQ, an unsupervised Markov logic Network-based approach that injects the semantic dimension in the tools through rules. It allows to detect and solve inconsistencies and then improves the overall accuracy of the tools. Preliminary experimental results demonstrate the usefulness of SentiQ.

INTRODUCTION

With the proliferation of social media, people are increasingly sharing their sentiments and opinions online about products, services, individuals, and entities, which has spurred a growing interest in sentiment analysis tools in various domains [START_REF] Dragoni | A fuzzy-based strategy for multidomain sentiment analysis[END_REF][START_REF] Feldman | Techniques and applications for sentiment analysis[END_REF][START_REF] Hutto | Vader: A parsimonious rule-based model for sentiment analysis of social media text[END_REF][START_REF] Greene | More than words: Syntactic packaging and implicit sentiment[END_REF][START_REF] Kouloumpis | Twitter sentiment analysis: The good the bad and the omg![END_REF][START_REF] Tsytsarau | Managing Diverse Sentiments at Large Scale[END_REF][START_REF] Wang | Sentiment Analysis by Capsules[END_REF]. The customer opinion, if yielded correctly, is crucial for the decisionmaking of any organization. Thus, numerous studies [START_REF] Cambria | SenticNet 5: discovering conceptual primitives for sentiment analysis by means of context embeddings[END_REF][START_REF] Hutto | Vader: A parsimonious rule-based model for sentiment analysis of social media text[END_REF][START_REF] Kim | Convolutional neural networks for sentence classification[END_REF][START_REF] Severyn | Twitter sentiment analysis with deep convolutional neural networks[END_REF][START_REF] Socher | Recursive deep models for semantic compositionality over a sentiment treebank[END_REF] try to automate sentiment extraction from a massive volume of data by identifying the polarity of documents, i.e., positive, negative, or neutral.

Nevertheless, sentiment analysis of social media data is still a challenging task [START_REF] Di | Irony, sarcasm, and sentiment analysis[END_REF] due to the complexity and variety of natural language through which the same idea can be expressed and interpreted using different text. Many research work have adopted the consensus that semantically equivalent documents should have the same polarity [START_REF] Cambria | SenticNet 5: discovering conceptual primitives for sentiment analysis by means of context embeddings[END_REF][START_REF] Ding | Weakly supervised induction of affective events by optimizing semantic consistency[END_REF][START_REF] Fu | Improving Chinese sentence polarity classification via opinion paraphrasing[END_REF][START_REF] Risch | Aggression identification using deep learning and data augmentation[END_REF][START_REF] Vosoughi | Tweet2vec: Learning tweet embeddings using character-level cnn-lstm encoder-decoder[END_REF][START_REF] Wei | Eda: Easy data augmentation techniques for boosting performance on text classification tasks[END_REF]. For instance [START_REF] Ding | Weakly supervised induction of affective events by optimizing semantic consistency[END_REF] have attributed the same polarity labels to the semantically equivalent couples (event/effect) while [START_REF] Fu | Improving Chinese sentence polarity classification via opinion paraphrasing[END_REF] have augmented their sentiment dataset using paraphrases and assign the original document's polarity to the generated paraphrases.

However, we found that these tools do not detect this similarity and assign different polarity labels to semantically equivalent documents; hence, considering in-tool inconsistency where the sentiment analysis tool attribute different polarities to the semantically equivalent documents and inter-tool inconsistency where different sentiment analysis tools attribute different polarities to the same documents that have a single polarity. This inconsistency can be translated by the fact that at least one tool has given an incorrect polarity. Consequently, returning an incorrect polarity in the query can be misleading, and leads to poor business decision.

Few works have used inconsistencies to improve systems' accuracy, such as [START_REF] Ratner | Snorkel: rapid training data creation with weak supervision[END_REF], that considers various labeling functions and minimizes the inter-tool inconsistency between them based on different factors: correlation, primary accuracy, and labelling abstinence. However, in [START_REF] Ratner | Snorkel: rapid training data creation with weak supervision[END_REF], we resolve the inconsistency statistically, and ignore the semantic dimension that could enhance the results' quality. The work in [START_REF] Ding | Weakly supervised induction of affective events by optimizing semantic consistency[END_REF] has proposed to create a corpus of (event/effect) pairs for sentiment analysis by minimizing the sentiment distance between semantically equivalent (event/effect) pairs. In our work, we study the effect of solving the two types of inconsistency on accuracy. We focus more on the improvement that we can obtain by resolving in-tool inconsistency between the documents i.e., resolving inconsistency such that all semantically equivalent documents get the same polarity label and resolving both inconsistencies. To the best of our knowledge, the only work studying polarity inconsistency does this at word-level [START_REF] Dragut | Polarity Consistency Checking for Domain Independent Sentiment Dictionaries[END_REF], by checking the polarity consistency for sentiment words inside and across dictionaries.

