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Abstract

A circular r-coloring of a signed graph (G, σ) is an assignment φ of points of a circle
Cr of circumference r to the vertices of (G, σ) such that for each positive edge uv of (G, σ)
the distance of φ(v) and φ(v) is at least 1 and for each negative edge uv the distance of
φ(u) from the antipodal of φ(v) is at least 1. The circular chromatic number of (G, σ),
denoted χc(G, σ), is the infimum of r such that (G, σ) admits a circular r-coloring.

This notion is recently defined by Naserasr, Wang, and Zhu who, among other results,
proved that for any signed d-degenerate simple graph Ĝ we have χc(Ĝ) ≤ 2d. For d ≥
3, examples of signed d-degenerate simple graphs of circular chromatic number 2d are
provided. But for d = 2 only examples of signed 2-degenerate simple graphs of circular
chromatic number close enough to 4 are given, noting that these examples are also signed
bipartite planar graphs.

In this work we first observe the following restatement of the 4-color theorem: If (G, σ)
is a signed bipartite planar simple graph where vertices of one part are all of degree 2,
then χc(G, σ) ≤ 16

5 . Motivated by this observation, we provide an improved upper bound

of 4− 2

bn+1
2 c

for the circular chromatic number of a signed 2-degenerate simple graph on

n vertices and an improved upper bound of 4− 4

bn+2
2 c

for the circular chromatic number

of a signed bipartite planar simple graph on n vertices. We then show that each of the
bounds is tight for any value of n ≥ 4.

1 Introduction

A signed graph (G, σ) is a graph G together with a signature σ which assigns to each edge
of G one of the two signs, either positive or negative. For simplicity we may use Ĝ to
denote a signed graph based on a graph G. A key notion in the study of signed graphs is
the notion of switching, which is to multiply the signs of all the edges of an edge-cut by a
−. Two signatures on a same graph are said to be equivalent if one is a switching of the
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other. The sign of a closed walk W of (G, σ) is the product of the signs of all edges of
W , counting multiplicity, noting that it is invariant under switching. One of the earliest
theorems on signed graph is the following.

Theorem 1.1. [11] Two signatures σ1 and σ2 on G are equivalent if and only if each
cycle C of G has a same sign in (G, σ1) and (G, σ2).

The study of coloring and homomorphisms of signed graphs has gained recent attention
for various reasons, in particular because it provides a frame for a better connection
between minor theory and graph coloring. A homomorphism of a signed graph (G, σ) to a
signed graph (H,σ) is a mapping of vertices and edges of G (respectively) to the vertices
and edges of H which preserves adjacencies, incidences, and signs of closed walks. As an
application of Theorem 1.1, one can show that this definition is equivalent to finding an
equivalent signature σ′ of σ and a mapping of vertices and edges of G to the vertices and
edges of H (respectively) which preserves adjacencies, incidences and signs of edges with
respect to σ′ and π.

When G and H are simple graphs, then the edge mapping would be implied from the
vertex mapping. This would be the case in most of this work. The core of a signed graph
(G, σ) is the smallest subgraph of it to which (G, σ) admits a homomorphism. For a proof
that core is well defined and unique up to a switch-isomorphism we refer to [8].

In the study of homomorphisms of signed graphs, two restrictions stand out: I. re-
striction to signed graphs (G,−) where all edges are negative, II. restriction to signed
bipartite graphs. In the former class of signed graphs, the existence of a homomorphism
between two members is solely based on a homomorphism of the graphs they are based on.
Thus the homomorphism study in this subclass is the same as the homomorphism study
of graphs while a better connection to minor theory can be provided. The restriction
on the class of signed bipartite graphs is a focus of this work. It is shown in [7, 8] that
the restriction of homomorphism study on this subclass is already as rich as the study of
graph homomorphism by the following construction.

Definition 1.2. Given a graph G, the signed (bipartite) graph S(G) is the signed graph
obtained from G by replacing each edge uv of G with a negative 4-cycle where u and v are
two non-adjacent vertices of it and the other two vertices are new.

It is then shown in [7] that:

Theorem 1.3. Given graphs G and H there exists a homomorphism of G to H if and
only if S(G) maps to S(H).

In this work we consider the recent definition of the circular chromatic number of
signed graph as defined in [10], noting that a similar definition was given earlier in [1] but
that the two parameters behave differently with respect to fine details.

Definition 1.4. Given a real number r and signed graph (G, σ), a mapping ϕ of the
vertices of G to a circle of circumference r is said to be a circular r-coloring of (G, σ) if
for each positive edge uv of (G, σ), the distance between ϕ(u) and ϕ(v) is at least 1 and
for each negative edge uv of (G, σ), the distance between ϕ(u) and and the antipodal of
ϕ(v) is at least 1. The circular chromatic number of a signed graph (G, σ) is defined as

χc(G, σ) = inf{r ≥ 1 : (G, σ) admits a circular r-coloring}.

