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Abstract—We propose a learning-based method for lossless
light field compression. The approach consists of two steps: first,
the view to be compressed is synthesized based on previously
decoded views; then, the synthesized view is used as a con-
text to predict probabilities of the residual signal for adaptive
arithmetic coding. We leverage recent advances in deep-learning-
based view synthesis and generative modeling. Specifically, we
evaluate two strategies for entropy modeling: a fully parallel
probability estimation, where all pixel probabilities are estimated
simultaneously; and a partially auto-regressive estimation, in
which groups of pixels are predicted sequentially. Our results
show that the latter approach provides the best coding gains
compared to the state of the art, while keeping the computational
complexity competitive.

Index Terms—light field, lossless coding, deep learning

I. INTRODUCTION

Light fields are immersive visual representations that store
the intensity of light rays of a scene. Techniques to capture
light fields include using an array of cameras or inserting an
array of microlenses (lenslets) in front of a camera sensor
to acquire a collection of images from different viewpoints.
Given the sheer amount of data this acquisition entails, light
field coding is essential to practical applications.

In recent years, many methods for lossy compression of
light fields have been proposed [1]. One of the main ap-
proaches consists of using view synthesis to radically reduce
the number of views that need to be encoded by utilizing
geometry information to generate remaining views at the
decoder. Furthermore, by incorporating a residual signal, ad-
ditional gains can be obtained.

In this work, we follow this paradigm and employ a recently
proposed learning-based view synthesis technique to generate
a high-quality prediction for lossless compression of light
fields captured using LF cameras, e.g., Lytro. In contrast to
typical lossless compression methods that use small local
contexts for arithmetic coding, our approach can leverage a
larger context obtained from several views. In addition, we
estimate the symbol probabilities using a deep generative
model [2]. While initially proposed to generate images, deep
generative models, and in particular auto-regressive methods
that explicitly compute the data likelihood, have been recently
shown to provide accurate probability estimates for lossless
coding of pictures [3], [4] and 3D point clouds [5]. To our
knowledge, this is the first work applying deep conditional
probability estimation in conjunction with view synthesis for
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coding of light fields. Our results show more than 2% improve-
ment in bitrate compared to the best performing state-of-the-art
method while being competitive in terms of execution time.

The rest of the paper is organized as follows. Section II
cites the related work on lossless LF image compression with
the emphasis on the approaches proposed for decoded lenslet
modality. We also mention relevant generative models and re-
cently proposed learning-based approaches for lossless image
compression. Section III describes the proposed method. In
Section IV, variants of the proposed method are compared,
along with a comparison to state-of-the-art methods in terms of
bitrate and execution time. Section V concludes the presented
work and outlines possible research directions.

II. RELATED WORK

In this paper, we focus on light fields obtained by lenslet
cameras. Lossless compression of light fields can be broadly
divided into two groups. The first group of methods tackles
the problem of coding the raw lenslet image [6]–[10]. The
other group of methods deals with rectified light field images,
i.e., light fields obtained from raw sensor image through
decoding procedure [11]. Helin et al. [12] first encode the
center view and its quantized depth map. Then, the center
view is partitioned based on the depth values, and for each
partition, disparities with respect to side views are computed
and transmitted to partition the side views. Residuals, pre-
dictor coefficients, and binary sparsity masks are encoded.
In a follow-up work [13], the compression performance is
improved by segmenting the central view using a complex
color- and depth-based segmentation approach, while variable
length coding is used to encode the prediction mask and the
coefficients of the sparse predictor. Santos et al. [14] conduct
a study on the impact of reversible color transformations and
data arrangements for pseudo-sequence generation for lossless
light field coding. The study shows the superiority of the
forward reversible multiple component transform (RCT) [15].
Schiopu et al. [16] propose a local, context-based method
for lossless compression. Each pixel is adaptively predicted
from close co-located pixels in the reference frame based on
the edge information. The prediction is subtracted from input
values, and three matrices are generated: small residual, high
residual, and error sign. The small residual matrix is encoded
using context modeling defined by the regions obtained from
image segmentation. In [17]–[19], minimum-rate predictors
are employed that obtain competitive performance, but with
a high computational cost. Another line of works achieve



interesting results with a complexity similar to standard coding
tools by adapting the CALIC codec [20] to operate on the
Epipolar Plane Image (EPI) representation of light field [21]
[22].

