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Uncovering the basis of small molecule hormone receptors evolution is paramount to a 29 

complete understanding of how protein structure drives function. In plants, hormone 30 

receptors for strigolactones are well suited to evolutionary inquires because closely related 31 

homologs have different ligand preferences. More importantly, because of facile plant 32 

transgenic systems, receptors can be swapped and quickly assessed functionally in vivo. 33 

Here, we show only three mutations are required to switch the non-strigolactone receptor, 34 

KAI2, into a strigolactone receptor. This modified receptor still perceives KAI2 ligands and 35 

does not require receptor hydrolysis for activity. Structural and molecular dynamic 36 

modeling suggest receptor pocket flexibility is important for ligand specificity and 37 

downstream signaling partner affinity. These findings indicate a few keystone mutations 38 

link strigolactone signaling to germination, which explains how parasitic plants that 39 

devastate African agriculture evolved SL receptors to sense the presence of a host plant. 40 

 41 

Introduction 42 

Plants and animals use small molecule hormones to drive growth and development and for this 43 

reason much effort is placed on understanding how hormone receptors perceive their ligands1,2. 44 

Most inquiries are tuned to identify receptor amino acids that contribute to ligand specificity 45 

using “loss-of-function” approaches where an amino acid is replaced with a chemically inert 46 

moiety, usually an alanine, and binding is assessed4,5. The less explored “gain of function” 47 

approach involves swapping amino acids between related receptors that respond to different 48 

ligands6,7. Gain-of-function approaches have the potential to not only answer questions about 49 

receptor-ligand relationships but also can give insights into how receptors evolve. As selection 50 

drives changes in the receptor sequence to recognize new ligands, important questions regarding 51 

this molecular process can be posed: is this process gradual occurring through many amino acid 52 

changes or are only a few keystone substitutions required? When receptors evolve the ability to 53 

recognize new ligands, do they lose the ability to bind the ancestral ligands? Gleaning this type 54 

of information through gain-of-function approaches, however, has imposing challenges8. First, 55 

amino acids are not discrete entities acting in isolation but are a sea of interdependent residue. As 56 

a result, swapping amino acids into a new context often can result in a non-functional protein due 57 

to negative epistasis. Second, depending on the number of potential swaps, the number of 58 
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variants can quickly scale limiting analysis to simple in vitro assays rather than more complex in 59 

vivo analysis. 60 

With this said, the perception of the plant hormone strigolactone (SL) may be a useful 61 

system to understanding the evolution of small molecule receptors. The root parasite Striga 62 

hermonthica (Striga), for example, uses a group of α/β  hydrolases designated 63 

HYPOSENSITIVE TO LIGHT (ShHTL) to perceive host-derived SLs allowing the parasite to 64 

coordinate its germination with the lifecycle of a host plant9. By contrast, the homologous 65 

protein, HYPOSENSITIVE TO LIGHT/KARRIKIN INSENSITIVE 2 (KAI2), which is also 66 

involved in germination in the model plant Arabidopsis thaliana (Arabidopsis), is not considered 67 

an SL receptor10,11. Plants only produce SLs with a 2’R enantiomeric configuration in D-ring but 68 

this enantiomer is not recognized by KAI2 (Supplementary Fig. 1)12,13. In Arabidopsis, (2’R)-69 

SLs are recognized by a more distantly related α/β hydrolase, DWARF14 (AtD14), a receptor 70 

that is only involved in vegetative growth14,15. Instead KAI2 responds to a collection of smoke-71 

derived butenolides collectively called karrikins (KARs)16, and strangely is activated by non-72 

natural (2’S)-SL enantiomers (Supplementary Fig. 1)13. This has led to suggestions that KAI2, 73 

like ShHTL receptors, positively regulates germination not by using naturally occurring (2’R)-74 

SLs but by perceiving an unidentified butenolide-based ligand, designated KAI2-ligand (KL)17. 75 

Because parasitic lifestyles are derived from nonparasites, this implies that ShHTL parasitic 76 

receptors evolved the ability to perceive (2’R)-SLs from ancestor KAI2 receptors that bind KL18. 77 

Structural analysis of KL and SL receptors generally conclude that ShHTL receptors have 78 

larger binding sites with a broader set of active site amino acids allowing for greater 79 

responsiveness to an array of (2’R)-SL molecules, a trait thought to increase Striga host range19. 80 