One of the first theorems in the study of circular coloring is the notion of tight cycle
that is used to prove that the circular chromatic number of a graph is a rational number

2



of the form
p

q
where p is at most the number of vertices. An extension to signed graphs,

given in [10] is as follows.

Proposition 1.5. Any signed graph (G, σ) which is not a forest has a cycle with s positive
edges and t negative edges such that

χc(G, σ) =
2(s+ t)

2a+ t

for some integer a. In particular, χc(G, σ) =
p

q
for some p ≤ 2|V (G)|.

An equivalent definition of circular r-coloring of a signed graph is as follows.

Definition 1.6. A circular r-coloring of a signed graph (G, σ) is a mapping f : V (G)→
[0, r) such that for each positive edge uv,

1 ≤ |f(u)− f(v)| ≤ r − 1

and for each negative edge uv,

either |f(u)− f(v)| ≤ r

2
− 1 or |f(u)− f(v)| ≥ r

2
+ 1.

It follows from this definition that every signed bipartite graph (not necessarily simple)
is circular 4-colorable. Simply assign 0 to vertices of one part and 2 to the vertices of
the other part. However, this should not mislead to underestimating the study of circular
chromatic number of signed bipartite graphs. Since S(G) preserves the homomorphism
properties of G, it is natural to expect that it can be used to determine the circular
chromatic number of G. This has indeed been proved to be the case in [10].

Proposition 1.7. Given a simple graph G, we have χc(S(G)) = 4− 4

χc(G) + 1
.

Observe that if G is a planar graph then so is S(G). Furthermore, S(G) is a bipartite
graph in which vertices of one part are all of degree 2. Let SPB2 be the class of signed
bipartite planar simple graphs for each of which in one part every vertex is of degree at
most 2. It is clear that for each planar graph G, S(G) is in SPB2 and that core of each
signed bipartite graph in SPB2 is a subgraph of S(G) for some planar graph G.

Combining these observations with Proposition 1.7, we have the following reformula-
tion of the Four-Color Theorem.

Theorem 1.8. [Four-Color Theorem restated] Every signed graph in SPB2 admits a

circular
16

5
-coloring.

This then naturally leads to two questions, each based on dropping one of the condi-
tions.

Problem 1.9. What is the best upper bound on the circular chromatic number of signed
2-degenerate simple graphs?

Problem 1.10. What is the best upper bound on the circular chromatic number of signed
bipartite planar simple graphs?
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In [10] it is shown that the answer for both questions is 4. Furthermore, a sequence
of signed bipartite 2-degenerate graphs is built whose circular chromatic number tends to
4. It is then left as open problem whether one can build an example reaching the exact
bound of 4.

Let C<4 be the class of signed graphs of circular chromatic number strictly smaller
than 4. The questions then are equivalent to ask: 1. Does C<4 contain the class of all
signed 2-degenerate simple graphs? 2. Does C<4 contain the class of all signed bipartite
planar simple graphs?

In this work we answer these questions. In fact, using the number of vertices as a
parameter, we provide an improved upper bound for each of the two problems and we
show that our bounds are tight. More precisely, we prove the followings.

Theorem 1.11. If (G, σ) is a signed 2-degenerate simple graph on n vertices, then

χc(G, σ) ≤ 4− 2

bn+1
2 c

. Moreover, this upper bound is tight for each value of n.

Theorem 1.12. If (G, σ) is a signed bipartite planar simple graph on n vertices, then

χc(G, σ) ≤ 4− 4

bn+2
2 c

. Moreover, this upper bound is tight for each value of n.

The paper is organized as follows. In the next section we prove Theorem 1.11. In
Section 3 we present two graph operations each of which is C<4-closed. Using this, in
Section 4, we prove Theorem 1.12. Finally in the last section we mention some related
problems.

2 Signed 2-degenerate simple graphs

In this section, we first prove the following theorem which, in particular, implies that
circular chromatic number of any signed 2-degenerate simple graph is strictly smaller than
4. Then using the notion of tight cycle and Proposition 1.5, we will conclude Theorem 1.11.

Theorem 2.1. Let Ĝ be a signed simple graph with a vertex w of degree 2. If the signed
graph Ĝ− w has circular chromatic number strictly less than 4, then Ĝ also has circular
chromatic number strictly less than 4.

Proof. Let Ĝ be a minimum counterexample to the theorem. Then it follows immediately
that G is connected and has no vertex of degree 1. Let u and v be the two neighbors
of w. Since circular chromatic number is invariant under switching, and without loss of
generality, we may assume both uw and vw are positive edges in Ĝ.

