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Abstract

Crop production is affected by a complex combination of agri-environmental dynamics, as
temperature, irradiance, for example. To learn on these complex influences, the development
of sensors in agriculture opens new avenues. This requires renewing statistical approaches to
take into account the joint variations of these dynamic variables, which are considered here as
functional variables. The objective of the paper is to infer an interpretable model to study the
joint influence of two functional inputs on a scalar output. We propose a Sparse and Structured
Procedure to Identify Combined Effects of Functional Predictors, denoted SPICEFP. It is based on a
transformation of both functional variables into categorical variables by defining joint modalities,
from which we derived a collection of multiple regression models, where the regressors are the
frequencies associated to the joint class intervals. Selection of class intervals and related regression
coefficients are performed through a Generalized Fused Lasso. SPICEFP is a generic and exploratory
approach. Simulations performed show that it is flexible enough to select the true ranges of values.
A use case in agronomy is also presented.

Keywords: joint distribution, penalized linear regression, information criteria, Generalized Fused
Lasso, interpretable coefficient

1. Introduction1

Nowadays, several fields of activity and in particular, agriculture, are being revolutionized2

by the emergence of sensor data. With regard to crops, the setting up of harvest can now be3

monitored with the aim of including/modeling the influence of multiple environmental conditions.4

Specifically, water scarcity and temperature increase are two major features which have long been5

analyzed as determining huge variation in crop yield. Their influences are increasing with climate6

change and are becoming a major concern for the sustainability of agriculture in many parts7

of the world. However, relationships between climatic conditions and quality of the harvest are8

still poorly understood and modeling approaches are still lacking. To better use newly available9

data from sensors, there is a need for methods able to explore which combination of climatic10

variables influences harvest quality and at which stage of plant development. Such data sets11
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involve multivariate, longitudinal or temporal data which are handled in various ways, including12

the large family of functional data analysis [7].13

One of the main lines of research on functional data concerns their treatment in regression14

problems. The regression toolbox is used to extract knowledge from input variables (functional15

data in our context) to predict and/or explain a scalar output or a continuous variable of interest.16

Applying directly machine learning and/or supervised learning with its usual black box tools17

(support-vector machine [5], random forest [22], neural networks [29], etc.) is not indicated in18

our context: all these black-box tools are based on complex combinations of the regressors whose19

individual effects are difficult to interpret. In [28, 26], the regression models are usually classified20

into 3 categories according to the role played by functional data. A distinction is made between the21

"scalar-on-function", "function-on-scalar" and "function-on-function" regressions. In this paper we22

will focus on the "scalar-on-function" regression where the response variable is a scalar and the23

regressors are functions. More precisely, regressors are two functions that jointly influence the24

response variable.25

Various methods exist to solve "scalar-on-function" regressions and the reader can refer to [27]26

for a review. Regression with functional data often uses pre-treatment of the data like interpolation27

and/or projection on a basis [26]. This kind of regression is easily implemented (see R-package28

FDA), but again makes the influence of regressors not easy to interpret. By contrast, the work29

on "functional linear regression that’s interpretable" [15] and its Bayesian version [12] open a new30

research area for functional regressions where interpretation is of major interest. Unfortunately,31

these models do not take into account a possible combined effect of explanatory variables.32

The objective of the present paper is to infer an interpretable model to study the joint influence33

of two functional inputs on a scalar output. Our approach is based on a transformation of the34

functional data that implies a change from “scalar-on-function” regression to “scalar-on-image”35

regression, where the “image” is a bivariate representation of both functional datasets. Scalar-on-36

image regression models aim to control the smoothness of non-zero estimated coefficients. Different37

approaches are used to solve scalar-on-image regressions, among which Bayesian approaches [18,38

11], total variation penalizing approaches [40], neighborhood taken into account in the selection of39

variables [19] inspired by the Fused Lasso, etc. [17] proposed an approach based on the Gaussian40

process and compared it to the Fused Lasso. Other studies on scalar-on-image regressions are41

inspired, used or compared to models involving different L1 regularization. Following this trend,42

we chose to use the fused lasso, and more specifically its implementation via the genlasso package43

[3], for identifying parsimonious and structured coefficients. The selection of the coefficients is44

performed using information criteria instead of cross-validation, as proposed in [42].45

In the following, we present a Sparse and Structured Procedure to Identify Combined Effects46

of Functional Predictors, denoted SPICEFP, and its theory. Simulations and a use case based on a47

real question in agri-environment are also provided.48

2. The SPICEFP approach49

This section describes the main steps of the approach; first in §2.1, the originality of our50

approach was to transform both functional variables into categorical variables by defining joint51

modalities using class intervals (with bins of equal size). Several candidate partitions are defined52

this way, depending on the choice of the bin size. The functional model is presented in §2.2, from53

which we derived a linear multiple regression model where the regressors are the frequencies associ-54

ated to the joint class intervals. As explained in [8], when faced to a high number of discretization55

points of functional data, the naive approach would be to consider these data as a classical multi-56
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variate sample having as dimension the number of discretization points of the functional variables.57

In this case, multivariate statistics meets limits, among which its failure to take into account the58

very strong colinearity existing between discretized variables. By contrast, colinearity can be con-59

sidered in the Fused Lasso penalized regression which was therefore retained in our approach. We60

followed a "scalar on image" regression model, where the "image" is a contingency table of the61

joint class intervals, for a fixed candidate partition, to which we associated a graph of contiguity62

constraints defined in subsection §2.3. Identification was performed through a Generalized Fused63

Lasso (see §2.4) using each candidate contingency table as input variables. The selection of the64

best candidate and of its relative regression coefficients was achieved by minimizing an information65

criteria. To combine our exploratory objectives with technical constraints (such as potentially a66

small amount of data, for example), we have favored an iterative approach (see §2.5) which explores67

a larger space of solutions, while keeping aware of possible slight overestimation.68

2.1. Transformation of both functional variables69

Let us consider the samples (Ai)i=1,...,n and (Bi)i=1,...,n of two explanatory functional variables70