There are also suggestions that receptor affinity to downstream signaling partners also 81 

contributes to ligand responsiveness20. The separation of ligand specificity versus partner affinity 82 

helps to resolve the conundrum of how Striga SL receptors show decreased specificity but 83 

increased sensitivity to the same ligand. These conclusions, however, are based solely on in vitro 84 

experiments because Striga is an experimentally intractable genetic system21. Fortunately, 85 

ShHTL receptors function in Arabidopsis mutants deficient in KAI2 function and under specific 86 

conditions confers seed germination sensitivity to SLs11,22. Furthermore, model plants like 87 

Arabidopsis, unlike their animal counterparts, are easily transformed23 making high throughput 88 

analysis at the whole organism level feasible. This cross-species functionality means 89 
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homologous-substitution mutagenesis between KL-based KAI2 and SL-based ShHTL receptors 90 

can be performed to probe evolutionary questions of ligand sensitivity, specificity and 91 

promiscuity in an in vivo context. 92 

With this in mind, here we systematically substituted key amino acids from the highly 93 

responsive ShHTL7 SL receptor at homologous positions in KAI2 and assayed their ability to 94 

sense SLs in vivo. We show using both yeast- and plant-based assays, that only three amino acid 95 

changes were required to repurpose KAI2 into an SL receptor that recognizes (2’R)-SL 96 

enantiomers. The emergent properties of this chimeric KAI2 receptor does not appear to require 97 

loss of KL perception. Furthermore, ligand perception does not require receptor hydrolysis. 98 

Structural and molecular dynamic modeling indicates substitution of three active site amino acids 99 

from ShHTL7 into KAI2 produces a larger more flexible binding pocket that better 100 

accommodates SLs including (2’R)-SL enantiomers and most likely allows better interactions 101 

with downstream signaling partners. The relatively simple mutational path to convert KAI2 into 102 

a SL receptor together with the central role of KAI2 in non-parasitic plant germination has 103 

implications with respect to the molecular mechanism of how Striga co-opted this regulator to be 104 

a germination sensor of host-derived SLs. 105 

 106 

Results 107 

Identifying amino acids involved in SL binding. KAI2 and ShHTL receptors share β-sheet 108 

cores flanked by α-helices with their ligand binding pockets covered by a V-shaped cap24-27. 109 

Within the binding pocket is a catalytic triad of amino acids that is involved in ligand 110 

hydrolysis9,27-29. To identify important amino acid differences between a KL and an SL receptor 111 

we compared amino acid sequences within the ligand binding pocket of KAI2 to the Striga SL 112 

receptor, ShHTL7, which both have experimental 3D structures available11,22. Because the larger 113 

ShHTL7 binding pocket can accommodate (2’R)-SLs19,20, we focused on ShHTL7 residues that 114 

were less bulky and/or more polar than their homologous counterparts in KAI2 (Supplementary 115 

Fig. 2). This identified eight ShHTL7 amino acids (Leu26, Tyr124, Thr142, Leu153, Thr157, 116 

Tyr174, Thr190, Cys194) that we substituted into the equivalent homologous position in KAI2 in 117 

all single, double and triple combinations to generate 92 chimeric KAI2 gene variants. 118 

 119 



	

	 6	

Three substitutions change KAI2 responsiveness to SL. To systematically test the 92 chimeric 120 

KAI2 receptors, we developed two in vivo high throughput SL receptor responsive assays. KAI2 121 

interacts with its signaling partner MORE AXILLARY MERISTEMS 2 (MAX2)30 making this 122 

interaction a good candidate for a yeast two-hybrid assay (Y2H). KAI2, however, autoactivates 123 

in Y2H assays in some conditions31 and MAX2 is also unstable in yeast19. Therefore, we 124 

developed Y2H growth conditions where KAI2 did not autoactivate (see Supplementary 125 

Materials & Methods) and fragmented MAX2 into nine constructs (N1-N9) to identify a 126 

fragment that produced a positive Y2H signal in the presence of a SL (Supplementary Fig. 3). 127 

Although KAI2 (Var1) and the chimeric receptor variants (Var2-Var93) showed no or poor 128 

interactions with most MAX2 fragments, the N3 fragment interacted with some chimeric 129 

receptors to varying degrees, in the presence of a racemic mixture (2’R, 2’S) of the artificial SL, 130 

rac-GR24 (Fig 1a). With a cut off of four standard deviations above the mean interaction 131 

intensity this experiment identified seven variants (Var21, 37, 62, 64, 65, 66, 67) that showed 132 

rac-GR24-dependent N3 interactions (Fig. 1b). Six of these variants contained a ShHTL7 amino 133 

acid substitution at position 190 and four variants contained substitutions in positions 124 or 157 134 

suggesting that these amino acids influence the rac-GR24-dependent interactions in yeast 135 