Let Ĝ′ = Ĝ−w and let ε be a positive real number smaller than 2, such that Ĝ′ admits
a circular (4− ε)-coloring. Let C be the circle of circumference 4− ε.

By rotational symmetries of the circle we can assume that ϕ(u) = 0. Then considering
symmetries along the diameters of the circle, in particular the one that contains 0, we
may assume ϕ(v) ≥ 2 − ε

2 . Furthermore, we may assume ϕ(v) < 2 as otherwise we can

complete ϕ to a coloring of Ĝ simply by setting ϕ(w) = 1.
Our aim is to present a circular (4 − ε

4)-coloring ψ of Ĝ. To this end, first we do a

uniform scaling of the circle C to a circle C ′ to get a circular (4 − ε
2)-coloring ϕ′ of Ĝ′.

More precisely ϕ′ : V (Ĝ′)→ [0, 4− ε
2) is defined as follows.

ϕ′(x) =
4− ε

2

4− ε
ϕ(x).
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The mapping ϕ′ has the property that for a positive edge xy the points ϕ′(x) and
ϕ′(y) are at distance (on C ′) at least 1 + ε

8−2ε and that the same holds for the distance
between ϕ′(x) and the antipodal of ϕ′(y) whenever xy is a negative edge. Observe that
ϕ′(u) = 0 and ϕ′(v) ≥ 2− ε

4 .

Next we introduce a circular (4− ε
4)-coloring of Ĝ′ by inserting an interval of length ε

4
inside C ′ to obtain a circle C ′′ of circumference 4− ε

4 . Assuming this interval is inserted

at point 1− ε
8 of C ′, the new coloring ψ of Ĝ′ is defined as follows.

ψ(x) =


ϕ′(x), if ϕ(x) < 1− ε

8
,

ϕ′(x) +
ε

4
, if ϕ(x) ≥ 1− ε

8
.

We need to verify that ψ is a circular coloring of Ĝ′. For a positive edge xy, it’s
immediate to see that the distance of ψ(x) and ψ(y) is at least 1, because in changing
C ′ to C ′′ the distance between two points does not decrease. For a negative edge xy,
we note that since the diameter of the circle is changed, the antipodal of each point is
shifted by ε

8 . To be more precise, if a is a point of circle C ′ with a1 as its antipodal,
and a′ and a′1 are the images of these points at C ′′ after inserting an interval of length ε

4 ,
the antipodal of a′ on C ′′ is at distance ε

8 from a′1 (see Figure 1 and 2). Since in C ′ the
distance between ϕ′(x) and the antipodal of ϕ′(y) is at least 1 + ε

8−2ε , even after this shift
of ε

8 the distance between ψ(x) and the antipodal of ψ(y) is at least 1 and, therefore, ψ
is a circular (4− ε

4)-coloring.

a

0

a1

Figure 1: Circle C ′ with r′ = 4− ε

2

0

a′

ā′a′1

ε
4

Figure 2: Circle C ′′ with r′′ = 4− ε

4

Finally, as ψ(u) = 0 and ψ(v) ≥ 2, we may complete the circular (4− ε
4)-coloring ψ of

Ĝ′ to Ĝ simply by setting ψ(w) = 1.

We observe that in this proof for two vertices x and y of Ĝ−w if we have ϕ(x) = ϕ(y),
then we have ψ(x) = ψ(y).

From the statement of this theorem, it follows immediately that every signed 2-
degenerate simple graph admits a (4− ε)-coloring for some positive real number ε. Next
we use the notion of tight cycle to give a precise upper bound in terms of the number of
vertices.

Theorem 2.2. For any signed 2-degenerate simple graph (G, σ) on n vertices, we have:

• For each odd value of n, χc(G, σ) ≤ 4− 4

n+ 1
,
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• For each even value of n, χc(G, σ) ≤ 4− 4

n
.

Proof. As stated in Proposition 1.5, we know that χc(G, σ) = p
q where p is twice the

length of a cycle in G. Thus p is an even integer satisfying p ≤ 2n. Since χc(G, σ) < 4
we have p

q < 4, in other words, p < 4q. As p and q are integers, and moreover p is an

even integer, we have p ≤ 4q− 2. Therefore, χc(G, σ) ≤ 4q−2
q = 4− 2

q . On the other hand

χc(G, σ) ≤ 2n
q .

For a fixed n, the sequence (2n
q )q∈N is decreasing, whereas the sequence (4− 2

q )q∈N is
increasing. It is easy to check that

max
q∈N

min

{
2n

q
, 4− 2

q

}
=

{
4− 4

n+1 for q = n+1
2 if n is odd,

4− 4
n for q = n

2 if n is even.

Next we show that the bound in Theorem 2.2 is tight for each value of n ≥ 1. We
construct a sequence of signed 2-degenerate simple graphs Ωi reaching the bound for
n = 2i+ 1. For even values of n, it would be enough to add an isolated vertex to Ωi.

