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Preface

This text is a support for different courses of the master of Mechanics of the University
Paris-Saclay.

The content of this text is an introduction, for graduate students, to tensor algebra and
analysis. Far from being exhaustive, the text focuses on some subjects, with the intention
of providing the reader with the main algebraic tools necessary for a modern course in
continuum mechanics.

The presentation of tensor algebra and analysis is intentionally done in Cartesian coordi-
nates, that are normally used for classical problems. Then, an entire chapter is devoted
to the passage to curvilinear coordinates and to the formalism of co- and contra-variant
components.

The tensor theory and results are specially applied to introduce some subjects concerning
differential geometry of curves and surfaces. Also in this case, the presentation is mainly
intended for applications to continuum mechanics.

Versailles, November 5, 2021
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Chapter 1

Points and vectors

1.1 Points and vectors

We consider in the following a point space E , whose elements are points p1. On E we
admit the existence of an operation, the difference of any of its two elements:

q − p, p, q ∈ E .

We associate to E a vector space V whose dimension is dimV = 3 and whose elements are
vectors v representing translations over E :

∀p, q ∈ E , ∃! v ∈ V| q − p = v.

Any element v ∈ V is hence a transformation over E that can be written, using the
previous definition, as :

∀v ∈ V , v : E → E| q = v(p) → q = p+ v.

To remark that the result of the application of the translation v depends upon the argu-
ment p:

q = p+ v 6= p′ + v = q′,

whose geometric meaning is depicted in Fig. 1.1. Unlike difference, the sum of two points
is not defined and is meaningless.

We define the sum of two vectors u and v as the vector w such that

(u + v)(p) = u(v(p)) = w(p)

This means that, if
q = v(p) = p+ v,

then
r = u(q) = q + u = w(p),

1E is to be identified with the Euclidean three-dimensional space in which the events of classical
mechanics are intended to be set.
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Chapitre 1 
 

ELEMENTS D’ALGEBRE TENSORIELLE  
 
 
 
 

1.1 ESPACE EUCLIDIEN 

Les événements de la mécanique classique se placent dans l'espace euclidien à trois dimensions, 
que nous définissons ainsi: on dit que E est un espace euclidien tridimensionnel s’il existe un 
espace vectoriel V, qui lui est associé, de dimension trois, dans lequel il est défini un produit 
scalaire, et tel que: 

• les éléments v de V, qui sont des vecteurs, sont des transformations de  E en lui-même: 

 v ∈ V,   v : E → E ; 

• la somme de deux éléments de V est définie comme 

 E∈∀∈∀=+ ppp  et            ))(())(( Vv u,vuvu ; 

• ∀ p et q ∈ E , ∃!  v ∈ V :  q = v(p). 

Pour mieux comprendre tout cela, il faut d’abord introduire deux concepts assez importants. 

 

1.2 POINTS ET VECTEURS 

Nous choisissons une fois pour toutes un espace euclidien E; ses éléments sont appelés points. E 
doit être identifié avec l'espace ordinaire où nous vivons. 

L'espace vectoriel V sera appelé espace des translations de E et les éléments de V seront appelés 
translations.  

Analysons donc les propriétés énoncées ci-dessus; on commence avec la dernière. Ecrire q = v(p) 
signifie que v est une transformation de E en lui-même, c’est à dire, on part d’un point de E pour 
arriver encore en un point de E, et que cette transformation est intégralement déterminée par la 
valeur prise sur un point de E. Graphiquement: 

 

 

 

 

Figure 1.1 

Remarque: le même vecteur peut opérer différentes transformations, en fonction du point 
d’application: q = v(p), mais aussi q’=  v(p’). 

Nous utiliserons, à la place de l'écriture q = v(p), une écriture qui a un sens géométrique plus direct: 

 q= p + v.

Elle définit la somme d’un point et d’un vecteur comme un point. De la relation ci-dessus on tire 
aussi la définition d’un vecteur de V comme la différence de deux points de E: 

 p 

q 

v 

 p’

q’ 

v 

Figure 1.1: Same translation over two different points.

see Fig. 1.2, which shows that the above definition actually coincides with the parallelo-
gram rule and that

u + v = v + u,

as obvious, for the sum over a vector space commutes. It is evident that the sum of more
than two vectors can be defined iteratively, summing up a vector at time to the sum of
the previous vectors.

The null vector o is defined as the difference of two coincident points:

o = p− p ∀p ∈ E ;

o is unique and the only vector such that

v + o = v ∀v ∈ V .

In fact:

∀p ∈ E , v + o = v + p− p → p+ v + o = p+ v ⇐⇒ v + o = v.

A linear combination of n vectors vi is defined as the vector2

w = kivi, ki ∈ R, i = 1, ..., n.

The n + 1 vectors w, vi, i = 1, ..., n, are said to be linear independent if it does not
exist a set of n scalars ki such that the above equation is satisfied, linear dependent in the
opposite case.

2We adopt here and in the following the Einstein notation for summations: all the times that an
index is repeated in a monomial, then summation with respect to that index, called the dummy index, is
understood. If a repeated index is underlined, then it is not a dummy index, i.e. there is no summation.
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 v= q − p. 

La somme de deux points, ainsi que la différence d’un point avec un vecteur, ne sont pas définies. 

On revient maintenant à la deuxième propriété: 

 E∈∀∈∀=+ ppp  et            ))(())(( Vv u,vuvu . 

Soit q = v(p), ou q= p + v, et soit r= u(q), ou r= q + u.  Alors,  

 r= p + v + u = p + w,  

où w est le vecteur formé par la somme de u et de v. Graphiquement tout cela correspond à la 
fameuse règle du parallélogramme: 

 

 

 

 

 

Figure 1.2 

Remarque: par les propriétés générales d’un espace vectoriel, ou plus simplement 
géométriquement, à l'aide de la figure ci-dessus, on a: 

 v + u = u + v. 

En particulier, faire  u + v équivaut à faire le chemin pointillé indiqué sur la figure 1.2. 

Le vecteur nul o est défini comme la différence de deux points coïncidents. Le vecteur nul est 
unique, et il est le seul vecteur tel que 

 v + o= v     ∀ v ∈ V. 

Ces deux propriétés du vecteur nul sont très facilement démontrables avec la propriété que l’on a 
expliquée ci-dessus. 

Un vecteur w tel que 

 ,..., n,  ikk i

n

i
ii 21   ,     ,

1
=∈= ∑

=

Ruw , 

est dit être une combinaison linéaire des n vecteurs ui, où les scalaires ki sont les coefficients de la 
combinaison. Si, pour un w et pour les n ui donnés il n’existe aucun ensemble de ki tel que la 
relation ci-dessus soit satisfaite, alors les n+1 vecteurs w et ui sont dits linéairement indépendants ; 
cela signifie qu’il n’est pas possible d’exprimer w comme somme des ui, où, ce qui est la même 
chose, que la combinaison linéaire des n+1 vecteurs w et ui peut avoir comme résultat le vecteur nul 
si et seulement si tous les coefficients de la combinaison sont des zéros. Dans le cas contraire les 
n+1 vecteurs sont dits linéairement dépendants. 

La somme de vecteurs ci-dessus peut être écrite en forme abrégée comme 

 ,..., n,  ,   i kk iii 21    , =∈= Ruw ; 

cette notation est dite aussi somme d’Einstein : dans une somme d’Einstein il faut additionner par 
rapport à l’indice saturé, dit aussi indice muet, qui est l’indice répété dans l’expression. 
L’utilisation de la somme d’Einstein permet d’alléger la notation et de la rendre plus 
compréhensible. 

 r 

v 
  u 

w

v 
u 

  p 

q 

Figure 1.2: Sum of two vectors: the parallelogram rule.
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1.2 Scalar product, distance, orthogonality

A scalar product on a vector space is a positive definite, symmetric, bilinear form. A form
ω is a function

ω : V × V → R,
i.e., ω operates on a couple of vectors to give a real number, a scalar. We will indicate
the scalar product of two vectors u and v as

ω(u,v) = u · v.

The properties of bilinearity prescribe that, ∀u,v ∈ V and ∀α, β ∈ R,

u · (αv + βw) = αu · v + βu ·w,
(αu + βv) ·w = αu ·w + βv ·w,

while symmetry implies that

u · v = v · u ∀u,v ∈ V .

Finally, the positive definiteness means that

v · v > 0 ∀v ∈ V , v · v = 0 ⇐⇒ v = o.

Any two vectors are said to be orthogonal ⇐⇒

u · v = 0.

Thanks to the properties of the scalar product, we can define the Euclidean norm of a
vector v as the nonnegative scalar, denoted equivalently by v or |v|,

v = |v| =
√

v · v

The norm of a vector has the following properties:

|u + v| ≤ u+ v (Minkowski′s triangular inequality);

|u · v| ≤ u v (Schwarz′s inequality);

|kv| = |k|v, k ∈ R.

We define distance between two any points p and q ∈ E the scalar

d(p, q) = |p− q| = |q − p|.

Similarly, the distance between two any vectors u and v ∈ V is defined as

d(u,v) = |u− v| = |v − u|.

Two points or two vectors are coincident if and only if their distance is null.

The unit sphere S of V is defined as the set of all the vectors whose norm is one:

S = {v ∈ V| v = 1}.

3



1.3 Basis of V, expression of the scalar product

Generally speaking, a basis B of a vector space is any set of n linearly independent vectors,
where n is equal to the dimension of the vector space. In the case of V , n = 3, so that a
basis B of V is any set

B = {e1, e2, e3},
of three linearly independent vectors ei. The concept of basis of V is useful for representing
vectors: once a basis chosen, any vector v ∈ V can be represented as a linear combination
of the vectors of the basis, where the coefficients vi of the linear combination are the
components of v:

v = viei = v1e1 + v2e2 + v3e3.

Though the choice of the elements of a basis is completely arbitrary, the only condition
being their linear independency, we will use in the following only orthonormal bases, that
are bases composed by mutually orthogonal vectors of S, i.e. satisfying

ei · ej = δij,

where the symbol δij is the so-called Kronecker’s delta:

δij =

{
1 if i = j,

0 if i 6= j.

The use of orthonormal bases has great advantages; for instance, it allows to give a very
simple rule for the calculation of the scalar product:

u · v = uiei · vjej = uivjδij = uivi = u1v1 + u2v2 + u3v3.

In particular, it is
v · ei = vkek · ei = vkδik = vi, i = 1, 2, 3.

So, the Cartesian components of a vector are the projection of the vector on the three
vectors of the basis B; such quantities are the director cosines of v in the basis B. In fact,
if θ is the angle formed by two vectors u and v, then

u · v = u v cos θ.

This relation is used to define the angle between two vectors,

θ = arccos
u · v
u v

,

which can be proved easily: given two vectors u and v, we look for c ∈ R such that the
vector u− cv be orthogonal to v:

(u− cv) · v = 0 ⇐⇒ c =
u · v
v · v

=
u · v
v2

.

Now, if u is inclined of θ on v, its projection uv on the direction of v is

uv = u cos θ,

4



and, by construction (see Fig. 1.3), it is also

uv = c v.

So
c =

u

v
cos θ → u

v
cos θ =

u · v
v2

⇒ cos θ =
u · v
u v

.

uu-cv

vuv
!

Figure 1.3: Angle between two vectors.

To remark that, while the scalar product, being an intrinsic operation, does not change
for a change of basis, the components vi of a vector are not intrinsic quantities, but they
are basis-dependent: a change of the basis makes the components change. The way this
change is done will be introduced in Sect. 2.11.

A frame R for E is composed by a point o ∈ E , the origin, and a basis B of V :

R = {o,B} = {o; e1, e2, e3}.

The use of a frame for E is useful for determining the position of a point p, which can be
done through its Cartesian coordinates xi, defined as the components, in B, of the vector
p− o:

xi = (p− o) · ei, i = 1, 2, 3.

Of course, the coordinates depend upon both the choices of o and of B.

1.4 Exercices

1. Prove that the null vector is unique.

2. Prove that the norm of the null vector is zero.

3. Prove the inequality of Minkowski.

4. Prove the inequality of Schwarz.

5. Prove that
u · v = 0 ⇐⇒ |u− v| = |u + v| ∀u,v ∈ V .

6. Prove the linear forms representation theorem: be ψ : V → R a linear function.
Then, ∃! u ∈ V such that

ψ(v) = u · v ∀v ∈ V .
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Chapter 2

Second rank tensors

2.1 Second-rank tensors

A second-rank tensor L is any linear application from V to V :

L : V → V | L(αiui) = αiLui ∀αi ∈ R, ui ∈ V , i = 1, ..., n.

Though here V indicates the vector space of translations over E , the definition of tensor1

is more general and in particular V can be any vector space.