(Supplementary Fig. 3). The identification of amino acids positioned at 124, 157 and 190 is 136 

consistent with in vitro studies that show these amino acids are important for SL binding19,20. 137 

Parallel to our Y2H assays, we evaluated all 92 of the chimeric KAI2 receptors by 138 

transforming them into Arabidopsis deficient for KAI2 function (htl-3)30. Using an SL-dependent 139 

germination assay involving GA-depleted seeds11, we found the one line, Var64 (Trp153Leu, 140 

Phe157Thr, Gly190Thr), germinated well upon rac-GR24 addition (Fig. 1a). Subsequent 141 

analysis of three independent transgenic lines (64A, 64B, 64C) showed 50 percent germination 142 

(EC50) at high nanomolar concentrations of GR24rac (Fig. 1c). Interestingly, Var19 lines 143 

(Trp153Leu, Gly190Thr), which contains a subset of Var64 amino acids, showed the next 144 

highest level of rac-GR24-dependent germination in our in planta assay (Fig. 1a, 145 

Supplementary Fig. 4). Notably, the Var64 receptor variant was also identified in our Y2H 146 

assay, indicating that two independent assays showed that substitution of Leu153, Thr157 and 147 

Thr190 into KAI2 greatly improved its responsiveness to rac-GR24. 148 

 The identification of Leu153, Thr157 and Thr190 as having roles in SL perception 149 

encouraged us to determine the prevalence of these amino acids in KAI2-related proteins across 150 
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a large collection of land plants. Focusing on clades of receptors that are not expected to bind 151 

SLs (conserved) versus clades of receptors that are expected to bind SLs (divergent)18 we found 152 

conserved clades were mostly devoid of ShHTL7-related amino acids whilst the divergent clades 153 

were highly populated with ShHTL7-related residues (Fig. 2). Divergent KAI2 proteins were 154 

particularly enriched for 153Leu or hydrophobic amino acids at this position, and proteins more 155 

closely related to ShHTL7 possessed similar amino acids at positions 157Thr and 190Thr (Fig. 156 

2). Interestingly, within the divergent group, the one clade of proteins depleted of ShHTL7 157 

amino acid identities were most closely related to receptors ShHTL10 and ShHTL11 (e.g. 158 

SaKAI2d2, 10, 11, 16, ShKAI2d10, 11) which do not have a role in germination as assayed by 159 

Arabidopsis22. Together, the distribution of ShHTL7 amino acids across land plants suggests that 160 

our in vivo screening identifies important amino acids involved in the evolutionary switch of 161 

KAI2 to an SL receptor. Finally, the observation that both our assays led to the Var64 amino acid 162 

combination suggests that the simpler and less time consuming yeast-based protein interaction 163 

assays may be a good first screen before plant-based assays. 164 

 165 

KAI2 variant 64 recognizes natural occurring (2’R)-SL. The SL responsiveness of Var64 166 

seed may be due to increased sensitivity to either or both enantiomers of GR24rac. To 167 

differentiate between these possibilities, we measured the germination response of three 168 

independent Var64 lines (64A, 64B, 64C) to either (2’S)- or (2’R)-GR24 in our GA-depletion 169 

assay11. Compared to misexpressed KAI2, the Var64 lines showed more sensitivity to 2’S-GR24 170 

but importantly showed responsiveness to (2’R)-GR24, a property not present in the wild type 171 

KAI2 receptor (Fig. 3a). We also noticed that compared to KAI2 seed, Var64 lines germinated at 172 

low levels, even in the absence of rac-GR24rac, suggesting a weakly constitutive germination 173 

phenotype in the absence of SL addition (Fig. 3a). Suppressor analysis in rice identify GID1 α/β 174 

hydrolase GA receptor mutants with weak GA constitutive phenotypes that are enhanced by GA 175 

addition32. This is thought to be due to alterations in the conformation of the receptor’s lid 176 

subdomain that increases its affinity for interactions with its downstream signaling partners32. By 177 

analogy, ShHTL7 amino acids may alter the active site of KAI2 to a conformation closer to the 178 

