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Due to computational time limitations, fully resolved simulations using the two-fluid
model of the flow inside industrial-scale fluidized beds are unaffordable. The filtered
approach is used to account for the effect of small unresolved scales on the large
resolved scales computed with ‘‘coarse’’ realistic meshes. Using a fully resolved simu-
lation, we highlight the need to account for a subgrid drift velocity to obtain the cor-
rect bed expansion when using coarse meshes. This velocity, defined as the difference
between the filtered gas velocity seen by the particle phase and the resolved filtered
gas velocity, modify the effective relative velocity appearing in the drag law. We close
it as a correction of the resolved relative velocity depending on the filtered particle
concentration and the filter size. A dynamic procedure is used to adjust a tuning pa-
rameter. Bed expansion obtained with a posteriori test on coarse-grid simulations
matches well to fully resolved simulations.

Keywords: computational fluid dynamics (CFD), fluid mechanics, fluidization,
mathematical modeling, multiphase flow

Introduction

This study is concerned with the problem of the prediction
of gas-particle flows in the specific domain of dense fluid-
ized beds. Fluidization is the operation by which solid par-
ticles are transformed into a fluid-like state through suspen-
sion in a gas or liquid. When a fluid is passed upward
through a bed of particles at a sufficient flow rate, particles
become agitated and large instabilities with bubbling and
channelling of gas are observed. When the flow rate is large

enough to transport particles, the fluidized bed is said to be
circulating. Bubbling fluidized beds and circulating fluidized
beds are widely used in several industrial applications.1 Due
to large instabilities, flow is difficult to describe and predict.
Computational fluid dynamics (CFD) offers a powerful tool
to analyze the multiscale nature of the flow inside large scale
processes.2,3

Among the various CFD methods available, the two-fluid
method, also called the Eulerian approach, is the most suita-
ble for engineering applications.2 A continuum description is
employed for both the gas phase and the solid phase. Clo-
sures are needed for both the drag force and the stress tensor
of the particle phase (particle pressure and viscosity). An
adapted kinetic theory of granular flows is employed to



provide closures for the particle stress tensor. This approach
has been applied with success to group B particles.4–8 How-
ever, the application of this method to bubbling and turbulent
fluidized beds of fine Geldart A particles leads to severe
overestimation of the bed expansion.9–15 The drag law is a
key parameter in the prediction of the bed expansion and sev-
eral closures can be found in the literature.16–21 Nevertheless,
all the closures lead to the same order of overestimation.

The origin of the problem is still under discussion.
McKeen and Pugsley13 argued that this difference could be
related to the presence of inter-particle forces (IPF) such as
Van deer Waals forces. IPF lead to the formation of clusters
and consequently to a modification of the effective particle
size in the drag law. By fitting their numerical results to
their experimental data, the authors found an effective parti-
cle agglomerate diameter of around 150 lm. However, the
bed expansion predicted by their numerical simulation
decreases as the mesh size decreases. As they do not achieve
mesh convergence, their analysis is questionable.

As shown by Parmentier et al.22 in case of a very coarse
grid, field of particle volume fraction predicted by the numer-
ical simulation of Geldart A particles is nearly homogeneous.
The corresponding bed height is of the order of the height
found by assuming an homogeneous equilibrium in the
momentum transport equations of particle and gas phase.
When the ratio between the superficial gas velocity and the
terminal velocity of particles tends to one, the homogeneous
bed expansion goes to infinity, while the real flow leads to
the formation of bubbles and a finite bed expansion. Hence,
numerical simulations lead to a major overestimation of the
bed expansion. This supports the idea that the overestimation
is mainly due to the effect of unresolved structures on the
resolved flow. Moreover, Wang et al.23 performed highly
resolved three-dimensional simulations of a bubbling fluidized
bed at moderate superficial gas velocity. By comparing their
results to those obtained using Lagrangian simulations, they
concluded that the standard two-fluid model with the standard
Gidaspow24 drag law does not lead to an overestimation of
the bed expansion when sufficiently fine meshes are used.

The influence of the mesh size on the macroscopic behav-
iour is also found in circulating fluidized bed.25–29 Agrawal
et al.25 and Igci et al.28 have shown that if small structures of
the flow are not completely solved, the drag force is overesti-
mated. As a consequence, the mesh size is a key parameter in
the numerical simulation of fluidized beds when using the
two-fluid model.

Various methods are proposed in the literature to modify
the drag term to obtain the correct bed expansion (for a
state-of-the art review, we refer to Wang14). McKeen and
Pugsley13 suggested to use a scale factor between 0.2 and
0.3 for the commonly used gas-solid drag laws. With this
factor, their numerical simulations fit their experimental
results well. Following the same analysis, Hosseini et al.11

used a scale factor of 0.1 to fit their own experiments. Gao
et al.10 used an effective mean diameter of 300 lm for the
dense phase of their turbulent fluidized bed, corresponding
to a scale factor of 0.04. None of the authors propose a
generic law to estimate this scale factor.

Andrews IV et al.26 to use an ad hoc effective drag coeffi-
cient to perform simulation of a large-scale circulating fluid-
ized bed on a coarse grid. Their effective drag coefficient is

measured using the highly resolved simulations of periodic
flows obtained by Agrawal et al.25 and depends on the parti-
cle volume fraction. Following the same approach, Igci
et al.28 propose an effective drag coefficient that depends on
the size of the filter used, i.e., the size of the grid used in
numerical simulations.

Recently, the EMMS method has been applied to the pre-
diction of the hydrodynamics inside a bubbling fluidized
bed.30 The EMMS method, originally developed by Li and
Kwauk31 to predict steady flows inside circulating fluidized
beds, assumes that particles move in the form of clusters
through a dilute phase composed by the surrounding gas and
a few randomly distributed particles. The EMMS method
was integrated into the Eulerian formalism in the form of a
subgrid drag correction.32 The last revised EMMS model can
be found in Wang et al.33 Clusters are described by 10 pa-
rameters that are calculated by balance laws and an energy
minimization condition. While a good agreement is found
between simulation results of Wang and Liu30 and experi-
mental results, the description of the flow in the form of
clusters is very questionable in a dense bubbling fluidized
bed where bubbles move inside a dense phase composed of
little gas and highly concentrated particles.

