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We propose a learning-based method for lossless light field compression. The approach consists of two steps: first, the view to be compressed is synthesized based on previously decoded views; then, the synthesized view is used as a context to predict probabilities of the residual signal for adaptive arithmetic coding. We leverage recent advances in deep-learningbased view synthesis and generative modeling. Specifically, we evaluate two strategies for entropy modeling: a fully parallel probability estimation, where all pixel probabilities are estimated simultaneously; and a partially auto-regressive estimation, in which groups of pixels are predicted sequentially. Our results show that the latter approach provides the best coding gains compared to the state of the art, while keeping the computational complexity competitive.

I. INTRODUCTION

Light fields are immersive visual representations that store the intensity of light rays of a scene. Techniques to capture light fields include using an array of cameras or inserting an array of microlenses (lenslets) in front of a camera sensor to acquire a collection of images from different viewpoints. Given the sheer amount of data this acquisition entails, light field coding is essential to practical applications.

In recent years, many methods for lossy compression of light fields have been proposed [START_REF] Conti | Dense light field coding: A survey[END_REF]. One of the main approaches consists of using view synthesis to radically reduce the number of views that need to be encoded by utilizing geometry information to generate remaining views at the decoder. Furthermore, by incorporating a residual signal, additional gains can be obtained.

In this work, we follow this paradigm and employ a recently proposed learning-based view synthesis technique to generate a high-quality prediction for lossless compression of light fields captured using LF cameras, e.g., Lytro. In contrast to typical lossless compression methods that use small local contexts for arithmetic coding, our approach can leverage a larger context obtained from several views. In addition, we estimate the symbol probabilities using a deep generative model [START_REF] Salimans | PixelCNN++: A pixelcnn implementation with discretized logistic mixture likelihood and other modifications[END_REF]. While initially proposed to generate images, deep generative models, and in particular auto-regressive methods that explicitly compute the data likelihood, have been recently shown to provide accurate probability estimates for lossless coding of pictures [START_REF] Mentzer | Practical full resolution learned lossless image compression[END_REF], [START_REF] Mentzer | Learning better lossless compression using lossy compression[END_REF] and 3D point clouds [START_REF] Nguyen | Learningbased lossless compression of 3D point cloud geometry[END_REF]. To our knowledge, this is the first work applying deep conditional probability estimation in conjunction with view synthesis for This project has received funding from EU's H2020 ITN programme, under the MSCA grant agreement No 765911 (RealVision). coding of light fields. Our results show more than 2% improvement in bitrate compared to the best performing state-of-the-art method while being competitive in terms of execution time.

The rest of the paper is organized as follows. Section II cites the related work on lossless LF image compression with the emphasis on the approaches proposed for decoded lenslet modality. We also mention relevant generative models and recently proposed learning-based approaches for lossless image compression. Section III describes the proposed method. In Section IV, variants of the proposed method are compared, along with a comparison to state-of-the-art methods in terms of bitrate and execution time. Section V concludes the presented work and outlines possible research directions.

