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Abstract—In recent years, the production of 3D content in the
form of point clouds (PC) has increased considerably, especially
in virtual reality applications. This enthusiasm is linked in
particular to the development of acquisition technologies. In
order to ensure a good quality of user experience, it is necessary
to offer a high quality of visualization whatever the transmission
medium used or the treatments applied. Thus, several metrics
have been proposed which are essentially point-based metrics.
In this article, we propose a deep learning-based method that
efficiently predicts the quality of distorted PCs thanks to a set of
features extracted from selected patches of the reference PC and
its degraded version as well as the use of Convolutional Neural
Networks (CNNs). The patches are selected randomly and the
difference between corresponding patches is characterized by
three attributes: geometry, curvature and color. The proposed
method was evaluated and compared to state-of-the-art metrics
using two datasets, including a large dataset more suited to deep
learning models. We also compared different symmetrization
functions and machine learning pooling as well as the ability
of our method to predict the quality of unknown PCs through a
cross-dataset evaluation. The results obtained show the relevance
of the proposed framework with interesting perspectives.

Index Terms—3D point cloud, Quality assessment, Convolu-
tional neural network

I. INTRODUCTION

Recent advances in capture technologies have increased the
production of 3D content in the form of Point Clouds (PCs).
As most multimedia contents, PCs may undergo different
types of distortion introduced by several basic processing
(acquisition, compression, transmission, visualization, etc.),
usually applied to transmit or visualize such data [1], [2]. To
estimate the perceptual impact of these distortions on the per-
ceived quality, subjective and objective evaluations are usually
conducted. Subjective evaluation gives scores that reflect the
perception of human observers through psycho-visual tests,
while objective evaluation aims to automatically predict the
subjective scores. As for 2D images and videos, objective
methods can be classified according to the availability of
the reference PC: Full Reference (FR) approaches that need
the reference PC, Reduced Reference (RR) approaches that
exploit only partial information from the reference PC and No
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Reference (NR) approaches that predict the quality from only
the distorted version of the reference PC.

Different point cloud objective metrics have been proposed
in the literature. Point-to-point metrics were among the first
to be considered, and compute geometry distance between
corresponding points in the original and distorted PC. On
the other hand, the point-to-plane metric is an extension
of the previous metric and consists in projecting the point-
to-point error vector along the local normal [3]. Starting
from these approaches, several point-based metrics have been
then developed. In [4], the authors proposed to estimate the
geometrical error between two PCs (i.e. reference PC and its
distorted version) by measuring the angular similarity between
tangent planes. In [5], the authors proposed a metric called
PC-MSDM by extending the well-known SSIM metric [6],
widely used for 2D images, to PC, by considering features
including local mean curvature as they previously done for
3D meshes [7]. The authors proposed later a metric called
PCQM that integrates color information [8]. In [9], the authors
proposed a new approach that focuses more on the distribution
of the data. They introduced a new type of correspondence
from point to distribution characterized using the well-known
Mahalanobis distance. In [10], the authors proposed a color-
focused metric that integrates geometry information. In [11],
the authors adapted also the SSIM metric for point clouds
using a number of features, while in [12] the authors improved
the point cloud PSNR metric. Interesting methods were also
proposed for 3D meshes [13]-[15].

In this paper, we present a deep learning-based method that
efficiently predicts the quality of PCs. Our method extended
our blind metric [16] and consists first of selecting a set
of points from the reference PC and determining for each
of them its nearest neighbor point in the distorted PC. We
then define a patch of size 32 x 32 around each of the two
points, each consisting of a point (i.e. selected point in the
reference PC or its nearest neighbor point in the distorted) and
its 1023 neighboring points. The structural information of each
pair of patches is afterward compared by computing element-
wise distances on three main attributes: geometry, curvature
and color. The resulted patches (i.e. one per attribute) are
stacked into a patch of size 32 x 32 x 3 and fed as input to
a Convolutional Neural Network (CNN) model to predict its



quality. After applying the process in both directions (i.e. from
the reference PC to its distorted PC and from the distorted PC
to its reference PC) for each pair of corresponding patches, the
global quality index is finally given by averaging the predicted
patch quality scores and employing either a symmetrization
function or a pooling strategy. The proposed method was eval-
uated using two datasets, including a large dataset more suited
to deep models. The results obtained showed the relevance of
using such deep learning-based approach for predicting the
quality of PCs.