A and B, associated to a scalar response variable y with samples (yi)i=1,...,n, where n is the number71

of statistical individuals. Both A and B are observed on the same set T containing equidistant72

observation times. It is assumed that they have no missing values. These practical conditions73

of use can be released with some pre-treatment of the data (like interpolation, smoothing and74

imputation), see Section 6 for more details.75

The requirement for variable transformation is intrinsically linked to the goal of the approach:76

identify joint class intervals of the explanatory variables that influence the response. The trans-77

formation requires the definition of joint class intervals which can be used as linear regressors to78

predict the response. The steps to achieve this transformation are shown in the Figure 2.1.79

80

Contingency table of the joint class intervals81

82

Let’s partition the first explanatory variable A in nA class intervals according to a linear scale.83

This partition generates nA + 1 breaks denoted LA(v), v = 1, . . . , nA + 1. We chose to have84

equidistant breaks, as defined in equation (2.1) :85

LA(v) = A+
v − 1

nA

(
Ā − A

)
, v = 1, . . . , nA + 1 (2.1)

with A ∈ R and Ā ∈ R the minimum and maximum scalar values in A. The bins used for86

partitioning all (Ai)i=1...n are IA(v) = [LA(v), LA(v + 1)[, v = 1, . . . , nA. The partition is the same87

for all i, i = 1, . . . , n. Using the same approach for partitioning the second explanatory variable B,88

we obtain nB + 1 breaks LB(w). B ∈ R and B̄ ∈ R are the minimum and maximum scalar values89

in B. The bins used for partitioning all (Bi)i=1,...,n are IB(w) = [LB(w), LB(w + 1)[, w = 1, . . . , nB.90

The numbers of class intervals nA and nB have to be set to compute the breaks LA(v) and LB(w),91

v = 1, . . . , nA, w = 1, . . . , nB.92

Let’s define a partition vector u = (nA, nB). For all i, it is then possible to obtain the frequency93

bivariate histogram of (Ai,Bi) as a contingency table Cu
i , of dimension nA×nB, whose components94

Cu
i,(v,w) are obtained through (2.2). The new variables are the joint class intervals, noted IuA(v) ×95

IuB(w), v = 1, . . . , nA, w = 1, . . . , nB. They are called joint modalities.96

Cu
i,(v,w) =

∑
t∈T

1Ai(t)∈IuA(v), Bi(t)∈IuB(w) = Card {t ∈ T |Ai(t) ∈ IuA(v),Bi(t) ∈ IuB(w)}, (2.2)
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for all v = 1, . . . , nA , w = 1, . . . , nB and each u = (nA, nB), with:
nA∑
v=1

nB∑
w=1

Cu
i,(v,w) = Card(T ).97

Cu
i,(v,w) is the number of times that the observations of Ai and Bi are at the same time in98

IuA(v) × IuB(w). Cu
i,(v,w) can also be interpreted as a discrete approximation of the density of the99

time spent by the individual i with variable A around LA(v) and variable B around LB(w).100

Part 1 of Figure 2.1 shows the transformation of the functional explanatory variables A and101

B for the fixed u = (4, 3). Note that, for a fixed u, the (IuA(v)× IuB(w))v,w is a collection of 2D102

intervals in which the pairs (Ai,Bi) will be projected. This is detailed in the following subsection.103

Figure 2.1: Transformation of both functional explanatory variables for the SPICEFP approach

2.2. Functional model104

The functional model used in the present work can be formulated as follows:

y =

∫
Fu,β(A(t),B(t))dt+ ε (2.3)

where Fu,β = Iu.β (scalar product of two vectors), Iu is a vector of components functions Iuv,w105

defined by Iuv,w(a, b) = 1a∈IuA(v), b∈IuB(w) for a ∈ [A, Ā] and b ∈ [B, B̄], and β = (β(v,w))v,w is the106
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vector of unknown coefficients to estimate. ε is an i.i.d. Gaussian error. Through (2.3), we note107

that the relationship between the variable to be explained y and the predictors A(.) and B(.) is108

stable over time: the function Fu,β (and thus β) is not time-dependent. It is hence assumed that109

certain ranges of cross-values have an influence and that only the time spent in these ranges is110

important.111

A discrete version of the model (2.3) can be written as follows (up to a constant), for each i :

yi =
∑
t∈T

Fu,β(Ai(t),Bi(t)) + εi =
∑
t∈T

Iu(Ai(t),Bi(t)).β + εi,

which, combined with (2.2), yields Cu
i,(v,w) =

∑
t∈T

Iuv,w(Ai(t),Bi(t)) and:112

yi =

nA∑
v=1

nB∑
w=1

Cu
i,(v,w) β

u
(v,w) + εi (2.4)

This model is a linear multiple regression model where the regressors are the frequencies associated113

to the joint class intervals (IuA(v)× IuB(w))v,w. The indicator functions (Iuv,w)v,w define a functional114

basis.115

From the contingency tables Cu
i , we construct the design matrix Xu associated to model (2.4)116

as follows. After vectorization (stacking column by column) and transposition of the contingency117

table Cu
i (see part 2 of Figure 2.1), we obtain, for a fixed partition vector u = (nA, nB), a row118

vector of length nA.nB :119

Xu
i = tV ect(Cu

i ) , Xu
i ∈ RnAnB (2.5)

which represents the number of time observations t during which an individual i has been120

observed in each of the nA × nB levels described by the joint class intervals. The n stacked row121

vectors form the matrix Xu = t(Xu
1 , X

u
2 , . . . , X

u
n) ∈ Rn×nAnB .122

2.3. Creation of a graph of contiguity constraints123

To each matrix Xu corresponds a graph Gu(V u, Eu), which contains the contiguity constraints124

between modalities of the contingency table. V u represents the columns (new variables) of the125

candidate matrix Xu and Eu all the edges connecting two close joint modalities. We used the126

Rook’s case contiguity rule [24] where two joint modalities are said to be close if the bins following127

the variable A (indexed by v) or (exclusive) the bins following the variable B (indexed by w) are128

consecutive.129

2.4. Selection of class intervals and related regression coefficients130

The Fused Lasso is a variant of the Lasso introduced in 2005 by [35], in order to take into131

account the existence of a structure in the variables. In its original form, the Fused Lasso aims not132

only at parsimony of coefficients but also at parsimony of differences in consecutive coefficients.133

This version of the Fused Lasso can be interpreted as a one-dimensional Fused Lasso (1D-Fused134