II. RELATED WORK

In this paper, we focus on light fields obtained by lenslet cameras. Lossless compression of light fields can be broadly divided into two groups. The first group of methods tackles the problem of coding the raw lenslet image [START_REF] Perra | Lossless plenoptic image compression using adaptive block differential prediction[END_REF]- [START_REF] Tabus | Lossless compression of plenoptic camera sensor images[END_REF]. The other group of methods deals with rectified light field images, i.e., light fields obtained from raw sensor image through decoding procedure [START_REF] Dansereau | Decoding, calibration and rectification for lenselet-based plenoptic cameras[END_REF]. Helin et al. [START_REF] Helin | Sparse modelling and predictive coding of subaperture images for lossless plenoptic image compression[END_REF] first encode the center view and its quantized depth map. Then, the center view is partitioned based on the depth values, and for each partition, disparities with respect to side views are computed and transmitted to partition the side views. Residuals, predictor coefficients, and binary sparsity masks are encoded. In a follow-up work [START_REF]Minimum description length sparse modeling and region merging for lossless plenoptic image compression[END_REF], the compression performance is improved by segmenting the central view using a complex color-and depth-based segmentation approach, while variable length coding is used to encode the prediction mask and the coefficients of the sparse predictor. Santos et al. [START_REF] Santos | Lossless light-field compression using reversible colour transformations[END_REF] conduct a study on the impact of reversible color transformations and data arrangements for pseudo-sequence generation for lossless light field coding. The study shows the superiority of the forward reversible multiple component transform (RCT) [START_REF]Information technology -JPEG 2000 image coding system: An entry level JPEG 2000 encoder[END_REF]. Schiopu et al. [START_REF] Schiopu | Lossless compression of subaperture images using context modeling[END_REF] propose a local, context-based method for lossless compression. Each pixel is adaptively predicted from close co-located pixels in the reference frame based on the edge information. The prediction is subtracted from input values, and three matrices are generated: small residual, high residual, and error sign. The small residual matrix is encoded using context modeling defined by the regions obtained from image segmentation. In [START_REF] Santos | Lossless coding of light field images based on minimum-rate predictors[END_REF]- [START_REF] Santos | Lossless coding of light fields based on 4D minimum rate predictors[END_REF], minimum-rate predictors are employed that obtain competitive performance, but with a high computational cost. Another line of works achieve interesting results with a complexity similar to standard coding tools by adapting the CALIC codec [START_REF] Wu | Context-based, adaptive, lossless image coding[END_REF] to operate on the Epipolar Plane Image (EPI) representation of light field [21] [22].

Recently, deep learning has been applied to lossless compression of light fields [START_REF] Schiopu | Macro-pixel prediction based on convolutional neural networks for lossless compression of light field images[END_REF]- [START_REF] Schiopu | Deep-learning-based macro-pixel synthesis and lossless coding of light field images[END_REF]. Schiopu et al. [START_REF] Schiopu | Macro-pixel prediction based on convolutional neural networks for lossless compression of light field images[END_REF] design a deep convolutional neural network that uses a neighborhood of six macro-pixels to predict the current macro-pixel. Then, the residual is encoded using a modified version of the CALIC codec. Kaya et al. [START_REF] Kaya | Corner view disparity estimation for lossless light field compression[END_REF] propose CEPINET, a variant of EPINET [START_REF] Shin | EPINET: A fully-convolutional neural network using epipolar geometry for depth from light field images[END_REF], which estimates disparity maps of corner views. Textures and disparity maps of corner views and the center view are encoded. Then, a disparity map is generated for each target view by warping the closest reference disparity map to the target view location. The disparity map is divided into connected regions, and for each region, the index of the best reference view (that minimizes MSE over the region) is assigned. Finally, the residual image is also computed and encoded. In [START_REF] Schiopu | Deep-learning-based macro-pixel synthesis and lossless coding of light field images[END_REF], view synthesis and prediction methods based on macro pixels are proposed. The authors also study the influence of the size of the reference image set and modify the CALIC codec's binary mode to utilize different causal neighborhoods.

Recently, deep learning-based auto-regressive models have been successfully applied to lossless image compression [3] [4]. Their emergence is not surprising, considering their aim is to explicitly model the distribution of underlying data utilized for entropy coding. These tools achieve similar or better performance than state-of-the-art image codecs such as BPG and FLIF. Mentzer et al. [START_REF] Mentzer | Practical full resolution learned lossless image compression[END_REF] propose a hierarchical approach with learned feature extractors which generate latent representations transmitted to the decoder. At the decoder, latent representations are processed by decoding blocks and are used to estimate the probability distributions necessary for decoding the latents at the higher level. In [START_REF] Mentzer | Learning better lossless compression using lossy compression[END_REF], the authors design a twolayer lossless compression method by leveraging the standard coding tool BPG. The input image is first encoded with BPG. Then the residual between the input and its processed variant is entropy coded using the probability distribution estimated by a neural network. The network provides parameters of the probability distribution for each pixel allowing efficient, parallelized processing.