Recently, deep learning has been applied to lossless com-
pression of light fields [23]–[25]. Schiopu et al. [23] design a
deep convolutional neural network that uses a neighborhood
of six macro-pixels to predict the current macro-pixel. Then,
the residual is encoded using a modified version of the
CALIC codec. Kaya et al. [24] propose CEPINET, a variant
of EPINET [26], which estimates disparity maps of corner
views. Textures and disparity maps of corner views and the
center view are encoded. Then, a disparity map is generated
for each target view by warping the closest reference disparity
map to the target view location. The disparity map is divided
into connected regions, and for each region, the index of the
best reference view (that minimizes MSE over the region) is
assigned. Finally, the residual image is also computed and
encoded. In [25], view synthesis and prediction methods based
on macro pixels are proposed. The authors also study the
influence of the size of the reference image set and modify
the CALIC codec’s binary mode to utilize different causal
neighborhoods.

Recently, deep learning-based auto-regressive models have
been successfully applied to lossless image compression [3]
[4]. Their emergence is not surprising, considering their aim is
to explicitly model the distribution of underlying data utilized
for entropy coding. These tools achieve similar or better
performance than state-of-the-art image codecs such as BPG
and FLIF. Mentzer et al. [3] propose a hierarchical approach
with learned feature extractors which generate latent repre-
sentations transmitted to the decoder. At the decoder, latent
representations are processed by decoding blocks and are used
to estimate the probability distributions necessary for decoding
the latents at the higher level. In [4], the authors design a two-
layer lossless compression method by leveraging the standard
coding tool BPG. The input image is first encoded with BPG.
Then the residual between the input and its processed variant
is entropy coded using the probability distribution estimated
by a neural network. The network provides parameters of
the probability distribution for each pixel allowing efficient,
parallelized processing.

III. PROPOSED METHOD

Our approach takes inspiration from learning-based lossless
image compression [4] and image generation [27] [28], which
are combined with view synthesis [29] to enable the prediction
of views from a set of reference views. The overall design of
the proposed method is presented in Fig. 1. At the encoder
side, reference views and the input view index are provided
to the View Synthesis module, which predicts the input view.
Then, the prediction is subtracted from the input view. The
obtained residual signal is entropy coded using an arithmetic
coder (AC) provided with probability distributions computed
on a per-pixel basis by the Entropy Modeling block given
the prediction. At the decoder, the prediction from the View

Synthesis module is used to estimate probability distributions
for decoding, and the decoded residual signal is added to
the prediction to reconstruct the input view. View Synthesis
and Entropy Model are briefly described in the following
subsections.

Input
view Iũ

Reference
views

View
Synthesis

View
index ũ

−

AC Entropy Model

bitstream

AD

+
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Fig. 1. The block diagram of the proposed method. Note, View Synthesis
and Entropy Model are utilized at encoder and decoder side as they depend
only on previously decoded information. AC and AD denote arithmetic coder
and arithmetic decoder, respectively.

A. View Synthesis

To estimate a novel view, Navarro et al. [29] propose three
distinctive blocks, a feature extractor, a disparity estimator and
a per-pixel view selector. Given the set of corner views Ic of
a light field image L(x,u), where x and u denote spatial and
angular positions of light rays, and the position of a view to
be synthesized ũ, the feature extraction network Fe computes
the feature map of each corner view Ici independently:

Fci = Fe(Ici , ũ). (1)

The features are then concatenated in a vector F together with
the position of the novel view ũ and provided to the disparity
estimation network Fd to estimate the vector of disparity maps
D of the novel view:

D = Fd(F, ũ). (2)

Initial estimates of the novel view Wci are obtained by
backward warping the corner views using the corresponding
disparity maps,

Wci(x) = Ici(x +Dci(x) · (ci − ũ)). (3)



In the final stage of the scheme, the selection network Fs
computes the contribution Mci for each initial estimate Wci

M = Fs(W,D, ũ). (4)

where M and W are concatenated vectors of merging maps
Mc and initial estimates Wc. The final estimate of the novel
view Îũ is obtained by merging initial estimates as a weighted
sum

Îũ = L̂(x, ũ) =
∑
ci∈c

Mci(x)Wci(x). (5)