Let Ω1 = (K3,+), that is the complete graph on three vertices with all edges being
positive. Let v1, v2, v3 be its vertices. Starting with Ω1, we define the sequence Ωi of
signed graphs as follows. Given Ωi on vertices v1, v2, . . . , v2i+1, we first add a vertex v2i+2

which a copy of v2i+1, i.e., it sees each of the two neighbors of v2i+1 with edges of the
same sign. Then we add a new vertex v2i+3 which is joined to v2i+1 and v2i+2, to one
with a negative edge and to the other with a positive edge. Observe that Ωi has 2i + 1
vertices and is 2-degenerate. The elements Ω2,Ω3 and Ω4 of the sequence are illustrated
in Figure 3, 4, 5 respectively.

v1v2

v3

v4

v5

Figure 3: Ω2

v1v2

v3

v4

v5v6

v7

Figure 4: Ω3

v1v2

v3

v4

v5v6

v7

v8

v9

Figure 5: Ω4

Proposition 2.3. Given a signed graph Ωi as defined above, we have

χc(Ωi) = 4− 4

|V (Ωi)|+ 1
.

Proof. We prove by induction a slightly stronger claim. Let ri = 4− 2
i+1 . We claim that

χc(Ωi) = ri and, moreover, in any circular ri-coloring of Ωi the tight cycle is a Hamiltonian
cycle.

The case i = 1 of this claim is immediate. That χc(Ωi) ≤ ri follows from Theorem 2.2.
To show that χc(Ωi) ≥ ri , it is enough to show that Ωi is not ri−1-colorable, because
there are no rational numbers between ri−1 and ri with a numerator at most 2(2i + 1).
To this end, and toward a contradiction, assume ψ is a circular ri−1-coloring of Ωi. We
claim that ψ(v2i−1) = ψ(v2i). That is because ψ is also a circular ri−1-coloring of Ωi−1,
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and in any such a coloring the tight cycle (of Ωi−1) is a Hamilton cycle. As v2i−1 is of
degree 2 in Ωi−1 and v2i is a copy of v2i−1, we must have ψ(v2i−1) = ψ(v2i). But then to
complete the circular ri−1-coloring to v2i+1 we must have a point on the circle which is
at distance at least 1 from both ψ(v2i−1) and its antipodal. But that is only possible if
the circumference of circle used for coloring is at least 4. Thus χc(Ωi) = 4i+2

i+1 . We then
observe that gcd(4i+ 2, i+ 1) = 1 when i is even and gcd(4i+ 2, i+ 1) = 2 when i is odd.
Hence any tight cycle of Ωi in a circular 4i+2

i+1 -coloring is a Hamilton cycle, completing the
proof.

3 C<4-closed operations

Recall that C<4 is the class of signed graphs of circular chromatic number strictly smaller
than 4. In this section, we present two graph operations that preserve membership in this
class.

We first observe that Theorem 2.1 could also be viewed as an operation that preserves
membership in this class: For each (G, σ) ∈ C<4 and any pair of distinct vertices x and y
of (G, σ), if we add a vertex u and join it to x and y with edges of arbitrary signs, then
the resulting signed graph is also in C<4.

A slight modification and generalization of this one is based on the following notation.
Let (G, σ) be a signed graph and let u be a vertex of (G, σ). We define Fu(G, σ) to be the
signed graph obtained from (G, σ) by contracting all the edges incident to u and keeping
signs of all other edges as it is. One could easily observe that for (switching) equivalent
signatures σ and σ′, the signed graphs Fu(G, σ) and Fu(G, σ′) might not be switching
equivalent.

Theorem 3.1. Given a signed graph (G, σ) and a vertex u of (G, σ), if χc(Fu(G, σ)) < 4,
then χc(G, σ) < 4.

As Fu(G, σ) and Fu(G, σ′) might not be switching equivalent even if σ and σ′ are
switching equivalent, in applying this theorem it is important to choose a suitable signa-
ture (switching equivalent to σ). In particular, if two neighbors of u, say x and y, are
adjacent with a positive edge, then Fu(G, σ) will have a positive loop and so its circular
chromatic number is ∞. Similarly, if two neighbors of u have another common neighbor
v which sees one with a positive edge and the other with a negative edge, then Fu(G, σ)
has a digon and does not belong to C<4.

The proof of this theorem is quite similar to the proof of Theorem 2.1. We consider
a circular (4 − ε)-coloring of Fu(G, σ). Then we consider a corresponding coloring on
(G− u, σ) noting that all neighbors of u are colored with a same color. We then modify
the coloring as in the proof of Theorem 2.1 to find a color for u. We leave the details to
the reader.