Finally, Wang et al.34 show that a correction of the drag
law is also needed when performing coarse grid simulations
of industrial-scale bubbling fluidized beds with Geldart B
particles. By assuming that the flow inside each computa-
tional cell is divided into a dense zone, where the relative
velocity is given by a homogeneous expansion law,35 and a
dilute zone where no particles are present, the authors pro-
pose a simple modification of the drag law. Such a relation-
ship between the gas velocity and the particle volume frac-
tion is a very limitating parameter.

Starting from the filtered equations of the two-fluid model
and using a highly resolved simulation of a bubbling fluid-
ized bed of Geldart A particles, we will demonstrate that the
overestimation of the filtered drag is linked to the existence
of a subgrid drift velocity that should be taken into account.
Then, we will suggest to close this subgrid drift velocity by
assuming that its function is to reduce the effective relative
velocity. Hence, it is expressed as a correction to the
resolved relative velocity, depending on the filtered particle
volume fraction and on the filter size. This model will be
constructed using results of the highly resolved simulation.
Moreover, a dynamic procedure will be used to adjust a tun-
ing parameter. Finally, this model will be first tested a priori
using the highly resolved simulation and then tested a poste-
riori on coarse-grid simulations.

Filtered Two-Fluid Model Equations

We start from the point that small structures are predicted
by the two-fluid model equations and that these structures
have a drastic influence on the bed expansion. Due to practi-
cal limitations, these structures cannot be resolved for simu-
lations at the pilot or industrial scale. Hence, they need to be
modeled. The filtered approach is a formalism that highlights
terms that need to be closed when we do not wish to solve
small structures. This idea has been applied in single-phase
turbulent flow for many years,36 but the application to gas-
particle flows is very recent.25,26,28,29



The idea is to split all physical variables into a resolved
part and an unresolved part. The resolved part of a variable
is the spatially filtered variable, which contains only large-
scale structures that can be resolved on a coarse-grid. The
unresolved part contains the small scales that cannot be
solved on a coarse grid. The balance laws of the filtered var-
iables are found by filtering the balance laws of the two-fluid
model. While we have chosen a particular set of constitutive
relations for the two-fluid model, detailed in Appendix, the
approach can be applied to other relations.

Let us define f (x,t) as the filtered part—or the resolved
part—of a space-time variable f(x, t) as:

f ðx; tÞ ¼
Z Z Z

Gðx� yÞ f ðy; tÞ dy (1)

where G is a weight function that satisfies $ $$G(y)dy ¼ 1.
Several choices can be made for the weight function. By
choosing how rapidly G(y) decays when y increases, one can
change how much the small structures will be taken into
account in the resolved part. Hence, the filtered particle
volume fraction ap is defined according to Eq. 1:

apðx; tÞ ¼
Z Z Z

Gðx� yÞ apðy; tÞ dy (2)

The gas phase pressure, Pg(x,t), is similarly defined. Fil-
tered phase velocities are defined by:

eUp;i ¼ apUp;i = ap (3)

eUg;i ¼ agUg;i = ag (4)

where the subscript i stands for the direction (x, y, or z). The
filtered particle agitation is defined by eq2p ¼ ap q2p = ap.

The balance laws for the filtered variables are obtained by
filtering the balance laws of the two-fluid model, leading, for
the mass transport equations, to:

@

@t
ðqk akÞ þ

@

@xj
ðqk ak eUk;jÞ ¼ 0 (5)

where the subscript k ¼ p for the particle phase and k ¼ g for
the gas phase (Table 1). A direct consequence of the definition
of the filtered phase velocities Eqs. 3 and 4 is that Eqs. 5 are
formally similar to those of the two-fluid model. Filtering the
momentum transport equation of the particle phase leads to:

qp ap
D eUp;i

Dt
¼ qp ap gi

� ap
@Pg

@xi
� UP;i

� qp
ap eWr;iesp � UD;i

� @

@xj
Rp;ij � @

@xj
ðqp aprp;ijÞ ð6Þ

where eWr;i ¼ eUp;i � eUg;i is the resolved relative velocity. The
particle relaxation time sp is given by the Wen and Yu21 drag
law (Eq. A15), and esp is defined similarly using the resolved
part of the variables:

1esp ¼ 1

sStp
1þ 0:15 eRe

0:687
� �

a�2:7
g (7)

eRe ¼ agkeUp � eUgkdp=mg and sStp ¼ qpd2p/(18lg) the Stokes drag
time of an isolated particle. Four terms have to be closed: the

filtered particle stress, Rp;ij, a Reynolds stress-like contribution

coming from the particle phase velocity fluctuations, rp,ij
defined by:

aprp;ij ¼ apUp;iUp;j � ap eUp;i
eUp;j (8)

and UP,i and UD,i, defined by:

UP;i ¼ ap
@Pg

@xi
� ap

@Pg

@xi
(9)

UD;i ¼ qp
apVr;i

sp

� �
� qp

ap eWr;iesp (10)

where Vr,i ¼ Up,i � Ug,i is the relative velocity. The balance
law for the filtered gas velocity can be obtained by filtering the
gas phase momentum equation, leading to another unknown
term, rg,ij, defined by:

agrg;ij ¼ agUg;iUg;j � ag eUg;i
eUg;j (11)

In the following, the balance law of the filtered particle
agitation is assumed to be similar to Eq. A11 when using
the filtered variables. This amounts to say that unresolved
terms appearing in this equation are assumed to have a neg-
ligible effect on the bed expansion.