B. Entropy model

Mentzer et al. [4] propose a Residual Compressor (RC)
which takes the decoded input image, obtained through BPG
coding, and estimates a set of parameters which model the
probability mass function of the residual signal rx between the
input pixel value x and its decoded version x̂, i.e., pm(rx|x̂),
which is used to encode/decode the residual. The probability
mass function is modeled with a mixture of logistic functions

p(rx) =

K∑
k=1

πkpL(rx|µk, σk), (6)

where pL(x|µ, σ) = e−
rx−µ
σ

σ(1+e−
rx−µ
σ )2

and K is the number

of mixtures. Furthermore, the method encodes/decodes pixels
channel-by-channel and conditions the current color channel
on previously decoded channel(s):

µ̃kc = µkc +
∑

ci∈cprev

λkcirx,ci . (7)

We utilize the same architecture as proposed in [4] while
changing the number of filters, i.e., Cf = 64, and the
number of residual blocks to 8. More importantly, we use the
synthesized view Îũ as input and compute the residuals with
respect to it. The weights of the RC network are learned by
minimizing the cross-entropy loss

J(θ) = −
∑
x∈Iũ

log2 (pm(rx|x̂)). (8)

The architecture of [4], which we denote as Base in the
following, estimates the pixel distribution for every pixel in
a single pass, allowing parallel and efficient processing. On
the other hand, to improve the estimation locally, one could
use neighboring, previously decoded pixel values as it is
typically done in lossless compression schemes. In order to
improve performance, we propose to divide pixels into coding
groups and to use previously decoded groups to estimate the
parameters for the following groups. Notice that a similar
approach has been considered in a recent work for image
generation [27] and point cloud coding [30].

The simplest version of this approach consists of using a
group for each pixel, which corresponds to PixelCNN [2]. By
increasing the size of the groups and by assuming that pixels
within each group are conditionally independent, it is possible
to estimate in parallel all the pixels in a group from previously
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Fig. 2. Hierarchical levels for prediction of views with Corner arrangement
(left) and Cross arrangement (middle). At each level i, views can be predicted
from decoded views from previous levels, i.e. iprev < i. Prediction scenarios
applied in Hybrid variant (right). The number denotes the prediction level i
while the superscripts denote the arrangement of the reference views used for
the prediction, i.e. x and + denote Corner and Cross arrangements.

decoded groups. In our experiments, we use four groups (each
containing N/4 pixels), where each group contains every other
pixel in the horizontal and vertical directions, similar to a
checkerboard pattern.

C. Training details

We train our models on 3323 LF images of size 7 × 7 ×
376 × 541 from the Flowers dataset [31]. First, the view
synthesis method for both arrangements, Corner and Cross,
are pretrained. Here we used the same settings as done in
[32]. Then, the view synthesis network parameters are fixed,
and we train the residual estimation network. The input LFs
are cropped along angular dimensions by selecting center 8
views. At each iteration, a 4D patch of size 7×7×128×128,
the positions of the reference views and the target view are
randomly selected. Then, we randomly perturb color channels
to increase the training dataset’s color diversity and finally
apply gamma correction selected from an interval [0.4, 1.0].
We use a batch size of 16 and Adam optimizer [33] to update
weights.

IV. RESULTS

A. Dataset

The proposed method is evaluated on 12 LF images pro-
posed in [34] from the EPFL dataset [35]. We use Lytro
Power Tool1 (LPT) to decode raw LFs, we apply a gamma
correction of 0.45 and quantize to 8 bits. Moreover, LFs are
cropped in angular and spatial dimensions to 7× 7 views (we
use top-left 7 × 7 crop of center 8 × 8 crop) and 320 × 512
pixels, respectively. Note that the outer views of decoded LFs
are corrupted with vignetting artifacts and thus cropped to a
smaller size.

B. Prediction variants

In the view synthesis task, typically, the whole LF is
synthesized from a fixed set of reference views. On the
other side, in lossless compression, as views become available
after decoding, it becomes possible to dynamically select
reference views and leverage reduced baseline between views
for improved prediction. However, a potential drawback could
be reduced random access capabilities as later views depend

1https://github.com/kmader/lytro-power-tools, accessed on Nov. 10th, 2020.



TABLE I
THE PERFORMANCE EVALUATION OF VARIANTS OF THE PROPOSED METHOD PRESENTED IN TERMS OF BITS PER PIXEL (BPP).