Defining the sum of two tensors as

(L1 + L2)u = L1u + L2u ∀u ∈ V , (2.1)

the product of a scalar by a tensor as

(αL)u = α(Lu) ∀α ∈ R,u ∈ V

and the null tensor O as the unique tensor such that

Ou = o ∀u ∈ V ,

then the set of all the tensors L that operate on V forms a vector space, denoted by
Lin(V). We define the identity tensor I as the unique tensor such that

Iu = u ∀u ∈ V .

Different possible operations can be defined for second-rank tensors. We consider all of
them in the following Sections.

1We consider for the while only second-rank tensors, but we will see in the following how to introduce
tensors of higher ranks.
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2.2 Dyads, tensor components

For any couple of vectors u and v, the dyad2 u⊗ v is the tensor defined by

(u⊗ v)w = v ·w u ∀w ∈ V .

The application defined above is actually a tensor because of the bi-linearity of the scalar
product. The introduction of dyads allows for expressing any tensor as a linear combina-
tion of dyads. In fact, it can be proved that if B = {e1, e2, e3} is a basis of V , then the
set of 9 dyads

B2 = {ei ⊗ ej, i, j = 1, 2, 3},

is a basis of Lin(V), i.e. dim(Lin(V)) = 9. This implies that any tensor L ∈ Lin(V) can
be expressed as

L = Lij ei ⊗ ej, i, j = 1, 2, 3,

where the Lijs are the nine Cartesian components of L with respect to B2. The Lijs can
be calculated easily:

ei · Lej = ei · Lhkeh ⊗ ek ej = Lhkei · eh ek · ej = Lhkδihδjk = Lij.

The above expression is sometimes called the canonical decomposition of a tensor. The
components of a dyad can be computed easily:

(u⊗ v)ij = ei · (u⊗ v) ej = u · ei v · ej = ui vj. (2.2)

The components of a vector v result of the application of a tensor L on a vector u can
now be easily calculated:

v = Lu = Lij(ei ⊗ ej)(ukek) = Lijukδjkei = Lijujei → vi = Lijuj. (2.3)

Depending upon two indices, any second-rank tensor L can be represented by a matrix,
whose entries are the Cartesian components of L in the basis B:

L =

 L11 L12 L13

L21 L22 L23

L31 L32 L33

 ;

because any u ∈ V , depending upon only one index, can be represented by a column
vector, eq. (2.3) represents actually the classical operation of the multiplication of a 3×3
matrix by a 3× 1 vector.

2In some texts, the dyad is also called tensor product; we prefer to use the term dyad because tensor
product can be ambiguous, as used to denote the product of two tensors, see Sect. 2.3.
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2.3 Tensor product

The tensor product of L1 and L2 ∈ Lin(V) is defined as

(L1L2)v = L1(L2v) ∀v ∈ V .

By linearity and eq. (2.1) we get

[L(L1 + L2)]v = L[(L1 + L2)v] = L(L1v + L2v) =

LL1v + LL2v = (LL1 + LL2)v → L(L1 + L2) = LL1 + LL2.

To remark that the tensor product is not symmetric:

L1L2 6= L2L1;

however, by the same definition of the identity tensor and of tensor product,

IL = LI = L ∀L ∈ Lin(V).

The Cartesian components of a tensor L = AB can be easily calculated using eq.
(2.3):

Lij = e1 · (AB)ej = ei ·A(Bej) = ei ·A(Bhk(ej)k eh) = Bhkδjkei ·Aeh

= Bhkδjkei · (Apq(eh)q ep) = ApqBhkδjkδqhδip = AihBhj.

The above result simply corresponds to the rule of the multiplication of rows by lines of
two matrices. Using it, the following two identities can be readily shown:

(a⊗ b)(c⊗ d) = b · c(a⊗ d) ∀a,b, c,d ∈ V ,
A(a⊗ b) = (Aa)⊗ b ∀a,b ∈ V , A ∈ Lin(V).

(2.4)

Finally, the symbol L2 is normally used to denote in short the product LL, ∀L ∈
Lin(V).

2.4 Transpose, symmetric and skew tensors

For any tensor L ∈ Lin(V), it exists just one tensor L>, called the transpose of L, such
that

u · Lv = v · L>u ∀u,v ∈ V .

The transpose of the transpose of L is L:

u · Lv = v · L>u = u · (L>)>v ⇒ (L>)> = L.

The Cartesian components of L> are obtained swapping the indexes of the components
of L:

L>ij = ei · L>ej = ej · (L>)>ei = ej · Lei = Lji.
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It is immediate to show that

(A + B)> = A> + B> ∀A,B ∈ Lin(V),

while
u · (AB)v = Bv ·A>u = v ·B>A>u ⇒ (AB)> = B>A>.

Moreover,

u · (a⊗ b)v = a · u b · v = v · (b⊗ a)u ⇒ (a⊗ b)> = b⊗ a. (2.5)

A tensor L is symmetric ⇐⇒
L = L>.

In such a case
Lij = L>ij = Lji ⇐⇒ Lij = Lji.

A symmetric tensor is hence represented, in a given basis, by a symmetric matrix and has
just six independent Cartesian components. Applying eq. (2.4) to I, it is immediately
recognized that the identity tensor is symmetric: I = I>.

A tensor L is antisymmetric or skew ⇐⇒

L = −L>.

In such a case (no summation on the index i, see footnote 2, Chap. 1)

Lij = −L>ij = −Lji ⇐⇒ Lij = −Lji ⇒ Lii = 0 ∀i = 1, 2, 3.

A skew tensor is hence represented, in a given basis, by an antisymmetric matrix whose
components on the diagonal are identically null, in any basis; finally, a skew tensor just
depends upon three independent Cartesian components.

If we denote by Sym(V) the set of all the symmetric tensors and by Skw(V) that of all
the skew tensors, then it is evident that, ∀α, β, λ, µ ∈ R,

Sym(V) ∩ Skw(V) = O,

αA + βB ∈ Sym(V) ∀A,B ∈ Sym(V),

λL + µM ∈ Skw(V) ∀L,M ∈ Skw(V),

so Sym(V) and Skw(V) are vector subspaces of Lin(V) with dim(Sym(V)) = 6, while
dim(Skw(V)) = 3.

Any tensor L can be decomposed into the sum of a symmetric, Ls, and an antisymmetric,
La, tensor:

L = Ls + La,

with

Ls =
L + L>

2
∈ Sym(V)

and

La =
L− L>

2
∈ Skw(V),

so that, finally,
Lin(V) = Sym(V)⊕ Skw(V).
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2.5 Trace, scalar product of tensors

It exists one and only one linear form

tr : Lin(V)→ R,

called the trace, such that

tr(a⊗ b) = a · b ∀a,b ∈ V .

For its same definition, that has been given without making use of any basis of V , the
trace of a tensor is a tensor invariant, i.e. a quantity, extracted from a tensor, that does
not depend upon the basis.

Linearity implies that

tr(αA + βB) = αtrA + βtrB ∀α, β ∈ R, A,B ∈ Lin(V).

It is just the linearity to give the rule for calculating the trace of a tensor L:

trL = tr(Lijei ⊗ ej) = Lijtr(ei ⊗ ej) = Lij ei · ej = Lijδij = Lii.

A tensor is hence an operator whose sum of the components on the diagonal,

trL = L11 + L22 + L33,

is constant, regardless of the basis.

Following the same procedure above, it is readily seen that

trL> = trL,

which implies, by linearity, that

trL = 0 ∀L ∈ Skw(V).

The scalar product of tensors A and B is the positive definite, symmetric bilinear form
defined by

A ·B = tr(A>B).

This definition implies that, ∀L,M,N ∈ Lin(V), α, β ∈ R,

L · (αM + βN) = αL ·M + βL ·N,

(αL + βM) ·N = αL ·N + βM ·N,

L ·M = M · L,
L · L > 0 ∀L ∈ Lin(V), L · L = 0 ⇐⇒ L = O.

Such properties give the rule for computing the scalar product of two tensors A and
B:

A ·B = Aij(ei ⊗ ej) ·Bhk(eh ⊗ ek) = AijBhk(ei ⊗ ej) · (eh ⊗ ek)

= AijBhk tr[(ei ⊗ ej)
>(eh ⊗ ek)] = AijBhk tr[(ej ⊗ ei)(eh ⊗ ek)]

= AijBhk tr[ei · eh(ej ⊗ ek)] = AijBhk ei · eh ej · ek
= AijBhkδihδjk = AijBij.
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Like in the case of vectors, the scalar product of two tensors is equal to the sum of the
products of the corresponding components. In the same manner, it is easily shown that,
∀a,b, c,d ∈ V ,

(a⊗ b) · (c⊗ d) = a · c b · d = aibjcidj,

while by the same definition of tensor scalar product,

trL = I · L ∀L ∈ Lin(V).

Similarly to vectors, we define Euclidean norm of a tensor L the nonnegative scalar,
denoted either by L or |L|,

L = |L| =
√

L · L =
√

tr(L>L) =
√
LijLij,

and the distance d(L,M) of two tensors L and M the norm of the tensor difference:

d(L,M) = |L−M| = |M− L|.

2.6 Spherical and deviatoric parts

Let L ∈ Sym(V); the spherical part of L is defined by

Lsph =
1

3
trLI,

and the deviatoric part by

Ldev = L− Lsph,

so that

L = Lsph + Ldev.

To remark that

trLsph =
1

3
trLtrI = trL ⇒ trLdev = 0,

i.e. the deviatoric part is a traceless tensor. Let A,B ∈ Lin(V); then

Asph ·Bdev =
1

3
trAI ·Bdev =

1

3
trA trBdev = 0, (2.6)

i.e. any spherical tensor is orthogonal to any deviatoric tensor.

The sets

Sph(V) :=

{
Asph ∈ Lin(V)| Asph =

1

3
trAI ∀A ∈ Lin(V)

}
,

Dev(V) :=
{
Adev ∈ Lin(V)| Adev = A−Asph ∀A ∈ Lin(V)

}
form two subspaces of Lin(V); the proof is left to the reader. For what proved above,
Sph(V) and Dev(V) are two mutually orthogonal subspaces of Lin(V).

12



2.7 Determinant, inverse of a tensor

The reader is probably familiar with the concept of determinant of a matrix. We show
here that the determinant of a second rank tensor can be defined intrinsically and that it
corresponds with the determinant of the matrix that represents it in any basis of V . To
this purpose, we need first to introduce a mapping:

ω : V × V × V → R

is a skew trilinear form if ω(u,v, ·), ω(u, ·,v) and ω(·,u,v) are linear forms on V and if

ω(u,v,w) = −ω(v,u,w) = −ω(u,w,v) = −ω(w,v,u) ∀u,v,w ∈ V . (2.7)

After this definition, we can state the following

Theorem 1. Three vectors are linearly independent if and only if every skew trilinear
form on them is not null.

Proof. In fact, be u = αv + βw; then, for any skew trilinear form ω,

ω(u,v,w) = ω(αv + βw,v,w) = αω(v,v,w) + βω(w,v,w) = 0

because of eq. (2.7), applied to the permutation of the positions of the two u and the two
w.

It is evident that the set of all the skew trilinear forms is a vector space, that we denote
by Ω, whose null element is the null form ω0:

ω0(u,v,w) = 0 ∀u,v,w ∈ V .

For a given ω(u,v,w) ∈ Ω, any L ∈ Lin(V) induces another form ωL(u,v,w) ∈ Ω,
defined as

ωL(u,v,w) = ω(Lu,Lv,Lw) ∀u,v,w ∈ V .

A key point3 for the following developments is that dim Ω = 1.

This means that ∀ω1, ω2 6= ω0 ∈ Ω,∃λ ∈ R such that

ω2(u,v,w) = λω1(u,v,w) ∀u,v,w ∈ V .

So, ∀L ∈ Lin(V), it must exist λL ∈ R such that

ω(Lu,Lv,Lw) = ωL(u,v,w) = λL ω(u,v,w) ∀u,v,w ∈ V . (2.8)

3The proof of this statement is rather articulated and out of our scope; the interested reader is
addressed to the classical textbook of Halmos on linear algebra, §31 (see the bibiography). The theory
of the determinants is developed in §53.

13



The scalar4 λL is the determinant of L and in the following it will be denoted as det L.
The determinant of a tensor L is an intrinsic quantity of L, i.e. it does not depend upon
the particular form ω, nor on the basis of V . In fact, we have never introduced, so far,
a basis for defining det L, hence it cannot depend upon the choice of a basis for V , i.e.
det L is a tensor invariant.