Our work is the first to study the effect of resolving the polarity inconsistency on accuracy for in-tool inconsistency, and inter-tool inconsistency on document data. We seek to converge to the golden truth by resolving in-tool and inter-tool inconsistencies. Each document has a unique polarity, by resolving in-tool and inter-tool inconsistency, we minimize the gap of incorrect labels and converge to the gold truth. Such a method can be applied on any classification task in natural language processing. Contributions. In summary, we make the following contributions:

• We study the impact of inconsistency on the accuracy of the sentiment analysis tools. • We propose SentiQ, an approach that resolves both polarity inconsistencies: in-tool and inter-tool. The approach we are proposing is based on our earlier work to handle the inconsistency in big data [START_REF] Benbernou | Enhancing data quality by cleaning inconsistent big RDF data[END_REF] on one side and on the probabilistic logic framework, Markov Logic Network, on the other side. • We present preliminary experimental results using news headlines datasets [START_REF] Cortis | Semeval-2017 task 5: Fine-grained sentiment analysis on financial microblogs and news[END_REF] and the sentiment treebank dataset [START_REF] Socher | Recursive deep models for semantic compositionality over a sentiment treebank[END_REF]. When compared to the majority voting to resolve inter-tool inconsistencies, our framework leads to the efficiency of using the semantic dimension in optimizing the accuracy by resolving both in-tool and inter-tool inconsistencies. • Following the lessons learned from our experimental evaluation, we discuss promising future research directions, including the semantic dimension's use in different integration problems, such as truth inference in crowd-sourcing and accuracy optimization of different classification problems. Paper Outline. In the remainder of the paper, we present in section 2 a motivation through a real example. In section 3, we provide some preliminaries used in our work. In sections 4 and 5, we discuss the SENTIQ model based on Markov Network logic (MLN) while in section 6, we present our experiments and discussions.

MOTIVATING EXAMPLE

We consider the following real life example collected from twitter and that represents statements about Trump's restrictions on Chinese technology such that 𝐷 = {𝑑 1 , . . . , 𝑑 9 } and:

• 𝑑 1 : Chinese technological investment is the next target in Trump's crackdown. We call each element of this dataset 𝐷 a 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡. We notice that 𝐷 can be clustered on subsets of semantically equivalent documents. For instance, 𝑑 1 and 𝑑 2 are semantically equivalent as they both express the idea that the US is restricting Chinese technological investments. We denote this set by 𝐴 1 and we write: 𝐴 1 = {𝑑 1 , 𝑑 2 } and 𝐴 2 = {𝑑 3 , 𝑑 4 , 𝑑 5 }, which express that the Chinese government demands the US to stop the crackdown on Huawei, and 𝐴 3 = {𝑑 6 , . . . , 𝑑 9 } which conveys the idea that Trump reduces restrictions on Chinese investments. We have: 𝐷 = 𝐴 1 ∪𝐴 2 ∪𝐴 3 . We analyse 𝐷 using three sentiment analysis tools: Stanford Sentiment Treebank [START_REF] Socher | Recursive deep models for semantic compositionality over a sentiment treebank[END_REF], Sentiwordnet [START_REF] Baccianella | Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining[END_REF] and Vader [START_REF] Hutto | Vader: A parsimonious rule-based model for sentiment analysis of social media text[END_REF]. In the rest of this paper, we refer to the results of these tools using the polarity functions: 𝑃 𝑡𝑏 , 𝑃 𝑠𝑤 , 𝑃 𝑣 ; we use 𝑃 ℎ to refer to the ground truth. Table 1 summarizes the results of the analysis.

We know that each document has a single polarity, so each precise tool should find this polarity, and a difference in prediction results is a sign that at least one tool is erroneous on this document. We also know that semantically equivalent documents should have the same polarity. However, in this real-life example, we observe different tools attributing different polarities for the same document (e.g., only 𝑃 𝑡𝑏 attributes the correct polarity to 𝑑 3 in 𝐴 2), which represent an inter-tool inconsistency. Also, the same tool attributes different polarities for semantically equivalent documents (for e.g., 𝑃 𝑡𝑏 considers 𝑑 6 as Neutral and 𝑑 7 as Negative) which represent an in-tool inconsistency. A trivial method to resolve those inconsistencies is to use majority voting, inside the cluster of documents, or between functions. However, when applying the majority voting baseline on this example, we found that the polarity is 𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒 in 𝐴2 which represents the correct polarity of the cluster while we found that the polarity is 𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒 in 𝐴 3 , which is not a correct polarity in this case. Because with simple majority voting, we got only a local vision of the polarity function, and we ignore its behavior on the rest of the data. Sentiment Quality: we define the polarity consistency of a given cluster 𝐴 𝑖 as the two following rules: In-tool Consistency means that semantically equivalent documents should get the same polarity, s.t.:

PRELIMINARIES

∀𝑑 𝑖 , 𝑑 𝑗 ∈ 𝐴, 𝑃 * ∈ Π 𝑃 * (𝑑 𝑖) = 𝑃 * (𝑑 𝑗) (1)
Inter-tool Consistency means that all polarity functions should give the same polarity to the same document:

∀𝑑 𝑖 ∈ 𝐴, 𝑃 𝑡 𝑘 , 𝑃 𝑡 ′ 𝑘 ∈ Π 𝑃 𝑡 𝑘 (𝑑 𝑖) = 𝑃 𝑡 ′ 𝑘 (𝑑 𝑖) (2)
Definition 3.3. (Markov Logic Network (MLN))
In this section, We recall Markov logic network (MLN) model [START_REF] Domingos | Unifying logical and statistical AI with Markov logic[END_REF][START_REF] Richardson | Markov logic networks[END_REF] which is a general framework for joining logical and Probability. MLN is defined as a set of weighted first-order logic (FOL) formula with free variables 𝐿 = {(𝑙 1 , 𝑤 1), . . . , (𝑙 𝑛 , 𝑤 𝑛)}, with 𝑤 𝑖 ∈ 𝐼𝑅 ∪ ∞ and 𝑙 𝑖 an FOL constraint. With a set of constants 𝐶 = {𝑐 1 , . . . , 𝑐 𝑚 }, it constitutes the Markov network 𝑀 𝐿,𝐶 . The 𝑀 𝐿,𝐶 contains one node for each predicate grounding that its value is 1 if the grounding is true and 0 otherwise. Each formula of 𝐿 is represented by a feature node that its value is 1 if the formula 𝑙 𝑖 grounding is true and 0 otherwise. The syntax of the formulas that we adopted in this paper is the FOL syntax. World 𝑥 over a domain 𝐶 is a set of possible grounding of 𝑀𝐿𝑁 constraints over 𝐶. Hard Constraints are constraints with infinite weight 𝑤 𝑖 = ∞. A world 𝑥 that violates these constraints is impossible. Soft Constraints are constraints with a finite weight (𝑤 𝑖 ∈ 𝐼𝑅) that can be violated. World's Probability is the probability distribution of possible worlds 𝑥 in 𝑀 𝐿,𝐶 given by