“on state”, which may improve downstream protein interactions. Consistent with this, the 179 

positions 153 and 157 are important in MAX2 and SMAX1 interactions with ShHTL7 in vitro20. 180 
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To biochemically characterize the molecular mechanism of Var64 signalling, we first 181 

measured hydrolysis activity of Var64 variant receptors using the YLG assay9. Var64 receptors 182 

showed weak YLG hydrolysis activity compared to WT KAI2 enzyme, but this activity was 183 

inhibited by addition of rac-GR24rac, indicating that SL indeed bind the variant receptor (Fig. 184 

3b). To more directly measure SL hydrolysis we monitored D-ring production by HPLC from 185 

hydrolysis of either (−)-(2’S)- or (+)-(2’R)-GR24 and again found neither GR24 enantiomer was 186 

a substrate compared to KAI2, which has a preference for (2’S)-SLs, or ShHTL7, which has a 187 

preference for (2’R)-SLs (Fig. 3c). In summary, although Var64 seed showed improved 188 

germination on (2’S)-GR24 and an emergent ability to germinate on the (2’R)-GR24 the Var64 189 

protein at best, has poor hydrolysis activity for these two enantiomers. This suggests this receptor 190 

variant functions in response to SL in vivo but with minimal hydrolase activity. 191 

 192 

KAI2 variant 64 responds to karrikins. Because the identity of KL is unknown, we cannot 193 

directly assess its binding to our variant receptors. However, KL also has a role in Arabidopsis 194 

leaf development33, which means rescue of the htl-3 leaf mutant phenotype by variant receptors 195 

in transgenic plants can be used as a readout of endogenous KL binding to its receptor. Under 196 

our growth conditions, htl-3 leaf length to width ratios are smaller (≤1.85) versus wild type 197 

leaves (≥1.92) and this difference can be used to quantify the degree to which chimeric variants 198 

can complement htl-3 leaf shape defects (Supplementary Fig. 5). Generally, higher order 199 

mutant lines showed less rescue of htl-3 leaf mutant phenotype than lower order mutants, which 200 

could reflect a loss of endogenous KL recognition (Fig. 1a). This pattern, however, may also be 201 

due to increasing negative epistasis as newly introduced amino acids pile up resulting in non-202 

functional proteins8. We noticed, however, that triple substitution variant lines that carried a 203 

ShHTL7 amino acid at position 190 complemented htl-3 leaf defects more often than other triple 204 

mutant or even double mutants lacking this substitution (Fig. 1a). Deep sequencing analysis 205 

suggest that amino acid substitutions can be neither positive nor negative in terms of protein 206 

function, but simply stabilize proteins and allow for a larger number of substitutions to be 207 

tolerated during evolution34. Perhaps, Threonine at position 190 is a permissive substitution that 208 

opens alternative mutational paths for ligand recognition. With this said, Var64 lines, which 209 

contain a Thr190 substitution, complemented htl-3 leaf defects suggesting that this chimeric 210 

receptor retained an ability to recognize KL (Fig. 1a). Although this cannot be directly tested, 211 
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Var64 seed germinated on KAR2 to a similar level seen for KAI2 seed, indicating that this 212 

chimeric variant retains the capacity to recognize a native KAI2 ligand. 213 

 214 

KAI2 variant 64 protein-ligand dynamics. Structural comparisons of the Var64 protein model 215 

to a wild type KAI2 crystallographic structure (PDB 4IH1xx) showed that replacing KAI2 216 

aromatic residues Trp153 and Phe157 with Leu and Thr, disrupted several hydrogen bond 217 

interactions that would occur between the αB, αC, and αD helices of the lid domain (Fig. 4a, b). 218 

This change would increase the pocket mouth area from 45.5 Å2 to 57 Å2, which would allow for 219 

larger substrates, such as GR24, to access the active site of the receptor more easily. These 220 

disruptions would also result in the increase of the overall pocket solvent-accessible volume by 221 

approximately 140 Å3 (Fig. 4a, b). Larger binding pockets should increase ligand accessibility 222 

but to explore this in more detail we modeled (2’R)-GR24 ligand-receptor interactions using 223 

molecular dynamics (MD) simulations. Unlike traditional structural docking analysis, which is a 224 

static snapshot of the protein structure, MD simulations take into account the temporal evolution 225 

and velocities of all of the atoms of a protein averaged over a specific period of time to give a 226 

more realistic atomic-level detail of the protein. MD simulations of Var64 and KAI2 receptors in 227 

the presence of (2’R)-GR24, as well as their apo states, were conducted in triplicate 10 ns 228 