III. PROPOSED METHOD

Our approach takes inspiration from learning-based lossless image compression [START_REF] Mentzer | Learning better lossless compression using lossy compression[END_REF] and image generation [START_REF] Reed | Parallel multiscale autoregressive density estimation[END_REF] [START_REF] Kolesnikov | PixelCNN models with auxiliary variables for natural image modeling[END_REF], which are combined with view synthesis [START_REF] Navarro | Learning occlusion-aware view synthesis for light fields[END_REF] to enable the prediction of views from a set of reference views. The overall design of the proposed method is presented in Fig. 1. At the encoder side, reference views and the input view index are provided to the View Synthesis module, which predicts the input view. Then, the prediction is subtracted from the input view. The obtained residual signal is entropy coded using an arithmetic coder (AC) provided with probability distributions computed on a per-pixel basis by the Entropy Modeling block given the prediction. At the decoder, the prediction from the View Synthesis module is used to estimate probability distributions for decoding, and the decoded residual signal is added to the prediction to reconstruct the input view. View Synthesis and Entropy Model are briefly described in the following subsections. 

A. View Synthesis

To estimate a novel view, Navarro et al. [START_REF] Navarro | Learning occlusion-aware view synthesis for light fields[END_REF] propose three distinctive blocks, a feature extractor, a disparity estimator and a per-pixel view selector. Given the set of corner views I c of a light field image L(x, u), where x and u denote spatial and angular positions of light rays, and the position of a view to be synthesized ũ, the feature extraction network F e computes the feature map of each corner view I ci independently:

F ci = F e (I ci , ũ). (1) 
The features are then concatenated in a vector F together with the position of the novel view ũ and provided to the disparity estimation network F d to estimate the vector of disparity maps D of the novel view:

D = F d (F, ũ). (2) 
Initial estimates of the novel view W ci are obtained by backward warping the corner views using the corresponding disparity maps,

W ci (x) = I ci (x + D ci (x) • (c i -ũ)). (3) 
In the final stage of the scheme, the selection network F s computes the contribution M ci for each initial estimate

W ci M = F s (W, D, ũ). (4) 
where M and W are concatenated vectors of merging maps M c and initial estimates W c . The final estimate of the novel view Îũ is obtained by merging initial estimates as a weighted sum

Îũ = L(x, ũ) = ci∈c M ci (x)W ci (x). (5) 

B. Entropy model

Mentzer et al. [START_REF] Mentzer | Learning better lossless compression using lossy compression[END_REF] propose a Residual Compressor (RC) which takes the decoded input image, obtained through BPG coding, and estimates a set of parameters which model the probability mass function of the residual signal r x between the input pixel value x and its decoded version x, i.e., p m (r x |x), which is used to encode/decode the residual. The probability mass function is modeled with a mixture of logistic functions

p(r x ) = K k=1 π k p L (r x |µ k , σ k ), (6) 
where

p L (x|µ, σ) = e -rx-µ σ σ(1+e -rx-µ σ ) 2
and K is the number of mixtures. Furthermore, the method encodes/decodes pixels channel-by-channel and conditions the current color channel on previously decoded channel(s):

μk c = µ k c + ci∈cprev λ k ci r x,ci . (7) 
We utilize the same architecture as proposed in [START_REF] Mentzer | Learning better lossless compression using lossy compression[END_REF] while changing the number of filters, i.e., C f = 64, and number of residual blocks to 8. More importantly, we use the synthesized view Îũ as input and compute the residuals with respect to it. The weights of the RC network are learned by minimizing the cross-entropy loss

J(θ) = - x∈Iũ log 2 (p m (r x |x)). (8) 
The architecture of [START_REF] Mentzer | Learning better lossless compression using lossy compression[END_REF], which we denote as Base in the following, estimates the pixel distribution for every pixel in a single pass, allowing parallel and efficient processing. On the other hand, to improve the estimation locally, one could use neighboring, previously decoded pixel values as it is typically done in lossless compression schemes. In order to improve performance, we propose to divide pixels into coding groups and to use previously decoded groups to estimate the parameters for the following groups. Notice that a similar approach has been considered in a recent work for image generation [START_REF] Reed | Parallel multiscale autoregressive density estimation[END_REF] and point cloud coding [START_REF] Nguyen | Multiscale deep context modeling for lossless point cloud geometry compression[END_REF].