Then, if ω1 and ω2 ∈ Ω, because dim Ω = 1, it exists k ∈ R, k 6= 0 such that

ω2(u,v,w) = k ω1(u,v,w) ∀u,v,w ∈ V ⇒
ω2(Lu,Lv,Lw) = k ω1(Lu,Lv,Lw)→
ω2
L(u,v,w) = k ω1

L(u,v,w).

Moreover, by eq. (2.8) we get

ω1(Lu,Lv,Lw) = ω1
L(u,v,w) = λ1

Lω
1(u,v,w),

ω2(Lu,Lv,Lw) = ω2
L(u,v,w) = λ2

Lω
2(u,v,w),

so that

λ2
Lk ω

1(u,v,w) = λ2
Lω

2(u,v,w) = ω2
L(u,v,w) =

k ω1
L(u,v,w) = λ1

Lk ω
1(u,v,w) ⇐⇒ λ1

L = λ2
L,

which proves that det L does not depend upon the skew trilinear form, but only upon
L.

The definition given for det L let us prove some important properties. First of all,

det O = 0;

in fact, ∀ω ∈ Ω,

det O ω(u,v,w) = ω(Ou,Ov,Ow) = ω(o,o,o) = 0

because ω operates on three identical, i.e. linearly dependent, vectors. Then, if L =
I,

det I ω(u,v,w) = ω(Iu, Iv, Iw) = ω(u,v,w)

if and only if
det I = 1. (2.9)

A third property is that ∀a,b ∈ V ,

det(a⊗ b) = 0. (2.10)

In fact, if L = a⊗ b, then

det L ω(u,v,w) = ω(Lu,Lv,Lw) = ω((b · u)a, (b · v)a, (b ·w)a) = 0

because the three vectors on which ω ∈ Ω operates are linearly dependent; being u,v and
w arbitrary, this implies eq. (2.10).

An important result is the

4More precisely, detL is the function that associates a scalar with each tensor (Halmos, §53). We can
however, for the sake of practice, identify detL with the scalar associated to L, without consequences for
our purposes.
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Theorem 2. (Theorem of Binet): ∀A,B ∈ Lin(V)

det(AB) = det A det B. (2.11)

Proof. ∀ω ∈ Ω,

λABω(u,v,w) = ω(ABu,ABv,ABw) = ω(A(Bu),A(Bv),A(Bw)) =

λAω(Bu,Bv,Bw) = λAλBω(u,v,w) ⇐⇒ λAB = λAλB,

which proves the theorem.

A tensor L is called singular if det L = 0, otherwise it is non-singular.

Considering eq. (2.8), one can easily see that, if in a basis B of V it is L = Lijei ⊗ ej,
then

det L =
∑
π∈P3

επ(1),π(2),π(3)L1,π(1)L2,π(2)L3,π(3),

where P3 is the set of all the permutations π of {1, 2, 3} and the εi,j,ks are the components
of the Ricci alternator:

εi,j,k =


1 if (i, j, k) is an even permutation of (1, 2, 3),
0 if (i, j, k) is not a permutation,
−1 if (i, j, k) is an odd permutation of (1, 2, 3).

The above rule for det L coincides with that for calculating the determinant of the matrix
whose entries are the Lijs. This shows that, once chosen a basis B for V , det L coincides
with the determinant of the matrix representing it in B, and finally that

det L = L11L22L33 + L12L23L31 + L13L32L21

− L11L23L32 − L22L13L31 − L33L12L21.
(2.12)

This result shows immediately that ∀L ∈ Lin(V), and regardless of B, it is

det L> = det L. (2.13)

Using eq. (2.12), it is not difficult to show that, ∀α ∈ R,

det(I + αL) = 1 + αI1 + α2I2 + α3I3, (2.14)

where I1, I2 and I3 are the three principal invariants of L:

I1 = trL, I2 =
tr2L− trL2

2
, I3 = det L. (2.15)

A tensor L ∈ Lin(V) is said to be invertible if there is a tensor L−1 ∈ Lin(V), called the
inverse of L, such that

LL−1 = L−1L = I. (2.16)

If L is invertible, then L−1 is unique. By the above definition, if L is invertible, then

u1 = Lu⇒ u = L−1u1.
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Theorem 3. Any invertible tensor maps triples of linearly independent vectors into triples
of still linearly independent vectors.

Proof. Be L an invertible tensor and u1 = Lu,v1 = Lv,w1 = Lw, where u,v,w are
three linearly independent vectors. Let us suppose that

u1 = hv1 + kw1, h, k ∈ R.

Then, because L is invertible,

L−1u1 = L−1(hv1 + kw1) = hL−1v1 + kL−1w1 = hv + kw,

which goes against the hypothesis. By consequence, u1,v1 and w1 are linearly indepen-
dent.

This result, along with the definition of determinant, eq. (2.8), and Theorem 1, proves
the

Theorem 4. (Invertibility theorem): L ∈ Lin(V) is invertible ⇐⇒ det L 6= 0.

Using the Theorem of Binet, 2, along with eqs. (2.9) and (2.16), we get

det L−1 =
1

det L
.

Equation (2.16) applied to L−1, along with the uniqueness of the inverse, gives immedi-
ately that

(L−1)−1 = L,

while
B−1A−1 = B−1A−1AB(AB)−1 = (AB)−1.

The operations of transpose and inversion commute:

L>(L>)−1 = I = L−1L = I> = (L−1L)> = L>(L−1)> ⇒

(L−1)> = (L>)−1 := L−>.

2.8 Eigenvalues and eigenvectors of a tensor

If it exists a λ ∈ R and a v ∈ V , except the null vector, such that

Lv = λv, (2.17)

then λ is an eigenvalue and v an eigenvector, relatif to λ, of L. It is immediate to observe
that, thanks to linearity, any eigenvector v of L is determined to within a multiplier, i.e.,
that kv is an eigenvector of L too, ∀k ∈ R. Often, the multiplier k is fixed in such a way
that |v| = 1.
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To determine the eigenvalues and eigenvectors of a tensor, we rewrite eq. (2.17) as

(L− λI)v = o. (2.18)

The condition for this homogeneous system have a non null solution is

det(L− λI) = 0;

this is the so-called characteristic or Laplace’s equation. In the case of a second rank tensor
over V , the Laplace’s equation is an algebraic equation of degree 3 with real coefficients.
The roots of the Laplace’s equation are the eigenvalues of L; because the components of L,
and hence the coefficients of the characteristic equation, are all real, then the eigenvalues
of L are all real or one real and two complex conjugate.

For any eigenvalue λi, i = 1, 2, 3 of L, the corresponding eigenvectors vi can be found
solving eq. (2.18), once put λ = λi.

The proper space of L relatif to λ is the subspace of Lin(V) composed by all the vec-
tors that satisfy eq. (2.18). The multiplicity of λ is the dimension of its proper space,
while the spectrum of L is the set composed by all of its eigenvalues, each one with its
multiplicity.

L> has the same eigenvalues of L, because the Laplace’s equation is the same in both the
cases:

det(L> − λI) = det(L> − λI>) = det(L− λI)> = det(L− λI).

However, this is not the case for the eigenvectors, that, generally speaking, are different,
as a simple example can show.

Developing the Laplace’s equation, it is easy to show that it can be written as

det(L− λI) = −λ3 + I1λ
2 − I2λ+ I3 = 0,

which is merely an application of eq. (2.14). If we denote L3 = LLL, using eq. (2.15)
one can prove the

Theorem 5. (Cayley-Hamilton Theorem): ∀L ∈ Lin(V),

L3 − I1L
2 + I2L− I3I = O.

A quadratic form defined by L is any form ω : V × V → R of the type

ω = v · Lv;

if ω > 0 ∀v ∈ V , ω = 0 ⇐⇒ v = o, then ω and L are said to be positive definite. The
eigenvalues of a positive definite tensor are positive. In fact, if λ is an eigenvalue of L,
positive definite, and v its eigenvector, then

v · Lv = v · λv = λv2 > 0 ⇐⇒ λ > 0.
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Be v1 and v2 two eigenvectors of a symmetric tensor L relative to the eigenvalues λ1 and
λ2, respectively, with λ1 6= λ2; then

λ1v1 · v2 = Lv1 · v2 = Lv2 · v1 = λ2v2 · v1 ⇐⇒ v1 · v2 = 0.

Actually, symmetric tensors have a particular importance, specified by the

Theorem 6. (Spectral Theorem): the eigenvectors of a symmetric tensor form a basis of
V.

This theorem5 is of the paramount importance in linear algebra: it proves that the eigen-
values of a symmetric tensor L are real valued and, remembering the definition of eigenval-
ues and eigenvectors, eq. (2.17), that it exists a basis BN = {u1,u2,u3} of V composed by
eigenvectors of L, i.e. by vectors that are mutually orthogonal and that remain mutually
orthogonal once transformed by L. Such a basis is called the normal basis.

If λi, i = 1, 2, 3, are the eigenvalues of L, then the components of L in BN are

Lij = ui · Luj = ui · λjuj = λjδij

so finally in BN it is
L = λiei ⊗ ei,

i.e. L is diagonal and is completely represented by its eigenvalues. In addition, it is easy
to check that

I1 = λ1 + λ2 + λ3, I2 = λ1λ2 + λ2λ3 + λ3λ1, I3 = λ1λ2λ3.

A tensor with a unique eigenvalue λ, of multiplicity 3, is said to be spherical; in such a
case, any basis of V is BN and

L = λI.

Eigenvalues and eigenvectors have also another important property: let us consider the
quadratic form ω := v · Lv, ∀v ∈ S, defined by a symmetric tensor L. We look for
the directions v ∈ S whereupon ω is stationary. Then, we have to solve the constrained
problem

∇v(v · Lv) = o, v ∈ S.

Using the Lagrange’s multiplier technique, we solve the equivalent problem

∇(v,λ)(v · Lv − λ(v2 − 1)) = 0,

which restitutes the equation
Lv = λv

and the constraint |v| = 1. The above equation is exactly the one defining the eigenvalue
problem for L: the stationary values (i.e. the maximum and minimum) of ω corresponds

5The proof of the spectral theorem is omitted here; the interested reader can find a proof of it in the
classical text of Halmos, page 155, see the bibliography.
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hence to two eigenvalues of L and the directions v whereupon stationarity is get coincide
with the respective eigenvectors.

Two tensors A and B are said to be coaxial if they have the same normal basis BN , i.e.
if they share the same eigenvectors. Be u an eigenvector of A, relative to the eigenvalue
λA, and of B, relatif to λB. Then,

ABu = AλBu = λBAu = λAλBu = λABu = BλAu = BAu,

which shows, on one hand, that also Bu is an eigenvector of A, relative to the same
eigenvalue λA; in the same way, of course, Au is an eigenvector of B relative to λB. In
other words, this shows that B leaves unchanged any proper space of A, and viceversa.
On the other hand, we see that, at least for what concerns the eigenvectors, two tensors
commute if and only if they are coaxial. Because any vector can be written as a linear
combination of the vectors of BN , and for the linearity of tensors, we finally have proved
the

Theorem 7. (Commutation Theorem): two tensors commute if and only if they are
coaxial.

2.9 Skew tensors and cross product

Because dim(V) = dim(Skw(V)) = 3, an isomorphism can be established between V and
Skw(V), i.e. between vectors and skew tensors. We establish hence a way to associate in a
unique way a vector to any skew tensor and inversely. To this purpose, we first introduce
the following

Theorem 8. The spectrum of any tensor W ∈ Skw(V) is {0} and the dimension of its
proper space is 1.

Proof. This theorem states that zero is the only real eigenvalue of any skew tensor and
that its multiplicity is 1. In fact, be w an eigenvector of W relative to the eigenvector λ.
Then

λ2w2 = Ww ·Ww = w ·W>Ww = −w ·WWw

= −w ·W(λw) = −λw ·Ww = −λ2w2 ⇐⇒ λ = 0.

Then, if W 6= O its rank is necessarily 2, because det W = 0 ∀W ∈ Skw(V); hence, the
equation

Ww = o (2.19)

has ∞1 solutions, i.e. the multiplicity of λ is 1, which proves the theorem.

The last equation gives also the way the isomorphism is constructed: in fact, using eq.
(2.19) it is easy to check that if w = (a, b, c), then

w = (a, b, c) ⇐⇒ W =

 0 −c b
c 0 −a
−b a 0

 . (2.20)
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The proper space of W is called the axis of W and it is indicated by A(W):

A(W) = {u ∈ V|Wu = o}.

The consequence of what shown above is that dimA(W) = 1. With regard to eq. (2.20),
one can check easily that the equation

u · u =
1

2
W ·W (2.21)

is satisfied only by w and by its opposite −w. Because both these vectors belong to
A(W), choosing one of them corresponds to choose an orientation for E , see below.
We will always fix our choice according to eq. (2.20), which fixes once and for all the
isomorphism between V and Skw(V) that makes correspond any vector w with one and
only one axial tensor W and vice-versa, any skew tensor W with a unique axial vector
w.

