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In many situations, the change in the conceptual understanding of students is measured using a single
question. This is, for instance, the case in peer instruction where students answer twice to the same
questions, before and after the discussion phase. Using item response theory and assuming that students
proficiencies are normally distributed, it is shown that the Cohen’s d effect size characterizing the change of
mean proficiencies can be estimated by taking 0.6 times the log of the odds ratio of class scores. Moreover
the polychoric correlation coefficient between students’ answers is suggested as an additional indicator to
detect abnormal changes in scores when its value is below 0.3. Taken together, these two indicators give
both a precise measurement of a pedagogical intervention—a peer discussion or something else—and a
coefficient of security to detect random answers or poor writing of questions. The application is made to the
evaluation of peer discussions that took place in an introductory mechanics course taught using peer
instruction.

DOI: 10.1103/PhysRevPhysEducRes.14.020116

I. INTRODUCTION

Concept inventories are widely used in education
research to evaluate changes in conceptual understanding
related to a specific intervention [1]. In this case they are
used twice: the first one before the intervention—generally
a full semester course—and the second time after the
intervention—at the end of the semester. For instance, the
Force Concept Inventory (FCI) [2] evaluates students
mastering of Newton’ s laws [3]. It is composed of 30
multiple-choice questions where incorrect answers are
based on the most frequent answers given by students
during interviews. Concept inventories are difficult to
design [1,4] and their administration takes time and
requires some caution [4].
Instructors or researchers can measure the change in

conceptual understanding of students due to a pedagogical
intervention using only one question. A typical example is
the use of Peer Instruction (PI), an evidence-based, inter-
active teaching method, widely used by science teachers
[5,6]. A class taught with PI is divided into a series of short
presentations, each focused on a central point and followed
by a related conceptual question, called a ConcepTest,
which probes students understanding of the ideas just
presented. Students are first given one or two minutes to

formulate individual answers and report them to the
instructor using classroom response systems such as
clickers. Students then discuss their answers with others
sitting around them. A few minutes afterwards, the
instructor calls for an end to the discussion and polls
students for their answers again, which may have changed
based on the discussion. Finally, the instructor explains the
answer and moves on to the next topic. In this case, the
change of conceptual understanding is measured by the two
votes, and the pedagogical intervention is the discussion.
Many kinds of interventions can be measured in this way.
For instance, instead of a discussion with peers, the
instructor can give a hint, or give additional time to think
about the question [7]. Variations of the instructor’s
directions for the discussion can also be tested, such as
telling students to reach a consensus with their peers [7]. In
online learning environments, an intervention can be the
use of an online discussion board to discuss the question
with peers, or to display to each student only a few selected
particular rationales written by previous students [8,9].
The efficiency of an intervention can be analyzed

qualitatively, for instance, by listening to the student’s
dialogues [10,11]. While this technique is powerful, it is
extremely time consuming. Hence it is dedicated to
research applications. In this article, the efficiency of an
intervention is evaluated through the variation of students’
answers between the first vote—before the intervention—
and the second vote. The analysis leads to two quantitative
outputs: the Cohen’s d effect size of the learning and a
correlation index enabling us to detect a global guessing
behavior or poor item formulations. A main advantage
of using students answers is that they can be computed
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automatically, without any human intervention. Our two
indicators are based on latent trait modeling, i.e.,
item response theory, in order to give the most reliable
information.
Potential applications of the proposed method include

the following:
• Teachers who have to create many ConcepTests for
their courses and then to select, year after year, which
questions to keep and which ones to move or discard.

• Researchers who want to test variations of the in-
structor’s instructions in peer instruction quantifying
how many times a particular method is better than the
others.

• Software designers and online-learning teachers want-
ing to select the best among various strategies.

The article is organized as follows: Sections II and III
deal with traditional measures based on the variation of
students’ scores and highlight their limitations, Secs. IV
and V introduce item response theory and assumptions on
students’ conceptual understanding, and, finally, Secs. VI,
VII, and VIII introduce how to calculate new indicators of
progression of students on conceptual understanding
related to the question that are based on item response
theory. Section IX presents an application to items used in a
course taught using PI.

II. USUAL MEASURES OF DIFFERENCES
BETWEEN PROPORTIONS

Pre- and postintervention scores are the proportions of
students who answer correctly to the question. Note that p1

is the proportion of students who answer correctly at the
first vote, and p2 the proportion of students who answer
correctly at the second vote, i.e., after the pedagogical
intervention. Usual measures to compare the effect of an
intervention are the risk difference, the risk ratio, and the
odds ratio [12]. All those measures are based on a
probabilistic point of view and are often used in epidemi-
ology to reduce the risk for people to suffer from a particular
disease.
The risk difference is simply the difference in risk