The simplest version of this approach consists of using a group for each pixel, which corresponds to PixelCNN [START_REF] Salimans | PixelCNN++: A pixelcnn implementation with discretized logistic mixture likelihood and other modifications[END_REF]. By increasing the size of the groups and by assuming that pixels within each group are conditionally independent, it is possible to estimate in parallel all the pixels in a group from previously 0 3 2 1 2 3 0 3 3 3 3 3 3 3 2 3 2 3 2 3 2 1 3 3 1 3 3 1 2 3 2 3 2 3 2 3 3 3 3 3 3 3 0 3 2 1 2 3 0 2 1 2 0 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 2 1 2 1 2 0 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 2 1 2 0 4 x 3 x 1 x 3 x 4 x 0 4 x 4 x 5 + 4 x 5 + 4 x 4 x 3 x 5 + 3 x 5 + 3 x 5 + 3 x 1 x 4 x 5 + 2 + 5 + 4 x 1 x 3 x 5 + 3 x 5 + 3 x 5 + 3 x 4 x 4 x 5 + 4 x 5 + 4 x 4 x 0 4 x 3 x 1 x 3 x 4 x 0 Fig. 2. Hierarchical levels for prediction of views with Corner arrangement (left) and Cross arrangement (middle). At each level i, views can be predicted from decoded views from previous levels, i.e. iprev < i. Prediction scenarios applied in Hybrid variant (right). The number denotes the prediction level i while the superscripts denote the arrangement of the reference views used for the prediction, i.e. x and + denote Corner and Cross arrangements. decoded groups. In our experiments, we use four groups (each containing N/4 pixels), where each group contains every other pixel in the horizontal and vertical directions, similar to a checkerboard pattern.

C. Training details

We train our models on 3323 LF images of size 7 × 7 × 376 × 541 from the Flowers dataset [START_REF] Srinivasan | Learning to synthesize a 4D RGBD light field from a single image[END_REF]. First, the view synthesis method for both arrangements, Corner and Cross, are pretrained. Here we used the same settings as done in [START_REF] Mukati | Improved deep distributed light field coding[END_REF]. Then, the view synthesis network parameters are fixed, and we train the residual estimation network. The input LFs are cropped along angular dimensions by selecting center 8 views. At each iteration, a 4D patch of size 7 × 7 × 128 × 128, the positions of the reference views and the target view are randomly selected. Then, we randomly perturb color channels to increase the training dataset's color diversity and finally apply gamma correction selected from an interval [0.4, 1.0]. We use a batch size of 16 and Adam optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] to update weights.

IV. RESULTS

A. Dataset

The proposed method is evaluated on 12 LF images proposed in [START_REF] Rerábek | ICME 2016 grand challenge: Light-field image compression -call for proposals and evaluation procedure[END_REF] from the EPFL dataset [START_REF] Rerábek | New light field image dataset[END_REF]. We use Lytro Power Tool1 (LPT) to decode raw LFs, we apply a gamma correction of 0.45 and quantize to 8 bits. Moreover, LFs are cropped in angular and spatial dimensions to 7 × 7 views (we use top-left 7 × 7 crop of center 8 × 8 crop) and 320 × 512 pixels, respectively. Note that the outer views of decoded LFs are corrupted with vignetting artifacts and thus cropped to a smaller size.

B. Prediction variants

In the view synthesis task, typically, the whole LF is synthesized from a fixed set of reference views. On the other side, in lossless compression, as views become available after decoding, it becomes possible to dynamically select reference views and leverage reduced baseline between views for improved prediction. However, a potential drawback could be reduced random access capabilities as later views depend on previously encoded/decoded views. Here we compare both cases, namely the Single method, which operates on a single level and predicts views from the corner references, and the Hierarchical where three levels are incorporated as depicted on the left part of Figure 2. In the first level, the method processes the corner views and the middle views on the boundary of the LF, i.e., between corner views. Then, in the second level, a subset of views in each quadrant is estimated. Finally, the rest of the views are predicted from their neighboring four views in the third level. Besides utilizing corner views as reference views, we also examine cross arrangement, which proved to be superior to the corner arrangement in recent work [START_REF] Mukati | Improved deep distributed light field coding[END_REF]. We note that the corner approach is more flexible in selecting reference view as the cross approach demands odd angular size in order to select reference views. For instance, in an LF of 4 × 4 angular size, in order to utilize cross arrangement, it would be necessary to operate on LFs of 3 × 3 angular size. Conversely, the cross arrangement provides superior prediction. Thus, we finally consider a Hybrid approach which benefits from the qualities of both arrangements. The approach is illustrated on the right part of Figure 2 where the numbers denote hierarchical levels while the superscripts denote arrangements. The reference views are encoded independently using the L3C method, but any method can be utilized in general. Table I shows a comparison of the proposed variants. The columns marked as Single present the performance of the proposed method where four reference views are independently encoded and used to estimate all the other views. This setup is the most efficient from a random access perspective for the given view synthesis module. Better performance of Cross arrangement can be noted compared to Corner arrangement. These results are also aligned with previous research [START_REF] Mukati | Improved deep distributed light field coding[END_REF].

