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Abstract—Tone mapping operators (TMO) are functions which
map high dynamic range (HDR) images to limited dynamic media
while aiming to preserve the perceptual cues of the scene that
govern its aesthetic quality. Evaluating aesthetic quality of TMOs
is non-trivial due to the high subjectivity of preference involved.
Traditionally, TMO aesthetic quality has been evaluated via
subjective experiments in a controlled laboratory environment.
However, the last decade has brought a surge in popularity
of crowdsourcing as an alternative methodology to conduct
subjective experiments. However, uncontrolled experiment con-
ditions and unreliability of participant behaviour puts doubts
on the trustworthiness of the collected data. In this study, we
explore the possibility of using crowdsourcing platforms for
subjective quality evaluation of TMOs. We have conducted three
experiments with systematic changes to investigate the effect of
experiment conditions and participant recruitment methods on
the collected subjective data. Our results show that subjective
evaluation of TMO aesthetic quality can be conducted on Prolific
crowdsourcing platform with negligible differences in comparison
to laboratory experiments. Furthermore, we provide objective
conclusions about the effect of number of observers on the
certainty of the pairwise comparison results.

Index Terms—Subjective image quality, HDR, Tone mapping,
Crowdsourcing

I. INTRODUCTION

The objective of tone mapping is not just to reduce the
dynamic range for better representation of the scene but also
to preserve the perceptual cues for the human visual system
to maintain the aesthetic quality of the scene. The advent of
hyper-realistic multimedia has expedited the consumption of
HDR content. Hence evaluating quality of tone mapped images
has been a pertinent topic of research.

Evaluating quality of tone mapped images is subjective
because the process affects the visual cues of a scene. Research
on HDR imaging has produced many TMOs, however, due
to the aforementioned subjectivity of the results, evaluat-
ing TMOs remains a non-trivial problem. Researchers have
identified several objective factors like brightness, contrast,
colourfulness, structural fidelity etc. to come up with objective
metrics for image quality assessment (IQA) [1], [2]. However,
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the results of the metrics are often difficult to generalise and
remain far from the subjective opinion, to be treated as the
ground truth.

Subjective quality assessment is a more accurate method for
evaluating TMOs. It is also essential to develop and optimize
objective quality metrics. Over the last decade, crowdsourcing
has gained popularity as a cost, time and resource efficient way
to conduct subjective experiments. Crowdsourcing allows us
to collect large amount of data in a short amount of time with
minimal human interaction and is highly scalable. However,
uncontrolled experimental conditions and unreliability of the
participants has often put a barrier to a mass adoption of
such platforms. Perceived image quality heavily depends on
the visibility of distortions and which may be enhanced or
masked depending on the viewing conditions such as display
device, viewing distance, background luminance [3]. In aes-
thetic image quality evaluation scenario, distortion visibility
plays a minimal role. Thus, subjective preferences may have
desirable similarity between different viewing conditions. This
has led us to investigate the possibility of using crowdsourcing
platforms as a resource efficient platform to collect subjective
preferences. Therefore, in this paper, we seek answers to the
following questions: “Can crowdsourcing platforms be used
for TMO evaluation without compromising on the gathered
data? What are the effects of experimental conditions and
participant recruitment methods on the subjective preferences?
What are the effects of number of observers on the certainty
of the results?”

II. RELATED WORKS

We have handpicked four TMOs for our subjective evalu-
ation. A fairly recent comparative subjective study by Cerda-
Company [4] suggested that TMOs by Kim et al. [5],
Krawczyk et al. [6] and Reinhard et al. [7] have performed
better in comparison to several other TMOs under varied
scenarios. The final TMO is based on the recent work of
Goswami et al. [8], Semantic TMO which presents a new
approach of semantic-aware tone mapping.

In literature, there are several studies on subjective evalu-
ation of TMOs [4], [9]. Based on the use-case of the study,
TMO quality evaluation can be designed with the presence



Fig. 1. Example test screen.

of the reference HDR image i.e., Full-reference, or without it
i.e., No-reference. For an aesthetic quality evaluation use-case
such as ours, a no reference methodology is preferred.