(probability) of an event between two groups. In this case,
the risk difference is RD ¼ p2 − p1.
The risk ratio, also called the relative risk, is the ratio of

two risks. In this case it is given by RR ¼ p2=p1. For
instance, if there are 40% of students who answer correctly
at the first vote, and 70% at the second one, the risk ratio is
1.75. It means that students are 1.75 times more likely to
have a correct answer after the pedagogical intervention
than before it.
Where the risk ratio is the ratio of two risks, the odds

ratio is the ratio of two odds. Here, the odds of success after
discussion is p2=ð1 − p2Þ, while the odds of success before
discussion is p1=ð1 − p1Þ. Using the same example as
previously, before the intervention, students are 0.67 ¼
0.4=ð1 − 0.4Þ times more likely to give a correct answer

than to give an incorrect one. After the intervention, they
are 2.3 ¼ 0.7=ð1 − 0.7Þ times more likely to give a correct
answer than to give an incorrect one. The ratio of the two
odds is defined by OR ¼ p2=ð1 − p2Þ × ð1 − p1Þ=p1. In
our example, it is equal to 2.3=0.67 ¼ 3.5.

III. WHAT’S WRONG WITH
THOSE MEASURES?

The risk difference is not an interval scale [13]: the
signifiance of a particular value of RD depends on the
initial prescore. For instance, a RD of 10% does not have
the same signifiance whether the initial score is 10%, 50%,
or 90%. Hence the RD cannot be a correct indicator to
compare the efficiency of an intervention independently of
the initial score.
The risk ratio suffers from the same problem. A RR of

1.5 does not have the same meaning whether the initial
score is 10%, 50%, or 90%—it is even impossible to get a
RR of 1.5 if the initial score is 90%.
The odds ratio is also not an interval scale. However, as it

will be shown in the next sections, its logarithm value is,
under some assumptions that will be detailed later, an
interval scale.
RD, RR, and OR can be used to classify two inter-

ventions starting with the same initial prescore. For
instance, if the interventions A and B start both with an
initial score p1 ¼ 40% but intervention A leads to an
increase of 20% while intervention B leads to an increase
of 10%, it can be concluded that intervention A is better
than the intervention B. However, these measures cannot be
used

• to compare two interventions starting with two differ-
ent initial scores.

• or to quantify how many times an intervention is
greater than another, even if they both start with the
same initial score. For instance, while intervention A
leads to an increase of 20% and intervention B leads to
an increase of 10%, it cannot be concluded that
intervention A is twice as good as intervention B.

In the following sections, item response theory will be
used to build a quantitative indicator that could overcome
these limitations.

IV. ITEM RESPONSE THEORY

Item response theory (IRT) belongs to the family of
latent trait modeling [14]. In those models, each student is
described by a number of latent traits, also called profi-
ciencies. The answer of a student to a question is thought of
as the result of the interaction between the capabilities of
the person taking the test and the characteristics of the test
items. The score of a student to an item is modeled by a
probabilistic function of one’s proficiencies and some
item’s characteristics. A consequent amount of knowledge
and skills are always necessary to give a correct answer [15]
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but in many cases, only one proficiency is sufficient to
determine the student score. This is call unidimensional
item response theory, often simply called IRT.
In unidimensional IRT, students are described by a single

continuous unbounded variable, called the proficiency.
One claim of IRT is that this proficiency is an interval
scale. This means that an equal difference in proficiency
always has the same signifiance, independently of the
initial proficiency. Hence this scale could be used to
measure the efficiency of a pedagogical intervention,
whether the initial score to the item is 10%, 50%, 90%
or any value. It can also be used to calculate how much one
intervention is better than another.
The aim of a question is to test students’ understanding

of a particular concept. Note that θ is the proficiency of a
student which is measured by the question. A greater value
of θ means a greater understanding of the associated
concept. While the understanding of a concept is some-
times thought of as a binary variable, IRT assumes that it
is a continuous scale. Application and validity of IRT to
physics questions have been illustrated by analyzing score
patterns of students to the Force Concept Inventory [16–19],
the Mechanics Baseline Test [20], the Force and Motion
Conceptual Evaluation [21], the Brief Electricity and
Magnetism Assessment [22,23], and the Continuous Time
Signals and Systems Concept Inventory [24].
In IRT, an item is modeled by a function PðθÞ, which

describes the probability of a student with proficiency θ to
give the correct answer to the item. The P function, called
the item characteristic curve, is often assumed to be a
generic “S-shape” function, called a logistic function,
whose form characterizes each question. In this work,
the P function is assumed to follow the two-parameter
logistic item model, called the 2PL model:

PðθÞ ¼ 1

1þ exp ½−1.7aðθ − bÞ� ; ð1Þ

where a and b are parameters of the item: a is its
discrimination power, and b its difficulty. Usually these
parameters are estimated using statistical techniques on a
large pool of students’ answers on many items. For
instance, Wang et al. [17] use pattern responses of 2800
students on the 30 FCI items. In this case the proficiency is
what is commonly measured by all the items [15].
Apart from the two-parameter model chosen here,

standard models used to describe the P function are the
Rasch model—also called the 1PL model—or the 3PL
model. Descriptions of these models and our reasons for the
selection of the 2PL model are discussed in Appendix A.
In the framework of the latent trait modeling, an item

is seen as an imperfect measuring tool of proficiency. The
proficiency is a latent variable because it is not directly
observed. What is observed is the answers of the students
to the item. Note X a particular answer which could be

true—if the student answers correctly—or false—if the
student answers incorrectly. Hence X is a dichotomous
categorical variable. Latent model is written as [14]