The terms Hierarchical denote variants of the proposed method, which allow dynamic selection of reference views in order to achieve better prediction and lower bitrate at the cost of reduced random access capabilities. The hierarchical levels of Corner, Cross and Hybrid sub-column are illustrated in Figure 2. First, the Corner variant shows better performance compared to the Cross variant. Interestingly, the result is opposite to the result observed for Single setup, which could be explained by the lower number of hierarchical levels and reduced prediction capabilities and implying the lack of flexibility of the Cross arrangement. Second, additional gains compared to the two arrangements can be achieved by combining them as presented in the column Hybrid. Finally, we also present the result of the Base method (without spatial grouping), which has a lower memory footprint and better execution time, but lower probability estimation accuracy. As the Entropy model of the Base method has four times less parameters compared to the proposed method, in order to verify that the gains in the proposed method are achieved via grouping and auto-regressive modeling, we also train the Base network with approximately the same number of parameters. The two Base models showed similar performance. Notice that all the proposed variants require a similar processing time, while they just differ in the views selection mechanism.

C. Comparison with state-of-the-art methods

In Table III, the proposed method is compared to stateof-the-art methods. We select a few general lossless schemes for image and video compression and an approach designed for lossless compression of LFs. HEVC denotes HM v16.22 implementation of High Efficiency Video Coding (HEVC) standard [START_REF] Sullivan | Overview of the High Efficiency Video Coding (HEVC) standard[END_REF]. In this case, an LF image is first reshaped into a pseudo-video sequence following a serpentine scan order and encoded in the lossless mode in addition to the Main-RExt profile. L3C [START_REF] Mentzer | Practical full resolution learned lossless image compression[END_REF] and RC [START_REF] Mentzer | Learning better lossless compression using lossy compression[END_REF] represent learning-based methods for lossless image compression. RC method is the most relevant work as the approach is incorporated in the proposed method. Furthermore, we also evaluate the test set on FLIF codec [START_REF] Sneyers | FLIF: Free lossless image format based on maniac compression[END_REF] and JPEG XL [START_REF] Alakuijala | JPEG XL next-generation image compression architecture and coding tools[END_REF]. In order to allow image codecs to exploit angular correlation, LFs are converted to lenslet representation before processing. For reference, we also report results for independent encoding of each view in Table II. Among the LF lossless coding approaches we select EPIC [START_REF]Epipolar plane image-based lossless and near-lossless light field compression[END_REF]. As EPIC was designed to operate independently on color channels in the YCbCr color space, we employ RCT [START_REF]Information technology -JPEG 2000 image coding system: An entry level JPEG 2000 encoder[END_REF] to input RGBs. We also evaluated the approach [START_REF] Schiopu | Lossless compression of subaperture images using context modeling[END_REF] with the publicly available software. However, as the results appear considerably higher compared to other methods (the code yielded an average bitrate of 9.32 bpp), we do not report them in Table III.

We notice that RC and L3C obtain worse performance compared to other approaches. This might be due to the domain shift between the original training data of these methods and the lenslet test data. On average, our method outperforms FLIF, JPEG XL, EPIC by 2.23%, 3.22% and 2.73%, respectively. Interestingly, FLIF and JPEG XL perform quite well compared to the other two methods, which are designed to exploit the correlation in LFs. It is highly likely that due to the small baseline between the views and small angular size, the lenslet format allows to exploit spatial and angular similarities efficiently. HEVC underperforms compared to later approaches. This result aligns with the literature results.

A per-content comparison shows that the proposed method outperforms other methods on most of the sequences. The exceptions are less natural sequences such as Ankylosaurus, Magnets, and the two charts. We note various potential reasons for this behavior. Sequences like charts are mainly flat, which is a challenging content for geometry estimation. Moreover, the noise is strongly present, and the color constancy between the reference views and target views is lacking. On the other side, object-rich sequences with diverse geometry content suit the proposed method exceptionally well, as it can be observed in the performance of Bikes, Fountain & Vincent and Friends.