Lasso). The Generalized Fused Lasso (GFL) [41] aims to promote smoothness over neighboring135

variables on a general graph G = (V,E) made of V knots and E edges. Each explanatory variable136

corresponds to a node on the graph and an edge symbolizes the link between a pair of separate137

nodes in G.138

5



For a fixed partition vector u = (nA, nB), the GFL criterion to minimize is written:139

1

2

n∑
i=1

(yi −Xu
i β)2 + λp

∑
j∈V u
|βj|+ λf

∑
(j,j′) ∈ Eu

|βj − βj′| (2.6)

with respect to β, where:140

• β = t(β(1,1), β(2,1), . . . , β(1,2), . . . , β(nA,nB)) ∈ RnAnB the unknown coefficients,141

• λp ≥ 0 and λf > 0 the regularization parameters (of parsimony and fusion) to be optimized,142

• for j = (v, w) fixed, the couples (j, j′) relative to j and contained in Eu are (j, j′)1 =143

((v, w), (v + 1, w)) and (j, j′)2 = ((v, w), (v, w + 1)). In the following and depending on the144

context, the index j will refer either to the pair (v, w), or to the jth element of the vector145

obtained from the matrix stored by columns.146

The argmin solution of (2.6), denoted β̂u, is computed as a function of the regularization147

parameters λp and λf , for a fixed value of u.148

2.4.1. The Generalized Fused Lasso in the Generalized Lasso framework149

If differences of contiguous coefficients were not penalized in (2.6) (i.e. if λf was zero), then the150

criterion would reduce to the Lasso criterion presented by [34]. The Lasso minimizes the residual151

sum of squares subject to the the constraint that the sum of the absolute value of the coefficients152

is less than a constant. In this case, there is only one regularization parameter to estimate. [6]153

proposed the Least-Angle Regression (LARS) algorithm able to solve the problem for all λ ∈ [0,∞[,154

producing a full piece-wise linear solution path. The result of the path algorithm is the finite set of155

increasing λ values, where each λ delimits a model reduction dimension (the number of non-zero156

β components). Criterion (2.6) has two regularization parameters λp and λf to be optimized. The157

path algorithm is no longer suitable to identify them.158

Our proposal is to parameterize (2.6) with the ratio:159

γ =
λp
λf

(2.7)

(choice made in the R package genlasso [3] used for implementing SPICEFP). This ratio represents160

a balance between parsimony and fusion. Then, for a fixed value of γ, criterion (2.6) can be161

equivalently rewritten as:162

1

2
||y −Xuβ||22 + λ||Du,γβ||1, (2.8)

where y = t(y1, y2, . . . , yn) ∈ Rn is the response vector and Du,γ is a specified penalty matrix163

(see below). This model corresponds to the Generalized Lasso model, introduced by [36] as an164

encapsulation of statistical models using the L1 norm to impose additional constraints. Through165

this new parametrization, the value of λ = λf can be optimized with the path algorithm and a166

corresponding β̂u,γ(λ) can be estimated. Finally, there are as many pairs (λ, β̂u,γ(λ)) solutions as167

there are u and γ parameters set. So, several models are available and we have to select one of168

them in order to deduce the optimal pair. Selection of the best model is done with an information169

criteria which requires an estimation of the degree of freedom for each model. Parameter λp will170

be deduced from γ through λp = γλf .171

In our context, the penalty matrix Du,γ is a row-binding of two sub-matrices, namely:172
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• Du,γ,p ∈ RnAnB×nAnB : the penalty sub-matrix associated to the regularization of parsimony173 (
λp
∑
j∈V u
|βj|

)
174

• Du,f ∈ R2nAnB×nAnB : the sub-matrix associated to the regularization of the fusion according175

to the two dimensions

(
λf

∑
(j,j′) ∈ Eu

|βj − βj′|

)
. Affecting two dimensions, Du,f can be176

subdivided into Du,f1 and Du,f2.177

Hence Du,γ =

Du,f1

Du,f2

Du,γ,p

 ∈ R3nAnB×nAnB with:178

Du,f1
(v,w)(v′,w′) =


1 if (v′, w′) = (v + 1, w)

−1 if (v′, w′) = (v, w) and v < nA

0 if not

Du,f2
(v,w)(v′,w′) =


1 if (v′, w′) = (v, w + 1)

−1 if (v′, w′) = (v, w) and w < nB

0 if not

Du,γ,p = γ.InA.nB

(2.9)

where γ ≥ 0 and InAnB is an identity matrix.179

The Generalized Fused Lasso presented in criterion (2.6) is a 2 Dimensional - Sparse Fused180

Lasso (2d-SFL).181

2.4.2. Degrees of freedom of the Generalized Fused Lasso fit182

Our approach follows that of [37], who established the calculation of the degree of freedom for183

any Lasso-type regression written as a generalized Lasso problem as presented in (2.8).184

We first introduce some notations. For any penalty matrix D ∈ Rm×p involved in a generalized
Lasso problem of type (2.8), let S be the active set corresponding to a particular solution β̂, it is
defined as:

S = {r ∈ {1, . . . ,m} : (Dβ̂)r 6= 0} = support(Dβ̂).

Let D−S be the matrix D from which were removed the rows indexed by S. And let null(D−S) be185

the null space or kernel of D−S .186

The calculation of the degrees of freedom of the generalized Lasso fit is stated in [37, Theorem187

3] and reminded here :188

Theorem (Generalized lasso degrees of freedom - Tibshirani and Taylor (2012))189

Assume that y ∈ Rn follows a normal distribution (y ∼ N(µ, σ2I) with given (unknown) mean190

vector µ ∈ Rn and marginal variance σ2). For any fixed and nonrandom predictor matrix X ∈191

Rn×p, penalty matrix D ∈ Rm×p and λ ≥ 0, the degree of freedom of the generalized Lasso fit can192

be expressed as193

df(Xβ̂) = E[dim(X(null(D−S)))] (2.10)
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with S = S(y) the active set corresponding to any generalized Lasso solution β̂(y) at y.194

195

The notation X(V ) represents the image space of a subspace V by X. It is the space generated196

by the columns of the X matrix projected on V . The assumptions required for this Theorem are197

those usually made in regression estimations (Gaussian i.i.d. errors). No assumptions are made198

on matrix D nor on X. This result can thus be applied to the 2d-Sparse Fused Lasso constraint.199

To compute df(Xuβ̂u,γ), we need βu,γ, Xu, Du,γ, λ defined in (2.8) and γ in (2.7). Note that, in200

our context, m = 3nAnB the number of rows in Du,γ and p = nAnB the number of columns in Xu.201

With fused lasso constraints, we are interested in sets of parameters that share the same value.202

By this, we refer to connected components, which are illustrated on Figure 2.4.2 and defined as203

follows:204

Definition 2.1. A connected component cc is a set of indexes of non zero coefficients βu,γv,w that205

are linked together via the Du,γ matrix (2.9) and that all share the same real value.206

Figure 2.2: Example of βu,γ coefficient values with 4 connected components (here u = (9, 8)).