𝑃𝑟 (𝑋 = 𝑥) = 1 𝑍 𝑒𝑥𝑝 (𝑖 𝑤 𝑖 , 𝑛 𝑖 (𝑥))
, where 𝑛 𝑖 (𝑥) is the number of the true grounding of 𝐹 𝑖 in 𝑥 and 𝑍 is a normalization factor. Grounding. We define grounding as the operation of replacing predicate variables by constants from 𝐶.

SENTIQ: AN MLN BASED MODEL FOR INCONSISTENCY

The polarity inconsistency is a complex problem due to the tool and document natures and the relations between them. This problem can be solved using semantics to model the relations between tools, documents, and statistic dimension to optimize both the inconsistency and the accuracy of the system -this why we chose 𝑀𝐿𝑁 to model the resulted inconsistent system. We present the details of our semantic model in this section.

Semantic Model's Components

Our semantic model is a knowledge-base 𝐾𝐵 =< 𝑅, 𝐹 >, where

(1) 𝑅 is a set of rules (FOL formulas) defining the vocabulary of our application which consists of concepts (sets of individuals) and relations between them. (2) 𝐹 is a set of facts representing the instances of the concepts or individuals defined in 𝑅 .

We represent each document by the concept 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡, each polarity function in the system by its symbol and the polarity that it attributes to the 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡. For instance, 𝑃 𝑡𝑏+(𝑑 1) , 𝑃 𝑡𝑏0 , and 𝑃 𝑡𝑏-represent respectively the polarities (+, 0, -) attributed to the 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 (𝑑 1) by the polarity function 𝑃 𝑡𝑏 . Each 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 is 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒, or 𝑁 𝑒𝑢𝑡𝑟𝑎𝑙. This is represented respectively by the concepts 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝐼𝑠𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒, and 𝐼𝑠𝑁 𝑒𝑢𝑡𝑟𝑎𝑙. We also have the relation 𝑠𝑎𝑚𝑒𝐴𝑠 as a semantic similarity between documents in the input dataset clusters. For instance, 𝑠𝑎𝑚𝑒𝐴𝑠 (𝑑 1 , 𝑑 2) indicates that the documents 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 (𝑑 1) and 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 (𝑑 2) are semantically equivalent.

Rule modeling for inconsistency

We define two types of rules from 𝑅 in our framework, Inference rules and Inconsistency rules:

Inference rules IR The inference rules allow deriving the implicit instances. They model the quality of the polarity at in-tool and inter-tool levels. They are soft rules that add an uncertainty layer to different polarity functions based on the inconsistency of tools.

• In-tool consistency rules. This set of rules models the fact that all the documents of the cluster should have the same polarity. They are defined as follows (for the sake of clarity we omitted the predicate 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 (𝑑 𝑖) in all logical rules) : 𝐼𝑅1 : 𝑠𝑎𝑚𝑒𝐴𝑠 (?𝑑 𝑖 , ?𝑑 𝑗) ∧ 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (?𝑑 𝑗) → 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (?𝑑 𝑖) 𝐼𝑅2 : 𝑠𝑎𝑚𝑒𝐴𝑠 (?𝑑 𝑖 , ?𝑑 𝑗) ∧ 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (?𝑑 𝑖) → 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (?𝑑 𝑗)

The rule 𝐼𝑅1 denotes that if two documents 𝑑 𝑖 and 𝑑 𝑗 are semantically equivalent (expressed with 𝑠𝑎𝑚𝑒𝐴𝑠 relation), they got the same polarity, which translates the in-tool consistency defined in equation 1. The 𝑠𝑎𝑚𝑒𝐴𝑠 relation is transitive, symmetric, and reflexive. We express the symmetry by duplicating the rule for both documents of the relation (rules 𝐼𝑅1 and 𝐼𝑅2 instead of only one rule). For instance, when applying the rule 𝐼𝑅1 on the relation 𝑠𝑎𝑚𝑒𝐴𝑠 (𝑑1, 𝑑2) and the instances 𝐼𝑠𝑁 𝑒𝑢𝑡𝑟𝑎𝑙 (𝑑1) and 𝐼𝑠𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑2), we infer the new instance 𝐼𝑠𝑁 𝑒𝑢𝑡𝑟𝑎𝑙 (𝑑2). The instance 𝐼𝑠𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑1) is inferred when applying the rule 𝐼𝑅2. The transitivity is handled in the instantiating step (algorithm 1) and we ignore the reflexivity of the relation because it does not infer additional knowledge. Note that 𝐼𝑅1 and 𝐼𝑅2 are examples of rules. The set of rules is presented in Algorithm 2.

• Inter-tool consistency rules. These rules model the inter-tool consistency described in equation 2 by assuming that each function gives the correct polarity to the document. For example, given the instances 𝑃 𝑡𝑏-(𝑑2) the rule 𝐼𝑅 infers 𝐼𝑠𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑2). For each tool in the system, we create the following rules by replacing 𝑃 𝑡 𝑘 * with the polarity function of the tool.