Crowdsourcing platforms such as Prolific [10], AMT [11]
and Microworkers [12] have not been extensively utilised
for subjective evaluation of TMOs. There is a recent large-
scale study where crowdsourcing has been adopted to collect
subjective preferences on aesthetic evaluation of HDR pro-
cessing [13]. However, the dataset contains different types of
algorithms to process HDR images and does not provide a
TMO comparison for the same source image. As also pointed
out in the aforementioned study, subjective data collected via
crowdsourcing may be noisy due to the lack of control in the
experiment conditions. Several methods have been developed
to filter unreliable observers and noisy data [14], [15]. Ak et
al. [14] provided comprehensive analysis on the methods to
detect unreliable observers in a crowdsourcing experiment for
aesthetic quality evaluation of TMOs. In literature, there are
also traditional methods, such as reliability checks [16] and
gold standards [17] where previously obtained results from
reliable participants have been compared to crowdsourcers’
responses to detect unreliable behaviours. Aesthetic evaluation
may depend on several human factors which govern the
observer preference for images. Such factors, which can be
regulated in the controlled laboratory environment, are absent
in the crowdsourcing setup [16]. Gadiraju et al. [18] focused
on such contributing factors when dealing with human-centric
experiments via crowdsourcing.

III. EXPERIMENTAL DESIGN

We conducted 3 different experiments with systematic
changes in order to investigate the accuracy of the data
collected from Prolific crowdsourcing platform [10] for TMO
evaluation. In the following subsections, we describe the
experiment setup, the dataset and the platforms used for each
experiment.

A. Experiment Setup & Procedure

Subjective evaluation of TMOs can be conducted with
a full-reference or a no-reference methodology. Our study
aims to compare TMOs among each other on the basis of
observed aesthetic quality rather than comparing their natu-
ralness, fidelity or proximity to the original scene. Therefore

Fig. 2. Cropping high resolution images to create 20 SRCs.

no-reference methodology is more suitable for the task [19].
Furthermore, on crowdsourcing platforms it is practically
difficult to conduct a full-reference experiment as it would
require an HDR screen for each observer. Therefore, we follow
a no-reference design to collect subjective preferences.

We adopt the forced-choice pairwise comparison (PC)
method in the conducted experiments. It simplifies the evalua-
tion task for the observers, therefore increasing the reliability
of the collected preferences. Compared to alternatives, such
as absolute category rating, the number of comparisons for
the same number of content in PC is exponentially higher.
Adaptive designs can be adopted to reduce the number of
comparisons [20], resulting in unbalanced number of obser-
vations. Although, it may not be efficient to use adaptive
designs in online platforms such as Prolific [10]. An appli-
cation programming interface (API) is necessary to be able
to benefit from such designs which is not available on every
crowdsourcing platform. Additionally, since the aim of our
study is to compare different platforms, unbalanced number
of observations may result in unfair judgement. Therefore, we
follow a full PC design in our experiments. An example test
screen used in the experiments is shown in Fig. 1 where the
observers are tasked to choose the image they prefer.

B. Stimuli & Database

For the creation of the TMO evaluation dataset, we selected
20 source contents (SRC) from Fairchild’s HDR dataset [21].
The spatial resolution of the images in Fairchild dataset is
fairly high. Thus we scale down and systematically crop
the images to a resolution of 640 × 480. It allows us to
display the stimuli side by side on display devices with 1080p
resolution. We further shortlist a selection of crops using



TABLE I
OBSERVER STATISTICS

Number of
Unique Obs.

Mean Age
(Years)

Gender
Female / Male

Avg. Time
Per Comparison

(Seconds)

Exp-Lab 40 33.5 22 / 18 7.49
Exp-Online 50 22.6 28 / 22 4.33
Prolific 100 28.5 116 / 284 3.64

their absolute dynamic range and the entropy of their salient
features in order to promote challenging content. Afterwards,
the shortlisted crops are clustered based on TMQI [2] scores
of the tone mapped images. Finally, we select a total of 20
SRC among the clusters. Fig. 2 contains a cropping example
in addition to 20 SRCs used in the experiment. SRCs in
the figure are tonemapped for visualization purposes using
the ReinhardTMO [7] implementation from Banterle’s HDR
Matlab toolbox [22].

Four tone mapping operators, ReinhardTMO [7], Krawczyk-
TMO [6], KimKautzTMO [5] and SemanticTMO [8], have
been selected from literature. We have tone mapped 20 SRC
using the selected TMOs using ReinhardTMO, Krawczyk-
TMO and KimKautzTMO, implementations from the Matlab
HDR Toolbox [22]. Adjustable parameters of each TMO have
been optimized to maximise their respective TMQI scores [2].