The remainder of this paper is structured as follows: the
proposed method is described in Section II. Experiment results
are discussed in Section III, followed by the conclusion in
Section IV.

II. PROPOSED METHOD

The method proposed in this paper is based on the prediction
of Patch Quality Indexes (PQIs) through CNN models and
their symmetrization or pooling. Fig. 1 summarizes the general
framework of our method. From the two PCs, we first compute
PQIs in both directions (i.e. from the reference PC to its
distorted version: PQI(X,Y’) as well as from the distorted
PC to its reference version: PQI(Y, X)) using a CNN model
per direction. The Global Quality Index (GQI) is finally given
by averaging the PQIs obtained and then either symmetrizing
or pooling the resulted scores.

A. Patch Quality Indexes

As illustrated by Fig. 2, PQIs are computed through several
steps: patch extraction, patch-based distances computation and
patch quality prediction using a CNN model. Each of these
steps is described in this section. It is worth noting that here we
limit our description to one direction (i.e. from the reference
PC to its distorted version), since it remains similar in the
second direction.

1) Patch extraction: In order to extract patches from the
two PCs, we first select a set of points NV from the reference PC
X . More precisely, 1000 points are randomly selected over all
points of X and are here considered as key points from which
the patch quality indexes are predicted. For each selected point
NN;, we determine its corresponding point in the distorted PC
Y by finding its nearest neighbor and define a region around
each of the two points, delimited by the area covered by their
1023 neighboring points. The two regions are then reshaped
into patches of size 32 x 32 based on the distance of each
neighbor to the point, forming thus a pair of patches (see Fig.
3).

2) Patch-based distances: Element-wise patch-based dis-
tances are then computed to measure geometry, curvature and
color distortions between patches of corresponding points. Let
us first define Ay as the k*" considered attribute with {k = 1:
Geometry; k = 2: Curvature; k = 3: Color}.

For each attribute Ay, the element-wise distance D}, (i, j)
between the n? pair of patches of the reference X (P%) and
the distorted PCs Y (Py;) is computed as follows:

nGd) =V (Py ) -PY D)7 O

where P%, (i,5) and Py (i,j) represent the value of the
Kkt® attribute at position (7, j) of the pair of patches n in the
reference and distorted PCs, respectively.

The resulting patches are then stacked into a patch of size
32 x 32 x 3 where 32 x 32 represents the initial size of the
extracted pair of patches and 3 is the number of considered
attributes (i.e. 1: geometry distances, 2: curvature distances
and 3: color distances). It is worth noting that the size of the
patches was fixed according to several studies dedicated for 2D
images where the impact of the patch size was analyzed [17],
[18]. The authors concluded that a size of 32 x 32 constituted
a good trade-off between performance and computation time.
We opted here for the same size. However, more in-depth
analysis has to be carried-out in order to better analyze its
impact on the performance.

3) Architecture of the CNN models: Finally, the PQIs
are predicted using a CNN model which has as input the
normalized stacked patches. A plethora of models have been
proposed in the literature, starting from one of the first models
such as AlexNet [19] to the more complex like ResNet
[20] that introduced a residual module or inception [21] that
employed parallel layers. In this study, we adopted a pre-
trained VGG model [22] that was widely used for classification
tasks and was successfully employed in several studies related
to quality assessment as well [23].

This model was developed by the Oxford Visual Geometry
Group in 2014. It uses small filters of size 3 X 3 in contrast
to AlexNet [19] where 11 x 11 and 5 x 5 filters are used in
the first two layers. It is also characterized by applying a max
pooling layer after a succession of convolution layers. Various
versions with different depths have been proposed. Here, we
used VGG16 which is composed of 13 convolutional layers,
followed by 3 fully connected layers. It initially takes an image
of size 224 x 224 x 3 as input and highlights one class among
1000 classes (i.e. output of size 1000).