Case Description

To study the effect of unresolved structures on the resolved
flow in dense bubbling fluidized beds, a simple bidimensional

Table 1. Table of Useful Symbols

Symbol Name Unit

ak Phase volume fraction
ap Filtered particle volume fraction (Eq. 2)
dp Particle diameter lm
DG Cells size m
D Filter size m
D* Dimensionless filter size (Eq. 29)
kgk Norm of the gravity m/s2

L Bed width m
lg Gas viscosity Pa.s
Pg Filtered gas pressure Pa
Pg Filtered gas pressure (Eq. 1) Pa
qk Phase density Kg/m3

sp Particle relaxation time sesg Filtered particle relaxation time (Eq. 7) s
sStp Stokes drag time of an isolated particle s
Uf Superficial gas velocity m/s
Uk,i Phase velocity m/seUg;i Filtered gas velocity (Eq. 4) m/seUg@p;i Filtered gas velocity seen by the

particle phase (Eq. 17)
m/s

eUp;i Filtered particle velocity(Eq. 3) m/seVd;i Subgrid drift velocity (Eq. 19) m/s
Vr,i Relative velocity (¼ Up,i � Ug,i) m/seWr;i Resolved relative velocity ( eUp;i � eUg;i) m/s

Subscript k stands for the phase: k ¼ g for the gas and k ¼ p for the par-
ticles. Subscript i stands for the direction of the space.



test case is used as a reference. The geometry is given in Fig-
ure 1. This case will be numerically simulated using different
meshes. Constitutive relations derived by Balzer et al.4 (see
Appendix), with the Wen and Yu21 drag law, are solved using
NEPTUNE_CFD, an unstructured parallelized multiphase flow
software.37

Gas and solid properties are summarized in Table 2. The
ratio between the superficial gas velocity and the terminal
velocity of an isolated particle is around 0.9. Particles and
gas properties are typical for FCC particles fluidized by am-
bient air. Boundary conditions are given in Figure 1. Gas
no-slip and particle free slip (with zero kinetic energy flux)
boundary conditions are applied on the walls.

The geometry is meshed using uniform square cells. Cells
size, DG, goes from 2 mm for the coarsest grid, to 100 lm for
the finest grid. Figure 2 shows instantaneous snapshots of the
particle volume fraction obtained with the meshes. Time-aver-
aged profiles are shown in Figure 3. It is readily apparent that
finer structures are resolved as the spatial grid is refined, lead-
ing to a decrease of the bed expansion. Time-averaged quanti-

ties become mesh-size independent for mesh sizes smaller than
500 lm. The probability density function of the particle vol-
ume fraction is very sensitive to the grid resolution, as shown
in Figure 4. It shows two high peaks, close to zero and 60%,
when the finest mesh is used. Such peaks are not predicted for
a mesh size greater than 500 lm. The numerical results
obtained on the finest mesh will be used to provide closures
for unknown terms appearing in Eq. 6.

A Priori Analysis Description

As the mesh convergence is reached when DG ¼ 100 lm,
the simulation is said to be fully resolved. Results are
assumed to be a good discretization of the continuous solu-
tion of the two-fluid model. The mesh size will be noted DD

in the following, in reference to single-phase flow simula-
tions, where such grid-size independent results are called
‘‘Direct Numerical Simulation.’’ Hence, we get DD ¼ 100
lm. These results are used to provide closures for the
unknown terms appearing in Eq. 6 in the following way: for
each snapshot of the flow field, the filtered quantities are cal-
culated at each cell of the mesh, using for G a discrete ver-
sion of the continuous box filter:

GðuÞ ¼ 1=D2
B if maxðux; uzÞ\ DB=2

0 otherwise

�
(12)

Hence the instantaneous field of the filtered particle vol-
ume fraction, the filtered velocities, and so forth, are known
for any value of DB. The operation is repeated for typically
10 snapshots. As the mesh is composed of 900,000 cells, we
get 9,000,000 of values for each filtered quantity and each
value of DB. All these filtered values are considered as statis-
tically equivalent and are used to perform various averaging
operations.

Subgrid Drift Velocity

Budget analysis

The database described in the previous section is used to
quantify the contribution of each term appearing in the

Figure 1. Geometry, initial, and boundary conditions
used in the 2D simulation of the bubbling flu-
idized bed.

Table 2. Physical Parameters

Bed width L 3 cm
Particle diameter dp 75 lm
Particle density qp 1500 kg/m3

Restitution coefficient ec 0.95
Gas density qg 1.186 kg/m3

Gas viscosity lg 1.8 10�5 Pa.s
Superficial gas velocity Uf 0.2 m/s

Figure 2. Instantaneous particle volume fraction field in
the fluidized bed for different grid mesh sizes.

From left to right, DG ¼ 2 mm, 1 mm, 500 lm, and 100
lm. White: ap ¼ 0, black: ap ¼ 0.64.



filtered momentum equation of the particle phase, Eq. 6. Let
us define hf ib,t as the average of f over the entire bed and
the time. Applying the h.ib,t operation to Eq. 6 leads to:

0 ¼ hqp apgiib;t
� hap @Pg

@xi
ib;t � hUP;iib;t

� hqp
ap eWr;iesp ib;t � hUD;iib;t

(13)

Equation 13 simply states the global equilibrium between
the filtered drag force, the filtered gravity and the filtered gas
pressure gradient. The first term in the r.h.s. of Eq. 13 is the
contribution of gravity. The second and the third are, respec-
tively, the resolved and unresolved part of the buoyancy. The
two last terms are the resolved and unresolved part of the drag
force. The vertical components of these terms are plotted ver-
sus the DB/DD ratio in Figure 5. It is clear that, as the filter
size increases, the resolved part of the drag force increases dra-
matically. In consequence, the unresolved part of the drag UD,i

decreases so that the average of the filtered drag remains con-
stant. For this reason, when the filtered drag is estimated by its
resolved part only—i.e., when UD,i is neglected—the bed
expansion is consequently overestimated. In contrast, the unre-
solved part of the buoyancy UP,i remains negligible.

This analysis shows that the first-order term that needs to
be modeled to predict the correct bed expansion of a bub-
bling fluidized bed is the unresolved part of the drag. Hence,
we will focus on this term in the following. In circulating flu-
idized beds, some authors report that the contribution of the
unresolved part of the buoyancy UP,i is not negligible.29,38,39

Effect of the Reynolds stress-like contribution rp,ij and the
filtered particle-stress Rp;ij were studied by Agrawal et al.25

and Igci et al.28 but are not the topic of this study as we are
only interested on the prediction of the bed expansion.