In Table IV, we report the processing time of encoder and decoder with different codecs. Notice that by construction, the complexity in our approach is symmetric at the encoder and decoder side, and is especially efficient at encoding compared to conventional methods such as FLIF, JPEG XL and HEVC.

V. CONCLUSIONS

We have proposed a learning-based method for lossless compression of LF images. The method incorporates a view synthesis block that provides an initial estimate of the encoded view. This is later used as a context to build an entropy model, which estimates for each pixel a conditional probability to be used in adaptive arithmetic coding. By introducing partial auto-regressive relations among groups of pixels, the proposed method outperforms state-of-the-art methods in terms of bitrate while maintaining a low computational complexity.

Future work includes several directions. First, we plan to add an additional residual coding layer to improve the estimation of probabilities at the decoder side. Next, jointly training view synthesis and the entropy model should further improve performance. Last but not least, the evaluation should be extended to LFs with larger angular size and wider baseline. These data are more challenging and possibly more critical to address.
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 1 Fig. 1. The block diagram of the proposed method. Note, View Synthesis and Entropy Model are utilized at encoder and decoder side as they depend only on previously decoded information. AC and AD denote arithmetic coder and arithmetic decoder, respectively.

TABLE I THE

 I PERFORMANCE EVALUATION OF VARIANTS OF THE PROPOSED METHOD PRESENTED IN TERMS OF BITS PER PIXEL (BPP).

		Single			Hierarchical	
	Sequence	Corner Cross Corner Cross Hybrid Hybrid (Base)
	Bikes	6.51	6.32	5.90	5.97	5.81	6.22
	Danger de Mort	7.23	7.02	6.51	6.59	6.39	6.89
	Flowers	7.21	6.96	6.42	6.53	6.31	6.79
	Stone Pillars Outside	6.81	6.58	6.08	6.15	5.98	6.33
	Vespa	6.49	6.21	5.88	5.91	5.79	6.10
	Ankylosaurus	5.14	5.06	4.86	4.90	4.82	4.84
	Desktop	6.84	6.63	6.24	6.30	6.15	6.62
	Magnets	5.16	5.08	4.90	4.94	4.86	4.90
	Fountain & Vincent	6.56	6.37	6.01	6.01	5.90	6.13
	Friends	6.07	5.90	5.54	5.60	5.45	6.04
	Color Chart	5.93	5.65	5.43	5.45	5.35	6.00
	ISO Chart	6.33	6.11	5.80	5.75	5.69	5.92
	Average	6.36	6.16	5.80	5.84	5.71	6.06

TABLE III THE

 III COMPARISON OF THE PROPOSED METHOD AND AVAILABLE METHODS FROM LITERATURE IN TERMS OF BITRATE (BPP).

			General lossless schemes		LF lossless schemes
	Sequence	HEVC L3C RC FLIF JPEG XL EPIC-RCT Proposed
	Bikes	6.69	7.28 7.54 6.19	5.95	6.14	5.81
	Danger de Mort	7.19	7.90 8.03 6.70	6.49	6.71	6.39
	Flowers	7.08	8.00 8.27 6.84	6.49	6.67	6.31
	Stone Pillars Outside	6.61	6.93 7.52 6.01	5.84	6.33	5.98
	Vespa	6.64	7.12 7.30 6.10	6.03	5.98	5.79
	Ankylosaurus	5.43	5.84 5.79 4.77	5.48	4.83	4.82
	Desktop	6.76	7.18 7.56 6.22	6.33	6.26	6.15
	Magnets	5.49	6.03 5.92 4.87	5.60	4.80	4.86
	Fountain & Vincent	6.71	7.48 7.35 6.14	6.14	6.03	5.90
	Friends	6.10	6.50 6.89 5.47	5.38	5.69	5.45
	Color Chart	6.00	6.57 6.57 5.35	5.69	5.37	5.35
	ISO Chart	6.42	6.47 6.22 5.39	5.37	5.59	5.69
	Average	6.43	6.94 7.08 5.84	5.90	5.87	5.71

https://github.com/kmader/lytro-power-tools, accessed on Nov. 10th,