X ¼
�
True if θ þ ϵ ≥ b;

False if θ þ ϵ < b;
ð2Þ

where ϵ is the measurement error. This measurement
error has a null mean and a standard deviation equal
to 1=a. The item difficulty is seen as a threshold value
and the discrimination coefficient represents the quality
of the measure. In the case of a null measurement error,
the logistic item characteristic curve Eq. (1) reduces to an
Heaviside function centered in θ ¼ b. In this case the
student gives a correct answer if and only if its proficiency
is greater than the difficulty of the item.

V. DISTRIBUTION OF STUDENTS
PROFICIENCIES

The proportion of correct answers to a question depends
on the distribution of the students’ proficiencies. In latent
trait modeling and IRT, it is often assumed that this latter
is normally distributed. This assumption will be used in
the following, i.e., θ ∼N ðθ̄; σ2θÞ. Average proficiency θ̄
and standard deviation σθ are unknown. However, using a
logistic approximation to the cumulative normal distribu-
tion [25], they can be related to the proportion of correct
answers p (see Appendix B):

θ̄ − b
σθ

≃ 0.6
σY
σθ

ln

�
p

1 − p

�
; ð3Þ

where σY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2θ þ σ2ϵ

q
. The ratio between σY and σθ

depends on the measurement error of the item. Using data
from Lasry et al. [26], this ratio was estimated to 1.09 (see
Appendix C). Hence this ratio will be assumed to be equal
to 1, i.e., measurement errors have a negligible effect. As a
consequence, the parameters of the distribution of the

FIG. 1. The logit function. Vertical abscissa is 0.6 ln½p=ð1 − pÞ�,
where p is given by the horizontal abscissa.
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students’ proficiencies are linked to the proportion of
correct answers by

θ̄ − b
σθ

≃ 0.6 ln

�
p

1 − p

�
: ð4Þ

The right-hand side is 0.6 times the logit of p defined by
logitðpÞ ¼ ln½p=ð1 − pÞ�. The logit function transforms a
probability between 0 and 1 in a value between −∞ and
þ∞ (see Fig. 1).

VI. EFFECT SIZE

Let us go back to our initial problem. Before the
pedagogical intervention, the proficiencies of students
are noted θ1 and assumed to be normally distributed:
θ1 ∼N ðθ̄1; σ21Þ. After the intervention, their proficiencies
are θ2 and are also assumed to be normally distributed:
θ2 ∼N ðθ̄2; σ22Þ. Applying Eq. (4) to pre- and postscores
leads to

θ̄2 − θ̄1
σ1

¼ 0.6
�
σ2
σ1

logitðp2Þ − logitðp1Þ
�
: ð5Þ

The ratio σ2=σ1 is unknown. However, estimations show
that it can be assumed to be close to 1 (see Appendix D).
Hence, assuming σ2 ≃ σ1 ¼ σ, Eq. (5) gives the Cohen’s d
effect size [27]:

d ¼ θ̄2 − θ̄1
σ

¼ 0.6 ln

�
p2

1 − p2

1 − p1

p1

�
: ð6Þ

Equation (6) estimates the difference of means of
two normal distributions using the areas under the curves
that are beyond a threshold value, as illustrated in Fig. 2.
The horizontal axis represents students’ proficiency. The
Gaussian is the proportion of students with a given
proficiency. The vertical dotted line corresponds to the
difficulty of the item. Students with a higher skill level than
the item’s difficulty correctly answered the question. The
proportion of correct answers is therefore represented by
the gray area on the right of the vertical dotted line. In the
second vote, the distribution of students’ proficiency
shifted to the right, increasing the proportion of students
with higher proficiency than the item’s difficulty.
Equation (6) therefore makes it possible to evaluate the
offset between the two distributions from the areas under
the respective curves.
The Cohen’s d effect size is perhaps the most commonly

used effect size metric and is broadly used in education
research and many other fields. Estimating the change of
scores in terms of the Cohen’s d effect size allows us to use
the rules of thumb for interpreting the efficiency of the
intervention in terms of very small to huge [27,28]. Figure 3
plot isovalues of the effect size corresponding to these

degrees in the ðp1; p2Þ plot, enabling us to have a quick
estimate of the value of the effect size of an intervention.
Moreover, effect size enables comparisons to other teaching
methods [29] and should be used rather than other methods
such as the Hake’s g [30].

