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We revisit Muirhead's inequality together with some related known inequalities. We give a short proof to the Power-Mean inequality and Minkowski's determinant inequality.

Introduction And Preliminaries

The first section introduces some notations together with known results and inequalities starting by Muirhead's inequality. For a = (a 1 , . . . , a n ), x = (x 1 , . . . , x n ) two real n-tuples and σ a permutation in S n , we denote by [x a σ ] the product x a1 σ(1) x a2 σ(2) • • • x an σ(n) whenever the product is well defined. The vector ãj is the vector a without the a j entry and [ xaj σ ] is the product without x aj σ(j) that equals to

x a1 σ(1) x a2 σ(2) • • • x an σ(n) x aj σ (j) 
.

In general we only consider nonnegative entry wise vectors except mentioning otherwise.

Throughout the paper let a = (a 1 , . . . , a n ) ∈ R n+ and b = (b 1 , . . . , b n ) ∈ R n+ two vectors with nonnegative entries arranged in decreasing order:

a 1 ≥ • • • ≥ a n and b 1 ≥ • • • ≥ b n .
We say b majorizes a or a ≺ b if and only if

k i=1 a i ≤ k i=1 b i for all k, 1 ≤ k ≤ n and n i=1 a i = n i=1 b i .
Muirhead's inequality: If a ≺ b then for any nonnegative n-tuple x

(1.1) σ∈Sn [x a σ ] ≤ σ∈Sn [x b σ ].
The inequality was first proved for integer exponents in [START_REF] Muirhead | Some Methods applicable to identities and inequalities of symmetric algebraic functions of m letters[END_REF], see also [START_REF] Kadelburg | Inequalities of Karamata, Schur and Muirhead and some applications[END_REF][START_REF] Marshall | Inequalities: Theory of Majorization and Its Applications, 2nd Edition[END_REF]. Mainly all proofs of (1.1) use induction and rely on the following general property.

Proposition 1. Let a ≺ b with precisely m different entries, then there exist at most

m -2 vectors c (l) l ≥ 1 , such that a = c (0) ≺ c (1) ≺ c (2) ≺ • • • ≺ c (j) ≺ b = c (j+1)
where j ≤ m -1 and for l ≥ 0, c (l) differs from c (l+1) by only two entries.

Proposition 1 is an important result that can be used to prove the next two classical statements. Proof. For (1) the case n = 2 is elementary, applying Proposition 1 we get

n i=k c (l) i ≥ n i=k c (l+1) i
for every k and l, 1 ≤ k ≤ n, 0 ≤ l ≤ j. To prove (2) we go by induction, the result is true for n = 1 assuming it holds for n -1 variables and

n i=1 a i > n i=1 b i we have n-1 i=1 a i ≤ n-1 i=1 b i ≤ n i=1 b i < n-1 i=1 a i + a n . So there exist h ≤ a n such that n i=1 b i = n-1 i=1 a i + a n -h applying (1) for k = 1
to a = (a 1 , a 2 , . . . , a n -h) and b yields to a contradiction.

Next we present a proof of Muirhead's inequality similar to other known proofs see [START_REF] Kadelburg | Inequalities of Karamata, Schur and Muirhead and some applications[END_REF][START_REF] Marshall | Inequalities: Theory of Majorization and Its Applications, 2nd Edition[END_REF]. Apparently the only difference is that here the sequence c (l) (from Proposition 1) is reversely constructed, see Example 1.

Proof of (1.1). The case n = 2 is proved by inspection:

(a 1 , a 2 ) ≺ (b 1 , b 2 ) and b 2 ≤ a 2 ≤ a 1 ≤ b 1 with a 2 -b 2 = b 1 -a 1 = r we get: x b2 1 x b2 2 (x a1-b2 1 x a2-b2 2 + x a1-b2 2 x a2-b2 1 -x b1-b2 1 -x b1-b2 2 ) = x b2 1 x b2 2 • T and T = (x r 2 -x r 1 )(x a1-b2 1 -x a1-b2 2 ) ≤ 0.
Since the sum is symmetric in x i , the inequality is true if for some j, a j = b j from the previous cases (lower dimension); this is because we can write (1.1) as

n i=1 x aj i σ,σ(j)=i [ xbj σ ] - σ,σ(j)=i [ xaj σ ] ≥ 0.
Thus we only need to give a vector c = (c 1 , . . . , c n ) such that a ≺ c ≺ b with a k = c k for some k and c h = b h for some index h. We assume n ≥ 3 and a i = b i for every i.