To adapt the model to our context, several modifications
were realized. More precisely, we replaced its input layer by
another of size 32 x 32 x 3 and substituted its fully connected
layers with 3 other layers of size 64, 64 and 1, respectively.
The first fully connected layer is followed by a ReLu layer,
while the second one is followed by a ReLu layer and a
dropout layer with a probability fixed to 0.5. The third and
last layer is a regression layer that aims to predict the PQIs
of the normalized stacked patches. The model thus modified
was finally fine-tuned to adapt its weights to our context.
It is worth noting that two similar CNN models with the
architecture described above are used, each dedicated to a
specific direction: CIN Nxy (from the reference PC to the
distorted one) and C N Ny x (from the distorted PC to the
reference one).

To train our models, we used the stochastic gradient descent
optimization algorithm and the Mean Squared Error (MSE) as
loss function. The learning rate and the momentum were set
to 0.001 and 0.9, respectively. The batch size was fixed to 64
and the training data was shuffled every epoch. The number
of epochs was set to 100 with a validation frequency fixed
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to 5000 iterations. At each epoch, the model was saved and
the one that provides the best results was retained. It is worth
noting that the target of each stacked patch was the subjective
score of the whole distorted PC as commonly used to estimate
the quality of several multimedia content [17], [24].

B. Global Quality Index

The Global Quality Index (GQI) that reflects the quality
of the whole distorted PC is finally given by aggregating
the PQIs achieved for each direction and applying either a
symmetrization function or a pooling method.

1) Aggregated Patch Quality Indexes: As mentioned
above, each CNN model predicts the quality score of each
stacked patch. In order to derive a single quality index for
each direction, we aggregate the obtained PQIs by computing
the average scores as follows:

N
APQI(X,Y) = ) PQL(X,Y), @)
i=1

and

N
APQI(Y, X) = Y PQL(Y, X), )
i=1

where APQI(X,Y) and APQI(Y, X) are the Aggregated
Patch Quality Indexes (APQIs) that represent the predicted
quality score in each direction. IN is the number of stacked
patches and it was fixed to 1000.

It is worth noting that this strategy is commonly applied
in image quality assessment domain for both handcrafted and
deep learning-based methods. Indeed, handcrafted metrics like
SSIM [6] or VDP [25] derive a single quality score from
the predicted visibility map by aggregating the local scores.
Whereas, the initial deep learning-based method [17] and most
of those developed later [18], [26], [27] predict the quality of
patches and derive a single quality score by averaging the
predicted scores as well. For 3D contents, the same strategy
was applied for 3D PC [5] and 3D meshes [7], [28] as well.

2) Symmetrization or Pooling: As most of the existing full
reference PC quality metrics [3], [9], [12], the final quality
index is computed in two directions (i.e. from the reference PC
to the distorted one and from the distorted PC to the reference
one) where each reflects a specific aspect. The two indexes are
then usually symmetrized by applying a function f as follows:

GQI(X,Y) = f(APQI(X,Y), APQIL(Y, X)), 4

where GQI(X,Y) is the Global Quality Index computed
between the reference PC X and its distorted version Y in
both directions.

In this study, we considered three classical symmetrization
functions: min, mean and weighted mean (Wmean).
It is worth noting that the maax was not applied since the
considered datasets provide the MOS (Mean Opinion Score) as
subjective score. The results are compared to those obtained by
pooling the indexes through a Support Vector Machine (SVR)
and a Multi Layer Perceptron (MLP). More precisely, the SVR
model had a Gaussian function as kernel and the MLP model
was composed of 2 fully connected layers of size 30, followed
by a regression layer of size 1. Both models were trained and
tested by applying the protocol described in Section III-B and
the results are shown in Section III-C.