VII. TETRACHORIC CORRELATION
COEFFICIENT

The correlation coefficient between the students’
answers before and after the intervention can enlighten
us on the nature of the votes. For instance, if all students
have the same increase of proficiency, the correlation
coefficient between θ̄1 and θ̄2 is equal to 1. However,
one can expect that depending on various inhomogeneities,
this increase of proficiency is not the same for all students,

FIG. 2. Distributions of students’ proficiencies. Top, before the
intervention; bottom, after the intervention. The vertical dashed
line is the question difficulty. Proportions of correct answers
correspond to gray areas.

FIG. 3. Isovalues of the Cohen’s d effect size (Eq. (6): no effect
(d ¼ 0), small (d ¼ 0.2), medium (d ¼ 0.5), large (d ¼ 0.8), and
very large (d ¼ 1.2).
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but fluctuations should remain small. On the opposite side,
a low correlation coefficient between answers at the first
and the second vote should warn us that something wrong
could have happened. Maybe the students have voted
randomly at one of the two votes—or both of them—or
maybe the measurement errors are huge (see Appendix E),
perhaps due to a poor writing of the question. As a
consequence, a correlation coefficient close to 1 is a good
thing—due to measurement errors one cannot expect a
coefficient greater than 0.85 (see Appendix C)—and a
small correlation coefficient indicates that the results of the
votes should be interpreted cautiously. Section IX shows
that a value of 0.3 can be used as a rough threshold.
The traditional Pearson correlation coefficient cannot be

used with students’ answers because they are categorical
variables (either true or false) and not continuous ones. The
tetrachoric correlation coefficient has been especially
developed to deal with categorical data explained by latent
variables [31]. It is a product-moment correlation between
two unobserved quantitative variables that have each been
measured on a dichotomous scale. It assumes that the
contingency table of the observed variables, here X1 and
X2, comes from two correlated random variables that are
normally distributed, here Y1 and Y2, where Yi ¼ Xi þ ϵ.
The thresholds and the correlation coefficient between Y1

and Y2 are estimated using the maximum likelihood (ML)
technique [31].
The statistical software R includes a dedicated library

named polychor to estimate this correlation coefficient
perform using the ML method. However, depending on the
purpose, an estimate of this correlation coefficient can be
sufficient and is obtained from the contingency table [32]:

ρ ≃ cos
�

π

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN1N4Þ=ðN2N3Þ
p

�
; ð7Þ

where N1, N2, N3, and N4 are the components of the
contingency table (cf. Table I). Their sum is equal to the
total number of students: N1 þ N2 þ N3 þ N4 ¼ N.

VIII. CONFIDENCE INTERVALS

The evaluation of d and ρ using Eqs. (6) and (7) are made
from the observed proportions of correct answers and the
corresponding contingency table. Hence they are estimators
of the true values based on the theoretical proportions
obtained only for an infinite number of students. Suppose
that they are calculated using a sample of 10 students. It is
clear that the value obtained will be a poor indication of the

real effect size of your pedagogical intervention. For
research applications, such as determining which one of
two methods leads to the greatest effect size or if an
intervention has a non-null effect size, confidence intervals
are needed. A confidence interval is an interval that might
contain the true value of the estimated parameter that would
have been obtained with an infinite number of students
drawn from a theoretical distribution—in our case the
Gaussian distributions of students’ proficiencies (shown in
Fig. 2). Confidence intervals are given with a given
confidence level. For instance, a 95% confidence interval
has a 95% chance to contain the true value. This means that
if the same experiment—first vote, pedagogical interven-
tion, and second vote—was repeated on numerous samples
of students, the fraction of calculated confidence intervals
(which would differ for each sample) that encompass the
true population parameter—d or ρ—would tend toward
95%. The greater the confidence level is, the wider the
confidence interval. A 95% confidence interval is included
in the 99% confidence interval calculated from the same
sample.
For a given number of students N, the observed

proportions of correct answers pobs
1 and pobs

2 follow
approximative normal distribution laws of means pi and
variances pið1 − piÞ=N (due to the normal approximation
of the binomial distribution when N ≫ 1). Assuming that
the standard deviation of pobs

i remains law behind pi, the
logit function can be linearized around pi. Hence the
observed logit function Lobs

i of pobs
i follows an approx-

imative normal distribution of mean logitðpiÞ and variance:

σ2Li
¼ 1=ðNpið1 − piÞÞ: ð8Þ

The observed effect size also follows an approximative
normal distribution. Hence a 95% confidence interval of d
can be estimated by

½dobs − 1.96σd; dobs þ 1.96σd�; ð9Þ

where σd is the standard deviation of d, estimated using the
observed values pobs

i :

σ2d ¼ 0.62ðσ2L1
þ σ2L2

− 2ρLσL1
σL2

Þ: ð10Þ

The correlation coefficient ρL between Lobs
1 and Lobs

2 is
unknown. Numerical simulations were performed in order
to estimate it. For a given set of values of the number of
students N, the correlation coefficient ρ, a proportion p1,
and an effect size d—or, equivalently, a proportion p2 -, N
samples were drawn from the bivariate normal distribution
ðθ1; θ2Þ assuming equal variances, a correlation coefficient
ρ and expected values given by Eq. (4)—the question
difficulty b was arbitrarily set to 0. Then the observed
students’ answers X1 and X2 and the corresponding
contingency table were calculated using Eq. (2) assuming

TABLE I. Contingency table.