It is worth noting that the above isomorphism between the vector spaces V and Skw(V)
implies that to any linear combination of vectors a and b corresponds an equal linear
combination of the corresponding axial tensors Wa and Wb and vice-versa, i.e. ∀a, b ∈ R

w = αa + βb ⇐⇒ W = αWa + βWb, (2.22)

where W is the axial tensor of w. Such a property is immediately checked using eq.
(2.20).

It is useful, for further developments, to calculate the powers of W:

W2 = WW = −W>(−W>) = (WW)>= (W2)> (2.23)

i.e. W2 is symmetric. Moreover:

W2u = WWu = w × (w × u) = w · uw −w ·wu

= −(I−w ⊗w)u ⇒ W2= −(I−w ⊗w)
(2.24)

So, applying recursively the previous results,

W3 = WW2 = −W(I−w ⊗w) = −W + (Ww)⊗w= −W

W4 = WW3= −W2

W5 = WW4= −W3

etc.

(2.25)

An important property of any couple axial tensor W - axial vector w is

WW = −1

2
|W|2(I−w ⊗w),

while eq. (2.21) can be generalized to any two axial couples w1,W1 and w2,W2 :

w1 ·w2 =
1

2
W1 ·W2.
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The proof of these two last properties is rather easy and left to the reader.

We define cross product of two vectors a and b the vector

a× b = Wab,

where Wa is the axial tensor of a. If a = (a1, a2, a3) and b = (b1, b2, b3), then by eq.
(2.20) we get

a× b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

The cross product is bilinear: ∀a,b,u ∈ V , α, β ∈ R,

(αa + βb)× u = αa× u + βb× u,

u× (αa + βb) = αu× a + βu× b.

In fact, the first equation above is a consequence of eq. (2.22), while the second one is a
simple application to axial tensors of the same definition of tensor.

Three important results concerning the cross product are stated by the following theo-
rems:

Theorem 9. (Condition of parallelism): two vectors a and b are parallel, i.e. b =
ka, k ∈ R, ⇐⇒

a× b = o.

Proof. This property is actually a consequence of the fact that any eigenvalue of a tensor
is determined to within a multiplier:

a× b = Wab = o ⇐⇒ b = ka, k ∈ R,

for Theorem 8.

Theorem 10. (Orthogonality property):

a× b · a = a× b · b = 0. (2.26)

Proof.

a× b · a = Wab · a = b ·W>
a a = −b ·Waa = −b · o = 0,

a×b · b = Wab · b = b ·W>
a b = −b ·Wab ⇐⇒ a× b · b = 0.

Theorem 11. a× b is the axial vector of the tensor (b⊗ a− a⊗ b).
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Proof. First of all, by eq. (2.5) we see that

(b⊗ a− a⊗ b) ∈ Skew(V).

Then,
(b⊗ a− a⊗ b)(a× b) = a · a× b b− b · a× b a = 0

for Theorem 10.

Theorem 11 allows for showing that, unlike the scalar product, the cross product is anti-
symmetric:

a× b = −b× a. (2.27)

In fact, if W1 = (b⊗ a− a⊗ b) is the axial tensor of a× b, W2 = (−a⊗ b + b⊗ a) is
that of −b× a. But, evidently, W1 = W2 which implies eq. (2.27) for the isomorphism
between V and Lin(V). This property and again Theorem 11 let us show the formula for
the double cross product:

u× (v ×w) = −(v ×w)× u = −(w ⊗ v − v ⊗w)u = u ·w v − u · v w. (2.28)

Another interesting result concerns the mixed product:

u× v ·w = Wuv ·w = −v ·Wuw = −v · u×w = w × u · v, (2.29)

and similarly
u× v ·w = v ×w · u.

Using this last result, we can obtain a formula for the norm of a cross product; if a = a ea
and b = b eb, with ea, eb ∈ S, are two vectors forming the angle θ, then

(a× b) · (a× b) = a× b · (a× b) = (a× b)× a · b = −a× (a× b) · b =

(−a · b a + a2 b) · b = b · (a2I− a⊗ a)b = a2 b · (I− ea ⊗ ea)b =

a2b2 eb · (I− ea ⊗ ea)eb = a2b2(1− cos2 θ) = a2b2 sin2 θ → |a× b| = ab sin θ.

So, the norm of a cross product can be interpreted, geometrically, as the area of the
parallelogram spanned by the two vectors. As a consequence, the absolute value of the
mixed product (2.29) measures the volume of the prism delimited by three non coplanar
vectors.

Because the cross product is antisymmetric and the scalar one is symmetric, it is easy to
check that the form

β(u,v,w) = u× v ·w

is a skew trilinear form. Then, eq. (2.8), we get

Lu× Lv · Lw = det L u× v ·w. (2.30)

Following the interpretation given above for the absolute value of the mixed product,
we can conclude that | det L| can be interpreted as a coefficient of volume dilation. A
geometrical interpretation can then be given to the case of a non invertible tensor, i.e.
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of det L = 0: it crushes a prism into a flat region (the three original vectors become
coplanar, i.e. linearly dependent).

The adjugate of L is the tensor

L∗ := (det L)L−>.

From eq. (2.30) we get hence

det L u× v ·w = Lu× Lv · Lw = L>(Lu× Lv) ·w ∀w⇒

Lu× Lv = L∗(u× v).

2.10 Orientation of a basis

It is immediate to observe that a basis B = {e1, e2, e3} can be oriented in two opposite
ways6: e.g., once two unit mutually orthogonal vectors e1 and e2 chosen, there are two
opposite unit vectors perpendicular to both e1 and e2 that can be chosen to form B.

We say that B is positively oriented or right-handed if

e1 × e2 · e3 = 1,

while B is negatively oriented or left-handed if

e1 × e2 · e3 = −1.

Schematically, a right-handed basis is represented in Fig. 2.1, where a left-handed basis
is represented too, with a dashed e3.

Figure 2.1: Right- and left-handed bases.

With a right-handed basis, by definition the axial tensors of the three vectors of the basis
are

We1 = e3 ⊗ e2 − e2 ⊗ e3,

We2 = e1 ⊗ e3 − e3 ⊗ e1,

We3 = e2 ⊗ e1 − e1 ⊗ e2.
6It is evident that this is true also for one- and two-dimensional vector spaces.
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2.11 Rotations

In the previous Chapter we have seen that the elements of V represent translations over
E . A rotation, i.e. a rigid rotation of the space, is an operation that transforms any two
vectors u and v into two other vectors u′ and v′ in such a way that

u = u′, v = v′, u · v = u′ · v′, (2.31)

i.e. it preserves norms and angles. Because a rotation is a transformation from V to V ,
rotations are tensors, i.e. we can write

v′ = Rv,

with R the rotation tensor or simply the rotation.

Conditions (2.31) impose some restrictions on R:

u′ · v′ = Ru ·Rv = u ·R>Rv = u · v ⇐⇒ R>R = I = RR>.

A tensor that preserves angles belongs to Orth(V), the subspace of orthogonal tensors (we
leave to the reader the proof that actually Orth(V) is a subspace of Lin(V). Replacing in
the above equation v with u shows immediately that an orthogonal tensor preserves also
the norms. By the uniqueness of the inverse, we see that

R ∈ Orth(V) ⇐⇒ R−1 = R>.

The above condition is not sufficient to characterize a rotation; in fact, a rotation must
transform a right-handed basis into another right-handed basis, i.e. it must preserve the
orientation of the space. This means that it must be

e′1 × e′2 · e′3 = Re1 ×Re2 ·Re3 = e1 × e2 · e3.

By eq. (2.30) we get hence the condition7

det R(e1 × e2 · e3) = e1 × e2 · e3 ⇐⇒ det R = 1.

The tensors of Orth(V) that have a determinant equal to 1 form the subspace of proper
rotations or simply rotations, indicated by Orth(V)+ or also by SO(3). Only tensors of
Orth(V)+ represent rigid rotations of E8.

Theorem 12. : each tensor R ∈ Orth(V) has the eigenvalue ±1, with +1 for rotations.

Proof. Be u an eigenvector of R ∈ Orth(V) corresponding to the eigenvalue λ. Because
R preserves the norm, it is

Ru ·Ru = λ2u2 = u2 → λ2 = 1.

7From the condition R>R = I and through eq.(2.13) and the Theorem of Binet, we recognize imme-
diately that detR = ±1 ∀R ∈ Orth(V).

8A tensor S ∈ Orth(V) such that detS = −1 represents a transformation that changes the orientation
of the space, like mirror symmetries do, see Sect. 2.12.
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We now must prove that it exists at least one real eigenvector λ. To this end, we consider
the characteristic equation

f(λ) = λ3 + k1λ
2 + k2λ+ k3 = 0,

whose coefficients ki are real-valued, because R has real-valued components. It is imme-
diate to recognize that

lim
λ→±∞

f(λ) = ±∞.

So, because f(λ) is a real-valued continuous function, actually a polynomial of λ, it exists
at least one λ1 ∈ R such that

f(λ1) = 0.

In addition, we already know that ∀R ∈ Orth(V), det R = ±1 and that, if λi, i = 1, 2, 3
are the eigenvalues of R, then det R = λ1λ2λ3. Hence, two are the possible cases:

i. λ1 ∈ R and λ2, λ3 ∈ C, with λ3 = λ2, the complex conjugate of λ2;

ii. λi ∈ R ∀i = 1, 2, 3.

Let us consider the case of R ∈ Orth(V)+, i.e. a (proper) rotation → det R = 1. Then,
in the first case above,

det R = λ1λ2λ2 = λ1[<2(λ2) + =2(λ2)].

But
<2(λ2) + =2(λ2) = 1

because it is the square of the modulus of the complex eigenvalue λ2. So in this case

det R = 1 ⇐⇒ λ1 = 1.

In the second case, λi ∈ R ∀i = 1, 2, 3, either λ1 > 0, λ2, λ3 < 0, or all of them are
positive. Because the modulus of each eigenvalue must be equal to 1, either λ1 = 1 or
λi = 1 ∀i = 1, 2, 3 (in this case R = I).

Following the same steps, one arrives easily to show that ∀S ∈ Orth(V) with det S = −1,
it exists at least one real eigenvalue λ1 = −1.

Generally speaking, a rotation tensor rotates the basis B = {e1, e2, e3} into the basis
B′ = {e′1, e′2, e′3}:

Rei = e′i ∀i = 1, 2, 3 ⇒ Rij = ei ·Rej = ei · e′j. (2.32)

This result actually means that the j-th column of R is composed by the components in
the basis B of the vector e′j of B′. Because the two bases are orthonormal, such components
are the director cosines of the axes of B′ with respect to B.

Geometrically speaking, any rotation is characterized by an axis of rotation w, |w| = 1
and by an amplitude ϕ, i.e. the angle through which the space is rotated about w. By
definition, w is the (only) vector that is left unchanged by R, i.e.

Rw = w,
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or, in other words, it is the eigenvector corresponding to the eigenvalue +1.

The question is then: how a rotation tensor R can be expressed by means of its geometrical
parameters, w and ϕ? To this end we have a fundamental theorem:

Theorem 13. (Euler’s rotation representation theorem): ∀R ∈ Orth(V)+,

R = I + sinϕW + (1− cosϕ)W2 (2.33)

with ϕ the rotation’s amplitude and W the axial tensor of the rotation axis w.

Proof. We observe preliminarily that

Rw = Iw + sinϕWw + (1− cosϕ)WWw = Iw = w (2.34)

i.e. that eq. (2.33) actually defines a transformation that leaves unchanged the axis w,
like a rotation about w must do, and that +1 is an eigenvalue of R.

We need now to prove that eq. (2.33) actually represents a rotation tensor, i.e. we must
prove that

RR> = I, det R = 1.

Through eq. (2.25) we get

RR> = (I + sinϕW + (1− cosϕ)W2)(I + sinϕW + (1− cosϕ)W2)>

= (I + sinϕW + (1− cosϕ)W2)(I− sinϕW + (1− cosϕ)W2)

= I + 2(1− cosϕ)W2 − sin2 ϕW2 + (1− cosϕ)2W4

= I + 2(1− cosϕ)W2 − sin2 ϕW2 − (1− cosϕ)2W2= I.

Then, through eq. (2.24) we obtain

R = I + sinϕW + (1− cosϕ)W2

= I + sinϕW − (1− cosϕ)(I−w ⊗w)

= cosϕI + sinϕW + (1− cosϕ)w ⊗w.