simulations to evaluate the dynamics of these ligand-receptor complexes in contrast with the 229 

unbound receptor, calculating the number and distance of hydrogen bonds that form between 230 

receptor and ligand, and measuring the fluctuation of the ligand positions throughout the 231 

simulation. To quantitatively distinguish between ligand binding states, we defined productive 232 

modes to include states in which (2’R)-GR24 was close to the receptor (≤5.0 Å) and its surface 233 

area was mostly covered by the active site of the protein. The unproductive mode incorporates 234 

instances where the ligand was further away from the pocket opening (5.1-7.0 Å) and not 235 

interacting with the active site. Finally, a dissociated mode comprised states where (2’R)-GR24 236 

was far from the protein (≥7.5 Å) thus any interactions are very unlikely. Using these criteria, 237 

(2’R)-GR24 was in a productive binding mode with the Var64 receptor almost 50% of the 238 

simulation time versus only 2.1% for KAI2 (Fig. 4c). Furthermore, when docked on KAI2, 239 

(2’R)-GR24 spent approximately 65% of the simulation time in a dissociated mode versus 10% 240 

for Var64. Finally, we calculated the magnitude of location change of the position of (2’R)-GR24 241 

on the two receptors. For a productive ligand-receptor interaction, a minimal fluctuation is 242 
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expected, as the ligand is tightly bound until it is metabolized or released. The simulations 243 

showed that the position of (2’R)-GR24 in KAI2 fluctuates between 0.02 and 0.18 nm once 244 

initially bound to the protein, by contrast, this oscillation is greatly reduced in the Var64 protein, 245 

confirming the ability of the new variant to form a stable interaction with an SL ligand  (Fig. 4d). 246 

Visualization of the trajectory of the MD simulations revealed that the motility of the αE 247 

loop of unbound Var64 is increased, consistent with our model of increased flexibility of the 248 

receptor’s active site and the expansion of the cavity depth and volume (Supplementary Movie 249 

1). The trajectories also show three main changes between bound and unbound receptors. First, 250 

the hydrophobicity of the binding domain of Var64 was slightly reduced throughout the 251 

simulation after binding of (2’R)-GR24, which is qualified by the change in coloration from 252 

orange to blue in the binding domain region. Second, (2’R)-GR24 appears to be more attracted 253 

by the polar ShHTL7 Thr190 in Var64 than the KAI2 Gly190. Possibly, this substitution is the 254 

reason for the higher ligand stability provided by Var64. Lastly, we observe a conformational 255 

change of the αD helix of Var64 upon binding to (2’R)-GR24 (Supplementary Movie 2). This 256 

conformational change is expected in the SL perception pathway, as SL bound receptors have 257 

been shown to adapt the conformation of the αD helix to accommodate interactions with its 258 

downstream partners20,35,36. 259 

 260 

Discussion 261 

Structurally guided mutational analysis is an effective approach to dissecting how a protein’s 262 

sequence contributes to biochemical activity, but how these biochemical properties evolve is 263 

more experimentally challenging8. From an evolutionary perspective, loss-of-function 264 

approaches are not necessarily informative and often experiments on protein evolution are not 265 

performed in an in vivo context which allows proteins to interact with other cellular constituents 266 

and processes. In this study, we used a gain-of-function approach with active site amino acid 267 

targeted substitutions informed by structural and evolutionary considerations to determine if a 268 

non-parasitic plant orphan receptor, KAI2, that is incapable of recognizing natural SL ligands 269 

harnessed by parasitic plants, could be converted into a receptor that recognizes such ligands. 270 

Importantly, we assayed these receptor variants using yeast- and Arabidopsis-based systems to 271 

evaluate receptor function under in vivo conditions. 272 
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Our approach unambiguously determined that only three amino acid substitutions were 273 

necessary to convert KAI2 into a functional SL receptor. By introducing smaller, more polar 274 

amino acids into KAI2, we produced a protein with a more flexible pocket and lid; this affects 275 

receptor function in two ways. First, it increases the pocket volume to accommodate natural SL 276 

conformations like that of (2R’)-GR24. Second, it increases the overall elasticity of the protein, 277 

which may allow better interactions with signaling partners20,35,36. To this end, the identification 278 

of positions 153, 157 and 190 in our in vivo experiments is consistent with the in vitro 279 

conclusions about these amino acids19,20. Our in vivo findings contribute to discussions 280 

concerning the role of gradual versus keystone mutations in small molecule receptor evolution. 281 