Two coefficients βu,γv,w and βu,γv′,w′ are linked via the Du,γ matrix if and only if |v′ − v| = 1 or207

(exclusive) |w′ − w| = 1 (i.e., if and only if |v′ − v| + |w′ − w| = 1). Let us consider that the208

estimated coefficient β̂u,γ contains Qu,γ connected components denoted ccq, q = 1, 2, . . . , Qu,γ. In209

order to identify the respective coefficients involved in each non-zero connected component, we210

introduce the matrix Θ through Definition 2.2.211

Definition 2.2. Let (ccq)q=1,...,Q be a set of connected components. The connected component212

membership matrix is a binary matrix Θ ∈ RnAnB×Q whose q-th column Θ(q) indicates the213

membership or not of the β̂u,γ components to the connected component ccq, as follows:214

∀j = 1, . . . , nAnB, Θ
(q)
j =

{
0 if j /∈ ccq
1 if j ∈ ccq

, q = 1, . . . , Q. (2.11)

Let’s now compute the null space of D−S , denoted null(D−S) :215

null(D−S) = {Θ ∈ RnAnB×Q|D−SΘ(q) = 0(m−s), q = 1, . . . , Q} (2.12)
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where D−S ∈ R(m−s)×nAnB , D−SΘ(q) ∈ Rm−s and s = Card(S).216

As the Du,γ matrix has a simple structure, adapting Theorem 3 of [37] in the context of 2d-217

Sparse Fused Lasso is equivalent to looking for the components of β̂u,γ which have different values.218

This is the subject of the next corollary.219

Corollary 2.3. The degree of freedom d̂f(Xβ̂u,γ) associated to the criterion (2.8) in the context220

of 2d-Sparse Fused Lasso is equal to the number of connected components Qu,γ.221

Proof: d̂f(Xβ̂u,γ) = dim
(
Xu(null(Du,γ

−S))
)

= dim (Xu(Θ))

= dim
(
V ect

{
XuΘ(q), q = 1, . . . , Qu,γ

})
= rank([XuΘ(1), . . . , XuΘ(Qu,γ)]) = Qu,γ

where we omitted Θ dependencies on u and γ to lighten the notations in the corollary.222

2.4.3. Choice of the best candidate matrix and selection of its variables223

SPICEFP requires the construction of different candidate explanatory matrices Xu from both224

functional variables and partition’s vector u. Constructing a GFL for a matrix of predictors225

associated to a fixed u requires identifying the optimal values of the penalty parameters: λ and γ in226

(2.8). In penalized regressions, cross-validation is often used to optimize regularization parameters,227

but it is time consuming. We suggest using an information criterion to achieve the same purpose228

[9]. To that aim, we computed an adapted information criterion for each model indexed by u, λ229

and γ. The best model is obtained by minimizing the information criterion chosen, which yields230

the best partition û and allows to select the best variables from X û. The variable selection is done231

through the selection of γ̂ and λ̂ and the associated non-zero β̂ components are deduced.232

There exist various information criteria including Akaike Information Criterion (AIC) [2] and233

Bayesian Information Criterion (BIC) [31]. These criteria penalize log-likelihood by the number of234

model parameters. The BIC also penalizes log-likelihood by the sample size. A well defined penal-235

ization is essential to compare regression models involving different explanatory matrices. These236

information criteria require computing the degree of freedom Qu,γ of the GFL model, obtained in237

Corollary 2.3.238

For each u and γ defined on respective grids (given by the users) and λ taken from the set239

(λe)e=1,...,Nλ delivered by the path algorithm, we considered the following information criteria:240

• AICu,γ
e = −2 log(Lu,γe ) + 2Qu,γ

e241

• BICu,γ
e = −2 log(Lu,γe ) + log(n)Qu,γ

e242

with Lu,γe the likelihood function of the following model: y = Xuβu,γe + ε with ε ∼ N (0, σ2I),
associated with criterion (2.8). We have:

−2 log(Lu,γe ) = 2n log(σ) + n log(2π) +
1

σ2
||y −Xuβu,γe ||22

where the variance of the residuals σ2 is unknown. As mentioned by [14], the same variance243

estimator must be used in the calculation of the criteria for all the constructed models, and at244

each iteration (see bellow). We thus decided to estimate σ2 by the variance of the response variable:245

σ̂2 = 1
n−1
||y−y||22. It’s a biased estimator of σ2, but this bias remains fixed for all models compared246

[14]. Such an estimator leads to an overestimation of the variance, which penalizes the introduction247

of new coefficients in the model. This bias can be partly offset by an iterative approach. That’s248

why we have implemented an iterative algorithm where residuals are used as new response variable249

and so on, until shutdown conditions are verified.250
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2.5. SPICEFP: an iterative approach251

To capture all potential non-zero coefficients, one should take a fine partition with values of252

nA and nB large enough. This could imply a very low or even zero number of points in the joint253

class intervals (making the method ineffective) and prohibitively long computation times [20]. As254

a trade off between thinness and work-ability we chose to develop an iterative approach to explore255

a large space of solutions (that allows addition of different thinness of partition).256

Data required for the use of SPICEFP are the functional explanatory variables Ai and Bi dis-257

cretized on a grid T and a response variable yi with i = 1, . . . , n. Other elements are also required258

at the input of the algorithm: Γ, a set of positive reals representing γ ratios of regularization pa-259

rameters, UA and UB the sets of numbers of class intervals nA and nB, nλ the selected number of260

pairs (among Nλ) (λ, β̂u,γ(λ)), the information criterion to be used, and K the maximum number261

of iterations to explore. The nλ values of λ are chosen equally spaced on the log scale (see Genlasso262

package [3]).263

SPICEFP constructs for each couple (u, γ), a matrix of explanatory variables Xu and a penalty264

matrix Du,γ. This first step (line 1 to 13, algorithm 1) is performed only once and the set of265

candidate explanatory matrices remains unchanged. The second step (line 14 to 34, algorithm 1)266

of the approach is iterative. For each candidate matrix a solution path (λ, β̂u,γ(λ)) is obtained.267