(2.35)

To go on, we need to express W and w ⊗w; if w = (w1, w2, w3), then by eq. (2.20) we
have

W =

 0 −w3 w2

w3 0 −w1

−w2 w1 0


and by eq. (2.2)

w ⊗w =

 w2
1 w1w2 w1w3

w1w2 w2
2 w2w3

w1w3 w2w3 w2
3

 ,
that injected into eq. (2.35) gives

R =

 cosϕ+ (1− cosϕ)w2
1 −w3 sinϕ+ w1w2(1− cosϕ) w2 sinϕ+ w1w3(1− cosϕ)

w3 sinϕ+ w1w2(1− cosϕ) cosϕ+ (1− cosϕ)w2
2 −w1 sinϕ+ w2w3(1− cosϕ)

−w2 sinϕ+ w1w3(1− cosϕ) w1 sinϕ+ w2w3(1− cosϕ) cosϕ+ (1− cosϕ)w2
3

 .
(2.36)
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This formula gives R as function exclusively of w and ϕ, the geometrical elements of the
rotation. Then

det R = (w2 + (1− w2) cosϕ)(cos2 ϕ+ w2 sin2 ϕ)

and because w = 1, det R = 1, which proves that eq. (2.33) actually represents a rotation.

We eventually need to prove that eq. (2.33) represents the rotation about w of amplitude
ϕ. To this end, we choose an orthonormal basis B = {e1, e2, e3} of V such that w = e3,
i.e. we analyze the particular case of a rotation of amplitude ϕ about e3. This is always
possible, thanks to the arbitrariness of the basis of V . In such a case, eq. (2.32) gives

R =

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 . (2.37)

Moreover,

W =

 0 −1 0
1 0 0
0 0 0

 , w ⊗w =

 0 0 0
0 0 0
0 0 1

,
W2 = −(I−w ⊗w) =

 −1 0 0
0 −1 0
0 0 0

.
Hence

I + sinϕW + (1− cosϕ)W2 =

 1 0 0
0 1 0
0 0 1

+ sinϕ

 0 −1 0
1 0 0
0 0 0

+

+ (1− cosϕ)

 −1 0 0
0 −1 0
0 0 0

 =

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

= R.

(2.38)

Equation (2.33) gives another result: to obtain the inverse of R it is sufficient to change
the sign of ϕ. In fact, because W ∈ Skw(V) and through eq. (2.23)

R−1 = R> = (I + sinϕW + (1− cosϕ)W2)> = I + sinϕW> + (1− cosϕ)(W2)>

= I− sinϕW + (1− cosϕ)W2 = I + sin(−ϕ)W + (1− cos(−ϕ))W2.

The knowledge of the inverse of a rotation allows also to perform the operation of change of
basis, i.e. to determine the components of a vector or of a tensor in a basis B′ = {e′1, e′2, e′3}
rotated with respect to an original basis B = {e1, e2, e3} by a rotation R (in the following
equation, a prime indicates a quantity specified in the basis B′). Considering that

ei = R−1e′i = R>e′i = R>hk(e
′
h ⊗ e′k)e

′
i = R>hkδkie

′
h
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we get, for a vector u,
u = uiei = uiR

>
kie
′
k

i.e.
u′k = R>kiui → u′ = R>u.

We remark that, because R> = R−1, the operation of change of basis is just the opposite
one of the rotation of the space (and actually, we have seen that it is sufficient to take
the opposite of ϕ in eq. (2.33) to get R−1).

For a second-rank tensor L we get

L = Lijei ⊗ ej = LijR
>
mie

′
m ⊗R>nje′n = R>miR

>
njLije

′
m ⊗ e′n,

i.e.
L′mn = R>miR

>
njLij → L′ = R>LR.

We remark something that is typical of tensors: the components of a r-rank tensor in a
rotated basis B′ depend upon the r-th powers of the directors cosines of the axes of B′,
i.e. on the r-th powers of the components Rij of R.

If a rotation tensor is known through its Cartesian components in a given basis B, it is
easy to calculate its geometrical elements: the rotation axis w is the eigenvector of R
corresponding to the eigenvalue 1, so it is found solving the equation

Rw = w

and then normalizing it, while the rotation amplitude ϕ can be found still using (2.33):
because the trace of a tensor is an invariant, we get

trR = 3 + (1− cosϕ)tr(−I + w ·w) = 1 + 2 cosϕ → ϕ = arccos
trR− 1

2
.

It is interesting to consider the geometrical meaning of eq. (2.33). To this purpose we
apply eq. (2.33) to a vector u, see Fig. 2.2

Ru = (I + sinϕW + (1− cosϕ)W2)u

= u + sinϕw × u + (1− cosϕ)w × (w × u)

The rotated vector Ru is the sum of three vectors; in particular, sinϕWu is always
orthogonal to u, w and (1− cosϕ)W2u. If u ·w = 0, see the sketch on the right in Fig.
2.2, then (1− cosϕ)W2u is also parallel to u.

Let us consider now a composition of rotations. In particular, let us imagine that a vector
u is rotated first by R1, around w1 through ϕ1, then by R2, around w2 through ϕ2. So,
first the vector u becomes the vector

u1 = R1u.

Then, the vector u1 is rotated about w2 through ϕ2 to become

u12 = R2u1 = R2R1u.
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Figure 2.2: Rotation of a vector.

Let us now suppose to change the order of the rotations: R2 first and then R1. The final
result will be the vector

u21 = R1R2u. (2.39)

Because the tensor product is not symmetric (i.e., it has not the commutativity property),
generally speaking9

u12 6= u21.

In other words, the order of the rotations matters: changing the order of the rotations
leads to a different final result. An example is shown in Fig. 2.3.

Figure 2.3: Non-commutativity of the rotations.

This is a fundamental difference between rotations and displacements, that commute, see
Fig. 1.2, because the composition of displacements is ruled by the sum of vectors:

w = u + v = v + u (2.40)

This difference, which is a major point in physics, comes from the difference of the oper-
ators: vectors for the displacements, tensors for the rotations.

9We have seen, Theorem 7, that two tensors commute ⇐⇒ they are coaxial, i.e. if they have the
same eigenvectors. Because the rotation axis is always a real eigenvector of a rotation tensor, if two
tensors operate a rotation about different axes they are not coaxial. Hence, the rotation tensors about
different axes never commute.

29



Any rotation can be specified by the knowledge of three parameters. This can be eas-
ily seen from eq. (2.33): the parameters are the three components of w, that are not
independent because

w = |w| =
√
w2

1 + w2
2 + w2

3 = 1

and by the amplitude angle ϕ. The choice of the parameters by which to express a rotation
is not unique. Besides the use of the Cartesian components of w and ϕ, other choices are
possible, let us see three of them:

i. physical angles: the rotation axis w is given through its spherical coordinates ψ, the
longitude, 0 ≤ ψ < 2π, and θ, the colatitude, 0 ≤ θ ≤ π, see Fig. 2.4, the third
parameter being the rotation amplitude ϕ. Then

Figure 2.4: Physical angles.

w = (sin θ cosψ, sin θ sinψ, cos θ) → θ = arccosw3, ψ = arctan
w2

w1

,

and, eq. (2.36),

R =

 cψ2sθ2 + cϕ(cθ2 + sψ2sθ2) sψcψsθ2(1− cϕ)− cθsϕ cψsθcθ(1− cϕ) + sψsθsϕ
sψcψsθ2(1− cϕ) + cθsϕ sψ2sθ2 + cϕ(cθ2 + cψ2sθ2) sψsθcθ(1− cϕ)− cψsθsϕ
cψsθcθ(1− cϕ)− sψsθsϕ sψsθcθ(1− cϕ) + cψsθsϕ cθ2 + cϕ(cψ2sθ2 + sψ2sθ2)

 ,
where cψ = cosψ, sψ = sinψ, cθ = cos θ, sθ = sin θ, cϕ = cosϕ, sϕ = sinϕ. We
remark that all the components of R so expressed depend upon the first powers of
the circular functions of ϕ. Hence, for what said above, with this representation of
the rotations, the components of a rotated r-rank tensor depend upon the r-th power
of the circular functions of ϕ, i.e. of the physical rotation, but not on ψ nor on θ.

ii. Euler’s angles: in this case the three parameters are the amplitude of three particular
rotations into which the rotation is decomposed. Such parameters are the angles ψ,
the precession, θ, the nutation, and ϕ, the proper rotation, see Fig. 2.5 These three
rotations are represented in Fig. 2.6. The first one, of amplitude ψ, is made about z
to carry the axis x onto the knots line xN , the line perpendicular to both the axes z
and z′, and y onto y; by eq. (2.32), in the frame {x, y, z} it is

Rψ =

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 .
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Figure 2.5: Euler’s angles.

The second one, of amplitude θ, is made about xN to carry z onto z′; in the frame
{xN , y, z} it is

Rθ =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 ,
while in the frame {x, y, z}

Ro
θ = (R−1

ψ )>RθR
−1
ψ = RψRθR

>
ψ .

Figure 2.6: Euler’s rotations, as seen from the respective axes of rotation.

The last rotation, of amplitude ϕ, is made about z′ to carry xN onto x′ and y onto
y′; in the frame {xN , y, z′} it is

Rϕ =

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 ,
while in {x, y, z}

Ro
ϕ = (R−1

ψ )>(R−1
θ )>RϕR

−1
θ R−1

ψ = RψRθRϕR
>
θ R>ψ .

Any vector u is transformed, by the global rotation, into the vector

u′ = Ru.
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But we can write also
u′ = Ro

ϕu,

where u is the vector transformed by rotation Ro
θ,

u = Ro
θu,

and u is the vector transformed by rotation Rψ,

u = Rψu.

Finally,
u′ = Ru = Ro

ϕR
o
θRψu → R = Ro

ϕR
o
θRψ,

i.e. the global rotation tensor is obtained composing, in the opposite order of execu-
tion of the rotations, the three tensors all expressed in the original basis. However,

R = Ro
ϕR

o
θRψ = RψRθRϕR

>
θ R>ψRψRθR

>
ψRψ = RψRθRϕ,

i.e., the global rotation tensor is also equal to the composition of the three rotations,
in the order of execution, if the three rotations are expressed in their own particular
bases. This result is general, not bounded to the Euler’s rotations nor to three
rotations.

Performing the tensor multiplications we get

R =

 cosψ cosϕ− sinψ sinϕ cos θ − cosψ sinϕ− sinψ cosϕ cos θ sinψ sin θ
sinψ cosϕ+ cosψ sinϕ cos θ − sinψ sinϕ+ cosψ cosϕ cos θ − cosψ sin θ

sinϕ sin θ cosϕ sin θ cos θ

 .
The components of a vector u in the basis B′ are then given by

u′ = R>u = R>ϕR>θ R>ψu,

and those of a second-rank tensor

L′ = R>LR = R>ϕR>θ R>ψLRψRθRϕ.

iii. coordinate angles: in this case, the rotation R is decomposed into three successive
rotations α, β, γ, respectively about the axes x, y and z of each rotation, i.e.

R = RαRβRγ

with

Rα =

 1 0 0
0 cosα − sinα
0 sinα cosα

 ,Rβ =

 cos β 0 − sin β
0 1 0

sin β 0 cos β

 ,Rγ =

 cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 ,
so finally

R =

 cos β cos γ − cos β sin γ − sin β
cosα sin γ − sinα sin β cos γ cosα cos γ + sinα sin β sin γ − sinα cos β
sinα sin γ + cosα sin β cos γ sinα cos γ − cosα sin β sin γ cosα cos β

 .
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Let us now consider the case of small rotations, i.e. |ϕ| → 0. In such a case,

sinϕ ' ϕ, 1− cosϕ ' 0

and
R ' I + ϕW,

i.e. in the small rotations approximation, any vector u is transformed as

Ru ' (I + ϕW)u = u + ϕw × u, (2.41)

i.e. by a skew tensor, not by a rotation tensor. The term (1−cosϕ)W2u has disappeared
(i.e., it is a higher order infinitesimal quantity) and the term ϕw × u is orthogonal to u.
Because ϕ→ 0, the arc is approximated by its tangent, the vector ϕw × u, see Fig. 2.7.
Applying to eq. (2.41) the procedure already seen for the composition of finite amplitude

Figure 2.7: Small rotations.

rotations, we get

u1 = R1u = (I + ϕ1W1)u = u + ϕ1w1 × u,

u21 = R2u1 = (I + ϕ2W2)u1 = u1 + ϕ2w2 × u1

= u + ϕ1w1 × u + ϕ2w2 × u

+ ϕ1ϕ2w2 × (w1 × u).