Drift velocity

To predict the correct fluidized bed expansion, we need to
model the filtered drag force. Various authors have proposed a

closure law in the form of an effective drag coefficient26–28,32

defined by:

apqp
sp

Vr;i

� �
¼ be eWr;i (14)

This effective drag coefficient depends either on the fil-
tered particle volume fraction26,27 or on the filter size.28 We
will not follow this approach.

A correlative analysis using our database has shown that
the filtered drag force can be approximated by:

apqp
sp

Vr;i

� �
’ qpesp apVr;i (15)

The r.h.s. of Eq. 15 is correlated with the l.h.s. to more
than 99%, even for high values of DB. It should be noted
that the particle relaxation time depends both on the gas vol-
ume fraction and on the Reynolds number, which also
depends on the relative velocity and on the gas volume

Figure 3. Vertical time-averaged profiles of the particle
volume fraction, for x 5 1.5 cm.

From left to right, DG ¼ 2 mm, 1 mm, 500 lm, and 100 lm.

Figure 4. Probability density function of the particle
volume fraction.

—: DG ¼ 100 lm, ---: DG ¼ 1 mm, -�-�: DG ¼ 2 mm.

Figure 5. Budget analysis of Eq. 13 as a function of the
ratio DB/DD.

—: resolved drag force, ---: unresolved drag force, —:
resolved buoyancy, ---: unresolved buoyancy. All values are
divided by the value of the gravity contribution.



fraction (Eq. 7). Equation 15 is an approximation and shows
that the major challenge in predicting the filtered drag force
is to produce a good model for the filtered relative velocity
weighted by the particle volume fraction, apVr;i. This last
one is equal to:

apVr;i ¼ ap ð eUp;i � eUg@p;iÞ (16)

where:

eUg@p;i ¼ apUg;i = ap (17)

is the filtered gas velocity seen by the particle phase. Putting
Eq. 16 in Eq. 15 leads the filtered drag force to:

apqp
sp

Vr;i

� �
¼ apqpesp eWr;i � eVd;i

� �
(18)

where eVd;i is a subgrid drift velocity defined as the difference
between the filtered gas velocity seen by the particle phase and
the filtered gas velocity seen by the gas phase (defined Eq. 4):

eVd;i ¼ eUg@p;i � eUg;i (19)

eVd;i comes from the correlation between the particle volume
fraction and the gas velocity as well as from spatial inhomogene-
ities inside the volume of filtering. The joint probability density
function of the particle volume fraction and the gas velocity is
shown inFigure 6. There is a strong dependence of thegas velocity
on the particle volume fraction. As seen on Figure 7, the gas
velocity is, on average, greater in dilute regions than in dense
regions. Consequently the gas velocity seen by the gas phase will
be greater, on average, than the gas velocity seen by the particle
phase.Hence, the average drift velocitywill benegative, reflecting
the fact that the resolved part of the relative velocity overestimates
the effective relative velocity.

A Taylor development shows that, for small filter size, the
drift velocity can be written as (see Appendix):

apag ~Vd;i ¼ D
2

12

@ap
@xj

@Ug;i

@xj
þ OðD4Þ (20)

with D a characteristic length scale of the filter (for instance,
when G is the continuous box filter, D ¼ DB). Equation 20
shows that the drift velocity is proportional to the square of the
filter size when the latter is small. Therefore, a model for the
filtered drag should respect this square dependence for small
filter size to be mathematically consistent.

Drag model description

General form

In previous sections, we have shown that the subgrid drift
velocity defined by Eq. 19 needs to be modelled to predict
the filtered drag force. The generic form to model it is given
by:

eVd;i

sStp jjgjj
¼ FðD�

; ap;
eWr;j

sStp jjgjj
;

D
@ap
@xj

;D
@ eUg;j

@xk
;D

@ eUp;j

@xk
;…;

D1;D2;…;DnÞ

(21)

where D1,D2,…,Dn are dimensionless numbers that character-
ize the problem. The first dots refer to the combination of
derivatives of variables. D* is a dimensionless parameter
constructed with the filter size and the macroscopic fluidiza-
tion parameters (bed width,…). As the first effect of the
subgrid drift velocity is to reduce the effective relative
velocity, we assume that it can be modelled by a simpler form:

eVd;i ¼ �gðD�
; apÞKij

eWr;j (22)

where Kij are constants and g is a function of the filtered
particle volume fraction and a dimensionless filter size. Due to
geometrical properties, it is assumed that Kxy ¼ Kyx ¼ 0. Only
Kxx and Kyy have to be estimated and Eq. 22 can be written:

Figure 6. Iso values of the joint probability density
function between the particle volume fraction
and the gas velocity.

The gas velocity is made dimensionless using the superficial
gas velocity.

Figure 7. Average of vertical velocities conditioned by
the particle volume fraction.

Velocity are made dimensionless using the superficial gas
velocity. —: gas velocity, ---: particle velocity, -�-�: relative
velocity.



eVd;a ¼ gðD�
; apÞKaa eWr;a (23)

where the Greek subscript a is used to indicate that there is no
implicit summation. The g function will be determined in the
‘‘Volume fraction and filter size dependence’’ section using
the database provided by the fully resolved simulation and Kij

constants will be dynamically adjusted following a methodol-
ogy adapted Germano et al.40 and Lilly41 described in the
‘‘Dynamic adjustment’’ section.

Volume fraction and filter size dependence

In this section, Kyy is assumed to be equal to one. The g
function is determined using the database described in the
‘‘A Priori Analysis Description’’ section by:

gðD�
; apÞ ¼ �h eVd;yjapib;t=h eWr;yjapib;t (24)

where hA|Bib,t denotes the conditional average of A by B. g is
plotted as a function of ap in Figure 8 for different values of R
¼ D B/DD. As the shape of the function is nearly independent
of R, g can be written as:

gðD�
; apÞ ’ f ðD�Þ hðapÞ (25)

where f(D*) and h(Dp) are two independent functions.
Measured values of h are represented in Figure 9 for different
R. The following suggested form for h is obtained by fitting
the measurements:

hðapÞ ¼ � ffiffiffi
u

p ð1� uÞ2ð1� 1:88 u þ 5:16 u2Þ (26)

with u ¼ ap/am and am ¼ 0.64 representing the maximum
loading. The suggested form for h was imposed to vanish when
the filtered particle volume fraction was equal to either zero or
the maximum loading. In these two cases, the particle volume
fraction inside the filtering box is homogeneous. Hence, no
correction to the filtered drag is needed. The maximum of the
correction occurs for intermediate filtered particle volume
fractions, reflecting the trend of the flow to lead to preferential
particle volume fractions close to zero or to the maximum
packing fraction, as shown in Figure 4.