Once the criterion associated with each model is computed, the optimal triplet (û, γ̂, ê) is the268

argument that minimizes Critu,γe , where e is the index of the solution path-coefficients (λe, β̂
u,γ
e ).269

X û, Dû,γ̂ and β̂û,γ̂ê respectively represent the optimal matrices of the explanatory, penalty and270

coefficient variables. At each iteration k, we denote uk = û and βk = β̂û,γ̂ê . SPICEFP then checks271

if the selected coefficients according to the criterion Critu,γe correspond to a zero vector or if the272

maximum number of iterations K is reached. The algorithm is stopped when at least one of these273

conditions is verified. When none of these conditions are verified, the residuals of the optimal274

model are computed and used as a response variable at the next iteration of the algorithm.275

The third step (line 35, algorithm 1) gives the final prediction as the sum of all the predictions276

obtained at each iteration:
k∗∑
k=1

Xukβk. The function corresponding to the final prediction can be277

written as follows :278

F∗ =
k∗∑
k=1

Fuk,βk =
k∗∑
k=1

Iuk .βk (2.13)

hence the predicted value is given by: E(yi) =
∑
t∈T

F∗(Ai(t),Bi(t)). We remark that each vector279

βk at each iteration may have different length dim(uk).280

2.6. Adaptation of SPICEFP to the partitioning of functional variables according to a non-linear281

scale282

A linear partitioning of type (2.1) of the functional variables is not always suitable. Other283

types of partitioning may have to be chosen. Assuming for example that functional variable B284

requires a partitioning according to a logarithmic scale, the following breaks can be used instead285

of Equation (2.1):286

LB(w) = B +
1

αB

((
1 + αB(B̄ − B)

)w−1
nB − 1

)
, w = 1, . . . , nB + 1, (2.14)

where parameters αB > 0 and nB have to be set to determine LB(w). For a fixed nB, high αB value287

is related to high proportion of breaks close to B and vice versa. So, two partitioning parameters288
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Input : K; UA;UB; Γ; nλ; Crit ∈ {AIC,BIC}
Output: k∗, (u

k)k≤k∗ ; (βk)k≤k∗

Data : {yi, i = 1, . . . , n}; {Ai(t); Bi(t), i = 1, . . . , n, t ∈ T}
1 foreach u ∈ UA. UB do
2 for i← 1 to n do
3 for v ← 1 to nA do
4 for w ← 1 to nB do
5 Cu

i,(v,w) = Card {t ∈ T |Ai(t) ∈ IuA(v),Bi(t) ∈ IuB(w)}
6 end
7 end
8 Xu[i, ] = tV ect(Cu

i )

9 end

10 foreach γ ∈ Γ do
11 Construct Du,γ as shown in the equation (2.9)
12 end
13 end

14 for k ← 1 to K do
15 foreach u ∈ UA. UB do
16 Center y and each joint modality in Xu

17 foreach γ ∈ Γ do
18 Find the solution path β̂u,γ(λ) = argmin

β∈RnAnB

1
2
||y −Xuβ||22 + λ||Du,γβ||1

19 Select nλ equally spaced couples (λe, β̂
u,γ
e ) on the log scale with respect to λ

over the solution path and compute Critu,γe for e = 1 . . . nλ :
20 AICu,γ

e = 1
σ2 ||y −Xuβ̂u,γe ||22 + 2Qu,γ

e or
21 BICu,γ

e = 1
σ2 ||y −Xuβ̂u,γe ||22 + log(n)Qu,γ

e

22 end
23 end

24 (û, γ̂, ê)← argmin
u∈UA.UB, γ∈Γ, 1≤e≤nλ

Critu,γe

25 uk = û, βk = β̂û,γ̂ê

26 if βk 6= 0nAnB then
27 k∗ = k
28 if k < K then
29 y ← y - Xukβk

30 end
31 else
32 Leave the loop in k
33 end
34 end

35 Construct the result:
k∗∑
k=1

Xukβk

Algorithm 1: SPICEFP algorithm
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(nB and αB ) should be optimized for partitioning B. In this case, the partition vector is written289

u = (nA, nB, αB). Let VB be the set containing the possible values of αB. VB is an additional290

input to the algorithm. The only change in the core of the algorithm is to replace u ∈ UA. UB by291

u ∈ UA. UB. VB (lines 1 to 15).292

Various types of breaks (chosen between Equations (2.1), (2.14) or user-defined) can be used293

for partitioning explanatory functional variables and the SPICEFP algorithm can be easily adapted.294

3. Use Case: Grapevine dataset295

3.1. Data presentation296

Data were collected during an experiment conducted in a vineyard of the Institut Agro campus297

at Montpellier in 2014 (Syrah vines). The aim was to study the influence of the micro-climate298

(temperature, solar irradiation) at the grape level on the anthocyanin content of the berries.299

Experts in viticulture assume that the accumulation of chemical compounds affecting the quality300

of the grape berry is jointly influenced by these initial explanatory variables. This assumption is301

reinforced by results of [33], which underlined that the anthocyanin composition of Merlot grapes302

was influenced by a complex combined effect of berry temperature and solar irradiation.303

The experimental plot was made of three rows of vines within the vineyard, each with eight304

vines equipped with open-top chambers to warm the basis of the plant, and eight under control305

conditions (without open-top chambers). The chambers were made up of 2 translucent polycar-306

bonate panels placed on the ground at about 10cm below the bunches on each side of the vines307

and inclined to form a mini two-pitched greenhouse roof open at its ridge. The greenhouse effect308

created during the day in the chambers generated a flow of warm air that escaped through the309

open top, raising the temperature of the bunches by 2 to 3 °C, mimicking global warming. The mi-310

croclimate at bunch level was recorded through the measurement of temperature and irradiance.311

According to [38], solar radiation can be characterized by three different quantifiers, including312