𝐼𝑅3 :𝑃 𝑡 𝑘 + (?𝑑 𝑖) → 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (?𝑑 𝑖) 𝐼𝑅4 : 𝑃 𝑡 𝑘 -(?𝑑 𝑖) → 𝐼𝑠𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (?𝑑 𝑖) 𝐼𝑅5 :𝑃 𝑡 𝑘 0 (?𝑑 𝑖) → 𝐼𝑠𝑁 𝑒𝑢𝑡𝑟𝑎𝑙 (?𝑑 𝑖)
Those rules are soft rules that allow us to represent inconsistencies in the system and attribute a ranking to the rules that we use in the in-tools uncertainty calculation. The idea behind this modeling is that if the inter-tool consistency is respected, all tools will attribute the same polarity to this document; otherwise, the document will have different polarities (contradicted polarities). To represent this contradiction, we define, next, inconsistency rules.

Inconsistency rules ICR

They are considered as hard rules that represent the disjunction between polarities since each document has a unique polarity.

𝐼𝐶𝑅1 : 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (?𝑑 𝑖) → ¬𝐼𝑠𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (?𝑑 𝑖) ∧ ¬𝐼𝑠𝑁 𝑒𝑢𝑡𝑟𝑎𝑙 (?𝑑 𝑖) 𝐼𝐶𝑅2 : 𝐼𝑠𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (?𝑑 𝑖) → ¬𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (?𝑑 𝑖) ∧ ¬𝐼𝑠𝑁 𝑒𝑢𝑡𝑟𝑎𝑙 (?𝑑 𝑖) 𝐼𝐶𝑅2 : 𝐼𝑠𝑁 𝑒𝑢𝑡𝑟𝑎𝑙 (?𝑑 𝑖) → ¬𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (?𝑑 𝑖) ∧ ¬𝐼𝑠𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (?𝑑 𝑖)

These rules generate negative instances that create inconsistencies used in learning inference rules weights. For instance, consider the following instances 𝑃 𝑡𝑏 -(𝑑 3) and 𝑃 𝑠𝑤 + (𝑑 3) from the motivating example. By applying the inter-tool consistency inference rules, we infer: 𝐼𝑠𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑 3) and 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑 3). However, F appears consistent even it contains polarity inconsistencies. We get the inconsistency once applying the inconsistency rules. We get: ¬𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑 3), ¬𝐼𝑠𝑁 𝑒𝑢𝑡𝑟𝑎𝑙 (𝑑 3), ¬𝐼𝑠𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑 3) that represent an apparent inconsistency in F.

MLN based model for inconsistency resolution

As depicted in Figure 1, the proposed inconsistency resolution process follows four main phases:

• Inference of implicit knowledge: The system infers all implicit knowledge needed for the inconsistencies before applying the learning procedure of 𝑀𝐿𝑁 . • Detection of inconsistencies: Having the explicit and implicit knowledge, we apply the inconsistency rules to discover the inconsistency. • Inference of correct polarity: Using the saturated fact set 𝐹 and 𝑅, the system learns first the weights of 𝑀 𝑅,𝐹 , and use them to infer the correct polarities. • Resolve the in-tool inconsistencies : Since we are in an uncertain environment, we can still have some in-tool inconsistencies after the previous phase, that we resolve by applying a weighted majority voting.

The phases will be detailed in the next section.

SENTIQ:THE INCONSISTENCY RESOLUTION

In this section we discuss the reasoning process to solve the inconsistencies and improve the accuracy.

Facts generation

Our data are first saved in a relational database, where each table represents a concept, and the table content represents the concept's domain. For that, instantiating our data follows the steps of Algorithm 1.

Each function and its polarity is represented by a table. The content of the table is the document ID that got this polarity by the function. The instantiating process converts the content of the database to logic predicates that we use in our reasoning. The purpose of this algorithm is to fill in the set 𝐹 with the prior knowledge needed in the reasoning. Our prior knowledge is the documents, polarities attributed by the functions to documents, and the semantic similarity between documents represented by the 𝑆𝑎𝑚𝑒𝐴𝑠 predicate. We note that we do not consider the ground truth. We adopt an unsupervised approach because inconsistency resolution is useful when we do not know the valid prediction from the invalid ones.

Algorithm 1 Instantiating

Input : Database with prior knowledge Output : F:Set of generated Facts (polarities and same as) for each 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ∈ clusters :

10:

for𝑖 ∈ {0,. . . , len(cluster)} :

11:

for𝑗 ∈ {i+1 ,. . . , len(cluster)} :

12:

if 𝑆𝑎𝑚𝑒𝐴𝑠 (𝑑 𝑖 , 𝑑 𝑗) ∉ F :

13:
F.𝑎𝑑𝑑 (𝑆𝑎𝑚𝑒𝐴𝑠 (𝑑 𝑖 , 𝑑 𝑗))

14:

return 𝐹

Implicit knowledge inference Algorithm

In 𝑀𝐿𝑁 , the learning is done only on the available knowledge in 𝐹 .

For this, we infer all implicit knowledge in the system before applying the learning procedure. The inference procedure is presented in Algorithm 2. This inference phase is crucial for an integrated learning since most polarity knowledge are implicit. For instance, consider the two documents 𝑑 3 and 𝑑 4 from the motivating example.