If the order of the rotations is changed, the last term becomes ϕ1ϕ2w1× (w2×u), which
is, in general, different from ϕ1ϕ2w2× (w1×u): strictly speaking, also small rotations do
not commute10. However, for small rotations, ϕ1ϕ2 is negligible with respect to ϕ1 and
ϕ2: in this approximation, small rotations commute. To remark that the approximation
(2.41) gives, for the displacements, a law which is quite similar to that of the velocities of
the points of a rigid body:

v = v0 + ω × (p− o)
This is quite natural, because

ω =
dϕ

dt
,

i.e. a small amplitude rotation can be seen as the rotation made with finite angular
velocity ω in a small time interval dt.

10This can happen for some vectors, all the times that w1 · u = w2 · u, like for the case of a vector u
orthogonal to both w1 and w2; however, this is no more than a curiosity, it has no importance in practice.
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2.12 Reflexions

Let us consider now tensors S ∈ Orth(V) that are not a rotation, i.e. such that det S = −1.
Let us call S an improper rotation. A particular improper rotation, whose all eigenvalues
are equal to -1, is the inversion or reflexion tensor

SI = −I.

The effect of SI is to transform any basis B into the basis −B, i.e. with all the basis vectors
changed of orientation (or, which is the same, to change the sign of all the components
of a vector). In other words, SI changes the orientation of the space. This is also the
effect of any other improper rotation S, that can be decomposed into a proper rotation
R followed by the reflexion SI

11:
S = SIR. (2.42)

Be n ∈ S, then
SR = I− 2n⊗ n (2.43)

is the tensor that operates the transformation of symmetry with respect to a plane or-
thogonal to n. In fact

SRn = −n, SRm = m ∀m ∈ V : m · n = 0.

SR is an improper rotation; in fact, eqs. (2.4), (2.14) and exercice 11,

(I− 2n⊗ n)(I− 2n⊗ n)> = (I− 2n⊗ n)(I− 2n⊗ n)

= I− 2n⊗ n− 2n⊗ n + 4(n⊗ n)(n⊗ n) = I,

det(I− 2n⊗ n) = 1− 2tr(n⊗ n) + 4
tr2(n⊗ n)− tr(n⊗ n)(n⊗ n)

2
− 8 det(n⊗ n) = −1.

Be S = SIR an improper rotation; then

(Su)× (Sv) = (SIRu)× (SIRv) = det(SIR)
[
(SIR)−1

]>
(u× v)

= det SI det R(R−1S−1
I )>(u× v) = −(−R−1I)>(u× v) = R(u× v).

The transformation by S of any vector u gives

Su = SIRu = −Ru,

i.e. it changes the orientation of the rotated vector; this is not the case when the same
improper rotations transforms the vectors of a cross product: the rotated vector result of
the cross product does not change of orientation, i.e. the cross product is insensitive to
a reflexion. That is why, strictly speaking, the result of a cross product is not a vector,
but a pseudo-vector: it behaves like vectors apart for the reflexions. For the same reason
a scalar result of a mixed product (scalar plus cross product of three vectors) is called a
pseudo-scalar, because in this case the scalar result of the mixed product changes of sign
under a reflexion, as it is easy to be seen.

11The application of the Binet’s Theorem shows immediately that detS = −1, while SIR(SIR)> =
SIRR>S>

I = −I(−I)> = I: the decomposition in eq. (2.42) actually gives an improper rotation.
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2.13 Polar decomposition

Theorem 14. (Square root theorem): be L ∈ Sym(V) and positive definite; then is exists
a unique tensor U ∈ Sym(V) and positive definite such that

L = U2.

Proof. Existence: be L,U,V ∈ Sym(V) positive definite and

L = ωiei ⊗ ei

a spectral decomposition of L, ωi > 0 ∀i. Define U as

U =
√
ωiei ⊗ ei;

then, by eq. (2.4)1 we get
U2 = L.

Uniqueness: suppose that also
V2 = L

and be e an eigenvector of L corresponding to the (positive) eigenvalue ω. Then, if
λ =
√
ω,

O = (U2 − λI)e = (U− λI)(U− λI)e,

and put
v = (U− λI)e,

we get
Uv = −λv ⇒ v = o ⇒ Ue = λe

because U is positive definite and −λ cannot be an eigenvalue of U, because λ > 0. In
the same way

Ve = λe ⇒ Ue = Ve

for every eigenvector e of L. Because, spectral theorem, it exists a basis of eigenvectors
of L, U = V.

We symbolically write that
U =

√
L.

For any F ∈ Lin(V), both FF> and F>F clearly ∈ Sym(V). If in addition det F > 0,
then

u · F>Fu = (Fu) · (Fu) ≥ 0

and the zero value is obtained ⇐⇒ Fu = o and because F is invertible, ⇐⇒ u = o.
As a consequence, F>F is positive definite. In the same way it can be proved that FF>

is also positive definite.

An important tensor decomposition is given by the
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Theorem 15. (Polar decomposition theorem): ∀F ∈ Lin(V)| det F > 0 exist and are
uniquely determined two positive definite tensors U,V ∈ Sym(V) and a rotation R such
that

F = RU = VR.

Proof. Uniqueness: Be F = RU a right polar decomposition of F; because R ∈ Orth(V)+

and U ∈ Sym(V),

F>F = UR>RU = U2 → U =
√

F>F.

By the Square-root Theorem, tensor U is unique, and because

R = FU−1,

R is unique too.

Be now F = VR a left polar decomposition of F; by the same procedure, we get

FF> = V2 → V =
√

FF>,

so V is unique and also

R = V−1F.

Existence: be

U =
√

F>F

so U ∈ Sym(V) and it is positive definite, and let

R = FU−1.

To prove that F = RU is a right polar decomposition, we just have to show that R ∈
Orth(V)+. Since det F > 0, det U > 0 (the latter because all the eigenvalues of U are
strictly positive), by the Theorem of Binet also det R > 0. Then

R>R = (FU−1)>(FU−1) = U−1F>FU−1 = U−1U2U−1 = I⇒ R ∈ Orth(V)+.

Let now

V = RUR>;

then V ∈ Sym(V) and is positive definite, see exercice 16, and

VR = RUR>R = RU = F,

which completes the proof.
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2.14 Exercices

1. Prove that
Lo = o ∀L ∈ Lin(V).

2. Prove that, if a straight line r has the direction of u ∈ S, then the tensor giving the
projection of a vector v ∈ V on r is u⊗ u, while the one giving the projection on a
direction orthogonal to r is I− u⊗ u.

3. For any α ∈ R, a,b ∈ V and A,B ∈ Lin(V), prove that

(αA)> = αA>, (A + B)> = A> + B>, (a⊗ b)A = a⊗ (A>b).

4. Prove that

trI = 3, trO = 0, tr(AB) = tr(BA) ∀A,B ∈ Lin(V).

5. Prove that, ∀L,M,N ∈ Lin(V),

L> ·M> = L ·M, LM ·N = L ·NM> = M · L>N.

6. Prove that Sym(V) and Skw(V) are orthogonal, i.e. prove that

A ·B = 0 ∀A ∈ Sym(V), B ∈ Skw(V).

7. For any L ∈ Lin(V), prove that, if A ∈ Sym(V), then

A · L = A · Ls,

while if B ∈ Skw(V), then
B · L = B · La.

8. Express by components the second principal invariant I2 of a tensor L.

9. Prove that, if a = (a1, a2, a3),b = (b1, b2, b3), c = (c1, c2, c3), then

a× b · c = det

 a1 a2 a3

b1 b2 b3

c1 c2 c3

 .
10. Prove the uniqueness of the inverse tensor.

11. Show, using the Cartesian components, that all the dyads are singular.

12. Prove that if L is invertible and α ∈ R− {0} then

(αL)−1 = α−1L−1.
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13. Prove that any form defined by a tensor L can be written as a scalar product of
tensors:

v · Lw = L · v ⊗w ∀v,w ∈ V ,L ∈ Lin(V).

14. Prove that, if W is the axial tensor of w, then

WW = −1

2
|W|2(I−w ⊗w).

15. Prove that for any two axial couples w1,W1 and w2,W2, it is:

w1 ·w2 =
1

2
W1 ·W2.

16. Let L ∈ Sym(V) and positive definite and R ∈ Orth(V)+; then prove that RLR> ∈
Sym(V) and that it is positive definite.

17. Let A,B,C,D ∈ Lin(V); prove that

A · (BCD) = (B>A) · (CD) = (AD>) · (BC).

18. Prove that the spectrum of Lsph is composed by only

λsph =
1

3
trL,

and that any u ∈ S is an eigenvector.

19. Prove that the eigenvalues λdev of Ldev are given by

λdev = λ− λsph,

where λ is an eigenvalue of L.

38



Chapter 3

Fourth rank tensors

3.1 Fourth-rank tensors

A fourth-rank tensor L is any linear application from Lin(V) to Lin(V):

L : Lin(V)→ Lin(V)|L(αiAi) = αiLAi ∀αi ∈ R, Ai ∈ Lin(V), i = 1, ..., n.

Defining the sum of two fourth-rank tensors as

(L1 + L2)A = L1A + L2A ∀A ∈ Lin(V),

the product of a scalar by a fourth-rank tensor as

(αL)A = α(LA) ∀α ∈ R,A ∈ Lin(V)

and the null fourth-rank tensor O as the unique tensor such that

OA = O ∀A ∈ Lin(V),

then the set of all the tensors L that operate on Lin(V) forms a vector space, denoted by
Lin(V). We define the fourth-rank identity tensor I as the unique tensor such that

IA = A ∀A ∈ Lin(V).

It is apparent that the algebra of fourth-rank tensors is similar to that of second-rank
tensors and in fact the operations with fourth-rank tensors can be introduced in almost
the same way, in some sense shifting from V to Lin(V) the operations. However, the
algebra of fourth-rank tensors is richer than that of the second-rank ones and some care
must be paid.

In the following sections, we consider some of the operations that can be done with
fourth-rank tensors.
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3.2 Dyads, tensor components

For any couple of tensors A and B ∈ Lin(V), the (tensor) dyad A⊗B is the fourth-rank
tensor defined by

(A⊗B)L := B · L A ∀L ∈ Lin(V).

The application defined above is actually a fourth-rank tensor because of the bi-linearity
of the scalar product of second-rank tensors. Applying this rule to the nine dyads of
the basis B2 = {ei ⊗ ej, i, j = 1, 2, 3} of Lin(V) let us introduce the 81 fourth-rank
tensors

ei ⊗ ej ⊗ ek ⊗ el := (ei ⊗ ej)⊗ (ek ⊗ el)

that form a basis B4 = {ei⊗ej⊗ek⊗el, i, j = 1, 2, 3} for Lin(V). We remark hence that
dim(Lin(V)) = 81. A useful result is that

(ei ⊗ ej ⊗ ek ⊗ el)(ep ⊗ eq) = (ek ⊗ el) · (ep ⊗ eq)(ei ⊗ ej) = δkpδlq(ei ⊗ ej). (3.1)

Any fourth-rank tensor can be expressed as the linear combination (the canonical decom-
position)

L = Lijkl ei ⊗ ej ⊗ ek ⊗ el, i, j = 1, 2, 3,

where the Lijkls are the 81 Cartesian components of L with respect to B4. The Lijkls are
defined by the operation:

(ei ⊗ ej) · L(ek ⊗ el) = (ei · ej) · (Lpqrsep ⊗ eq ⊗ er ⊗ es)(ek ⊗ el)

= (ei ⊗ ej) · (Lpqrsδrkδslep ⊗ eq)

= Lpqrsδrkδslδipδjq = Lijkl.

The components of a tensor dyad can be computed without any difficulty:

A⊗B = (Aijei ⊗ ej)⊗ (Bklek ⊗ el) = AijBklei ⊗ ej ⊗ ek ⊗ el ⇒
(A⊗B)ijkl = AijBkl,

so that in particular
((a⊗ b)⊗ (c⊗ d))ijkl = aibjckdl.

Concerning the identity of Lin(V),

Iijkl := (ei ⊗ el) · I(ek ⊗ el) = (ei ⊗ ej) · (ek ⊗ el) = ei · ekej · el = δikδjl →
I = δikδjl(ei ⊗ el ⊗ ek ⊗ el).

The components of A ∈ Lin(V) result of the application of L ∈ Lin(V) on B ∈ Lin(V)
can now be easily calculated:

A = LB = Lijkl(ei ⊗ ej ⊗ ek ⊗ el)(Bpqep ⊗ eq)

= LijklBpqδkpδlq(ei ⊗ ej)

= LijklBkl(ei ⊗ ej) → Aij = LijklBkl.