Photosynthetic Photon Flux Density (PPFD), measured in 10−6mol m−2 s−1. It corresponds to313

the number of incident photons useful for photosynthesis, received per unit of time on a horizontal314

surface unit. Rows were roughly oriented south-north, and irradiance was separately measured315

on bunches located on the east and west side of the row. This measurement system therefore316

enabled the observation of different modalities of the couple (temperature, irradiance) affecting317

the grape berries. Temperature and Irradiance were recorded every twelve minutes throughout the318

maturation period when anthocyanins are known to accumulate.319

So the experimental design contained: rows (1, 2, 3) × 2 sun exposure orientations (East, West)320

× 16 vine stocks = 96 "statistical individuals". Anthocyanin contents were measured weekly via the321

Ferari Index FIi for each individual i. This is a non-destructive measure of anthocyanin content322

of the bunches [1]. The objective of our study is to understand how the couple (Temperature,323

Irradiance) acts on a weekly variation of the Ferari Index ∆FI.324

Temperature and Irradiance are variables of different natures. Temperature is a variable whose325

variations are regular enough to be partitioned according to Equation (2.1). The Irradiance variable326

is partitioned according to (2.14), as explained in the following subsection.327

3.2. Partitioning of the Irradiance variable328

Observed on a one-day scale, PPFD increases exponentially from sunrise to a daily peak (ob-329

servation time tmax), decreases until sunset, and remains almost constant until the next sunrise.330

Irradiance primarily influences plant photosynthesis in a nonlinear way with a maximal reached at331

high irradiance. Therefore, the Irradiance variable was not partitioned according to a linear scale332
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as proposed by Equation (2.1), but rather according to a logarithmic scale as in Equation (2.14).333

The use of logarithmic transformation has consistently been used in the development of models334

involving solar radiation [30], [23], [4]. ¨335

3.3. Objective336

The objective of our study was to identify the ranges of temperature and irradiance that jointly337

influence or not the accumulation of anthocyanins between sunrise and noon. This study is an338

appropriate application framework to test the SPICEFP method.339

Our study is composed of two parts. First a simulation part is presented in section 4. Temper-340

ature and Irradiance, measured during the week of July 17 to 24, 2014, are the input variables of a341

model which simulates output variables to be predicted, using two different known β: one with two342

distinct patches of coefficients and another with a concentric gradient of coefficients (Table 2, col-343

umn 1). This simulation study made it possible to evaluate the functioning and performance of the344

SPICEFP algorithm. Second, in section 5, the algorithm was tested on a complete dataset, obtained345

from July 24 to August 1, 2014, to understand the effect of Temperature and Irradiance interaction346

on ∆FI. Dataset and script are available online at https://forgemia.inra.fr/exploratory-penalized-347

regression/paper-script-and-data.git.348

4. Simulation study349

We present in this section simulations that help to better understand the SPICEFP character-350

istics. Remember that the approach must be able to identify an optimal partition or joint class351

intervals used as linear regressors.352

4.1. Simulation design and SPICEFP setting353

In order to carry out the simulations, a few steps were required:354

• We considered the observations of temperature (A) and irradiance (B) in the Vine dataset355

obtained between sunrise and noon during the week of July 17 to 24, 2014.356

• We then arbitrarily set a partition vector u0 = (nA = 17, nB = 20, αB = 0.05).357

• From A, B, and u0 we constructed Xu0 using equations (2.2) and (2.5). Xu0 was computed358

based on observed data set in order to respect realistic frequencies for the joint class intervals.359

• Based on dimensions of Xu0 , we drew coefficients βu0 from a random distribution (values are360

available on git@forgemia.inra.fr) and computed the response variable of the simulation:361

Y = Xu0βu
0

+ ε where ε ∼ N (0, σ2
εI). (4.1)

After that, we used the SPICEFP approach to make the estimation.362

In this simulation study, we chose to simulate two different coefficient vectors. They are as363

followed:364

• Coefficients βu0 for simulation 1 is made of two distinct patches (column 1, row 1 of the365

Table 2). Two noise levels were used and presented in table 1.366

• Coefficients βu0 for simulation 2 is made of a concentric gradient of coefficients (column 1,367

row 2 of the Table 2). Two noise levels were also used and presented in Table 1.368
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Table 1: Noise simulation design
Low noise High noise

Simulation 1 σε = 1.50 (σ2
ε/σ

2
Y = 0.03) σε = 2.5 (σ2

ε/σ
2
Y = 0.08)

Simulation 2 σε = 0.25 (σ2
ε/σ

2
Y = 0.01) σε = 1 (σ2

ε/σ
2
Y = 0.14)

We thus generated four simulation datasets (1 matrix Xu0 × 2 simulated coefficient vectors ×369

2 noise levels).370

The inputs required by the algorithm were as follows:371

• UA = {15, 16, . . . , 20}372

• UB = {18, 19, . . . , 22}373

• VB = {0.015, 0.05, 0.135, 0.405, 1.215}374

• K = 2375

• Γ = {0.0001, 0.05, 0.15, 0.45, 2, 8}376

• nλ = 100377

4.2. Simulation results378

The results of the simulations are presented in Tables 2 to 5 (Tables 4 and 5 are in the appendix).379

Table 2 is related to the estimated coefficient vectors and Tables 4 and 5 present respectively380

histograms of the residuals and scatter plots showing the quality of the estimates. For each of the381

four response variables (one per row), three estimations are provided (columns 3 to 5, Table 2),382

computed as follows:383

• column 3: at the first iteration, an exploratory matrix Xu1 indexed by a partition vector u1
384

is identified. The estimated coefficient at iteration 1 of SPICEFP is noted β1 (see algorithm 1,385

line 25). The estimated response Ŷ 1 = Xu1β1 and the residuals ε1 = Y − Ŷ 1 are computed.386

Figures in column 3 provide the visualization of β1. For a suitable visualization, the vector387

of coefficients is transformed into a matrix of dimension nA × nB, where nA et nB are the388

numbers of class intervals associated to u1.389

• column 4: at the second iteration, an exploratory matrix Xu2 indexed by a partition vector390

u2 is identified. The estimated coefficient at iteration 2 of SPICEFP is noted β2. The response391

variable used at the second iteration in the model is ε1, the residuals obtained at iteration392