The subgrid drift velocity dependence on the filter size is
measured by:

f ðD�Þ ¼ � hap eVd;yib;t
haphðapÞ eWr;yib;t

(27)

f is plotted in Figure 10 and the following form is proposed:

f ðD�Þ ¼ D
�2

a2 þ D
�2 (28)

with a � 6.13 � 10�2 and D* given by:

D
� ¼ D=sStpffiffiffiffiffiffiffiffiffiffiffiffiffiffijjgjjDH

p (29)

where DH ¼ 2L the bed hydraulic diameter. Table 3 reports
values of a obtained for a halved superficial gas velocity or a
doubled bed width. The value is nearly case-independent. For
small filter size, Eq. 28 leads to a parabola, which is consistent
with the Taylor development given by Eq 20. For wide filter

Figure 8. Measured values of g versus the filtered par-
ticle volume fraction ap.

h: R ¼ 11, *: R ¼ 15, ^: R ¼ 21.

Figure 9. h versus the filtered particle volume fraction
ap. Symbols are obtained from the database.

h: R ¼ 11, *: R ¼ 21, ^: R ¼ 31, —: Eq. 26.

Figure 10. Evolution of f with respect to the dimension-
less characteristic length scale of the filter,
D*.
h: measured values, —: Eq. 28, ---: parabola.



size, the filtered flow is homogeneous and the resolved part of
the filtered drag reaches its maximal value. Consequently, f
reaches a constant value, as shown in Figure 10.

Dynamic adjustment

Values of Kxx and Kyy depend on the simulated case. We
propose to calculate them using a dynamic adjustment.40

The main idea is that the model described in Eq. 23 is inde-
pendent of the choice of the weight function G used to cal-
culate filtered values. Therefore Kij could be calculated by
performing a second filter operation on the filtered quanti-
ties. This second filter, called the test filter, is applied during
coarse grid simulations on resolved quantities.

Let us define f̂ by:

f̂ ðx; tÞ ¼ 1

5
ðf ðx; tÞ
þ f ðxþ DGex; tÞ þ f ðx� DGex; tÞ
þ f ðxþ DGez; tÞ þ f ðx� DGez; tÞÞ

(30)

where DG � DB. Equation 30 can be written in the form of a
filtering operation on f. Its associated weight function has a
characteristic length scale D̂ linked to D by:bD2 ¼ D

2 þ 24

5
D2
G (31)

The filter associated with Eq. 30 is called the test filter.
Figures 11 and 12 show that calculating filtered quantities

by Eq. 1 with the discrete box filter or the test filter leads to
the same values for f and h. In consequence, one can write
both:

apVr;a ¼ ap eWr;a 1þ Kaaf ðD�Þ hðapÞ
� �

(32)

and dapVr;a ¼ bap beWr;a 1þ Kaaf ðbD�Þ hðbapÞ� �
(33)

where
beWr;i is defined by:

beWr;i ¼ beUp;i � beUg;i (34)

with
beUp;i ¼ dagUp;i=bag and

beUg;i ¼ dagUg;i=bag. D̂�
is the dimen-

sionless form of D̂, defined using Eq. 29. By applying :̂ð Þ
operation on Eq. 32 then putting the result into Eq. 33, and
assuming moreover that the scale of variation of Kaa is much
larger than the grid size:

Kaa
daphðapÞ eWr;a

� �
’ Kaa ap

d
hðapÞ eWr;a

� �
(35)

Kaa can be evaluated:

Kaa ’ � La
Ma

(36)

with La and Ma defined by:

La ¼ dap eWr;a � bap beWr;a (37)

Ma ¼ f ðD�ÞðaP d
hðapÞ eWr;aÞ � f ðbD�ÞbaphðbapÞ beWr;a (38)

Recapitulation

To summarize, we model the filtered drag force by:

apqp
sp

Vr;a

� �
¼ apqp

~sp
1þ f ðD�ÞhðapÞKaa

� � eWr;a (39)

where f(D*), h(ap), and Kaa are evaluated using Eqs. 28, 26,
and 36.

A Priori Validation

The highly resolved simulation results can be also used as
a validation tool, to assess the validity of the model

Table 3. Measured Values of a for Different Cases

Case a

Ref. 6.13 � 10�2

Uf ¼ 0.1 m/s 6.58 � 10�2

Uf ¼ 0.1 m/s and L ¼ 0.06 m 5.72 � 10�2

Ref. is the case describe in the ‘‘A Priori Analysis Description’’ section.
Other cases differ only as noted.

Figure 11. h as a function of the filtered particle vol-
ume fraction, ap or âg.

Symbols are obtained from the database. h: R ¼ 11, dis-
crete box filter, D: R ¼ 11, test filter with DG ¼ DB, —:
Eq. 26.

Figure 12. Evolution of f with respect to the dimension-
less characteristic length scale of the filter,
D* or D̂

�
.

h: measured values with the box filter, D: measured val-
ues with the test filter, —: Eq. 28.



developed. All filtered quantities are known, making compar-
ison possible between the real filtered drag and the modelled
one. The correction of the drag Ca in the a direction is
defined by:

apqp
sp

Vr;a ¼
apqp
~sp

eWr;að1þ CaÞ (40)

Putting Eq. 40 in Eq. 39 leads to the following model for
Ca:

Ca ¼ f ðD�Þ hðapÞ Kaa (41)

Figures 13 and 14 compare the probability density func-
tion of Cx and Cy measured in the bed with the prediction of
Eq. 41, for DB ¼ 21 DD, corresponding to D* ^ 0.10, and
DG ¼ DB. Reasonable agreement is found. As seen in Fig-
ures 13 and 14, Ca could take values lower than �1. Such
values result in a filtered drag force in the direction opposite
to its resolved part (see Eq. 40).