Next we define an edge-operation which also preserves membership in C<4. Let Ĝ be a
signed graph with a positive edge uv. We define Fuv(Ĝ) to be the signed graph obtained
from Ĝ as follows. First we add a copy u′ of u, that is to say for every neighbor w of u
we join u′ to w with an edge which is of the same sign as uw. Similarly, we add a copy v′

of v. Then we add two more vertices x and y with the following connections: xu, yv as
positive edges and xu′, yv′, and xy as negative edges. See Figure 6.

We prove that C<4 is closed under the operation Fuv.

Theorem 3.2. Given a signed graph Ĝ and a positive edge uv of Ĝ, if χc(Ĝ) < 4, then
χc(Fuv(Ĝ)) < 4.
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x y

u

u′

v

v′

Figure 6: The operation Fuv

Proof. Let ϕ be a circular (4− ε)-coloring of Ĝ for a positive real number ε. We assume,
without loss of generality, that ϕ(u) = 0 and 1 ≤ ϕ(v) ≤ 2 − ε

2 . We view ϕ as a partial

coloring of Fuv(Ĝ). Our goal would be to modify ϕ to a circular (4− ε
4)-coloring of Ĝ in

such a way that we can extend it on the four new vertices u′, v′, x and y. This would be
done in two steps. We first scale the circle to increase its circumference by ε

2 and then
insert an interval of length ε

4 into the circle after which we must modify images of some
vertices. The details are as follows.

First we define the (4− ε
2)-coloring ϕ′ as follows:

ϕ′(w) =
4− ε

2

4− ε
ϕ(w).

This was the scaling part. Let γ =
4− ε

2
4−ε and note that

γ = 1 +
ε

8− 2ε
> 1 +

ε

8
> 1.

Next we define ψ and show that it is a circular (4− ε
4)-coloring of Fuv(Ĝ). On the vertices

of Ĝ, the mapping ψ is defined as follows.

ψ(w) =

ϕ
′(w), if ϕ′(w) < 1− ε

8
,

ϕ′(w) +
ε

4
, otherwise.

It is then extended to the remaining four vertices by:

ψ(u′) =
ε

8
, ψ(v′) = ϕ′(v) +

ε

8
, ψ(x) = 1, and ψ(y) = ϕ′(v) +

ε

4
− 1.

We need to show that ψ is a circular (4− ε
4)-coloring of Fuv(Ĝ). Restriction of ψ on Ĝ

is a circular coloring because if w1 and w2 are two adjacent vertices of Ĝ, then in coloring
ϕ either (1) ϕ(w1) and ϕ(w2) are at distance at least 1 or (2) ϕ(w1) and ϕ(w2) are at
distance at least 1. This distance then is increased to at least γ in ϕ′. Then in defining ψ
based on ϕ′ either the distance remains the same, or it increases by ε

4 , or one end moves
by a value of ε

8 . Thus, in all the cases the resulting distance is still larger than 1.
It remains to consider the connection to and among new vertices, u′, v′, x, and y.

By the definition of ψ, the five edges incident to x or y are satisfying the conditions of
circular coloring. It remains to verify the condition for edges incident with u′ and v′ but
not incident with x or y.

We first consider the edges incident with u′. Recall that u′ is a copy of u. Let w be a
neighbor u in Ĝ. Based on the sign of wu′ we consider two cases.

• wu′ is a positive edge.

We need to show that the distance between ψ(w) and ψ(u′) is at least 1. Using the
definition of circular coloring based on the circle, we consider both clockwise and
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anticlockwise distances on the circle. The anticlockwise path of the circle from u′ to
w passes through u and since u and w are already proved to be at distance at least
1, the anticlockwise distance from ψ(u′) to ψ(w) is larger than 1. For the clockwise
direction, since uw is a positive edge we have ϕ(w) ≥ 1. Thus, by the definition of
ψ, we ψ(w) = ϕ′(w) + ε

4 whereas ψ(u′) = ε
8 . Therefore, the clockwise distance of

ψ(u′) and ψ(w) is larger than the clockwise distance of ϕ(u) = 0 and ϕ′(w) which is
at least 1.

• wu′ is a negative edge.

In circular (4− ε)-coloring ϕ the distance of ϕ(u) and ϕ(w) is at most 1− ε
2 . Again

we consider two possibilities depending on if the distance is obtained in clockwise
direction starting from 0 or anticlockwise. For clockwise direction, we observe that
ϕ′(w) < 1− ε

8 . Thus in defining ψ the distance of ψ(u) and ψ(w) remains the same
as the distance of ϕ′(u) and ϕ′(w), and the distance of ψ(u′) to ψ(w) is actually
shorter. If the distance of ϕ(w) and ϕ(u) is obtained on anticlockwise direction
starting from 0, then this distance is at most 1− ε

2 . Therefore, the distance of ϕ′(w)
and ϕ(u) is at most (1− ε

2)γϕ(w) which is strictly smaller than 1− ε
4 . As φ(u′) = ε

8 ,
the distance between ψ(w) and ψ(u′) remains strictly smaller than 1 − ε

8 , thus the
negative edge wu′ satisfies the condition.