Single Hierarchical

Sequence Corner Cross Corner Cross Hybrid Hybrid (Base)

Bikes 6.51 6.32 5.90 5.97 5.81 6.22
Danger de Mort 7.23 7.02 6.51 6.59 6.39 6.89
Flowers 7.21 6.96 6.42 6.53 6.31 6.79
Stone Pillars Outside 6.81 6.58 6.08 6.15 5.98 6.33
Vespa 6.49 6.21 5.88 5.91 5.79 6.10
Ankylosaurus 5.14 5.06 4.86 4.90 4.82 4.84
Desktop 6.84 6.63 6.24 6.30 6.15 6.62
Magnets 5.16 5.08 4.90 4.94 4.86 4.90
Fountain & Vincent 6.56 6.37 6.01 6.01 5.90 6.13
Friends 6.07 5.90 5.54 5.60 5.45 6.04
Color Chart 5.93 5.65 5.43 5.45 5.35 6.00
ISO Chart 6.33 6.11 5.80 5.75 5.69 5.92

Average 6.36 6.16 5.80 5.84 5.71 6.06

on previously encoded/decoded views. Here we compare both
cases, namely the Single method, which operates on a single
level and predicts views from the corner references, and the
Hierarchical where three levels are incorporated as depicted on
the left part of Figure 2. In the first level, the method processes
the corner views and the middle views on the boundary of the
LF, i.e., between corner views. Then, in the second level, a
subset of views in each quadrant is estimated. Finally, the rest
of the views are predicted from their neighboring four views
in the third level. Besides utilizing corner views as reference
views, we also examine cross arrangement, which proved to
be superior to the corner arrangement in recent work [32]. We
note that the corner approach is more flexible in selecting ref-
erence view as the cross approach demands odd angular size in
order to select reference views. For instance, in an LF of 4×4
angular size, in order to utilize cross arrangement, it would be
necessary to operate on LFs of 3×3 angular size. Conversely,
the cross arrangement provides superior prediction. Thus, we
finally consider a Hybrid approach which benefits from the
qualities of both arrangements. The approach is illustrated
on the right part of Figure 2 where the numbers denote
hierarchical levels while the superscripts denote arrangements.
The reference views are encoded independently using the L3C
method, but any method can be utilized in general.

TABLE II
THE PERFORMANCE EVALUATION IN TERMS OF BITS PER PIXEL (BPP) OF

IMAGE COMPRESSION TOOLS APPLIED ON EACH VIEW SEPARATELY.

L3C RC FLIF JPEG XL

Average 8.07 8.18 7.90 7.61

Table I shows a comparison of the proposed variants. The
columns marked as Single present the performance of the pro-
posed method where four reference views are independently
encoded and used to estimate all the other views. This setup
is the most efficient from a random access perspective for
the given view synthesis module. Better performance of Cross
arrangement can be noted compared to Corner arrangement.
These results are also aligned with previous research [32].

The terms Hierarchical denote variants of the proposed
method, which allow dynamic selection of reference views
in order to achieve better prediction and lower bitrate at the
cost of reduced random access capabilities. The hierarchical
levels of Corner, Cross and Hybrid sub-column are illustrated
in Figure 2. First, the Corner variant shows better performance
compared to the Cross variant. Interestingly, the result is
opposite to the result observed for Single setup, which could
be explained by the lower number of hierarchical levels
and reduced prediction capabilities and implying the lack
of flexibility of the Cross arrangement. Second, additional
gains compared to the two arrangements can be achieved by
combining them as presented in the column Hybrid. Finally,
we also present the result of the Base method (without spatial
grouping), which has a lower memory footprint and better
execution time, but lower probability estimation accuracy. As
the Entropy model of the Base method has four times less
parameters compared to the proposed method, in order to
verify that the gains in the proposed method are achieved via
grouping and auto-regressive modeling, we also train the Base
network with approximately the same number of parameters.
The two Base models showed similar performance. Notice that
all the proposed variants require a similar processing time,
while they just differ in the views selection mechanism.

C. Comparison with state-of-the-art methods

In Table III, the proposed method is compared to state-
of-the-art methods. We select a few general lossless schemes
for image and video compression and an approach designed
for lossless compression of LFs. HEVC denotes HM v16.22
implementation of High Efficiency Video Coding (HEVC)
standard [36]. In this case, an LF image is first reshaped into
a pseudo-video sequence following a serpentine scan order
and encoded in the lossless mode in addition to the Main-
RExt profile. L3C [3] and RC [4] represent learning-based
methods for lossless image compression. RC method is the
most relevant work as the approach is incorporated in the
proposed method. Furthermore, we also evaluate the test set
on FLIF codec [37] and JPEG XL [38]. In order to allow



TABLE III
THE COMPARISON OF THE PROPOSED METHOD AND AVAILABLE METHODS FROM LITERATURE IN TERMS OF BITRATE (BPP).