III. EXPERIMENTAL RESULTS

Our method is evaluated in terms of correlation with sub-
jective judgments. To do so, we first present the datasets used
and describe the protocol applied to train and test our CNN
models. After defining the performance evaluation criteria
employed, we analyze the results obtained by either applying
symmetrization functions or pooling strategies. Finally, the
performance of our method is compared with state-of-the-
art PC metrics and a cross-dataset evaluation is carried-out
to show the generalization ability of our method to predict the
quality of unknown PCs.

A. Datasets

The proposed method is evaluated using two recent 3D point
cloud datasets: sjtu [29] and ICIP20 [30].

e sjtu is composed of 9 point clouds from which 378
degraded versions were derived (i.e. 42 distorted PC per
reference PC) through 6 degradation types (OT: Octree-
based compression, CN: Color Noise, DS: Downscaling,
D+C: Downscaling and Color noise, D+G: Downscaling
and Geometry Gaussian noise, GGN: Geometry Gaussian
noise and, C+G: Color noise and Geometry Gaussian
noise).

o ICIP20 is composed of 6 common used point clouds
from which 90 degraded versions were derived (i.e.
15 distorted PC per reference PC) through 3 types of
compression: V-PCC, G-PCC with triangle soup coding
and G-PCC with octree coding. Each reference point
cloud was compressed using five different levels.

These datasets give a subjective score (i.e. MOS) for each
distorted PC that are used to train the CNN models and
evaluate the performance of our method to predict the global
quality score.

B. Protocol and performance evaluation

To assess the quality prediction effectiveness of our method,
each dataset is split into training and test sets F' times (i.e
F folds). Each fold is composed of a reference PC and its
distorted versions. Therefore, the training and test sets do not
contain same PC (i.e. no overlap between the two). At each
time, I' — 1 folds are used to train the models and the rest to
test it. In this study, F' is equal to 7 and 6 for sjtu and ICIP20,
respectively.

Two evaluation criteria commonly used to evaluate the
performance of quality metrics are adopted here: 1) Pearson
Correlation Coefficient (PCC) and 2) Spearman Rank-Order
Coefficient Correlation (SROCC). Both vary between 0 and
1 (i.e. absolute value) with 1 the best performance. These
correlations are computed for each dataset over each fold and
the mean correlations are then reported as results. It is worth
noting that the same procedure was applied to the compared
state-of-the-art metrics.

C. Performance analysis

In this section, we analyze the correlations obtained by
each CNN model as well as their combination by either a
symmetrization function (i.e. min, mean and Wmean) or
using an SVR and a MLP. Table I shows the results obtained
for each model and those obtained after symmetrization and
pooling on sjtu dataset. Best results are highlighted in bold.

Method PCC SROCC
Aggregated Patch Quality Index
APQI(X,Y) 0.902 0.901
APQI(Y,X) 0.908 0.900
Symmetrization function
GQI(X,Y)=min(APQI(X,Y),APQI(X,Y)) 0.908 0.900
GQI(X,Y)=mean(APQI(AB),APQI(X,Y)) 0.908 0.902
GQI(X,Y)=Wmean(APQI(X,Y),APQI(X,Y))  0.909 0.904
Pooling (machine learning)
GQI(X,Y)=SVR(APQI(X,Y),APQI(X.,Y)) 0918 0.907
GQI(X,Y)=MLP(APQI(X,Y),APQI(X,Y)) 0.927 0.906

TABLE 1
MEAN CORRELATIONS OBTAINED ON SJTU DATASET BEFORE AND AFTER
SYMMETRIZATION AND POOLING. BEST RESULTS ARE HIGHLIGHTED IN
BOLD.

As can be seen, the aggregated indexes (i.e. APQI) given by
computing the quality scores in both directions obtain close
correlations. Their symmetrization through the three functions
does not increase the global performance. Whereas, the pool-
ing strategies applied improve the performance, particularly
the linear correlations (i.e. PCC) without a significant increase
in terms of mean SROCC. Both SVR and MLP models achieve
close mean SROCC with a higher mean PCC for MLP. The
improvement gains in terms mean PCC are about 1.8% and
2.8% for SVR and MLP, respectively. Based on these results,
it seems that the symmetrization function, at least, does not
always provide the optimal results and thus should be carefully
employed.