We now consider the edges incident with v′. Observe that since 1 ≤ ϕ(v) ≤ 2− ε
2 , we

have γ ≤ ϕ′(v) ≤ γ(2− ε
2). By the definition of ψ, and because ϕ′(v) ≥ 1− ε

8 , we have:

γ +
ε

8
≤ ψ(v′) = ϕ′(v) +

ε

8
≤ γ(2− ε

2
) +

ε

8
= 2− ε

8
.

As v′ is a copy of v, based on the sign of wv we consider two cases.

• wv′ is a positive edge.

We need to show that the distance between ψ(w) and ψ(v′) is at least 1. Since wv is a
positive edge, it implies two possibilities: (1) ϕ(w) ∈ [0, 1− ε

2 ], (2) ϕ(w) ∈ [2− ε
2 , 4−ε].

For case (1), ϕ′(w) = γϕ(w) < 1 − ε
8 , then ψ(w) = ϕ′(w) and thus the distance

between ψ(w) and ψ(v′) is larger than γ + ε
8 . For case (2), ψ(w) = ϕ′(w) + ε

4 . Thus
the distance between ψ(w) and ψ(v′) is at least 1 + ε

8−2ε + ε
8 , hence strictly larger

than 1.

• wv′ is a negative edge.

As wv is a negative edge in Ĝ, in any circular (4 − ε)-coloring ϕ, the distance of
ϕ(v) and ϕ(w) is at most 1− ε

2 and then the distance of ϕ′(v) and ϕ′(w) is at most
γ(1 − ε

2) < 1 − ε
4 . Also, we have that ε

2 ≤ ϕ(w) ≤ 3 − ε. By the definition of ψ,
if ϕ′(w) ≥ 1 − ε

8 , then ψ(w) = ϕ′(w) + ε
4 and thus the distance between ψ(w) and

ψ(v′) is at most γ(1 − ε
2) + ε

8 < 1 − ε
8 . It remains to show that if ϕ′(w) < 1 − ε

8 ,
then the distance between ψ(w) and ψ(v′) is smaller than 1 − ε

8 . In this case,
ψ(w) = ϕ′(w). Therefore, compared with the distance between ϕ′(w) and ϕ′(v),
the distance between ψ(w) and ψ(v′) is increased by ε

8 , therefore, it is at most
γ(1− ε

2) + ε
8 < 1− ε

8 .

4 Signed bipartite planar simple graphs

In this section, we would like to prove Theorem 1.12. As in Section 2, we will first show
that the circular chromatic number of any signed bipartite planar simple graph is strictly
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smaller than 4. Then we use the notion of tight cycle to get an improved upper bound.
Finally, we show that this upper bound is tight.

To this end, we will work with a minimum counterexample. One of properties of a
minimum counterexample follows from the following folding lemma of [6]. We recall that
a plane graph or a signed plane graph is a (signed) planar graph together an embedding
on the plane. For a plane graph, a separating l-cycle is an l-cycle which is not a face.

Lemma 4.1. [Bipartite folding lemma] Let Ĝ be a signed bipartite plane graph and let
2k be the length of its shortest negative cycle. Let F be a face whose boundary is not a
negative cycle of length 2k. Then there are vertices vi−1, vi, vi+1, consecutive in the cyclic
order of the boundary of F , such that identifying vi−1 and vi+1, after a possible switching
at one of the two vertices, the result remains a signed bipartite plane graph whose shortest
negative cycle is still of length 2k.

We observe that by applying this lemma repeatedly we get an image of Ĝ which is
also a signed bipartite plane graph in which every facial cycle is a negative cycle of length
exactly 2k.

Theorem 4.2. For any signed bipartite planar simple graph (G, σ), we have χc(G, σ) < 4.

Proof. Assume that (G, σ) is a minimum counterexample, i.e., for no ε > 0, (G, σ) admits
a circular (4− ε)-coloring, and |V (G)| is minimized.

The minimality of (G, σ), together with the bipartite folding lemma, implies that every
facial cycle of (G, σ), in any planar embedding of G, is a negative 4-cycle. From here on,
we will consider (G, σ) together with a planar embedding. Moreover, since any subgraph
of (G, σ) is also a signed bipartite planar simple graph, it follows from Theorem 2.1 that
δ(G) ≥ 3.

We proceed by proving some structural properties of (G, σ) in the form of claims.