X1\X2 False True

False N1 N3

True N2 N4
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a null measurement error. Those steps were repeated 10 000
times in order to calculate the correlation coefficient ρL. In
order to cover a wide range of all possible parameters, this
process was repeated for N ¼ 200 and 1600; ρ ¼ 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, and 0.9; p1 ¼ 0.3, 0.4, 0.5, 0.6, and 0.7;
and d ¼ 0.2, 0.5, and 1.2, leading to a total of 10 000 × 210
simulations performed. Results show that the correlation
coefficient ρL between Lobs

1 and Lobs
2 is very close to the

correlation coefficient ρp betweenpobs
1 andpobs

2 : the absolute
difference between these two correlation coefficients is less
than 0.005. Moreover, the correlation coefficient ρp is given
by the traditional Pearson correlation coefficient between
X1 and X2—assuming a value of 0 for an incorrect answer
and 1 for a correct answer. Hence, ρL is given by

ρL ¼ N4=N − p1p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ð1 − p1Þp2ð1 − p2Þ

p ; ð11Þ

where N4 is a component of the contingency table
(cf. Table I). When calculating the confidence interval with
Eq. (9), σL1

, σL2
, and ρL are evaluated using the observed

values pobs
1 and pobs

2 in Eqs. (8) and (11).
In order to validate Eq. (9), numerical simulations were

performed in the same way as previously. For fixed values
of N, ρ, p1, and d, the number of times where the true value
of d falls in the confidence interval was counted in 5000
simulations. This process was repeated varying the values
of ρ, p1, and d as previously (N was set to 200). The true
effect size d is on average 94.9% of the times in the
confidence interval, validating the approach.
Equation (9) shows that the size of the confidence

interval is proportional to 1=
ffiffiffiffi
N

p
. As an illustrative exam-

ple, a population of N ¼ 200 students was generated, with
p1 ¼ 40%, p2 ¼ 70%, and ρ ¼ 0.7. The observed propor-
tions of correct answers were pobs

1 ¼ 43% and pobs
2 ¼ 74%.

The corresponding observed effect size was 0.81 with a
95% confidence interval of [0.61, 1.01]. The true effect size
is 0.75 falling in the confidence interval. Another popu-
lation of 400 students was generated using the same values
for p1, p2, and ρ. The observed scores were pobs

1 ¼ 37%

and pobs
2 ¼ 71%, leading to an observed effect size of 0.85

with a 95% confidence interval of [0.71, 1.00]. Once again,
the true effect size falls in this (smaller) confidence interval.
Confidence intervals of ρ using the maximum likelihood

method are outputs of the R library. However, its role is
only to warn the instructor to conduct more investigations
and it is not a guarantee of a good or bad change of scores.
Hence confidence intervals are not necessarily needed and
the rough estimation given by Eq. (7) could be sufficient.

IX. APPLICATION TO PEER INSTRUCTION

Let us consider a practical application case of an
introductory mechanics course taught in a French École
d’Ingénieurs from January 2016 to April 2016. This course

was composed of ten lectures using Peer Instruction
followed by tutorials in small groups. During lectures,
all 190 students had a personal clicker. On average, 3.7 full
Peer Instruction processes (first individual vote, peer
discussion, and second individual vote) were performed
during a lecture, leading to a database of 37 pre- and
postdiscussion scores to the ConcepTests. Because of a
participation rate at each vote around 80%, the average
number of students answering twice to a ConcepTests is
125 (with a standard deviation of 24).
Results of votes are plotted in Fig. 4. For each

ConcepTests, the effect size is estimated from the pre-
and postdiscussion scores using Eq. (6). The average effect
size is 0.67, a value between the medium (0.5) and large
(0.8) limits. One-quarter of the effect sizes are below 0.3
and one-quarter above 0.75. Figure 4 shows that almost all
discussions lead to an effect size between small and large,
with three above a very large effect.

FIG. 4. Results of the peer discussion for the 37 ConcepTests.
Each point is the proportion of correct students’ answers to a
given ConcepTest. Lines are isovalues of the Cohen’s d effect size
(no effect, small, medium, large, and very large effect).