In the end, we have compiled a dataset with 20 SRCs tone
mapped using 4 TMOs, resulting in a dataset1 with 80 tone
mapped images and 120 unique pair of comparisons without
cross content inclusion. We understand that creating a global
ranking scale via cross content comparisons is not intuitive
for us as we evaluate content specific aesthetic quality across
TMOs.

C. Subjective Experiment Platforms

The primary experiment, Exp-Lab, was conducted within a
controlled laboratory facility. The experiment conditions were
set as recommended in ITU-R BT.500-14 [23]. Grundig Fine
Arts 55 FLX 9492 SL is used to display the image pair side
by side. 40 observers, 22 female and 18 male, who are not
experts in image quality domain, were recruited through the
university mailing list. The average age of the participants was
33.5 years. Each participant was checked for visual acuity with
Monoyer test and color perception with Ishihara tests. Each
observer provided their preferences for all of the 120 pairs in
the dataset with a break after the 60th pair. The average time
taken per comparison was 7.49 seconds for an observer.

The second experiment, Exp-Online, was conducted with
the same stimuli and experiment design. Participants were
recruited through the same mailing list used for the Exp-Lab
experiment. Each observer conducted the experiment on their
own devices in their desired uncontrolled environment. 50
observers, 28 female and 22 male with 22.6 years average
age, were recruited in total. Due to lower attention span of

1Dataset and implementation codes for analysis can be found at
ftp://ftp.polytech.univ-nantes.fr/TMOEval PilotStudies

Fig. 3. Scatter plot comparison for the conducted experiments. Each point
represents an image pair from the dataset. Axis values represent the percentage
of votes for the same image in a pair. MPD is the mean of the perpendicular
distances of the points from the diagonal.

Fig. 4. Subjective preference comparison distributions of randomly split
halves over 1000 permutations for Exp-Lab experiment. MPD value represents
the mean perpendicular distance across all permutations.

participants in crowdsourcing experiments, we split the initial
dataset into 4 playlists of 5 SRCs with 30 comparisons in
each [24] [14]. Each participant was asked to complete all 4
playlists without any constraint on the break between playlists.
The average time taken for an observer was 4.33 seconds per
comparison.

The third experiment, Prolific, was conducted with the
same stimuli and experiment design on the Prolific [10]
crowdsourcing platform. Unlike the first two experiments,
observers were recruited through Prolific participants pool.
400 participants, 116 female and 284 male, were recruited
from more than 20 different countries, majority being from
Europe. Mean age of the participants was 28.5 years. Similar
to the Exp-Online experiment, we split the initial dataset into 4
playlists of 5 SRCs with 30 comparisons in each. 100 unique
participants evaluated each playlist. The average time spent
per comparison was 3.64 seconds. Table I summarises the
demographic information and statistics regarding to observers.

IV. EVALUATION AND RESULTS

As described in the earlier sections, we conducted the
same experiment on three different platforms with minimal
difference in the setup. Using the collected data we continue to
observe whether crowdsourcing methodology can be reliably
used for aesthetic evaluation of TMOs. In the following
subsections, we first evaluate the similarity between the results
collected across the experiments. Furthermore, we investigate



TABLE II
COMPARING STATISTICALLY SIGNIFICANT DIFFERENCES BETWEEN IMAGE

PAIRS ACROSS 3 EXPERIMENTS .

Comparison Agreement Disagreement Contradiction

Exp-Lab vs Exp-Online 73 38 9
Exp-Lab vs Prolific 89 27 4
Exp-Online vs Prolific 89 31 0

the agreement among observers in the conducted experiments.
Finally, we use the permutation test to quantify the effect
of the number of observers on the certainty of the pairwise
preferences.