Claim 1 Every vertex of even degree in (G, σ) must be in a separating positive 4-cycle.
Assume to the contrary that a vertex u is of even degree and it is in no separating

positive 4-cycle. Let C be the boundary of the face in (G− u, σ) which contains u. This
cycle C in the embedding of (G, σ) bounds d(u) faces, each of which is a negative 4-cycle.
Thus C is a positive cycle. Since switching does not affect the circular chromatic number,
we may assume σ is a signature in which all the edges of C are positive.

Let (G′, σ′) be the signed graph obtained from (G, σ) by contracting all edges incident
with u and by replacing each set of parallel edges of a same sign with a single edge of the
same sign. Observe that, as u is in no separating positive 4-cycle, (G′, σ′) has no digon.
Thus (G′, u′) is a signed simple graph. Furthermore, it is a signed bipartite planar simple
graph which has less vertices than (G, σ). Thus it admits a circular (4 − ε)-coloring for
some positive ε. But then Theorem 3.1 implies that χc(G, σ) < 4.

Claim 2 For every pair of adjacent vertices each of an odd degree in (G, σ), at least one
is in a separating positive 4-cycle.

The proof of this claim is similar to the previous one. Towards the contradiction, let x
and y be two adjacent vertices of odd degrees, neither of which is in a separating positive
4-cycle. We consider the facial cycle C which is obtained after deleting x and y, and once
again conclude that C must be a positive cycle. Without loss of generality, we assume
that σ assigns positive signs to all edges of C. We may also assume that xy is a negative
edge.

We consider two signed graphs as follows. The first one is obtained from (G− xy, σ)
by contracting all the edges incident to x where the new vertex is denoted u, and by
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contracting all the edges incident to y where the new vertex is denoted v and then adding
a positive edge to connect u and v. We denote the result by Ĝ′ and note that it is a
signed bipartite planar simple graph with no digon. By the minimality of (G, σ), we
conclude that χc(Ĝ

′) < 4. The second signed graph we consider is obtained from (G, σ)
by identifying positive neighbors of x into a new vertex u, the negative ones into a new
vertex u′, and by identifying positive neighbors of y into a new vertex v, the negative
ones into a new vertex v′. Let Ĝ′′ be the resulting signed graph. We note that Ĝ′′ is not
necessarily planar anymore. But regardless one can easily observe that Ĝ′′ is a subgraph
of an Fuv(Ĝ

′).
It follows from Theorem 3.2 that Ĝ′′ is in C<4, but Ĝ′′ is a homomorphic image of (G, σ)

and its circular chromatic number provides a bound on the circular chromatic number of
(G, σ).

Claim 3 There is no positive 4-cycle in (G, σ).
Since all faces of (G, σ) are negative 4-cycles, any such a cycle must be a separating cy-

cle. Towards a contradiction, among all separating positive 4-cycles, let C be a separating
positive 4-cycle with the minimum number of vertices inside. Let v1, v2, v3, and v4 be the
four vertices of C in this cyclic order. Let u be a vertex inside C. As (G, σ) is bipartite,
u can be adjacent to at most two vertices of C and as (G, σ) has minimum degree at least
3, it must have a neighbor v which is also inside C. By Claim 1 and Claim 2, at least
one of u or v, say u, is in a separating positive 4-cycle, denoted Cu. Since C contains the
minimum number of vertices inside, Cu cannot be all inside of C, thus u is adjacent to
two vertices of C. Noting that G is bipartite, and by symmetry, we may assume v1 and
v3 are adjacent to u.

We now claim that the vertex v is in no separating positive 4-cycle. That is because, if
so, then using the same argument, and noting the bipartiteness of G, it must be adjacent
to v2 and v4. However, v is separated from at least one of them by the path v1uv3 and
C. Therefore, by Claim 1, v is of odd degree and, by Claim 2, each neighbor of v must be
in a separating positive 4-cycle. As v is of degree at least 3 and can only be adjacent to
at most one of v2 and v4, it has a neighbor u1 which is in a separating 4-cycle. As u1 is
in the same part (of the bipartition of G) as u, and again by the minimality assumption
on C, the vertex u1 must be connected with both of v1 and v3. We note that this would
separate v from both v2 and v4. Thus there must be a third neighbor u2 (of v), which
is also in a separating 4-cycle and for the same reason then must be adjacent to both v1

and v3. The subgraph induced by v, v1, v3, u, u1, and u2 is then the complete bipartite
graph K3,3, contradicting that G is a planar graph.

To complete the proof of the theorem, we observe that, by Claims 1 and 3, all vertices
must be of odd degree, and, by Claim 2, no two of them can be adjacent, but then any
mapping to the points of any circle is circular coloring, a contradiction with our choice of
(G, σ).

Next, using the notion of tight cycle, we improve the bound of Theorem 4.2. We
provide a concrete bound in terms of the number of vertices and then show that this
improved bound is tight.