FIG. 5. Effect size as a function of the correlation coefficient
estimated using ML for the 37 ConcepTests. Horizontal lines
correspond to values for small (0.2), medium (0.5), large (0.8),
and very large (1.2) effect sizes. The vertical line corresponds
to ρ ¼ 0.3.
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From students’ answers to items, the polychoric corre-
lation coefficients were calculated using both the maxi-
mum likelihood method and the approximative value
using Eq. (7). Both methods led to similar results (see
Appendix F). Efficiency of the discussion process to all
items are plotted in a d-ρ diagram in Fig. 5. Most efficient
discussions are at the top of the diagram. One item lead to a
negative effect size and is not represented on this plot. As
seen in the diagram, two items led to a poor correlation
coefficient around 0.2. Hence for these two items, there is a
high probability that students had voted randomly at one of
the two votes—or both of them—or that students had not
completely understood the questions. From these results, a
threshold value of ρ ¼ 0.3 is suggested in order to detect
from abnormal answers.

X. CONCLUSION

Assuming that the observed scores to a given item are
explained by a latent distribution, the Cohen’s d effect size
was expressed in terms of the observed scores before and
after the intervention has occurred [Eq. (6)]. One of the
main advantages of this evaluation is that this effect size has
good measurement properties: it can be used to compare
different kinds of interventions—whether the scores at the
first vote were the same or not—and to calculate the ratio of
efficiency between two different interventions. Moreover, it
is broadly used in education research and many other fields.
While they were many assumptions used to derive Eq. (6),
I advocate that it should be used to quantify the change of
the scores instead of other indicators, such as the RD, RR,
OR or the Hake’s g because (i) it is theory grounded on item
response theory and probabilistic thinking, (ii) comparisons
with other educational studies using the Cohen’s d effect
size can be performed and (iii) using the Cohen’s d effect
size along with confidence intervals belongs to the rec-
ommended practice of “the new statistics” [33].
Precision of the estimated effect size from the observed

data is performed using confidence intervals. Equation (9)
gives the 95% confidence interval but other levels of
confidence can be calculated by changing the 1.96 value
to the corresponding one. The confidence interval is needed
in order to demonstrate that a pedagogical intervention
has a non-null effect. It is also required to classify two
interventions: their confidence intervals should not overlap.
Moreover, the polychoric correlation coefficient was

also suggested to detect abnormal behaviors when its value
is below 0.3. This threshold value is, at the moment, only
a rule of thumb grossly estimated from specific data.
Consequently, it should be seen as a first step toward
the definition of a more precise rule.
These two indicators are easy to calculate from students’

answers and can be implemented in any software, leading
to an automatic estimation of the effect of the pedagogical
interventions. Results can be plotted in a d-ρ diagram to
compare efficiency of different pedagogical interventions.

Finally, while the paper has been focused on dichoto-
mous scores, the approach can be easily extended to partial
scores (see Appendix G).

APPENDIX A: RATIONALE FOR CHOOSING
THE 2PL MODEL

The 1PL assumes that the discrimination power a is set
to an arbitrary fixed value—usually equal to 1. When
analyzing a full test composed of multiple items such as a
concept inventory, the 1PL and 2PL models differ because
the 1PL model assumes that all items have the same
discrimination power—i.e., a ¼ 1 for each item—while
the 2PL model allows them to have different values.
However, in our case, only one item is considered.
Hence the 1PL model and the 2PL model are equivalent
due to the invariance property [34].
The 3PL model extends the 2PL one by adding a

guessing parameter. In the 2PL model, when the
proficiency θ goes to minus infinity, the probability
to give a correct answer goes to zero, as stated in
Eq. (1). In the 3PL model, this probability goes to a
constant value—greater than zero but lower than 1—
called the guessing parameter. While being attractive,
assumptions and the interpretation of this model have
been criticized [35,36]. Moreover, assuming a 2PL
model still allows us to detect the presence of random
votes as shown in Sec. VII. Another reason for not
selecting the 3PL model is that it is not compatible with
standard latent trait modeling—Eq. (2) does not hold.
As a consequence, the tetrachoric correlation coefficient
cannot be calculated. And, finally, a good item should
not lead to guessing behaviors because all possible
answers reflect common students’ answers so that each
student votes for the answer they believe to be correct.
So guessing behaviors are expected to be infrequent. All
these reasons led us to select the 2PL model.

APPENDIX B: RELATION BETWEEN THE
OBSERVED PROPORTION OF CORRECT

ANSWERS AND THE POPULATION
PARAMETERS

The proportion of correct answers to a question depends
on the distribution of the students’ proficiencies. In latent
trait modeling and IRT, it is often assumed that this latter is
normally distributed. This assumption will be used in the
following; i.e., θ ∼N ðθ̄; σ2θÞ. Average proficiency θ̄ and
standard deviation σθ are unknown. However, they are
related to the observed proportion of correct answers. A
simple relationship between those variables is derived in
this section.
Let us note Y ¼ θ þ ϵ, which represents the imperfect

measurement of proficiency θ with the error ϵ. Following
Eq. (2), the proportion of correct answers is given by the
proportion of students that have a Y greater than b:
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p ¼
Z þ∞