Animal studies using ancestral gene reconstructions involving steroid receptors show as few as 282 

two mutations can switch ligand specificity37. Our results now extend the importance of keystone 283 

mutations to plant hormone receptor evolution. 284 

General models of hormone evolution suggest promiscuous ancestral forms evolve 285 

specificity so as to prevent deleterious ligand crosstalk38. Three lines of evidence in this study, 286 

however, suggest a path to SL perception in KAI2 does not necessarily require loss of 287 

responsiveness to previous ligands. First, our variant receptor complements the KAI2 loss-of-288 

function phenotype suggesting it still recognizes the endogenous KAI2 ligand. Second, variant 289 

receptor seeds are sensitive to (2’S)-GR24 enantiomers, a known substrate for KAI2. Finally, 290 

variant lines respond to the KAI2-specific exogenous ligands, karrikins. The ability of variant 291 

receptors to respond to both ancestral as well as derived ligands supports the notion that SL 292 

perception can evolve through sufficient promiscuity rather than by a narrowing of specificity. 293 

The sufficient promiscuity models receptor specificity as being adequate but not overly so to 294 

distinguish endogenous ligands39. This “just enough” specificity explains why receptors often 295 

show sensitivity to drug structures unrelated to their natural ligands. The discovery of an 296 

artificial femtomolar responsive ShHTL7 agonist with little similarity to SLs further supports a 297 

sufficient promiscuity model for these receptors40. 298 

It also appears that the tight connection between SL hydrolysis and SL perception is not 299 

necessary as Var64 variant seed responded to GR24 enantiomers as the Var64 protein showed 300 

little hydrolase activity. The role of ligand hydrolysis in SL signaling is somewhat contentious 301 

with structural studies producing conflicting models41,42. Chemical biology suggests hydrolysis is 302 

important to signaling sensitivity but again may not be essential30,40. Finally, mutational analysis 303 
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of the D14 receptor in Arabidopsis indicates hydrolysis is both necessary29 and not necessary42 304 

for SL signaling. Although our results support a less direct connection between of hydrolysis and 305 

signaling, our variant receptor most likely does not reflect the natural progression by which 306 

KAI2 genes evolved to become SL receptors in Striga. Our KAI2 variants were not under the 307 

constant constraints seen in natural environments that are important for fitness. This may explain 308 

why in contrast to the yeast-based interaction assay, we only found one variant with high SL 309 

responsiveness in planta. We understand that monitoring KAI2 function using the output of 310 

Arabidopsis germination is superior to in vitro based experiments but even this system almost 311 

certainly overestimates the frequency of beneficial mutations relative to natural evolution. With 312 

this said, the correlation of ShHTL7 153, 157 and 190 amino acids in divergent versus conserved 313 

KAI2 is consistent with these residues playing key roles in SL perception. Finally, directed 314 

protein engineering studies tell us that enzymes usually possess minor non-selective activities 315 

that are often enhanced by laboratory evolution44,45. If true, KAI2 may possess a to-date 316 

undetected low level of responsiveness to 2’R enantiomers. In vitro, KAI2 only appears to bind 317 

(2’S)-GR2429 but in vivo, KAI2 can perceive (2’R)-GR24 but only when the SL receptor, D14, is 318 

defective46, suggesting that the absence of D14 uncovers the latent binding ability of KAI2 for 319 

2’R enantiomers as it would be free from competition for (2’R)-SL substrates with endogenous 320 

D14. 321 

The role of KAI2 in germination together with its ability to perceive small molecules 322 

makes it easy to understand why this gene was co-opted during the evolution of Striga 323 

parasitism. Striga plants not only requires a host for growth but also requires a cue to signal the 324 

proximity to a host, and a long-term survival strategy in the absence of a host. Since SLs are 325 

needed for beneficial plant root-AM fungi interactions47, secretion of these small molecules 326 

makes it an excellent plant root positional cue. Seeds are an attractive solution to establishing 327 

long-term viability in the absence of a host as dormant seeds can survive long periods under a 328 

variety of environmental conditions. An unintended agricultural consequence of using dormant 329 

seeds as the protective state in the absence of a host is that they easily contaminate soil and are 330 

difficult to purge from farmers fields. For these reasons, Striga has contaminated over 20 African 331 

nations and is the largest biological impediment to food security on the continent48,49. 332 

Understanding the steps by which KAI2 evolved to become a SL receptor will give insights not 333 

only into the role of this key regulator of the Striga lifecycle but will also help define the 334 
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chemical space of this receptor, which should open leads to new chemical solutions to this 335 