We have 𝑃 𝑠𝑤+ (𝑑 3) and 𝑃 𝑠𝑤-(𝑑 4), by inferring documents polarities using inter-tool consistency rules 𝐼𝑅3 and 𝐼𝑅4, we get 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑 3) and 𝐼𝑠𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑 4). When applying the in-tool consistency rules on the previous concepts and the relation 𝑠𝑎𝑚𝑒𝐴𝑠 (𝑑 4 , 𝑑 3) (𝐼𝑅1 and 𝐼𝑅2), we infer the new polarities 𝐼𝑠𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑 3) and 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑 4).

We ensure that we inferred all implicit knowledge by redoing the inference until no new knowledge are inferred. Such process is called inference by saturation.

Inconsistency inference Algorithm

After inferring all implicit knowledge in the set 𝐹 , we apply the inconsistency rules 𝐼𝐶𝑅 that allow to explicitly define the inconsistencies as it is presented in Algorithm 3. We apply this rules on a saturated knowledge base because most inconsistencies are implicit. For instance, if we apply the inconsistency rules directly after inferring the polarities 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑 3) and 𝐼𝑠𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑 4), we get ¬𝐼𝑠𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑 3), and ¬𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑 3). However, when applying the in-tool consistency rules on the previous concepts and relation 𝑠𝑎𝑚𝑒𝐴𝑠 (𝑑 4 , 𝑑 3) (saturation process), we obtain 𝐼𝑠𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑 3)

Algorithm 2 Implicit Knowledge Inference Algorithm

Input : 𝐹 𝑤𝑖𝑡ℎ 𝑝𝑟𝑖𝑜𝑟 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 Output : 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝐹 //in-tool consistency rules 13:

sameAsRelations = 𝑔𝑒𝑡𝑆𝑎𝑚𝑒𝐴𝑠 (𝐹)

14:

repeat:

15:

for each SameAs ∈ 𝑠𝑎𝑚𝑒𝐴𝑠𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 :

16:

if 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑 𝑖) ∈ 𝐹 ∧ 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑 𝑗) ∉ 𝐹 :

17:
𝐹 .𝑎𝑑𝑑 (𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑 𝑗))

18:

if 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑 𝑗) ∈ 𝐹 ∧ 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑 𝑖) ∉ 𝐹 : 𝐹 .𝑎𝑑𝑑 (𝐼𝑠𝑁 𝑒𝑢𝑡𝑟𝑎𝑙 (𝑑 𝑖))

28:

until: no new inferred instance 29:

return: F and 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑 4), and when applying the inconsistency rules on this instances, we get ¬𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑 3) and ¬𝐼𝑠𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑 4) which represents an implicit inconsistency in the fact set 𝐹 . Therefore, applying the inconsistency rules on 𝐹 after the saturation process is an important step in our reasoning procedure, because it shows all inconsistencies even the implicit ones.

𝑀𝐿𝑁 reasoning to reduce inconsistency

Here we discuss how to reduce the inconsistencies discovered in the previous phase, by applying the 𝑀𝐿𝑁 approach. The reasoning process will first learn the rules' weights of 𝑅 and after will use them to infer the correct polarities.

Grounding. The grounding algorithm enumerates all possible assignments of formulas to its free variables. (the set of possible worlds). We used the grounding algorithm described in [START_REF] Niu | Tuffy: Scaling up statistical inference in markov logic networks using an rdbms[END_REF] because it speeds up the inference process. We adopted the closed world assumption; hence we consider all groundings that are not present in the Fact set as false.

Learning. To learn the rules' weights, we use the discriminative training described in [START_REF] Lowd | Efficient weight learning for Markov logic networks[END_REF]. The training consists of optimizing the conditional log-likelihood given by: where 𝑋 represents priors (saturated inconsistent fact set), Y the set of queries (in our case: 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑), 𝐼𝑠𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑), 𝐼𝑠𝑁 𝑒𝑢𝑡𝑟𝑎𝑙 (𝑑)), 𝑍 𝑥 the normalization factor over the set of worlds, and 𝑛 𝑖 (𝑥, 𝑦) the number of the correct groundings of the formula 𝑙 𝑖 (the inference rules) in the worlds where 𝑌 holds. We used in the optimization the Diagonal Newton discriminative method described in [START_REF] Lowd | Efficient weight learning for Markov logic networks[END_REF] that calculates the 𝐻𝑒𝑠𝑠𝑎𝑖𝑛 of the negative conditional log-likelihood given by:

𝜕 𝜕𝑤 𝑖 𝜕𝑤 𝑗 -𝑙𝑜𝑔𝑃 (𝑌 = 𝑦|𝑋 = 𝑥) = 𝐸 𝑤 [𝑛 𝑖 𝑛 𝑗] -𝐸 𝑤 [𝑛 𝑖]𝐸 𝑤 [𝑛 𝑗]
With 𝐸 𝑤 the expectation. We call the inference procedure MC-SAT to estimate the number of satisfied (correct) formulas (𝑛 𝑖 , 𝑛 𝑗).

We can see that we consider the rules independently in the learning process. We calculate the number of each formula's correct grounding separately in the world; hence we do not take into consideration the implicit knowledge, which justifies the inference of all implicit knowledge and inconsistencies before learning. Inference. The inference in 𝑀𝐿𝑁 [START_REF] Richardson | Markov logic networks[END_REF] contains two steps, grounding step, where we sample all possible worlds based on the priors and construct a large weighted Sat formula used in satisfiability calculation, and search step to find the best weight assignment to this Sat formula. In our work, we used the marginal inference algorithm that estimates the atoms' probability and returns the query answer with a probability score representing the confidence. It uses the MC-Sat algorithm, which combines satisfiability verification with MCMC by calling in each step the SampleSat algorithm that is a combination of Simulated Annealing and WalkSat. Note that the walkSat algorithm selects in each iteration an unsatisfiable clause, selects an atom from the clause, and flip its truth value to satisfy the clause.