Take p to be minimal with a i -b i = r i > 0 for all p ≤ i ≤ n and take q to be minimal with a

i -b i = d i < 0 for all q ≤ i ≤ p -1. If |r n | ≤ |d q | set c =      c q = a q + r n c n = b n c i = a i otherwise, if |r n | ≥ |d q | set c =      c n = a n + d q c q = b q c i = a i otherwise.
Example 1. We give an example to illustrate the construction of sequence c (l) , say a = (18, 16, 6, 5, 3, 3) and b = (20, 15, 8, 5, 2, 1). We have a ≺ b and omitting equal entries we may apply the previous proof to get successively c (1) = (18, 16, 8, 5, 3, 1), c (2) = (19, 16, 8, 5, 2, 1).

Some applications

We first state some applications of (1.1) that recently appeared in Amer. Math. Monthly ( [START_REF] Chang | Problem 12066[END_REF]) and College Mathematics Journal ( [START_REF] Chang | Problem 1176[END_REF]) respectively.

Problem 12066 : Let n and k be two integers greater than 1. Let A be an n × n positive definite Hermitian matrix. Prove:

(det(A)) 1/n ≤ (Tr(A)) k -Tr(A k ) n k -n 1/k .
We first rewrite the inequality as:

n i=1 a n i k - n i=1 a kn i ≥ (n k -n) n i=1 a k i
where the eigenvalue of A are λ i = a n i . Using the multinomial expansion:

n i=1 a n i k - n i=1 a kn i = k1+k2+•••+kn=k 0≤k t <k k k 1 , . . . , k n n t=1 a nkt t
and by symmetry we see that the sequence of powers or the vector l = (nk 1 , . . . , nk n ) majorizes the n-tuple r = (k, . . . , k) for any partition with k 1 + • • • + k n = k, in fact if n ≥ k we have nothing to prove if n < k, assume without loss of generality (upon rearranging the entries of l) that k 1 > • • • > k n and there is j less than n such that jk > n(k

1 + • • • + k j ) so n(k j+1 + • • • + k n ) > (n -j)k
which means that for some i, j +1 ≤ i ≤ n, nk i > k a contradiction since we rearranged the vector l in decreasing order and supposed jk > n(k 1 + • • • + k j ) where then for some m ∈ [1, j], nk m < k. The inequality holds with equality if and only if all eigenvalues are equal.

Another application of this inequality is the following: Problem 1176 : Let A be an n × n positive semidefinite Hermitian matrix having eigenvalues (λ 1 , . . . , λ n ), λ 1 ≥ • • • ≥ λ n and λ 1 > 0. For p and q nonnegative integers prove:

Tr(A p ) + Tr(A p+1 ) + . . . Tr(A p+q ) Tr(A p+1 ) + Tr(A p+2 ) + . . . Tr(A p+q+1 ) ≤ n Tr(A)
.

We want to prove

n i=1 λ p i n i=1 λ p+q i ≤ n n i=1 λ q i
for any nonnegative reals p and q, (p • q = 0) which implies the result by using the next property. This is just true by Muirhead's inequality as

( n i=1 λ p i )( n i=1 λ q i ) ≤ n n i=1 λ p+q i .
Equality occurs only if all eigenvalues are equal.

Proposition 2 ([8]

). Let p 1 , . . . , p n respectively q 1 , . . . , q n be n real respectively positive real numbers. If m = min i p i q i and M = max

i p i q i then m ≤ p 1 + • • • + p n q 1 + • • • + q n ≤ M.
For sake of completeness we present a short proof of the classical Power-Mean inequality see [START_REF] Li | A note on the proofs of generalized Radon inequality[END_REF] and the references therein;

Power-Mean Inequality:

Let a 1 ≥ a 2 ≥ • • • ≥ a n ≥ 0, λ ≥ 1 and for 1 ≤ i ≤ n, α i ≥ 0 with n i=1 α i = 1. We have n i=1 α i a i ≤ n i=1 α i a λ i 1 λ .
Proof. Clearly the result holds for n = 1 suppose it is true for any n and we want to prove it for n + 1 variables. If for example a 1 = a 2 the inequality holds by assumption, otherwise a 1 > a 2 taking the derivative in

a 1 of f (a 1 ) = n i=1 α i a λ i 1 λ - n i=1 α i a i we obtain f (a 1 ) = α 1 a λ-1 1 ( n i=1 α i a λ i ) λ-1 λ -1 ≥ 0
and the inequality follows.

Along the same lines we can prove the Weighted Arithmetic Geometric inequality.