b
fYðYÞdY; ðB1Þ

where fY is the probability distribution function of Y. No
exact mathematical expression can be found for the dis-
tribution fY because Y is the sum of two variables with
different probability density functions: θ, which is normally
distributed, and ϵ which follows a logistic distribution.
However, the logistic distribution is very close to the
normal distribution [25]. Hence the 2P Logistic model
Eq. (1) can be replaced by the 2P Normal Ogive model
[37,38] that assumes that the error term ϵ is normally
distributed. As a consequence, Y is also normally distrib-

uted: Y ∼N ðθ̄; σ2YÞ, with σY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2θ þ σ2ϵ

q
. Hence, p is

given by

p ¼ 1ffiffiffiffiffiffi
2π

p
σY

Z þ∞

b
e
−ðY−θ̄Þ2

2σ2
Y dY ¼ 1 −Φ

�
b − θ̄

σY

�
; ðB2Þ

where Φ is the cumulative distribution function of the
standard normal distribution. This function can be approxi-
mated using a logistic function [25]:

ΦðxÞ ≃ 1

1þ e−1.7x
: ðB3Þ

Reporting Eq. (B3) into Eq. (B2) leads to

p ≃
1

1þ exp½−ð1.7=σYÞðθ̄ − bÞ� : ðB4Þ

The remaining Eq. (B4) leads to

θ̄ − b
σθ

≃ 0.6
σY
σθ

ln

�
p

1 − p

�
; ðB5Þ

where 0.6 ≃ 1=1.7.

APPENDIX C: ESTIMATION OF
THE MEASUREMENT ERROR

In order to estimate the measurement error in Eq. (2), we
use the data from Lasry et al. [26] who administrated the
FCI twice in a row to 100 students. They reported the
average contingency table for the 30 items (cf. Table II).
From this contingency table, the tetrachoric correlation
coefficient was estimated to 0.85 (95% CI ¼ ½0.82; 0.86�).
This last one is equal to

ρ ¼ σ2θ
σ2Y

; ðC1Þ

leading to σY=σθ ≃ 1.09.

APPENDIX D: ESTIMATION OF THE CHANGE
OF VARIANCE

Estimating σ1 and σ2 from the contingency table alone is
not possible because any values of those variances could
lead to the same contingency table. Hence, in order to
estimate the ratio σ2=σ1, other data are needed. Using
the FCI, we estimated the proficiency—as measured by
the FCI—of two groups of 1st year students, once
at the beginning of a mechanical course, and the other at
the end of the course, i.e., the end of the semester. The two
courses both used Peer Instruction during lectures.
The first group was composed of 210 students and their

initial pretest score was 12.4 (SD ¼ 5.8). At the end of
the semester, the average score was 15.7 (SD ¼ 6). Using
IRT, we estimate the distributions of θ before and after the
course and found θ̄pre ¼ −0.72 andσpre ¼ 1.15 and θ̄post ¼ 0

and σpost ¼ 1. The ratio between the two standard deviations
is 0.87.
The second group was composed of 183 students. FCI

average scores were 10.1 (SD ¼ 3.9) at the pretest and 13.2
(SD ¼ 4.4) at the post-test. Proficiencies were estimated
to θ̄pre ¼ −1.18 and σpre ¼ 0.85 and θ̄post ¼ −0.42 and
σpost ¼ 0.75. The ratio between the two standard deviations
is 0.88.
In both cases, the standard deviation remains close to 1

after one semester of teaching. This is an indication that this
ratio could be close to 1 when looking only at the effect of a
single small intervention—such as a discussion with peers.

APPENDIX E: CORRELATION COEFFICIENTS

The correlation coefficient between Y1 and Y2 is
given by

ρ ¼ ρθ
1þ ðσϵ=σθÞ2

¼ ρθ
ðσY=σθÞ2

; ðE1Þ

where ρθ is the correlation coefficient between θ1 and θ2.
The correlation coefficient ρ is low if the correlation
between θ1 and θ2 is low or if the measurement errors
are huge (i.e., σϵ ≫ σθ).

APPENDIX F: VALIDITY OF THE
APPROXIMATIVE ESTIMATION OF
THE POLYCHORIC CORRELATION

COEFFICIENT

The polychoric correlation coefficient was estimated
from both the ML technique and Eq. (7) for the 37 items
and results are plotted in Fig. 6. Both techniques lead to

TABLE II. Average contingency table of the test-retest for the
30 items of the FCI (data from Lasry et al. [26]).

X1\X2 False True

False 43% 10%
True 8% 39%
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similar values. Equation (7) slightly overestimates the value
given by the ML method, especially when the effect size is
greater than 1.
The d-ρ diagram using Eq. (7) is plotted in Fig. 7. The

threshold value of ρ ¼ 0.3 can still be used to define
correlation coefficients that are too low.