Theorem 4.3. For any signed bipartite planar simple graph (G, σ) on n vertices, we have:

• For each odd value of n, χc(G, σ) ≤ 4− 8

n+ 1
.

• For each even value of n, χc(G, σ) ≤ 4− 8

n+ 2
.
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Moreover, these bounds are tight for each value of n ≥ 2.

Proof. As stated in Proposition 1.5, we know that χc(G, σ) = p
q where p is twice the

length of a cycle in G. As G is a bipartite graph, the length of each cycle is even. Thus
p = 4k for some positive integer k such that 2k ≤ n.

Since χc(G, σ) < 4 we have p
q < 4, in other words, 4k < 4q. As k and q are integers

we have k + 1 ≤ q. Thus χc(G, σ) ≤ 4k
k+1 = 4 − 4

k+1 . The upper bounds claimed in the
theorem then follows by noting that n ≥ 2k and that n ≥ 2k + 1 when n is odd.

To prove that the bounds are tight we need to build an example Γ∗i for when n = 2i is
even. Then by adding an isolated vertex to Γi we get an example that works for n = 2i+1.

For i ≥ 2, the signed graph Γ∗i is built from the signed graph Ωi−1 by subdividing the
edge v1v2 once and assigning a positive sign to one of the resulting edges and negative
sign to the other.

We should note that Γ∗i is a homomorphic image of the signed graph Γi from Defini-
tion 43 of [10]. To build Γ∗i from Γi (of [10]), one must identify the last two vertices (of
Γi) after a suitable switching. In fact it follows that Γ∗i is the core of Γi.

Then for even values of i the formula for the circular chromatic number of Γ∗i follows
from Corollary 46 of [10] by taking G to be K2. A similar computation can be done
by taking Γ2k+1 as an indicator I− in Lemma 41 of [10] with I+ being free to choose.
Applying this to (K2,−) then we get the formula for the circular chromatic number of
Γ2k+1.

An independent proof, quite similar to the proof of the circular chromatic number of
Ωi, can be done by an added fact that in any circular (4− 8

2i+2)-coloring of Γ∗i the tight
cycle is a Hamilton cycle.

5 Discussion and Questions

In this work we have observed that bounding the circular chromatic number of a very
restricted families of signed graphs can capture some of the most motivating problems in
graph theory such as the 4-color theorem.

Then by strengthening some results from [10] we provided improved bounds for two
families of signed graphs: signed 2-degenerate simple graphs and signed bipartite planar
simple graphs.

We note that some of the well-known problems in circular coloring of graphs fit into
this study by viewing a graph G as a signed graph (G,+) where all edges are positive. In
particular, providing the best possible bound for the circular chromatic number of planar
graphs of a given odd girth is one of main questions in graph theory which captures the
4CT, the Grötzsch theorem, and the Jaeger-Zhang conjecture.

Here we mention a few new questions that are based on the notion of the circular
coloring of signed graphs.

Question 1. Given a signed planar simple graph Ĝ, does there exist an ε = ε(Ĝ) such
that Ĝ admits a circular (6− ε)-coloring?

First example of a signed planar simple graph whose circular chromatic number is
larger than 4 is given in [2]. An example of signed planar simple graph whose circular
chromatic number is 14

3 is given in [10]. The upper bound of 6 follows from the fact that
planar simple graphs are 5-degenerate. The existence of any signed planar simple graph
with circular chromatic number larger than 14

3 is an open problem.
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Restricted on the class of signed bipartite planar graphs and with an added negative
girth condition (that is the length of a shortest negative cycle), we have the following
question.

Question 2. Given a signed bipartite planar graph Ĝ of negative girth 6, does there exist
an ε = ε(Ĝ) such that Ĝ admits a circular (3− ε)-coloring?

That every signed bipartite planar graph of negative girth at least 6 admits a circular 3-
coloring is recently proved in [9], noting that this proof uses the 4CT and some extensions
of it. On the other hand, the best example of signed bipartite planar graph of negative
girth 6 we know has circular chromatic number 14

5 . It remains an open problem to build
such signed graphs of circular chromatic number between 14

5 and 3.
We should mention that a negative answer to Question 2 would imply a negative an-

swer to Question 1. Let T2(G, σ) be a signed graph obtained from (G, σ) by subdividing
each edge uv once and then assign a signature in such a way that the sign of the corre-
sponding uv-path is −σ(uv). Viewing positive and negative paths of length 2 as I− and
I+ (respectively), and applying Lemma 41 of [10] we have

χc(T2(G, σ)) =
4χc(G, σ)

2 + χc(G, σ)
.

For signed bipartite planar graphs of negative girth at least 8, the upper bound of 8
3

for their circular chromatic numbers is proved in [5]. For signed bipartite planar graphs
of negative girth 2k, k ≥ 5, the best current bound follows from recent results of [3].
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