A. Pairwise Preference Similarity Between Experiments

Fig. 3 presents a qualitative comparison of the conducted
experiments. The plots compare the preference behavior of
observers between the experiments. Each point, corresponding
to an image pair in the dataset, plots the percentage of times
Image-A in A-B comparison was preferred. Each axis repre-
sents the labeled experiment in comparison. Additionally, we
compute the Mean Perpendicular Distance (MPD) to quantify
the similarity between the experiments. MPD is calculated as
the mean value of the perpendicular distance of each point
from the diagonal. In case of a perfect agreement between
the experiments, each image pair should lie on the diagonal.
Therefore, a smaller MPD indicates a higher similarity be-
tween the compared experiments. Based on this, we observe
that the distribution between Exp-Lab and Prolific experiment
results are more linear and less scattered compared to Exp-Lab
and Exp-Online, indicating a higher similarity for the former.
We observe even higher similarity between Exp-Online and
Prolific experiments despite the uncontrolled environmental
conditions in both experiments. After comparing experiment
results relative to each other, we use permutation test to
compute an expected MPD value. We split the observers from
Exp-Lab experiment into two disjoint groups and compare
their cumulative preferences for 1000 iterations. We use this
as a baseline to evaluate the cross-experiment agreements.
Distribution of the permutation results is plotted as a two
dimensional histogram in Fig. 4. Average MPD across 1000
iterations is calculated to be 0.0740. As reported in Fig. 3,
MPD between Exp-Lab and Prolific is computed to be 0.0746,
suggesting a desirable similarity between Exp-Lab and Prolific
results.

In addition, we analyze the similarity of how much the
acquired results agree on whether there is a statistically sig-
nificant difference between the image pairs. Table II presents
the result of this analysis. Each row in the table corresponds
to a comparison between the conducted experiments. We use
Barnard’s test on the pairwise comparison results to determine
the statistical significance between pairs [25]. Agreement value
represents the number of pairs where both experiments agree
on the outcome of Barnard’s test of statistically significant
difference. Disagreement value represents the number of pairs
where only one of the experiments indicate a statistically

Fig. 5. Mean observer dissimilarity distributions. Each sample represents
the mean RT dissimilarity of an observer to rest of the observers in the
corresponding experiment

significant difference while it is insignificant for the other.
Contradiction value corresponds to pairs where the sign of the
statistical difference is reversed i.e., one of the experiments
indicates that for pair A-B, A is significantly better than B
whereas the other experiment suggests preference of B over
A. Similar to the MPD values, we observe a higher agreement
between Exp-Lab and Prolific experiments compared to Exp-
Lab and Exp-Online experiments in terms of statistically
significant difference among the pairs.

B. Observer Agreement

Due to subjectivity of the aesthetic preferences, it is ex-
pected to have a high variance between the observer pref-
erences in TMO evaluation. Therefore, observer agreement
does not necessarily correlate with the observer reliability.
Nevertheless, it provides valuable insight regarding the effect
of experimental conditions on the observer agreement.

Since pairwise preferences are acquired in a binary form,
i.e., Image A is better/worse than Image B, traditional corre-
lation analysis fail to capture the agreement among observers.
In order to measure the agreement of each observer with the
rest of the peer population in the experiment, we utilized
the Rogers-Tanomoto (RT) distance [26]. RT metric measures
the dissimilarity between two binary vectors. It is robust
to sample size differences and can use a weight vector to
prioritize each observation. Fig. 5 shows the distribution of the
mean observer RT dissimilarities within their corresponding
experiments. Black horizontal lines indicate the median ob-
server dissimilarity for each experiment. RT values are bound
between 0 and 1, and lower values indicate a higher agreement.
Cumulative preferences of all observers are used as a weight
in calculation. Therefore, distance calculation penalizes the
dissimilarities on pairs with higher statistical difference. As
shown, observers in the Exp-Lab experiment have a higher
agreement among themselves as compared to the online ex-
periments. Additionally, we observe a higher agreement among
observers in Exp-Online experiment compared to Prolific.



TABLE III
KRIPPENDORFF ALPHA INTER-OBSERVER AGREEMENT

All pairs Signf. Diff. Pairs

Plist-1 Plist-2 Plist-3 Plist-4 Plist-1 Plist-2 Plist-3 Plist-4

Exp-Lab 0.2244 0.2512 0.2020 0.3229 0.2856 0.3274 0.3214 0.3579
Exp-Online 0.1653 0.2420 0.1571 0.2496 0.2328 0.3157 0.2187 0.4420
Prolific 0.1576 0.1904 0.1424 0.2224 0.1871 0.2602 0.1958 0.3048

Table III presents the results of Krippendorff alpha evalua-
tion on each experiment. Krippendorff’s alpha value measures
the inter-observer agreement in an experiment [27]. Higher
alpha values indicate higher agreement among the observers.
Since our online experiments are split into 4 playlists, we
sampled each observer’s data accordingly for the Exp-Lab ex-
periment. The first 4 columns represent the alpha values on all
pairs in corresponding playlists. Additionally, last 4 columns
represent the alpha values for the pairs with statistically
significant differences. Similar to the RT dissimilarity analysis
results, we observe higher agreement among observers in Exp-
Lab experiment compared to online experiments. For all the
experiments, observers show higher agreement on pairs with
statistically significant differences.