D. Comparison with the state-of-the-art

Our method is here compared with point-based state-of-
the-art metrics. More precisely, we consider po2pointMSE
and po2planeMSE metrics that are pooled with MSE,
PSNRpo2pointMSE and PSNRpo2planeMSE metrics that are
pooled with PSNR as well as recent metrics po2dist [9] (i.e.
point to distribution) pooled with MSE and PSNR. We also
compare our method with a recent metric, called PCQM,
which is based on both geometry and color features [8].
Tables II and III show the results obtained for sjtu and ICIP20
datasets, respectively. The best results are highlighted in bold.

On sjtu (see Table II), the proposed method performs
the best with a performance gain in terms of mean PCC
between 5% (compared to PCQM) and 79% (compared
to po2pointHausdorff). Among the state-of-the-art metrics,
PCQM achieves the best correlations with 0.879 and 0.888
as mean PCC and SROCC, respectively, far followed by



Method PCC SROCC
po2pointMSE 0.686 0.801
PSNRpo2pointMSE 0.799 0.844
po2pointHausdorff 0.517 0.686
PSNRpo2pointHausdorff 0.638 0.682
po2planeMSE 0.642 0.717
PSNRpo2planeMSE 0.744 0.722
po2planeHausdorff 0.539 0.682
PSNRpo2planeHausdorff 0.755 0.825
po2distMSE (mmd) 0.710 0.603
PSNRpo2distMSE (mmd) 0.621 0.603
po2distMSE (msmd) 0.706 0.603
PSNRpo2distMSE (msmd)  0.642 0.715
PCQM 0.879 0.888
GQI (our method) 0.927 0.906

TABLE 11
COMPARISON WITH STATE-OF-THE-ART METHODS ON SJTU DATASET.
BESTS RESULTS ARE HIGHLIGHTED IN BOLD.

PSNRpo2pointMSE and PSNRpo2planeMSE. All the com-
pared metrics obtained a mean PCC and SROCC lower than
0.88 and 0.89, respectively. The worst result are obtained by
po2pointHausdorff and po2planeHausdorff. The low correla-
tions achieved by these metrics, except PCQM, can be ex-
plained by the fact that those metrics focus only on geometric
aspects and therefore totally fail to capture other distortions
like color noise.

Method PCC  SROCC
po2pointMSE 0.945 0.950
PSNRpo2pointMSE 0.880 0.934
po2pointHausdorff 0.717 0.690
PSNRpo2pointHausdorff 0.597 0.763
po2planeMSE 0.945 0.959
PSNRpo2planeMSE 0.916 0.953
po2planeHausdorff 0.753 0.763
PSNRpo2planeHausdorff 0.939 0.970
po2distMSE (mmd) 0.965 0.963
PSNRpo2distMSE (mmd) 0.865 0.965
po2distMSE (msmd) 0.967 0.965
PSNRpo2distMSE (msmd)  0.902 0.972
PCQM 0.796 0.832
GQI (our method) 0.961 0.966

TABLE III
COMPARISON WITH STATE-OF-THE-ART METHODS ON ICIP20 DATASET.
BEST RESULTS ARE HIGHLIGHTED IN BOLD.

On ICIP20 (see Table III), po2distMSE (msmd) obtains
the best mean PCC (0.967), closely followed by po2distMSE
(mmd) (0.965). Whereas the two best mean SROCC is reached
by PSNRpo2distMSE (0.972) and PSNRpo2planeHausdorff
(0.970), respectively. Our metric obtains competitive results
and surpasses most of the compared methods. PCQM is out-
performed by most of the compared metrics, except po2point-
based metrics pooled with Hausdorff (i.e. po2pointHausdorff
and PSNRpo2pointHausdorff) and po2planeHausdorff. Sim-
ilarly to the results obtained on sjtu, po2point-based and
po2plane-based metrics pooled with MSE obtain higher corre-
lations than those pooled with PSNR, while the po2dist-based
metrics pooled with PSNR give better results than those pooled

with MSE. The high correlations obtain by the point-based
metrics, especially po2pointMSE and po2planeMSE, can be
explained by the fact that contrary to sjtu, this dataset contains
only compressed PCs with joint distortion of geometry and
attributes.