African scourge.  336 
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Figure 1. Identification of a variant KAI2 that perceives SL. a. Heatmap representation of 446 

SL-dependence of the 93 KAI2 chimeric variants. Var1 is the KAI2 wild type control. Lanes 1-2; 447 

Yeast two hybrid assays where increased purple shading represent an increased interaction 448 

intensity on rac-GR24 relative to the DMSO control for KAI2 chimeric variants queried against 449 

the N3 MAX2 fragments (Supplementary Fig. 3). Interaction strengths were quantified using 450 

colony color intensity after 72 hours. Representative colonies for Var27 and Var64 are shown on 451 

the left inserts. Lanes 3-4; the mean germination percentage of three independent KAI2 chimeric 452 

variants lines on PAC (20 µM), DMSO (0.1%) or rac-GR24 (1 µM). Lane 5-12; Graphic 453 

representation of 93 insertion lines. Each blue box represents the amino acid position in KAI2 454 

where a ShHTL7 amino acid is substituted. Lane 13; degree of rescue of the htl-3 leaf shape 455 

phenotype by each KAI2 chimeric variant (Supplementary Fig 5). Colors are from 0% rescued 456 

(yellow) to 100% rescued (dark green). Grey indicates that the variant was not available. 457 

Representative pictures of htl-3, 35S::KAI2, Var19 and Var64 plants. Are shown on the right 458 

inserts. b. Scatterplot showing the log-fold change scores calculated for each KAI2 chimeric 459 

variant with full-length protein, empty vector control and MAX2 fragments using a Y2H protein 460 

interaction assay (see Supplementary Fig. 3). 22 scores were calculated for each variant. Red 461 

dotted line represents four standard deviations from the mean. c. SL dose response germination 462 

curves. Percent germination of mis-expressed ShHTL7, KAI2 and three independent Var64 seed 463 

(64A, 64B, 64C) on PAC (20 µM) and increasing rac-GR24 concentrations. Four-parameter 464 

logistic curves were fitted to the data, and EC50 values, ± standard error, of rac-GR24 465 

concentrations have been included for those lines showing response to SL. Bases on these curves 466 

the effective concentration that germinates 50% of seed EC50 was calculated and is shown in the 467 

box. 468 

 469 

Fig. 2. Conservation of Var64 amino acids in land plants. a. Phylogenetic tree built using 470 

KAI2/DLK/DDK sequences from across the land plant phylogeny, rooted using KAI2 sequences 471 

from hornworts. Sequences within each of the three coloured clades were investigated in more 472 

detail for their similarity with variant 64 at positions 153, 157 and 190. b. KAI2 conserved 473 

sequences from angiosperms. c. KAI2 divergent sequences from parasitic Orobanchaceae. 474 

Coloured boxes beside the clades indicate amino acid similarity with variant 64 at positions 153 475 
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(blue), 157 (green) or 190 (purple). James, we need a list of what the similar amino acids are 476 

for each catagory! 477 

 478 

Figure 3. A. Var64 responds to both GR24 enantiomers a. Percent germination of htl-3, mis-479 

expressed KAI2 and three independent Var64 seed lines (64A, 64B, 64C) on PAC (20µM) with 480 

DMSO, 1 µM (−)-(2’S)-GR24 or (+)-(2’R)-GR24. b. SL inhibits YLG hydrolysis. Competitive 481 

binding assay using YLG and rac-GR24 to evaluate the changes in YLG hydrolysis by KAI2 482 

(black) and Var64 (blue) after incubation with 0.5 µM rac-GR24. Error bars represent SD values 483 

from three independent experiments. c. Hydrolysis activity towards GR24 enantiomers. UPLC-484 

UV (260 nm) analysis was used to detect the remaining amount of GR24 isomers. Box plots of 485 

n=3 replicates represent the hydrolysis rate calculated from the remaining GR24 isomers and 486 

analogs taking into account the hydrolysis in the buffer alone (non protein sample), quantified 487 

using indanol as internal standard. Letters indicate different statistical groups (ANOVA, post-hoc 488 

Tukey test). d. KAR2 dose response germination curves. Mis-expressed ShHTL7, KAI2 and three 489 

independent Var64 seed (64A, 64B, 64C) on PAC (20 µM) and increasing KAR2 concentrations. 490 

Four-parameter logistic curves were fitted to the data, and EC50 values, ± standard error, of 491 