C. Effect of Number of Observers

A standard way to observe how the number of observers
affects the experiment results is by bootstrapping. We create
subsets of observers with incremental size from a randomly
shuffled list of all observers and evaluate the experiment
results over all created subsets. When repeated for a significant
number of iterations, we can determine the required number of
observers for a desired level of certainty. We start by shuffling
our total list and select 10 observers and their preference
data. We use Barnard’s test to check whether a statistically
significant difference exists between the pairs with these 10
observers. The next observer’s preferences are then combined
with the existing preferences and Barnard’s test is conducted
again. This step of increasing the subset size is repeated until
the maximum number of observers is reached. This proce-
dure is repeated 1000 times separately for each experiment.
As a result of this bootstrapping, we can observe for each
stimuli pair for 1000 instances, when the observer preference
converges to a conclusion with significant difference. Difficult
pair of images may result in delayed convergence beyond the
maximum number of observers available resulting in incorrect
inference. To increase the reliability of the results within the
maximum number of observers, we check the consistency of
the convergence for each pair, i.e, non-fluctuating Barnard’s
test results for the observers between N − 5 and N , where
N is the maximum number of observers. In order to compute
an expected baseline, independent of the observer order, we
also calculate the Barnard’s test results for maximum number
of observers over 100 permutations. Finally, the distribution of
results acquired through bootstrapping over 1000 iterations are
compared with the expected baseline results calculated over
100 permutations to find a measure of certainty. Fig. 6 presents
the outcome of the permutation test. Y axis represents the

Fig. 6. Effect of number of observers on the certainty of the acquired results
over 100× 1000 permutations. Y axis is the percentage of pairs which reach
to the final conclusion with corresponding number of observers at X axis.

certainty in percentage where 100% indicates a perfect match
of the convergence distribution between the two permutation
test of 1000 and 100 iterations for all pairs in the evaluation.
Each color represents an experiment. Solid lines represent
certainty percentages over all pairs whereas dashed lines
represent certainty percentages only for the common pairs with
statistically significant difference. As visualised, to reach the
same certainty of the Exp-Lab experiment with 35 observers,
Exp-Online requires 40 observers, and Prolific requires 50
observers. Similarly. for the common pairs with statistically
significant difference among all experiments, to reach the same
certainty of the Exp-Lab experiment with 35 observers, Exp-
Online requires 25 observers, Prolific requires 60 observers.

V. CONCLUSION AND DISCUSSION

In this study, we conducted three different experiments
with systematic changes to investigate the possibility of using
crowdsourcing platforms for aesthetic evaluation of TMOs.
First, we collected subjective data in a controlled laboratory
environment to acquire expected desired pairwise preferences.
The second experiment was conducted online via a private
call to the same recruitment channel to isolate the effect
of uncontrolled experiment conditions. Finally, we conducted
the same experiment on Prolific with the participants pool
available on the website.

Comparing the three experiments revealed that the online
experiments provide desirable similarity in terms of subjec-
tive preferences. Furthermore, effect of Prolific participants
pool on the cumulative pairwise preferences is favorable and
brings a degree of certainty after reaching certain number of
observations per stimuli. We see a higher variation among
observers’ subjective preferences in Exp-Online and Prolific.
This is not a surprising outcome considering the uncontrolled
environmental conditions of the experiments. Finally, we com-
pared the certainty of the collected subjective preferences with
varying number of observers. To reach the desired level of
certainty, Prolific requires higher number of observers overall



when compared to other experiments. Considering the lower
cost of recruitment through Prolific and the availability of
a wider audience, we find Prolific advantageous in terms of
certainty acquired per resource spent.

Hence, through extensive analysis we confirm that Prolific
can be safely used to collect subjective preferences on aesthetic
evaluation of TMOs. We believe that this conclusion can be
generalized to other aesthetic image quality evaluation tasks
which do not depend highly on viewing conditions. Finally,
we also observe that, depending on the expected certainty
compared to the in-lab experiment, the required number of
observers to evaluate each pair of stimuli lies between 50 to
60 for a full pair comparison design.
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