1. The estimated response Ŷ 2 = Xu1β1 + Xu2β2 and the residuals ε2 = ε1 − Xu2β2 are393

computed. Figures in column 4 give the visualization of F (a, b) = F 1(a, b) + F 2(a, b) where394

F is defined as in Equation (2.3). In the case of the visualizations in Table 4, 500 equally395

spaced values of a ∈ [A, Ā] and 1000 equally spaced values b ∈ [B, B̄] were used.396

• column 5: the results presented in this column are slightly out of the scope of the SPICEFP397

approach and concerns only the outputs of iteration 1. The idea here is to consider an average398

of the 1% best models. The best models are defined in the sense of the information criterion.399

Best coefficients relative to the different partitions available in these 1% best models are400

identified. Let’s assume that there are nm. They are then indexed by u1,(1), u1,(2), . . . , u1,(nm).401

The coefficients of interest can be noted β1,(1), β1,(2), . . . , β1,(nm). The estimated response402
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is Ŷ 1,(1:nm) = 1
nm

nm∑
m=1

Xu1,(m)
β1,(m). All the selected models have the same weight in the403

computation of this average. The residuals can be obtained by ε1,(1:nm) = Y − Ŷ 1,(1:nm).404

Figures in column 5 show the visualization of 1
nm

nm∑
m=1

F 1,(m)(a, b) where F 1,(m) is the function405

related to model coefficients indexed by u1,(m).406

Black color refers to never-observed joint modalities whereas white color refers to joint modal-407

ities with null estimated coefficients. The histograms of residuals related to each estimation are408

presented in Table 4. On top of these histograms, the ratio between the variance of residuals and409

the variance of response variable are provided. Table 5 shows the goodness of fit of each estimation,410

by presenting the slope of the regression "predicted versus simulated variables". The closer to 1411

the slope is and the closer to 0 the ratio of variances is, the better the estimate is.412

From the estimates provided by the algorithm (Table 2), we notice that SPICEFP effectively413

identifies the simulated zones of influence and assigns the right color to the coefficients: the graphics414

show two distinct areas, one with positive coefficients (red area), the other with negative coefficients415

(blue area). The approach tends to assign the same value (same colour) to groups of estimated416

coefficients, although with a gradient within the group. This behavior can be explained on the one417

hand by the Generalized Fused Lasso which penalizes the difference between two related coefficients418

and on the other hand by the variance estimate used for computing the information criterion. This419

variance was overestimated, which penalized the introduction of new coefficients into the model.420

With respect to the noise level contained in the response variable, we note that the more noisy Y421

is, the more false positives are observed. Looking at the differences in the outputs of iterations 1422

and 2, we observe that coefficients are added to those previously obtained. These new coefficients423

lead to improved estimation when the noise is low. When the noise is high, the β estimate of the424

second iteration has non-zero elements in some areas that are not relevant: for example for high425

temperature and irradiance values. The average of the 1% best models underestimates, in both426

simulations, the amplitude of the β values but, in simulation 2, it restores the β support much427

better than the estimators obtained in iterations 1 or 2.428

5. Modeling the evolution of a grape berry quality index429

5.1. Methodology used for data analysis430

We focus in this section on the modeling of the Ferari Index variation ∆FI from July 24 to431

August 1, 2014. We selected the n1 = 32 individuals which have the highest contribution to final432

Ferari Index, with an initial index around 0.2 at the beginning of the week.433

Most of the photosynthetic functioning of the grapevine happens in the morning. The time434

period between sunrise and noon is denoted T1 below. The following variables and parameters are435

the input objects of SPICEFP.436

• yi = ∆FIi, Ai(t); Bi(t); i = 1, . . . , n1; t ∈ T1;437

• UA = UB = {10, 11, 12, . . . , 29, 30}438

• 10 values were chosen between 0.0025 and 1 for α based on an exponential function α ∈439

{0.0025, 0.0048, 0.0094, 0.0183, 0.0357, 0.0695, 0.1353, 0.2636, 0.5134, 1.0000}440

• K = 3441
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Table 2: Simulation results: estimation with the SPICEFP algorithm of two coefficient functions β with two types
of noise (high and low). n: Joint modalities that have never been observed.

Explanatory variables

Simulated coefficients
Simulation 1 Simulation 2

Responses
Low noise High noise Low noise High noise

Iteration 1

Iteration 2

Mean of top 1% (iteration 1)
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• Γ = {0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8, 25.6}442

• nλ = 20443

5.2. Results444

The results are presented in Table 3. The first column shows the estimated coefficients, the445

second column the histograms of residuals and the last column the scatter plots related to the446

goodness of fit. For this data set, SPICEFP stopped at the third iteration with a shutdown rule of447

zero coefficients.448

The first row of Table 3 contains the results observed at the first iteration of SPICEFP. In terms449

of model quality, the slope is 0.558 and the residuals follow a normal distribution centered in 0. The450

visualization of the coefficients indicates conditions (irradiance < 100 µmol m−2 s−1, temperature451

from 15°C to 33°C) that affect negatively the Ferari Index. The second row of Table 3 is relative452

to the results of the second iteration. Due to the fact that the coefficients retained in iteration 3453

are all zero, the result of the approach is therefore that of row 2. The slope of model goodness454

of fit is 0.678 and the residuals follow a normal distribution centered in 0. The visualization of455

the coefficients indicates, in addition to what is observed at iteration 1, a small positive influence456

(compared to the amplitude of the negative effect) of the temperature below 30°C for an irradiance457

higher than 100 µmol m−2 s−1.458

When focusing on the average of the 1% best models (presented in the third row), we remark459

that the quality of this model (as indicated by the slope : 0.472) is not better than that of the460

models chosen by SPICEFP at iteration 1 or 2. However, it should be noted that the model obtained461

has more fused coefficients, which allows the identification of a border zone between the positive462

and negative zones of influence.463

As an interpretation, we can note that, in the morning (sunrise to noon), for low irradiance464

values (< 100 µmol m−2 s−1), there is a range of temperature values that are not suitable465

for an increase of the Ferari index. On the contrary, a combination of irradiance values above466

150 µmol m−2 s−1 and temperature below 30°C is suitable for increasing the Ferari index. The467

average of the coefficients shows, within each of the non-zero zones of influence, a relative variabil-468

ity of the coefficients, suggesting the importance of some temperature and irradiance amplitudes.469