MLN-based Reasoning to Enhance Accuracy

Majority voting could be a solution to the inconsistency problem. However, this trivial method takes into consideration only the voting subset (cluster) and ignores information about the voters (polarity functions) from the other voting subsets (other clusters), which may hurt the accuracy.

To enhance the quality in terms of accuracy of the inconsistency issue resolution, the process in SentiQ follows two steps:

Step1. We use 𝑀𝐿𝑁 to model the different inconsistencies and select the most appropriate polarity of the set (phase 1 to phase 3 of the process). We illustrate in Figure 1 the global workflow of our system. As input, we have an unlabeled dataset 𝐷 (1) that we cluster to group the semantically equivalent documents in clusters. Then, (2) we extract the polarities from the documents using different polarity functions (𝑃 𝑡𝑏 , 𝑃 𝑠𝑤 , 𝑃 𝑣). After that, (4) we construct our knowledge base 𝐾𝐵 by creating first the fact set 𝐹 (Algorithm 1).(5) We infer all implicit knowledge by applying inference rules (𝐼𝑅) on the Fact set until saturation(Algorithm 2). Then we apply inconsistency rules (ICR) to generate different inconsistencies between polarities (Algorithm 3). [START_REF] Cicero | Deep convolutional neural networks for sentiment analysis of short texts[END_REF] We learn the weights of inference rules. [START_REF] Dragoni | A fuzzy-based strategy for multidomain sentiment analysis[END_REF] The output of the learning procedure is a set of weighted inference rules that we apply on theprior knowledge to infer the most appropriate polarities for documents.

Running the motivating example in this system shows an improvement in both the consistency and accuracy (accuracy of 88% and a low inconsistency).

Step2. (phase 4 of the process) As we still have inconsistencies from the previous step, we propose to resolve those remaining inconsistencies by using weighted majority voting with as weights the polarities probability, which leads to an accuracy of 100% on the motivating example.

Algorithm 3 Discover inconsistencies

Input : 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝐹 Output : 𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝐹 𝐹 .𝑎𝑑𝑑 (¬𝐼𝑠𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑 𝑖)) In our experiments, we use five representative sentiment analysis tools, a convolutional neural network with word embedding as 𝑃 𝑐𝑛𝑛_𝑡𝑥𝑡 [START_REF] Kim | Convolutional neural networks for sentence classification[END_REF], a convolutional neural network with character embedding as 𝑃 𝑐ℎ𝑎𝑟 _𝑐𝑛𝑛 [START_REF] Cicero | Deep convolutional neural networks for sentiment analysis of short texts[END_REF] , [START_REF] Hutto | Vader: A parsimonious rule-based model for sentiment analysis of social media text[END_REF] as 𝑃 𝑣 , [START_REF] Baccianella | Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining[END_REF] as 𝑃 𝑠𝑤 and [START_REF] Socher | Recursive deep models for semantic compositionality over a sentiment treebank[END_REF] as 𝑃 𝑡𝑏 . We chose these tools because of their performance and their association with different methods' categories, so they have different behaviors within inconsistency. Dataset. We studied the effect of inconsistency resolution on accuracy using two publicly available datasets for sentiment analysis: News headlines dataset [START_REF] Cortis | Semeval-2017 task 5: Fine-grained sentiment analysis on financial microblogs and news[END_REF] and the test data of the sentiment treebank dataset [START_REF] Socher | Recursive deep models for semantic compositionality over a sentiment treebank[END_REF] (sst). To consider the in-tool inconsistency, and for experimental purposes, we augmented the datasets with paraphrases using a generative adversarial network (GAN) [START_REF] Iyyer | Adversarial Example Generation with Syntactically Controlled Paraphrase Networks[END_REF].

For each document in the dataset, we generated three paraphrased documents with the same polarity as the original one. These datasets allow us to study the effect of resolving in-tool and inter-tool inconsistency on accuracy. Note that in our future work, we use a clustering method on the data to create our clusters.

Statistics about the datasets are presented in Experiments. To evaluate the efficiency of resolving inconsistencies using SentiQ on the accuracy of the system, we compare it to the Majority Voting (MV) baseline. We use MV to resolve the intool inconsistency, inter-tool inconsistency, and both inconsistencies; then, we calculate the accuracy on the dataset after resolving contradictions. The majority voting for in-tool inconsistency resolution consists of calculating the most repeated polarity in the cluster and attributes it to all cluster documents :

𝑃 𝑡 𝑘 (𝐴) = 𝑎𝑟𝑔𝑚𝑎𝑥 {+,0,-} { 𝑑 𝑖 ∈𝐴 1 (𝑃 𝑡 𝑘 (𝑑 𝑖)=+) , 𝑑 𝑖 ∈𝐴 1 (𝑃 𝑡 𝑘 (𝑑 𝑖)=0) , 𝑑 𝑖 ∈𝐴 1 (𝑃 𝑡 𝑘 (𝑑 𝑖)=-) }.
Inter-tool inconsistency resolution using ma- jority voting consists of attributing to the document the polarity attributed by most tools:

𝑃 * (𝑑 𝑖) = 𝑎𝑟𝑔𝑚𝑎𝑥 {+,0,-} { 𝑃 𝑡 𝑘 ∈Π 1 (𝑃 𝑡 𝑘 (𝑑 𝑖)=+) , 𝑃 𝑡 𝑘 ∈Π 1 (𝑃 𝑡 𝑘 (𝑑 𝑖)=0) , 𝑃 𝑡 𝑘 ∈Π 1 (𝑃 𝑡 𝑘 (𝑑 𝑖)=-) } .
Resolving both inconsistencies with MV consists of considering in the cluster all polarities given by polarity functions and attributing to each document the most repeated polarity.