Figures 15 and 16 compare the probability density func-
tion of ag eVd;x and ag eVd;y measured in the bed with the model
prediction for D* ^ 0.10 and DG ¼ DB. Both the probability
density function of the horizontal and vertical components of
the subgrid drift velocity are fairly well predicted. The prob-
ability density functions of the filtered drag, the resolved
drag, and the filtered drag predicted by the model are shown
in Figure 17. Fairly good agreement is again found.

Coarse-Grid Simulations

Two-dimensional coarse-grid simulations were performed
using the theoretical model developed previously, and the
results are compared with those obtained in highly resolved
simulations. The theoretical developments rely on an abstract
filter. A coarse-grid simulation is assumed to apply an
implicit filter on calculated quantities, the length scale of
which is proportional to the computational grid. As this

Figure 13. Probability density function of the horizontal
correction of the drag, Cx, for DB 5 21 DD

and DG 5 DB, corresponding to D* ^ 0.10.

—: measured value, ---: model prediction.

Figure 14. Probability density function of the vertical
correction of the drag, Cy, for DB 5 21 DD

and DG 5 DB, corresponding to D* ^ 0.10.

—: measured value, ---: model prediction.

Figure 15. Probability density function of the horizontal
component of the drift velocity weighted by
the filtered particle volume fraction, ap eVd;x,
for DB 5 21 DD (D* ^ 0.10), and DG 5 DB.

—: measured value, ---: model prediction.

Figure 16. Probability density function of the vertical
component of the drift velocity weighted by
the filtered particle volume fraction, ap eVd;y,
for DB 5 21 DD (D* ^ 0.10), and DG 5 DB.

—: measured value, ---: model prediction.



implicit filter is unknown, the characteristic length scale D is
unknown. It is assumed that this length scale is related to
the mesh size, DG, by:

D
2 ¼ 2D2

G (42)

The scale factor of 2 was determined empirically by
adjusting the bed height obtained with the simulation of the
test case on the 1 mm-mesh size (see the ‘‘coarse-grid simu-
lation of the reference case’’ section).

For each time step and for each cell, Kxx and Kyy were cal-
culated by applying the :̂ð Þ operation on the quantities given
by the code. As shown in the a priori analysis, the corrections
Cx and Cy could be less than �1. For numerical stability
reasons, these values were set to �0.99. In the same way,
predicted values of Cx and Cy greater than 0.99 were set to

0.99. As seen in Figures 13 and 14, these events are very
infrequent so they are expected to have a negligible effect.

Coarse-grid simulation of the reference case

The reference case defined in the ‘‘A Priori Analysis
Description’’ section is used to validate the model. Simula-
tions were performed on meshes of sizes 2 mm and 1 mm.
A snapshot of the particle volume fraction obtained on the 2
mm-size mesh is shown in Figure 18. As shown in Figure
19, the correct bed expansion is well predicted with the two
coarse meshes.

We define Kmoy
yy the time average of Kyy by:

Kmoy
yy ¼

R apqp
~sp
eWr;yf ðD�Þ hðapÞ Kyy dtR apqp

~sp
eWr;yf ðD�Þ hðapÞ dt

(43)

Vertical profiles of Kmoy
yy for different the meshes are

shown in Figure 20. Oscillations on profiles of Kmoy
yy are due

to the nonconvergence of the time average operation since

Figure 17. Probability density function of the dimension-
less vertical component of the filtered drag
for DB 5 21 DD (D* ^ 0.10), and DG 5 DB.

—: measured value, ---: model prediction, -�-�: resolved
drag.

Figure 18. Instantaneous particle volume fraction field.

Fully resolved simulation (without any subgrid drag
model) is at the left. Simulation on a 2 mm grid mesh size
without and with the model are at the centre and at the
right, respectively.

Figure 19. Vertical profiles of particle volume fraction.

Simulations results without and with the drag model are at
the left and the right, respectively. —: DG ¼ 100 lm (fully
resolved simulation), ---: DG ¼ 1 mm, -�-�: DG ¼ 2 mm.

Figure 20. Vertical profiles of particle volume fraction
and time average of Kyy, Kyy

moy.

---: DG ¼ 1 mm, -�-�: DG ¼ 2 mm.



the particle volume fraction is very low. The theory devel-
oped assumes that Kxx is independent of the size of the mesh
cells. However, its value changes slightly between the two
coarse-grid simulations and this is probably due to errors in
modelling f. Moreover, the value of Kmoy

yy depends on the
position within the bed.

Coarse-grid simulation of a larger bed

The same bed with a bed width of 0.06 m and a superficial
velocity of 0.1 m/s was also simulated with and without the
developed model. All the parameters of the model have been
fixed to the same values used in the simulations of the refer-
ence case. Particularly, a was fixed to 6.13 � 10�2 while its
value was measured to 5.72 � 10�2 in this case (see Table 3).

As shown in Figure 21, the correct bed expansion is well
predicted with the two coarse meshes when the model is
used while an overestimation is found without any models.

Coarse-grid simulation of Geldart B bubbling
fluidized bed

While it has been shown that the model gives satisfactory
results in the reference case, it should be also verified that
the model vanishes when simulations without any model
give satisfactory results. This fact is clearly not the case for
scaling factor models.

A Geldart B fluidized bed with parameters extracted Mak-
kawi et al.12 experiments is simulated (cf., Table 4). Coarse-
grid simulations without any drag modification lead to good

agreement with experimental measurements of the bed expan-
sion.12,22 Therefore, we expect that no significant changes will
appear when using the developed model. This is shown in Fig-
ure 22, where the results obtained on a mesh size of 9.86 mm
are given. Consequently, it can be concluded that the model
can be applied even if it is not needed.