(3.2)

Moreover,

L(A⊗B)C = L((A⊗B)C) = L(B ·CA) = B ·C LA = ((LA)⊗B)C ⇒
L(A⊗B) = (LA)⊗B.
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Using this result and eq. (3.1), we can determine the components of a product of fourth-
rank tensors:

AB = Aijkl(ei ⊗ ej ⊗ ek ⊗ el)Bpqrs(ep ⊗ eq ⊗ er ⊗ es)

= AijklBpqrs(ei ⊗ ej ⊗ ek ⊗ el)(ep ⊗ eq)⊗ (er ⊗ es)

= AijklBpqrs[(ei ⊗ ej ⊗ ek ⊗ el)(ep ⊗ eq)]⊗ (er ⊗ es)

= AijklBpqrs[δkpδlq(ei ⊗ ej)]⊗ (er ⊗ es)

= AijklBklrs(ei ⊗ ej ⊗ er ⊗ es) ⇒ (AB)ijrs = AijklBklrs.

(3.3)

Depending upon four indices, a fourth-rank tensor L cannot be represented by a matrix;
however, we will see in Sect. 3.8 that a matrix representation of a fourth-rank tensor is
still possible, and that it is currently used in some cases, e.g. in elasticity.

3.3 Conjugation product, transpose, symmetries

For any two tensors A,B ∈ Lin(V) we call conjugation product the the tensor A � B ∈
Lin(V) defined by the operation

(A � B)L := ALB> ∀L ∈ Lin(V).

As a consequence, for the vectors of B,

(ei ⊗ ej) � (ek ⊗ el) = ei ⊗ ek ⊗ ej ⊗ el, (3.4)

so that
(A � B)ijkl = AikBjl.

Moreover, by the uniqueness of the identity I, ∀A ∈ Lin(V),

(I � I)A = IAI> = A ⇒ I = I � I.

The transpose of a fourth-rank tensor L is the unique tensor L> such that

A · (LB) = B · (L>A) ∀A,B ∈ Lin(V).

By this definition, putting A = ei ⊗ ej,B = ek ⊗ el gives

(L>)ijkl = Lklij.

A consequence is that

A · (LB) = B · (L>A) = A · (L>)>B ⇒ (L>)> = L.

Then, using

M · (A⊗B)>L = L · (A⊗B)M

= L ·AM ·B = M · (BA · L)

= M · (B⊗A)L,

M · (A � B)>L = L · (A � B)M

= L ·AMB> = A>L ·MB> = M>A>L ·B>

= (M>A>L)> · (B>)> = L>AM ·B = AM · LB

= M ·A>LB = M · (A> � B>)L,
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so that

(A⊗B)> = B⊗A,

(A � B)> = A> � B>.

A tensor L ∈ Lin(V) is symmetric ⇐⇒ L = L>. It is then evident that

L = L> ⇒ Lijkl = Lklij,

relations called major symmetries. These symmetries are 36 on the whole, so that a
symmetric fourth-rank tensor has 45 independent components. Moreover,

A � B = (A � B)> = A> � B> ⇐⇒ A = A>,B = B>,

A⊗B = (A⊗B)> = B⊗A ⇐⇒ B = λA, λ ∈ R.

Let us now consider the case of a L ∈ Lin(V) such that

LA = (LA)> ∀A ∈ Lin(V).

Then, by eq. (3.2),
Lijkl = Ljikl,

relations called left minor symmetries: a tensor L having the left minor symmetries has
values in Sym(V). On the whole, the left minor symmetries are 27. Finally, consider the
case of a L ∈ Lin(V) such that

LA = L(A>) ∀A ∈ Lin(V);

then, again by eq. (3.2), we get
Lijlk = Ljilk,

relations called minor right-symmetries, whose total number is also 27. It is immediate
to recognize that if L has the minor right-symmetries, then

LW = O ∀W ∈ Skw(V).

We say that a tensor has the minor symmetries if it has both the right and left minor
symmetries; the total number of minor symmetries is 45, because actually some of the
left and right minor symmetries are the same, so a tensor with the minor symmetries has
36 independent components.

If L ∈ Lin(V) has the major and minor symmetries, then the independent symmetry
relations are actually 60 (some minor and major symmetries coincide), so in such a case
L depends upon 21 independent components only. This is the case of the elasticity
tensor.

Finally, the 6 Cauchy-Poisson symmetries are those of the type

Lijkl = Likjl.

A tensor having the major, minor and Cauchy-Poisson symmetries is completely symmet-
ric, i.e. swapping any couple of indices gives an identical component. In that case, the
number of independent components is of only 15.
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3.4 Trace and scalar product of fourth-rank tensors

We can introduce the scalar product between fourth-rank tensors in the same way used
for second-rank tensors. We first introduce the concept of trace for fourth-rank tensors
once again using the dyad (here, the tensor dyad):

tr4A⊗B := A ·B.

The easy proof that tr4 : Lin(V) → R is a linear form is based upon the properties of
scalar product of second-rank tensors and it is left to the reader. An immediate result is
that

tr4A⊗B = AijBij,

Then, using the canonical decomposition, we have that

tr4L = tr4(Lijkl(ei ⊗ ej)⊗ (ek ⊗ el)) = Lijkl(ei ⊗ ej) · (ek ⊗ el) = Lijklδikδjl = Lijij

and that

tr4L> = tr4(Lklij(ei⊗ej)⊗(ek⊗el)) = Lklij(ei⊗ej) ·(ek⊗el) = Lklijδikδjl = Lijij = tr4L.

Then, we define the scalar product of fourth-rank tensors as

A · B := tr4(A>B).

By the properties of tr4, the scalar product is a positive definite symmetric bilinear
form:

αA · βB = tr4(αA>βB) = αβtr4(A>B) = αβA · B,
A · B = tr4(A>B) = tr4(A>B)> = tr4(B>A) = B · A,
A · A = tr4(A>A) = (A>A)ijij = AklijAklij > 0 ∀A ∈ Lin(V),A · A = 0 ⇐⇒ A = O.

By components

A · B = tr4((Aklijei ⊗ ej ⊗ ek ⊗ el)(Bpqrsep ⊗ eq ⊗ er ⊗ es))

= tr4(AklijBpqrsδkpδlq(ei ⊗ ej)⊗ (er ⊗ es))

= AklijBpqrsδkpδlq(ei ⊗ ej) · (er ⊗ es) = AklijBpqrsδkpδlqδirδjs = AklijBklij.

The rule for computing the scalar product is hence always the same already seen for
vectors and second-rank tensors: all the indexes are to be saturated.

In complete analogy with vectors and second-rank tensors, we say that A is orthogonal to
B ⇐⇒

A · B = 0

and we define the norm of L as

|L| :=
√
L · L =

√
tr4L>L =

√
LijklLijkl.
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3.5 Projectors, identities

For the spherical part of any A ∈ Sym(V) we can write

Asph :=
1

3
trAI =

1

3
I ·AI =

1

3
(I⊗ I)A = SsphA,

where

Ssph :=
1

3
I⊗ I

is the spherical projector, i.e. the fourth-rank tensor that extracts from any A ∈ Lin(V)
its spherical part. Moreover,

Adev := A−Asph = IA− SsphA = DdevA,

where

Ddev := I− Ssph

is the deviatoric projector, i.e. the fourth-rank tensor that extracts from any A ∈ Lin(V)
its deviatoric part. It is worth noting that

I = Ssph + Ddev.

Moreover, about the components of Ssph,

Ssphijkl = (ei ⊗ ej) ·
1

3
(I⊗ I)(ek ⊗ el) =

1

3
(ei ⊗ ej) · I(ek ⊗ el) · I

=
1

3
tr(ei ⊗ ej)tr(ek ⊗ el) =

1

3
δijδkl → Ssph =

1

3
δijδkl(ei ⊗ ej ⊗ ek ⊗ el).

To remark that

Ssph = (Ssph)>.

We introduce now the tensor Is, restriction of I to A ∈ Sym(V). It can be introduced as
follows: ∀A ∈ Sym(V)

A =
1

2
(A + A>),

and

A = IA =
1

2
(IA + IA>) =

1

2
(IijklAkl + IijklAlk)(ei ⊗ ej ⊗ ek ⊗ el);

because A = A> there is insensitivity to the swap of indexes k and l, so

A =
1

2
(IijklAkl + IijlkAlk)(ei ⊗ ej ⊗ ek ⊗ el) =

1

2
(δikδjl + δilδjk)Akl(ei ⊗ ej ⊗ ek ⊗ el).

Then, if we admit the interchangeability of indexes k and l, i.e. if we postulate the
existence of the minor right-symmetries for I, then I = Is, with

Is =
1

2
(δikδjl + δilδjk)(ei ⊗ ej ⊗ ek ⊗ el).
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It is apparent that
Isijkl = Isklij,

i.e. Is = (Is)>, but also that

Isijkl =
1

2
(δilδjk + δikδjl) = Isjikl,

i.e., Is has also the minor left-symmetries; in other words, Is has the major and minor
symmetries, like an elasticity tensor, while this is not the case for I. In fact

Iijkl = Ijilk = δikδjl 6= δilδjk = Ijikl = Iijlk.

Because Ssph and Ddev operate on Sym(V), it is immediate to recognize that it is also

Ddev = Is − Ssph ⇒ Is = Ssph + Ddev.

It is worth noting that

(Ddev)> = (Is − Ssph)> = (Is)> − (Ssph)> = Is − Ssph = Ddev.

We can now determine the components of Ddev:

Ddev
ijkl = Isijkl − S

sph
ijkl =

1

2
(δikδjl + δilδjk)−

1

3
δijδkl →

Ddev =

[
1

2
(δikδjl + δilδjk)−

1

3
δijδkl

]
(ei ⊗ ej ⊗ ek ⊗ el).

To remark that the result (2.6) implies that Ssph and Ddev are orthogonal projectors, i.e.
they project the same A ∈ Sym(V) into two orthogonal subspaces of V , Sph(V) and
Dev(V).

The tensor Ttrp ∈ Lin(V) defined by the operation

TtrpA := A>,

is the transposition projector, whose components are

T trpijkl = (ei ⊗ ej) · Ttrp(ek ⊗ el) = (ei ⊗ ej) · (el ⊗ ek) = δilδjk.

The following operation defines the symmetry projector Ssym ∈ Lin(V):

SsymA =
1

2
(A + A>) ∀A ∈ Lin(V),

while the antisymmetry projector Wskw ∈ Lin(V) is defined by

WskwA =
1

2
(A−A>) ∀A ∈ Lin(V).

Also Ssym and Wskw are orthogonal projectors, because they project the same A ∈ Lin(V)
into two orthogonal subspaces of Lin(V): Sym(V) and Skw(V), see exercice 6 of Chap.
2.
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We prove now two properties of the projectors: ∀A ∈ Lin(V),

(Ssym + Wskw)A =
1

2
(A + A>) +

1

2
(A−A>) = A = IA ⇒ Ssym + Wskw = I. (3.5)

Then,

(Ssym−Wskw)A =
1

2
(A+A>)−1

2
(A−A>) = A> = TtrpA ⇒ Ssym−Wskw = Ttrp. (3.6)

3.6 Orthogonal conjugator

For any U ∈ Orth(V) we define its orthogonal conjugator U ∈ Lin(V) as

U := U � U.

Theorem 16. (orthogonality of U): the orthogonal conjugator is an orthogonal tensor of
Lin(V), i.e. it preserves the scalar product between tensors:

UA · UB = A ·B ∀A,B ∈ Lin(V).

Proof. By the assertion in exercice 17 of Chap. 2, and because U ∈ Orth(V), we have

UA · UB = (U � U)A · (U � U)B = UAU> ·UBU>

= U>UAU> ·BU> = AU> ·BU> = AU>U ·B = A ·B.

Just as for tensors of Orth(V), it is also

UU> = U>U = I.

In fact, see the assertion of exercice 3,

UU> = (U � U)(U> � U>) = UU> � UU> = I � I = I. (3.7)

The orthogonal conjugators have also some properties in relation with projectors:

Theorem 17. : Ssph is unaffected by any orthogonal conjugator, while Ddev commutes
with any orthogonal conjugator.

Proof. For any L ∈ Sym(V) and U ∈ Orth(V),

USsphL = (U � U)

(
1

3
I⊗ I

)
L =

1

3
(trL)(U � U)I =

1

3
(trL)UIU>

=
1

3
(trL)I =

1

3
I · LI =

1

3
(I⊗ I)L = SsphL.
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Moreover,

SsphUL =

(
1

3
I⊗ I

)
(U � U)L =

1

3
(I⊗ I)(ULU>) =

1

3
(I ·ULU>)I

=
1

3
tr(ULU>)I =

1

3
tr(U>UL)I =

1

3
(trL)I =

1

3
I · LI =

1

3
(I⊗ I)L = SsphL.

Thus, we have proved that
SsphU = USsph = Ssph,

i.e. that the spherical projector Ssph is unaffected by any orthogonal conjugator. Further

DdevUL = (Is − Ssph)UL = IsUL− SsphUL = UL− SsphL = (U− Ssph)L

and

UDdevL = U(Is − Ssph)L = UIsL− USsphL = UL− SsphL = (U− Ssph)L,

so that
DdevU = UDdev.