Accuracy Optimization with SentiQ. To evaluate the accuracy improvement obtained by SentiQ, we run SentiQ on the two datasets News headlines and SST. The Figures 2,3 present the accuracy of resolving inconsistencies using SentiQ on the two datasets SST and news headlines respectively with the two queries 𝐼𝑠𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑) and 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑) and the polarity functions 𝑃 𝑐ℎ𝑎𝑟 _𝑐𝑛𝑛 , 𝑃 𝑡𝑒𝑥𝑡 _𝑐𝑛𝑛 , 𝑃 𝑠𝑤 and 𝑃 𝑣 .

We observe an accuracy improvement of 0.629 and 0.56 on the two datasets SST and the news headlines, respectively. These preliminary results prove the efficiency of resolving both in-tool inconsistency and inter-tool inconsistency using SentiQ to improve the accuracy. To analyze the performances and limits of SentiQ, we compare it in the next section to the MV baseline in the presence of variable-sized datasets.

Accuracy optimization and dataset size. The results are presented in the Table 3.

We evaluate the accuracy optimization of polarity functions on samples of different sizes (25, 100, 500 and 1500) from the news headlines dataset using SentiQ and MV to resolve in-tool inconsistencies, inter-tool inconsistencies, and both of them. "Original Acc" represents the original accuracy of the polarity function on this dataset, while "MV in-tool" represents the accuracy on different samples after resolving in-tool inconsistency using MV. "Inter-tool MV" represents the overall accuracy of the system after solving inter-tool inconsistencies, and the last line of the table represents the accuracy obtained after inferring the polarity of the whole system using our SentiQ. Results. We observe that resolving in-tool inconsistency increases the accuracy of tools in most of the cases. The only case where we have accuracy degradation corresponds to the tool 𝑃 𝑣 , where accuracy changes from 𝑎𝑐𝑐 = 0.5 to 𝑎𝑐𝑐 = 0.38 after resolving inconsistencies. When analyzing the data of this case, we found that most of this tool's predictions where 𝑁 𝑒𝑢𝑡𝑟𝑎𝑙 instead of the data ground truth. As a result, majority voting falsified the results of the correctly predicted instances.

Resolving inter-tool inconsistency using majority voting decreases effectiveness in the case of tools that are incompatible in terms of accuracy (i.e., having widely different accuracy scores). Like the case of the two samples of size=25 and size=100 of the Table 3, where the weak nature of 𝑃 𝑣 , 𝑃 𝑠𝑤 , and 𝑃 𝑡𝑏 on the datasets has influenced the performance of the voting system (accuracy decreased from 0.62 to 0.5 on the dataset of size 25 and from 0.55 to 0.47 on the dataset of size 100). SentiQ addresses this problem, because it weighs different tools based on the inconsistencies on the whole dataset. SentiQ provides an accuracy improvement of 0.76 on the first dataset, 0.70 on the second, and 0.60 on the third dataset, outperforming majority voting.

This leads to other research problems, especially that of scalability, since we could not run experiments with a larger dataset, due to the high inference complexity of the Markov solver. Therefore, we need a more efficient Markov logic solver adapted to analyze large scale social media data.

We also observe that the MLN solver deletes some rules from the model (by attributing a negative, or a 0 weight), which can penalize the inference. The final results of the system could be boosted by adding business rules that can improve the polarity inference. This approach can be applied to various problems such as truth inference in crowd-sourcing, and other classification problems. We proved that resolving both in-tool and inter-tool inconsistency outperforms using only inter-tool inconsistencies.

CONCLUSIONS AND FUTURE WORK

In this paper, we presented an MLN-based approach to solve inconsistencies and improve classification accuracy. Our results show the efficiency of including semantics to resolve in-tool inconsistency. The initial results of SentiQ are promising and confirm that resolving in-tool inconsistency boosts accuracy. However, to test SentiQ efficiency in resolving inconsistencies and improving the accuracy of social media data, we need MLN solvers that can scale with the data size. Finally, we plan to investigate the use of domain expert rules for improving the polarity inference of SentiQ.

19 :

 19 𝐹 .𝑎𝑑𝑑 (𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑 𝑖))20:if 𝐼𝑠𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑 𝑖) ∈ 𝐹 ∧ 𝐼𝑠𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑 𝑗) ∉ 𝐹 : 21: 𝐹 .𝑎𝑑𝑑 (𝐼𝑠𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑 𝑗)) 22: if 𝐼𝑠𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑 𝑗) ∈ 𝐹 ∧ 𝐼𝑠𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑 𝑖) ∉ 𝐹 : 23: 𝐹 .𝑎𝑑𝑑 (𝐼𝑠𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑 𝑖)) 24: if 𝐼𝑠𝑁 𝑒𝑢𝑡𝑟𝑎𝑙 (𝑑 𝑖) ∈ 𝐹 ∧ 𝐼𝑠𝑁 𝑒𝑢𝑡𝑟𝑎𝑙 (𝑑 𝑗) ∉ 𝐹 : 25: 𝐹 .𝑎𝑑𝑑 (𝐼𝑠𝑁 𝑒𝑢𝑡𝑟𝑎𝑙 (𝑑 𝑗)) 26: if 𝐼𝑠𝑁 𝑒𝑢𝑡𝑟𝑎𝑙 (𝑑 𝑗) ∈ 𝐹 ∧ 𝐼𝑠𝑁 𝑒𝑢𝑡𝑟𝑎𝑙 (𝑑 𝑖) ∉ 𝐹 :27:

Figure 1 :

 1 Figure 1: SentiQ overview

Figure 2 :Figure 3 :

 23 Figure 2: Accuracy optimization on stanfod treebank

Table 1 :

 1 • 𝑑 2 : Chinese technological investment in the US is the next target in Trump's crackdown. • 𝑑 3 : China urges end to United States crackdown on Huawei. • 𝑑 4 : China slams United States over unreasonable crackdown on Huawei. • 𝑑 5 : China urges the US to stop its unjustifiable crackdown on Huawei. • 𝑑 6 : Trump softens stance on China technology crackdown. • 𝑑 7 : Donald trump softens threat of new curbs on Chinese investment in American firms. • 𝑑 8 : Trump drops new restrictions on China investment. 𝑑 1 Neutral Negative Neutral Negative 𝑑 2 Negative Negative Neutral Negative 𝐴 2 𝑑 3 Negative Positive Neutral Negative 𝑑 4 Negative Negative Neutral Negative 𝑑 5 Negative Negative Neutral Negative 𝐴 3 𝑑 6 Neutral Predicted polarity on dataset D by different tools • 𝑑 9 : Donald Trump softens tone on Chinese investments.

	𝐴 𝑖 Id	𝑃 𝑡𝑏	𝑃 𝑠𝑤	𝑃 𝑣	𝑃 ℎ
	𝐴 1 Positive	Neutral	Positive
	𝑑 7 Negative Negative Negative Positive
	𝑑 8 Negative Positive	Neutral	Positive
	𝑑 9 Neutral Negative Neutral	Positive

 0} from a document 𝑑 𝑖 . With + for Positive polarity,for Negative polarity and 0 for Neutral polarity. In this paper, we refer to polarity functions as 𝑃 𝑡 𝑘 s.t: 𝑃 𝑡 𝑘 : 𝐷 → 𝜋. We refer to the set of all functions as Π s.t Π = {𝑃 𝑡 1 , . . . , 𝑃 𝑡 𝑛 } Cluster: cluster is a set of semantically equivalent documents: for a cluster 𝐴 𝑙 = {𝑑 1 , . . . , 𝑑 𝑛 } we have ∀𝑑 𝑖 , 𝑑 𝑗 ∈ 𝐴 𝑙 , 𝑑 𝑖 𝑠 ⇐⇒ 𝑑 𝑗 .

	Definition 3.1. (Sentiment Analysis) Sentiment Analysis is the process of extracting a polarity 𝜋 ∈ {+, -, Definition 3.2. (Polarity Consistency)

 if 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑 𝑖) ∉ 𝐹 : 𝐹 .𝑎𝑑𝑑 (𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑 𝑖)) if 𝐼𝑠𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑 𝑖) ∉ 𝐹 : 𝐹 .𝑎𝑑𝑑 (𝐼𝑠𝑁 𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑 𝑖)) if 𝐼𝑠𝑁 𝑒𝑢𝑡𝑟𝑎𝑙 (𝑑 𝑖) ∉ 𝐹 : 𝐹 .𝑎𝑑𝑑 (𝐼𝑠𝑁 𝑒𝑢𝑡𝑟𝑎𝑙 (𝑑 𝑖))

	1: procedure INFERENCE
	2:	//step1: Infer Polarities by applying
	3:	//inter-tool consistency rules
	4:	functions=D.getFunctions()𝑑 𝑖
	5:	for each𝑃 𝑡 +	
	7:	for each𝑃 𝑡 -𝑘 (𝑑 𝑖) ∈ functions :
	8:		
	9:	for each𝑃 𝑡 0	(𝑑 𝑖) ∈ functions :
		𝑘	
	10:		
	11:	//step2: Infer Polarities by applying
	12:		

𝑘

(𝑑 𝑖) ∈ functions :

6:

Table 2

 2

	Statistics	# elements # Positive # Neutral # Negative
	𝑁 𝑒𝑤𝑠_ℎ𝑒𝑎𝑑𝑠	1583	891	37	655
	𝑆𝑆𝑇	3505	1481	640	1384

Table 2 :

 2 Statistics on datasets.

	Tools		Original Acc			𝑀𝑉 𝑖𝑛 -𝑡𝑜𝑜𝑙
		size = 25 100 500	1500 size = 25 100 500 1500
	𝑃 𝑐ℎ𝑎𝑟 _𝑐𝑛𝑛	0.62	0.55 0.50 0.506	0.69	0.59 0.50 0.52
	𝑃 𝑐𝑛𝑛_𝑡𝑥𝑡	0.5	0.48 0.52 0.505	0.54	0.54 0.57 0.55
	𝑃 𝑠𝑤	0.34	0.35 0.34	0.33	0.38	0.39 0.35 0.33
	𝑃 𝑡𝑏	0.38	0.38 0.38	0.40	0.46	0.41 0.42 0.44
	𝑃 𝑣	0.5	0.35 0.34 0.0.33	0.38	0.39 0.35 0.33
	𝑖𝑛𝑡𝑒𝑟 _𝑡𝑜𝑜𝑙 𝑀𝑉	0.5	0.47 0.51 0.506	0.42	0.54 0.52 0.515
	𝑆𝑒𝑛𝑡𝑖𝑄	0.76	0.70 0.60	0.56	N/A	N/A N/A N/A

Table 3 :

 3 Accuracy of tools before/after inconsistency resolution. The best performance for each dataset size is marked in bold.

ACKNOWLEDGEMENT:

This work has been supported by the ANRT French program and IMBA consulting.