General lossless schemes LF lossless schemes

Sequence HEVC L3C RC FLIF JPEG XL EPIC-RCT Proposed

Bikes 6.69 7.28 7.54 6.19 5.95 6.14 5.81
Danger de Mort 7.19 7.90 8.03 6.70 6.49 6.71 6.39
Flowers 7.08 8.00 8.27 6.84 6.49 6.67 6.31
Stone Pillars Outside 6.61 6.93 7.52 6.01 5.84 6.33 5.98
Vespa 6.64 7.12 7.30 6.10 6.03 5.98 5.79
Ankylosaurus 5.43 5.84 5.79 4.77 5.48 4.83 4.82
Desktop 6.76 7.18 7.56 6.22 6.33 6.26 6.15
Magnets 5.49 6.03 5.92 4.87 5.60 4.80 4.86
Fountain & Vincent 6.71 7.48 7.35 6.14 6.14 6.03 5.90
Friends 6.10 6.50 6.89 5.47 5.38 5.69 5.45
Color Chart 6.00 6.57 6.57 5.35 5.69 5.37 5.35
ISO Chart 6.42 6.47 6.22 5.39 5.37 5.59 5.69

Average 6.43 6.94 7.08 5.84 5.90 5.87 5.71

TABLE IV
THE COMPARISON OF TOTAL LF ENCODING AND DECODING TIMES

PRESENTED IN MINUTES.

Method HEVC FLIF JPEG XL EPIC-RCT Proposed Base

Encoding 6.47 0.62 0.34 0.13 0.17 0.14
Decoding 0.05 0.14 0.07 0.13 0.17 0.14

image codecs to exploit angular correlation, LFs are converted
to lenslet representation before processing. For reference, we
also report results for independent encoding of each view in
Table II.

Among the LF lossless coding approaches we select EPIC
[22]. As EPIC was designed to operate independently on color
channels in the YCbCr color space, we employ RCT [15] to
input RGBs. We also evaluated the approach [16] with the
publicly available software. However, as the results appear
considerably higher compared to other methods (the code
yielded an average bitrate of 9.32 bpp), we do not report them
in Table III.

We notice that RC and L3C obtain worse performance com-
pared to other approaches. This might be due to the domain
shift between the original training data of these methods and
the lenslet test data. On average, our method outperforms
FLIF, JPEG XL, EPIC by 2.23%, 3.22% and 2.73%, respec-
tively. Interestingly, FLIF and JPEG XL perform quite well
compared to the other two methods, which are designed to
exploit the correlation in LFs. It is highly likely that due
to the small baseline between the views and small angular
size, the lenslet format allows to exploit spatial and angular
similarities efficiently. HEVC underperforms compared to later
approaches. This result aligns with the literature results.

A per-content comparison shows that the proposed method
outperforms other methods on most of the sequences. The
exceptions are less natural sequences such as Ankylosaurus,
Magnets, and the two charts. We note various potential reasons
for this behavior. Sequences like charts are mainly flat, which
is a challenging content for geometry estimation. Moreover,
the noise is strongly present, and the color constancy between

the reference views and target views is lacking. On the other
side, object-rich sequences with diverse geometry content suit
the proposed method exceptionally well, as it can be observed
in the performance of Bikes, Fountain & Vincent and Friends.

In Table IV, we report the processing time of encoder and
decoder with different codecs. Notice that by construction, the
complexity in our approach is symmetric at the encoder and
decoder side, and is especially efficient at encoding compared
to conventional methods such as FLIF, JPEG XL and HEVC.

V. CONCLUSIONS

We have proposed a learning-based method for lossless
compression of LF images. The method incorporates a view
synthesis block that provides an initial estimate of the encoded
view. This is later used as a context to build an entropy model,
which estimates for each pixel a conditional probability to
be used in adaptive arithmetic coding. By introducing partial
auto-regressive relations among groups of pixels, the proposed
method outperforms state-of-the-art methods in terms of bi-
trate while maintaining a low computational complexity.

Future work includes several directions. First, we plan
to add an additional residual coding layer to improve the
estimation of probabilities at the decoder side. Next, jointly
training view synthesis and the entropy model should further
improve performance. Last but not least, the evaluation should
be extended to LFs with larger angular size and wider baseline.
These data are more challenging and possibly more critical to
address.
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