Weighted AM-GM Inequality:

Let a 1 ≥ a 2 ≥ • • • ≥ a n ≥ 0 and for 1 ≤ i ≤ n, α i ≥ 0 with n i=1 α i = 1. We have (2.1) n i=1 α i a i ≥ n i=1 a αi i .
Another interesting question is to ask when we can replace symmetric sums by cyclic ones. For this we define the cyclic permutation c over the set of indexes (1, . . . , n) by c(i) = i + 1. Of course all indexes are to be assumed (mod n) and in [1; n]. We denote by c n the iteration of n cyclic permutation with the convention that c 0 is the identity permutation. For example:

x 15 c 3 (1) x 8 c 3 (2) x 7 c 3 (3) x c 3 (4) = x 15 4 x 8 1 x 7 2 x 3 .
In the particular case when b = (b 1 , 0, . . . , 0) we have:

Lemma 1. Suppose a = (a 1 , . . . , a n ) ≺ b = (b 1 , 0, . . . , 0) and x = (x 1 , . . . , x n ) with nonnegative entries then: n i=1 x b1 i ≥ n-1 i=0 [x a c i ].
Proof. By (2.1) we have:

a 1 x b1 c i (1) + a 2 x b1 c i (2) + • • • + a n x b1 c i (n) b 1 ≥ x a1 c i (1) • • • x an c i (n) ,
summing over i we obtain the inequality.

Remark 1. If a = p q is a nonnegative rational number and q is odd, then for

x 1 ≥ x 2 it is easy to see that x a 1 -x a 2 ≥ 0 if x 1 ≥ -x 2 . Lemma 2. Let a = (a 1 , a 2 ) ≺ b = (b 1 , 0)
where a 1 , a 2 , b 1 are positive rationnals with odd denominators. If x = (x 1 , . . . , x n ) with x i + x j ≥ 0 for every i = j, (x has at most one negative entry), then n i=1

x b1 i ≥ n i=1 x a1 i x a2 i+1 ,
where

x n+1 ≡ x 1 . Proof. For n = 2, x b1 1 + x b1 2 -x a1 1 x a2 2 -x a1 2 x a2 1 = (x a2 1 -x a2 2 )(x a1 1 -x a1 
2 ) ≥ 0, suppose the result holds for x = (x 1 , . . . , x n-1 ) we shall prove it for n variables. Assume without loss of generality x 1 to be the maximal variable (positive) and take the derivative of the function f (

x 1 ) = x b1 1 -x a1 1 x a2 2 -x a1 n x a2 1 to get f (x 1 ) = a 1 x a1-1 1 (x a2 1 -x a2 2 ) + a 2 x a2-1 1 (x a1 1 -x a1 n ) ≥ 0 (Remark 1
). In particular we only need to consider the case x 1 = x 2 or x 1 = x n but in either case the inequaliy reduces to the case of n -1 variables which is true by induction. i with equality if and only if all c i 's are equal.

Corollary 1 .

 1 [3, Chapter 5] Let a = (a 1 , . . . , a n ) and b = (b 1 , . . . , b n ) be two nonnegative real vectors arranged in decreasing order, (1) If a ≺ b then n i=k a i ≥ n i=k b i for every k, 1 ≤ k ≤ n.

..ei

  The well known Minkowski's determinant inequality -see[4, page 510]-states that for any A and B in M n (C) positive semi-definite (Hermitian) we have(2.2) Det(A + B) ≥ Det(A)Denote by λ i (M ), 1 ≤ i ≤ n the eigenvalues of the Hermitian positive semidefinite matrix M in decreasing order. For any k,1 ≤ k ≤ n, k i=1 λ i (M ) = M kis by definition the Ky-Fan k-norm of M see[START_REF] Horn | Matrix Analysis 2nd Edition[END_REF]. We can write for 1 ≤ k ≤ n : (A) + λ i (B))and n i=1 λ i (A + B) = n i=1 (λ i (A) + λ i (B)) = Tr(A + B). Setting a i = λ i (A + B), b i = λ i (A) + λ i (B) and using Corollary 1 we have (2.3) Det(A + B) ≥ n i=1 (λ i (A) + λ i (B)) ≥ Det(A)The last bound of (2.3) can be deduced from [9, ex. 219] and is proved as follows: Suppose Det(B) = 0 (if not it is easy to conclude), dividing by Det(B) and lettingλ i (A) λ i (B) = c i we need to prove k (c 1 , . . . , c n ) ≥where e k (c 1 , . . . , c n ) is the elementary symmetric function of order k. Clearly e k (c 1 , . . . , c n )
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