The fact that coarse-grid simulations without any drag modi-
fication lead to good agreement with finest simulations is
explained by the small values of the dimensionless number D*
even when using coarse meshes. It is not an inherent property
of group B particles, because disagreement is found when bed
width is increased, has been shown by Wang et al.34

Extension to Three-Dimensional Cases

The results obtained previously were gathered in a two-
dimensional case. Igci et al.28 report that, although there are
quantitative differences between the 2D and 3D results, they
are qualitatively similar. We performed simulations of a bub-
bling fluidized bed in a 3D bed with a square section of 0.03
m width. Gas and particle characteristics were identical to

Figure 21. Vertical profiles of particle volume fraction in
the larger bed.

Simulations results without and with the drag model are at
the left and the right, respectively. —: DG ¼ 200 lm (fully
resolved simulation), ---: DG ¼ 2 mm, -�-�: DG ¼ 4 mm.

Table 4. Physical Parameters of the Geldart B Fluidized Bed

Bed width L 0.138 cm
Particle diameter dp 350 lm
Particle density qp 2500 kg/m3

Restitution coefficient ec 0.80
Gas density qg 1.4 kg/m3

Gas viscosity lg 1.8 10�5 Pa.s
Superficial gas velocity Uf 0.54 m/s

Figure 22. Vertical profiles of particle volume fraction and
Kmoy
yy for the Geldart B bubbling fluidized bed.

At left, —: without subgrid drag model, ---: with the sub-
grid drag model. At right, —: Kmoy

yy .

Figure 23. Snapshot of a the particle volume fraction
field in the three-dimensional fluidized bed.



the test case. The superficial gas velocity was 0.1 m/s. The
initial bed height was 0.03 m with a particle volume fraction
of 0.55. The domain height was 0.09 m. The cells of the
mesh were cubes of 250 lm width, corresponding to 120 �
120 � 360 ¼ 5,184,000 cells. A snapshot of the particle vol-
ume fraction field is shown in Figure 23.

Correlative analysis indicates that the subgrid drift veloc-
ity can still be identified as Eq. 19. As seen in Figure 24, h
is more independent of the filtered particle volume fraction
than it is in the 2D case. However, the mesh is still too
coarse to measure the function f correctly.

The test filter defined by Eq. 30 becomes, for three-dimen-
sional cases:

bf ðx; tÞ ¼ 1

7
ðf ðx; tÞ
þ f ðxþ DGex; tÞ þ f ðx� DGex; tÞ
þ f ðxþ DGey; tÞ þ f ðx� DGey; tÞ
þ f ðxþ DGez; tÞ þ f ðx� DGez; tÞÞ

(44)

Then, D̂ is linked to D by:

bD2 ¼ D
2 þ 24

7
D2
G (45)

For two-dimensional simulations in the (x, z) plane, Kxx

and Kyy are calculated using Eq. 36. In three-dimensional
simulations, where the gravity is in the z-direction, it is
assumed that Kxx ¼ Kyy. Then, following Lilly,41 Kxx and
Kyy are calculated by:

Kxx ¼ Kyy ¼ � LxMx þ LyMy

M2
x þM2

y

(46)

Conclusion and Perspectives

The filtered approach was used as a starting point to deal
with the effect of unresolved structures on the resolved
flow, during numerical simulations. Using highly resolved
simulation, we have first-shown that the first order term that

need to be modelled is the unresolved part of the filtered
drag. Then, using a correlative analysis, we reduce the prob-
lem to the prediction of a subgrid drift velocity coming from
spatial inhomogeneities inside the filtered volume and the
correlation between gas phase and particle volume fraction.
A mathematical analysis for small filter sizes as shown a
square dependence of the subgrid drift velocity. The subgrid
drift velocity was modelled as a function of the filtered parti-
cle volume fraction, the resolved relative velocity, and the
filter size. The model is adjusted using a dynamic procedure
adapted from single-phase turbulence modelling. Tests on
coarse-grid simulations have shown a good prediction of the
bed expansion for any mesh size. Finally, an extension to
three-dimensional cases has been suggested.

One of our objective was to provide a generic model, with
the minimum of adjustable parameters and that is easily
implementable in a CFD code. While in the present form the
model seems limited to bubbling fluidized beds, the method-
ology used to develop it is not specific of this case. Future
work will be to extend the results to other flow configura-
tions, such as circulating fluidized beds. In these cases,
where the particle volume fraction is lower than in dense
beds, the subgrid scales can play a major role on the particle
agitation and new closure terms have to be derived.
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Appendix

Two-fluid model equations

The model is based on separate equations of mass and
momentum for the gas phase and on mass, momentum, and
kinetic agitation for the particle phase. Equations are
coupled through gas and particle volume fraction and inter-
phase momentum transfer terms. In the following, subscript
k ¼ g refers to the gas phase and k ¼ p to the particle
phase. The following equations were derived by Refs. 4
and 42.
Gas and particle volume fraction, ag and ap have to sat-

isfy:

ag þ ap ¼ 1 (A1)

Mass transport equation:

@

@t
ðakqkÞ þ

@

@xi
ðakqkUk;iÞ ¼ 0 (A2)

with qk density of the k phase and Uk,i the i-component of
its velocity.
Momentum transport equation:

akqk
@Uk;i

@t
þ Uk;j

@Uk;i

@xj

� �
¼ �ak

@Pg

@xi
þ akqkgi

þ Ik;i þ @

@xj
Rk;ij

(A3)

with Pg the mean gas pressure, gi the gravity i-component,
Ik,i the inter-phase momentum transfer without the mean gas
pressure contribution, Ig,i ¼ �Ip,i, and Rk,ij the effective
stress tensor of the phase k. For k ¼ g, it is equal to the lam-
inar viscous stress tensor. The stress tensor for the particular
phase is closed using a Boussinesq hypothesis:

Rp;ij ¼ Pp � kp
@Up;m

@xm

� �
dij

� lp
@Up;i

@xj
þ @Up;j

@xi
� 2

3

@Up;m

@xm
dij

� � (A4)



with Pp the particular pressure, lp ¼ apqp (mkinp þ mcollp ) the
shear particular viscosity and kp the volume particular vis-
cosity. Pp, mkinp , mcollp and kp are given by:

Pp ¼ 2

3
apqp q2p ð1þ 2apg0 ð1þ ecÞÞ (A5)

kp ¼ 4

3
apqpapg0 dp ð1þ ecÞ

ffiffiffiffiffiffiffiffi
2 q2p
3p

s
(A6)

mkinp ¼ 1

3
sp q2p ð1þ apg0 /cÞ 1þ rc

2

sp
sc

� ��1

(A7)

mcollp ¼ 4

5
apg0ð1þ ecÞ mkinp þ dp

ffiffiffiffiffiffiffiffi
2

3

q2p
p

s0@ 1A (A8)

with ec particles elasticity coefficient, rc ¼ (1 þ ec)(3 � ec)/
5 and /c ¼ 2/5 (1 þ ec)(3ec � 1). sp is the particle relaxa-
tion time given by the drag law. The inter-particle collisions
time sc is given by:

1

sc
¼ 24

apg0
dp

ffiffiffiffiffiffiffiffi
2

3

q2p
p

s
(A9)

The pair correlation function g0 reflects the increase of the
probability to find a particle at contact due to the close pack-
ing of particles. Lun and Savage43 give the following expres-
sion:

g0 ¼ 1� ap
am

� ��2:5am

(A10)

which tends to infinity when the particle volume fraction ap
tends to am ¼ 0.64, the maximum solid fraction. The particle
random kinetic energy q2p- or so-called ‘‘granular tempera-
ture’’ obeys the following transport equation, which is
derived from the particle pdf Boltzman-like equation:

apqp
@q2p
@t

þ Uk;j

@q2p
@xj

 !
¼ @

@xj
apqpðKkin

p þ Kcoll
p Þ @q

2
p

@xi

 !
�Rp;ij

@Up;j

@xi
� 2

apqp
sp

q2p � 1
2
ð1� e2cÞ apqpsc

2
3
q2p ðA11Þ

with Kkin
p and Kcoll

p the kinematic and collisional diffusivity
respectively, given by:

Kkin
p ¼ 2

3
q2pscð1þ apg0ucÞ nc þ

9

5

sc
sp

� ��1

(A12)

Kcoll
p ¼ 6

5
apg0 ð1þ ecÞ Kkin

p þ 10

9
dp

ffiffiffiffiffiffiffiffi
2

3

q2p
p

s0@ 1A (A13)

with nc ¼ (1 þ ec)(49 � 33ec)/100 and uc ¼ 3/5(1 þ
ec)

2(2ec � 1). The interface momentum transfer, Ik,i, can be
written as:

Ip;i ¼ � apqp
sp

ðUp;i � Ug;iÞ (A14)

with sp the particle relaxation time given by the Wen and
Yu21 correlation:

1

sp
¼ 1

sStp
1þ 0:15R0:687

e

� �
a�2:7
g (A15)

with Re ¼ agkUp � Ugkdp/mg and sStp ¼ qpd2p/(18lg) the
Stokes drag time of an isolated spherical particle in the gas.

Taylor development for the subgrid drift velocity

Using Taylor expansions, a mathematical expression of
the subgrid drift velocity can be written in function of gradi-
ent of the filtered values. This method is adapted from works
on LES in single phase flows.44 Let us consider a variable f,
which is a function of space and time. A Taylor series
expansion of f around x0 leads to:

f ðxÞ ’ f ðx0Þ þ @f

@xi

				
x0

ðxi � x0;iÞ

þ 1

2

@2f

@xi@xj

				
x0

ðxi � x0;iÞðxj � x0;jÞ þ…

(A16)

Multiplying this expansion by G(x0 � x) and integrating x

over the whole space leads to:

f ’ f þ @f

@xi
Ii þ 1

2

@2f

@xi@xj
Iij þ… (A17)

were Ii and Ii,j are defined as follows:

Ii ¼
ZZZ

GðuÞuidu (A18)

Iij ¼
ZZZ

GðuÞuiujdu (A19)

Assuming that the kernel G is an even function, we obtained
Ii ¼ 0 and Ii,j= i ¼ 0. Multiplying Eq. A16 by G(x0 � x)
ak(x) and integrating x over the whole space leads to:

akf ’ akf þ @f

@xi
akeIki þ 1

2

@2f

@xi@xj
akeIkij þ… (A20)

were eIki and eIki;j are defined as follows:

eIki ¼ 1

ak

ZZZ
GðuÞ ui akðx0 þ uÞ du (A21)

eIkij ¼ 1

ak

ZZZ
GðuÞ uiuj akðx0 þ uÞ du (A22)

Performing a Taylor series expansion of ak around x0 and
putting it in Eqs. A21 and A22 leads to:



eIki ’ 1

ak

@ak
@xj

Iij þ … (A23)

eIkij ’ ak
ak

Iij þ… (A24)

Now using Eqs. A17, A20, A23, and A24 for both ap, ag,
and Ug,i leads to the following expressions for eUg;i andeUg@p;i:

eUg;i ’ Ug;i þ 1

ag

@ag
@xj

@Ug;i

@xj
Ijj þ 1

2

@2Ug;i

@xj@xj
Ijj þ… (A25)

eUg@p;i ’ Ug;i þ 1

ap

@ap
@xj

@Ug;i

@xj
Ijj þ 1

2

@2Ug;i

@xj@xj
Ijj þ… (A26)

Then subtracting Eq. A25 from Eq. A26 leads to the
following expression for the drift velocity:

ap ag eVd;i ¼ D
2

12

@ap
@xj

@Ug;i

@xj
þ OðD4Þ (A27)

where the characteristic length scale D is defined by:

D
2 ¼ 12 I11 ¼ 12 I22 ¼ 12 I33 (A28)

In the case of the continuous box or top-hat filter defined
as follows:

GðuÞ ¼ 1=D3
B if maxðux; uy; uzÞ\ DB=2

0 otherwise

�
(A29)

we have:

I11 ¼ I22 ¼ I33 ¼ 1

12
D2
B ¼ 1

12
D
2

(A30)

In the case of the spectral cut-off filter, Eq. A17 and so
on model Eq. A27 are not valid since I11 ¼ I22 ¼ I33 ¼
1. In the case of the discrete version of the box filter, as
defined in the ‘‘A Priori Analysis Description’’ section, we
have:

D
2 ¼ D2

B 1� DD

DB

� �2
 !

(A31)
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