We also evaluate the impact of the random selection step
on the performance by repeating the selection process 5
times on sjtu dataset. To this end, we computed the p-values
and F-values between the correlations obtained over the 5
iterations using the One-way analysis of variance (ANOVA)
test. A p-value close to 1 indicates that the difference is not
high, while a F-value close to 0 indicates that the means
and the standard deviations are similar. Table IV shows the
obtained values. As can be seen, all the p-value are higher
than the significance level (i.e. 0.05), indicating that there is
no statistically significant difference between them. Whereas
the F-values are close to 0, indicating that the correlation
distributions are essentially identical.

Iteration 1 2 3 4 5

1 1.00/0.00  0.83/0.05 0.99/0.00 0.88/0.02  0.89/0.02

2 0.83/0.05  1.00/0.00  0.83/0.05 0.94/0.01 0.93/0.01

3 0.99/0.00 0.83/0.05  1.00/0.00 0.88/0.02  0.89/0.02

4 0.88/0.02  0.94/0.01  0.88/0.02  1.00/0.00  0.99/0.00

5 0.89/0.02  0.93/0.01  0.89/0.02  0.99/0.00  1.00/0.00
TABLE 1V

P-VALUES AND F-VALUES BETWEEN THE CORRELATIONS OBTAINED OVER
THE 5 RANDOM SELECTION (P-VALUE/F-SCORE).

E. Cross Dataset Evaluation

In this section, we evaluate the generalization ability of our
method to predict the quality of unknown PCs using sjtu as
training/validation set and ICIP20 as test set without overlap
between both. More precisely, sjtu was split into two sets:
80% for the training and 20% for the validation. We obtain
high correlations with 0.889 as mean PCC and 0.930 as mean
SROCC. These results can be explained by the fact that ICIP20
is composed of only compressed PCs using G-PCC (octree
and trisoup) and V-PCC, while sjtu contains compressed PCs
using octree as well as PCs with several other distortions,
including color noise. In other words, there is a data overlap in
terms of distortion types between both datasets, which enables
the trained models to well predict the quality. In addition,
these results show that using such deep learning-based method
allows to predict well the quality of unknown PCs with close
unknown distortions. Indeed, training the considered CNN
models on sjtu that contains PCs compressed with octree-
based compression, even allows to well predict the quality
of trisoup-based compressed PCs as well as those compressed
with V-PCC. Nevertheless, due to the relatively wide variety
of distortions contained in sjtu, training those CNN models
on ICIP20 does not provide high correlations (~ 0.5). The
latter result is related to the generalization ability of those
deep learning models which is one of the challenging issues
that remains open.



IV. CONCLUSION AND PERSPECTIVES

In this paper, we proposed a deep learning-based method
that efficiently predicts the quality of distorted PCs with
reference. We first randomly selecting a set of points from
the reference PC and its distorted version and, determined the
nearest neighbor of each of them. We then defined a region of
size 32 x 32 for each of the two points and the structural
distortions are computed through element-wise patch-based
distances by considering three attributes: geometry, curvature
and color. The resulted patches are then stacked into a patch
of size 32 x 32 x 3 and fed as input to CNN models to predict
its quality (i.e. one CNN model per direction). The global
quality index is finally given by aggregating the predicted
patch quality indexes and applying either a symmetrization
function or a pooling strategy using machine learning tools
(SVR or MLP). The best result was provided by MLP and
the use of symmetrization functions did not improve the
performance. The results are compared with state-of-the-art
methods and a cross-dataset evaluation was carried-out to show
the generalization ability of our method to predict the quality
of unknown PCs. The proposed method obtained promising
results on two datasets and showed a good ability to predict
unknown PCs with close unknown distortions. Despite the
effectiveness of our method, some points should be deeper
analyzed, including the use of more efficient deep learning
models, the impact on the performance of the number of
selected points as well as the patch size.
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