The slope coefficients of the goodness of fit of the models are away from 1. It should be reminded470

that the response variable is studied with respect to the variations of temperature and irradiance471

only between sunrise and twelve. There is also a lot of information hidden in the residuals.472

6. Discussion473

The SPICEFP approach is a scalar-on-function approach. The response variable is real and pre-474

dictors are functional variables. The approach is based on a transformation of functional variables,475

which yields a contingency table. To construct this table, it is assumed that no data are missing476

and that the times of observation are identical for both functional variables. The method takes into477

account the multicolinearity resulting from the auto-correlations existing in the processes. More-478

over, the constructed candidate explanatory matrices are not nested but they covered the same479

domain. That’s why model and variable selection methods (Fused Lasso, information criterion480

selection) had to be adapted and generalized to the framework of SPICEFP. In the implementation481

of the approach, all the candidate explanatory matrices are evaluated at each iteration. This is482

not due to a re-sampling as is the case for bootstrap or bagging methods, but to the evaluation of483

different partitions.484
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Table 3: Visualization of the combined effects of irradiance and temperature on the Ferari index (From sunrise to
twelve, n: joint modalities that have never been observed). Rows 1 and 2 present the results of iterations 1 and 2,
respectively. The third row presents the average of the 1% best models obtained at iteration 1.
Estimation of coefficients Histogram of residuals Goodness of fit

Iteration 1

Iteration 2

Mean of top 1% (iteration 1)

6.1. SPICEFP: a functional approach485

In recent years, several studies in frequentist and Bayesian statistics, parametric as well as486

non-parametric, have focused on functional data analysis. The solutions developed can be used to487

achieve a wide range of goals (dimension reduction, regression, clustering, classification, etc.). They488

provide models that are predictive but often difficult to interpret. This lack of interpretability is489

partly due to the pre-processing step required on the functional data, which must be projected into490

bases of functions (splines, kernels...). The transformation of functional variables is a fundamental491

step, no matter if the variable is a response variable or a predictor.492

The SPICEFP approach is primarily explanatory and not necessarily predictive. The first step493

is a transformation of the predictors into categorical variables. The choice of this transformation494

was motivated by the potential to interpret the results while considering the hypothesis of a joint495

influence of the predictors on the response variable. Each partition is a collection of 2D intervals,496

see §2.1. We constructed linear regressors on the basis of indicator functions associated to these497

2D intervals, see Equation (2.4). This basis of indicator functions is not common compared to498

polynomial basis, Fourier basis, wavelet basis, etc., [39]. In a previous work [21], the authors499

have focused on multidimensional penalized signal regression, a single surface was estimated with500

smooth regression coefficient using B-spline tensor products. In our case, the indicator functions501

facilitate the interpretation of the results, provided that both functional predictors (T in grape502
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berry dataset) are discretized over the same set of equidistant observation times. This constraint503

can be released with usual pretreatment such as:504

• imputation of missing data [32, 16]505

• interpolation, smoothing [25] or restriction of the functional variable to an identical set of506

observation times. Indeed, functions have uncountable supports.507

The use of 2D class intervals implies also the assumption that the structure of the underlying508

process does not change over the observation variable (time in the grape berry dataset). This509

is what we can call hypothesis of stationarity. For example, in our use case on grapevine, this510

hypothesis of stationarity requires to work at the scale of a week but also to split the day (working511

with observations obtained in the morning (sunrise to noon)). When analyzing the data in section512

5, we assumed that the underlying process is time-invariant in the mornings of the week under513

consideration.514

The method is design-dependent: it will not be able to properly estimate the β coefficient in515

an area with little or no data. It is therefore necessary to have data of (A,B) in areas where there516

is potentially something happening. There is also a limitation due to the curse of dimensionality517

[10]: "If the number n of observations remains fixed while the dimension p of the observations518

increases, the observations get rapidly very isolated and local methods cannot work.". The more519

fluctuations in many directions, the more data will be needed. Our approach will work best if the520

shapes are simple.521

6.2. SPICEFP: an iterative approach522

The SPICEFP approach can be summarized as follows: first, the functional predictors are trans-523

formed into a set of candidate matrices Xu (and Du,γ) for each (u, γ). Then we iterate the following524

steps: estimation of the coefficients for each of the candidate matrices, evaluation and selection525

based on the chosen validation information criteria with respect to (u, γ) and then checking of the526

shutdown conditions. The number of iterations performed is controlled by the shutdown condi-527

tions. The residuals obtained at iteration k are used as response variable at iteration k + 1. This528

iterative procedure has been implemented in order to:529

• extract knowledge still available in the residuals with the risk of overestimating the number530

of non-zero coefficients : This risk is linked to several factors such as:531

1. the noise level in the response variable: the higher the noise level in the response vari-532

able, the higher the risk of model misspecification in the SPICEFP approach [13]. This533

situation is well illustrated by the results of the simulations at iteration 2 (row 1 vs row534

2 and row 3 vs row 4, column 4, Table 2).535

2. the shape of the area of influence to be identified: the number of connected components536

to cover the shape increases when the shape is not a combination of rectangles. For a537

shape composed of rectangles of different sizes, the iterative approach allows changing538

the scale of the grid to get a refined estimation.539

This tolerance to the overestimation of the coefficients is made in return for the identification540

of easily interpretable areas of influence. This contributes to the explanatory character of the541

approach. The number of non-zero coefficients is also related to the value of the γ parameter542

presented in the Equation (2.7) which controls the ratio between parsimony and fusion of the543

coefficients. The lower the parameter γ (conditionally to the data), the larger the estimated544

area of influence. This increases the risk of getting unnecessary /untrue non-zero coefficients.545
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• Explore the space of observations by using different partitions/pavements (fine scale, large546

scale): from the second iteration onwards, the candidate matrix selected covers the same547

space as the previous one, with the difference that it can cover it with different widths. Thus548

new areas of influence can be identified, or existing ones reinforced, etc. There is therefore549

no independence between the different candidate matrices because they are all constructed550

from the observed predictors. Even if the response of the next iteration corresponds to the551

residuals of the previous iteration, this approach is not orthogonal.552

Eventually, the shutdown condition of SPICEFP is rather natural. The approach stops when the553

vector of coefficients at one iteration is null: in this case, the residuals of the model are equivalent554

to the response variable. This criterion is internal to the approach.555
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