APPENDIX G: TAKING INTO ACCOUNT
POLYTOMOUS RESPONSES

In the previous sections, only true or false answers were
considered—i.e., dichotomous data. This section shows
how to evaluate an effect size when multiple scores can be
obtained on an item. This is the case, for instance, by taking
into account partially correct responses or scoring rubrics,
as shown in Table III, or even Likert scales.
A first approach could be to convert the answers to

dichotomous scores, for instance, by setting the answer to
true only if the highest score was obtained. While this could

be a quick solution to the problem, more advanced methods
can be used in order to obtain a more precise evaluation of
the effect size. The graded response model (GRM) [39] and
the partial credit model (PCM) [40] were designed to take
into account graded response data. Graded response data
consist of a score that is an ordinal number, typically
ranging from 0 to M, where higher scores represent better
performance on the item. Both the GRM and the PCM rely
on logistic 2PL models and they are relatively similar.
The GRM models the probability to obtain a score equal

or greater than a given value using a 2PL function:

P�
kðS ≥ kÞ ¼ 1

1þ exp ½−1.7aðθ − bkÞ�
; ðG1Þ

where S is the score obtained and k ranges from 1 toM. The
probability to obtain a score equal to k is given by

PkðS ¼ kÞ ¼ P�
kðS ≥ kÞ − P�

kðS ≥ kþ 1Þ: ðG2Þ

The probability to obtain a score greater or equal to 0 is 1
and the probability to obtain a score greater or equal to
M þ 1 is 0. Hence, there are M different P�

k functions and
M þ 1 unknown parameters: a, b1;…; bM. As all the P�

k are
modeled using a 2PL model, Eq. (6) can be used to estimate
the associated effect sizes, leading to M estimations of the
true effect size. Finally, the average value of these M effect
sizes can be used to get a final estimation of the true effect
size. This is illustrated in Table IV with hypothetical scores
obtained by some students. Scores lie between 0 and 3 and
the corresponding fractions of students who obtained those
scores are reported in columns 2 and 3. The 3 correspond-
ing effect sizes are calculated using values of P�

k.
A similar process can be used if a PCM is used instead

of a GRM, with P�
k ¼ PkðS ¼ kÞ=½PkðS ¼ k − 1Þþ

PkðS ¼ kÞ�.
Concerning the correlation coefficient between θ1 and

θ2, the polychoric correlation coefficient generalizes the
tetrachoric one to take into account multiple categorical

FIG. 6. Values of the correlation coefficient using Eq. (7) as a
function of its value using the maximum likelihood method.

FIG. 7. Effect size as a function of the correlation coefficient
estimated using Eq. (7) for the 37 ConcepTests. Horizontal lines
correspond to values for small (0.2), medium (0.5), large (0.8),
and very large (1.2) effect sizes. The vertical line corresponds to
ρ ¼ 0.3.

TABLE III. Example of a scoring rubric for an item.

0 No response or the response is incorrect
1 Partially correct response
2 Completely correct response

TABLE IV. Example of the calculation of the effect sizes for
partial scores between 0 and 3.

Score Pk (pre) Pk (post) P�
k (pre) P�

k (post) d

0 20% 5% 100% 100% � � �
1 40% 25% 80% 95% 0.90
2 31% 41% 40% 70% 0.75
3 9% 29% 9% 29% 0.84
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variables [31]. Hence it can be directly used with data using
an R or Python library. However, assumptions behind this
correlation coefficient are only in agreement with the GRM

and not the PCM. Hence we recommend for the purpose of
the study to use, preferentially, the GRM to calculate the
effect size.

[1] J. Libarkin, Concept Inventories in Science, in National
Research Evidence on Promising Practices in Undergradu-
ate Science, Technology, Engineering, and Mathematics
(STEM) Education Workshop 2, 2008, https://sites
.nationalacademies.org/cs/groups/dbassesite/documents/
webpage/dbasse_072624.pdf.

[2] D. Hestenes, M. Wells, and G. Swackhamer, Force concept
inventory, Phys. Teach. 30, 141 (1992).

[3] R. R. Hake, Interactive-engagement versus traditional
methods: A six-thousand-student survey of mechanics test
data for introductory physics courses, Am. J. Phys. 66, 64
(1998).

[4] A. Madsen, S. B. McKagan, and E. C. Sayre, Best
practices for administering concept inventories, arXiv:
1404.6500.

[5] C. H. Crouch and E. Mazur, Peer Instruction: Ten years of
experience and results, Am. J. Phys. 69, 970 (2001).

[6] A. P. Fagen, C. H. Crouch, and E. Mazur, Peer Instruction:
Results from a range of classrooms, Phys. Teach. 40, 206
(2002).

[7] N. Lasry, E. Charles, and C. Whittaker, Effective variations
of peer instruction: The effects of peer discussions,
committing to an answer, and reaching a consensus,
Am. J. Phys. 84, 639 (2016).

[8] F. Silvestre, P. Vidal, and J. Broisin, inDesign for Teaching
and Learning in a Networked World, edited by G.
Conole, T. Klobučar, C. Rensing, J. Konert, and Lavoué,
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