KAR2 concentrations have been included for those lines showing response to karrikin. Based on 492 

these curves the effective concentration that germinates 50% of seed (EC50) was calculated and is 493 

shown in the box. Alex I need your data to be converted to box plots and I only need the 494 

data for GR24. Also I need the stats included in the figure. 495 

 496 

Figure 4. Var64 derived amino acids create a SL binding domain. a. The substitution of 497 

KAI2 aromatic residues for ShHTL7 equivalents results in the disruption of several interactions 498 

(purple dashed lines) along the X-axis of the protein. This disruption translates into increased 499 

motility of the lid domain (Supplemental Movie 1), consistent with the receptor’s new ability to 500 

accommodate SL molecules. b. Pocket alignment of KAI2 and Var64 receptors reveals an 11.5 501 

Å larger pocket mouth (orange shading) and a 29.7% increased pocket volume in the Var64 502 

receptor. The pocket mouths are shown in yellow shading with width shown in Å2.  c. A 503 

summary of the three most common binding states between Var64, KAI2, and 2’R-GR24. 504 

Molecular dynamic simulations of Var64 and KAI2 receptors to determine binding modes of 505 

ligand-protein complexes over a 10 ns simulation. Var64-(2’R)-GR24 complex was found in a 506 
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productive binding mode 47.8% of the time whist the same state was only found 2.1% of the 507 

time for the KAI2 complex. d. Calculation of the magnitude change in the pose of the ligand 508 

throughout the MD simulation. Both proteins stabilized the ligand after 1 ns of simulation, but its 509 

position on the KAI2 pocket is compromised from the 4 ns mark as the interaction is not strong 510 

nor stable. 511 
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Supplementary Fig. 1. Structures of 2’R- and 2’S-enantiomeric forms of strigolactones (SLs) and karrikin (KAR2). For SLs the synthetic 
GR24 is shown and the 2’ chirality is at the enol-ether bridge between the C and D-ring. For karrikin KAR2 is shown.  
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Supplementary Fig. 2 Selection of ShHTL7 residues for substitution in KAI2. a. The choice of the eight substitutions 
(pink boxes) were made based on increased polarity and decreased size (blue amino acids) in ShHTL7 versus the KAI2 
equivalent. Red boxes represent the three catalytic residues. b. Chemical structures of the amino acids at the positions 
substituted in KAI2 to generate JGI variants. Structures in black represent the amino acids present at these positions in 
KAI2, structures in red represent their counterparts in ShHTL7. Letter codes and numbers below the arrows denote the 
substitutions that were made to produce the JGI variants c. Crystal models representing the eight residues highlighted in 
pink, The three catalytic residues highlighted in red, Structures are visualized using PYMOL version 2.3.2. 
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Supplementary Fig. 3 Interactions of KAI2 chimeric variants 
with MAX2 fragments using yeast-two-hybrid (Y2H) (a) Map 
of MAX2 fragments (N) used as Y2H preys. (b) Heatmap of log-
fold change scores based on Y2H interactions relative to DMSO 
conditions for 1-, 2-, and 3-substitution variants queried against 
all MAX2 fragments. EV, empty vector, F, full-length protein. 
Redder shading indicates increased interaction.	 Grey lines 
represent construct that could not be cloned into Y2H vectors (c) 
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Supplementary Fig. 4  Var19 germination on SL. Mis-expressed ShHTL7, KAI2 and three independent Var19 lines (19A, 19B, 19C) on PAC 
(20µM) plus or minus Gr24rac concentrations.  Each line was tested three times Bar = S.D
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Supplementary Fig. 5  Standard distribution of length/width (major/minor) ratio of htl-3 and wild type Columbia (WT) leaves. Each 
distribution was a normal distribution based on the population mean (μ) and standard deviation (σ) approximated by that of the 26 control samples. 
WT: y=(1/(0.53332•√(2π)))•e-(x-2.7996)^2/(2•(0.53332)^2); htl-3: y=(1/(0.2261•√(2π)))•e-(x-1.48)^2/(2•(0.2261)^2). Three categories given by 5% 
cutoff: htl-3: x<1.85; WT: x>1.92; ambiguous: 1.85<x<1.92. Based on the two distributions, in order to meet the 0.05 significance level, any sample 
data smaller than 1.85 would be considered as htl-3, while sample data larger than 1.92 would be considered as wild type. Note that there is an 
ambiguous region in between (1.82-1.92) where the phenotype can not be statistically determined in this case. 
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