3.7 Rotations and symmetries

We ponder now how to rotate a fourth-rank tensor, i.e., what are the components of

L = Lijklei ⊗ ej ⊗ ek ⊗ el

in a basis B′ = {e′1, e′2, e′3} obtained rotating the basis B = {e1, e2, e3} by the rotation
R = Rijei⊗ej,R ∈ Orth(V)+. The procedure is exactly the same already seen for vectors
and second-rank tensors:

L = Lijklei ⊗ ej ⊗ ek ⊗ el = LijklR
>
pie
′
p ⊗R>qje′q ⊗R>rke′r ⊗R>sle′s

= R>piR
>
qjR

>
rkR

>
slLijkle

′
p ⊗ e′q ⊗ e′r ⊗ e′s,

i.e.
L′pqrs = R>piR

>
qjR

>
rkR

>
slLijkl.

We see clearly that the components of L in the basis B′ are a linear combination of those
in B, the coefficients of the linear combination being fourth-powers of the director cosines,
the Rijs. The introduction of the orthogonal conjugator1 of the rotation R,

R = R � R,

allows to give a compact expression for the rotation of second- and fourth-rank tensors
(for completeness we recall also that of a vector w);

w′ = R>w,

L′ = R>LR = (R> � R>)L = R>L,

L′ = (R> � R>)L(R � R) = R>LR.
1Here the symbol R indicates the orthogonal conjugator of R, not the set of real numbers.
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The check of the above relations with the orthogonal conjugator R is left to the reader. It
is worth noting that actually these transformations are valid not only for R ∈ Orth(V)+,
but more generally for any U ∈ Orth(V), i.e. also for symmetries.

If by U we denote the tensor of change of basis under any orthogonal transformation, i.e.,
if we put U = R> for the rotations, then the above relations become

w′ = Uw,

L′ = ULU> = (U � U)L = UL,

L′ = (U � U)L(U � U)> = ULU>.

(3.8)

Finally, we say that L ∈ Lin(V) or L ∈ Lin(V) is invariant under an orthogonal transfor-
mation U if

ULU> = L, ULU> = L;

right multiplying both terms by U or by U and through eq. (3.7), we get that L or L are
invariant under U ⇐⇒

UL = LU, UL = LU,
i.e. ⇐⇒ L and U, or L and U commute. This relation allows, e.g., the analysis of
material symmetries in elasticity.

If a tensor is invariant under any orthogonal transformation, i.e. if the previous equations
hold true ∀U ∈ Orth(V) then the tensor is said to be isotropic. A general result2 is that
a fourth-rank tensor L is isotropic ⇐⇒ exist two scalar functions λ, µ such that

LA = 2µA + λtrA I ∀A ∈ Sym(V).

The reader is addressed to the book of Gurtin (see references) for the proof of this result
and for a deeper insight in isotropic functions.

3.8 The Kelvin formalism

As already mentioned, though fourth-rank tensors cannot be organized in and represented
by a matrix, a matrix formalism for these operators exists. Such formalism is due to
Kelvin3 and it is strictly related to the theory of elasticity, i.e. it concerns the Cauchy’s
stress tensor σ, the strain tensor ε and the elasticity tensor E. The relation between σ
and ε is given by the celebrated (generalized) Hooke’s law:

σ = Eε.
Both σ, ε ∈ Sym(V) while E = E> and it has also the minor symmetries, so E has just
21 independent components4. In the Kelvin formalism, the six independent components

2Actually, this is a quite famous result in classical elasticity, the Lamé’s equation, defining an isotropic
elastic material.

3W. Thomson (Lord Kelvin): Elements of a mathematical theory of elasticity. Philos. Trans. R. Soc.,
146, 481-498, 1856. Later, Voigt (W. Voigt: Lehrbuch der Kristallphysik. B. G. Taubner, Leipzig, 1910)
gave another, similar matrix formalism for tensors, more widely known than the Kelvin one, but less
effective.

4Actually, the Kelvin formalism can be extended without major difficulties also to tensors that do not
possess all the symmetries.
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of σ and ε are organized into column vectors and renumbered as follows

{σ} =



σ1 = σ11

σ2 = σ22

σ3 = σ33

σ4 =
√

2σ23

σ5 =
√

2σ31

σ6 =
√

2σ12


, {ε} =



ε1 = ε11

ε2 = ε22

ε3 = ε33

ε4 =
√

2ε23

ε5 =
√

2ε31

ε6 =
√

2ε12


.

The elasticity tensor E is reduced to a 6×6 matrix [E], consequence of the minor symme-
tries induced by the symmetry of σ and ε; this matrix is symmetric because E = E>:

[E] =



E11 = E1111 E12 = E1122 E13 = E1133 E14 =
√

2E1123 E15 =
√

2E1131 E16 =
√

2E1112

E12 = E1122 E22 = E2222 E23 = E2233 E24 =
√

2E2223 E25 =
√

2E2231 E26 =
√

2E2212

E13 = E1133 E23 = E2233 E33 = E3333 E34 =
√

2E3323 E35 =
√

2E3331 E36 =
√

2E3312

E14 =
√

2E1123 E24 =
√

2E2223 E34 =
√

2E3323 E44 = 2E2323 E45 = 2E2331 E46 = 2E2312

E15 =
√

2E1131 E25 =
√

2E2231 E35 =
√

2E3331 E45 = 2E2331 E55 = 2E3131 E56 = 2E3112

E16 =
√

2E1112 E26 =
√

2E2212 E36 =
√

2E3312 E46 = 2E2312 E56 = 2E3112 E66 = 2E1212


.

In this way, the matrix product
{σ} = [E]{ε} (3.9)

is equivalent to the tensor form of the Hooke’s law and all the operations can be done
by the aid of classical matrix algebra5, e.g. the computation of the inverse of E, the
compliance tensor.

An important operation is the expression of tensor U in eq. (3.8) in the Kelvin formalism;
some tedious but straightforward passages give the result:

[U ] =


U2

11 U2
12 U2

13

√
2U12U13

√
2U13U11

√
2U11U12

U2
21 U2

22 U2
23

√
2U22U23

√
2U23U21

√
2U21U22

U2
31 U2

32 U2
33

√
2U32U33

√
2U33U31

√
2U31U32√

2U21U31

√
2U22U32

√
2U23U33 U23U32 + U22U33 U33U21 + U31U23 U31U22 + U32U21√

2U31U11

√
2U32U12

√
2U33U13 U32U13 + U33U12 U31U13 + U33U11 U31U12 + U32U11√

2U11U21

√
2U12U22

√
2U13U23 U12U23 + U13U22 U11U23 + U13U21 U11U22 + U12U21


With some work, it can be checked that

[U ][U ]> = [U ]>[U ] = [I],

i.e. that [U ] is an orthogonal matrix in R6. Of course,

[R] = [U ]>

is the matrix that in the Kelvin formalism represents the tensor R = U>. The change of
basis for σ and ε are hence done through the relations

{σ′} = [U ]{σ}, {ε′} = [U ]{ε},
5Mehrabadi and Cowin have shown that the Kelvin formalism transforms second- and fourth-rank

tensors on R3 into vectors and second-rank tensors on R6 (M. M. Mehrabadi, S. C. Cowin: Eigentensors
of linear anisotropic elastic materials. Q. J. Mech. Appl. Math., 43, 15-41, 1990).
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which applied to eq. (3.9) give

{σ} = [E]{ε} → [U ]>{σ′} = [E][U ]>{ε′} → {σ′} = [U ][E][U ]>{ε′}

i.e. in the basis B′
{σ′} = [E ′]{ε′},

where
[E ′] = [U ][E][U ]> = [R]>[E][R]

is the matrix representing E in B′ in the Kelvin formalism. Though it is possible to give
the expression of the components of [E ′], they are so long that they are omitted here.

3.9 Exercices

1. Prove eq. (3.4).

2. Prove that
A⊗BL = A⊗ L>B.

3. Prove that
(A � B)(C � D) = AC � BD.

4. Prove eq. (3.3) using the result of the previous exercice.

5. Prove that
(A⊗B)(C � D) = A⊗ ((C> � D>)B).

6. Prove that
(A � B)(C⊗D) = ((A � B)C)⊗D.

7. Let p ∈ S and P = p⊗ p; then prove that

P � P = P⊗P.

8. Prove that, ∀A ∈ Lin(V),
IA = AI = A.

9. Show that
(A⊗B) · (C⊗D) = A ·C B ·D.

10. Show that

Ssph =
I

|I|
⊗ I

|I|
.

11. Show that
dim(Sph(V)) = 1, dim(Dev(V)) = 5.
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12. Show the following properties of Ssph and Ddev:

SsphSsph = Ssph,

DdevDdev = Ddev,

SsphDdev = DdevSsph = O.

13. Prove the results in eqs. (3.5) and (3.6) using the components.

14. Show that
Ssph · Ssph = 1,

Ddev · Ddev = 5,

Ssph · Ddev = 0.

15. Explicit the orthogonal conjugator SR of the tensor SR in eq. (2.43).
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Chapter 4

Tensor analysis: curves

4.1 Curves of points, vectors and tensors

The scalar products in V , Lin(V) and Lin(V) allow us to define a norm, the Euclidean
norm, so they automatically endow these spaces with a metric, i.e. we are able to measure
and calculate a distance between two elements of such a space and in E . This allows us
to generalise the concepts of continuity and differentiability already known in R, whose
definition intrinsically makes use of a distance between real quantities.

Let πn = {pn ∈ E , n ∈ N} a sequence of points in E . We say that πn converges to p ∈ E
if

lim
n→∞

d(pn − p) = 0.

A similar definition can be given for sequences of vectors or tensors of any rank. Through
this definition of convergence we can now precise the concepts of continuity and of
curve.

Let [a, b] an interval of R; the function

p = p(t) : [a, b]→ E

is continuous at t ∈ [a, b] if for each sequence {tn ∈ [a, b], n ∈ N} that converges to t the
sequence πn defined by pn = p(tn) ∀n ∈ N converges to p(t) ∈ E . The function p = p(t)
is a curve in E ⇐⇒ it is continuous ∀t ∈ [a, b]. In the same way we can define a curve
of vectors and of tensors:

v = v(t) : [a, b]→ V ,

L = L(t) : [a, b]→ Lin(V),

L = L(t) : [a, b]→ Lin(V).

Mathematically, a curve is a function that lets correspond to a real value t (the parameter)
in an interval an element of a space, E ,V , Lin(V) or L(V).
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4.2 Differention of curves

Let v = v(t) : [a, b] → V a curve of vectors and g = g(t) : [a, b] → R a scalar function.
We say that v is of the order o with respect to g in t0 ⇐⇒

lim
t→t0

|v(t)|
|g(t)|

= 0,

and we write

v(t) = o(g(t)) for t→ t0.

A similar definition can be given for a curve of tensors of any rank. We then say that the
curve v is differentiable in t0 ∈]a, b[⇐⇒ ∃v′ ∈ V such that

v(t)− v(t0) = (t− t0)v′ + o(t− t0).

We call v′ the derivative of v1, also indicated by
dv

dt
. Applying the definition of derivative

to v′ we define the second derivative v′′ of v and recursively all the derivatives of higher
orders. We say that v is of class Cn if it is continuous with its derivatives up to the
order n; if n ≥ 1, v is said to be smooth. A curve v(t) of class Cn is said to be regular if
v′ 6= o ∀t. Similar definitions can be given for curves in E , Lin(V) and Lin(V), so defining
derivatives of points and tensors. We remark that the derivative of a curve in E , defined
as a difference of points, is a curve in V (we say, in short, that the derivative of a point
is a vector). For what concerns tensors, the derivative of a tensor of rank r is a tensor of
the same rank.

Let u,v curves in V , L,M curves in Lin(V), L,M curves in Lin(V) and α a scalar func-
tion, all of them defined and at least of class C1 on [a, b]. The same definition of derivative
of a curve gives the following results, whose proof is let to the reader:

(u + v)′ = u′ + v′,

(αv)′ = α′v + αv′,

(u · v)′ = u′ · v + u · v′,

(u× v)′ = u′ × v + u× v′,

(u⊗ v)′ = u′ ⊗ v + u⊗ v′,

(L + M)′ = L′ + M′,

(αL)′ = α′L + αL′,

(Lv)′ = L′v + Lv′,

(LM)′ = L′M + LM′,

(L ·M)′ = L′ ·M + L ·M′,

1The symbol ˙ is also used, but it is usually reserved, in physics, to the case where t is the time.
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(L⊗M)′ = L′ ⊗M + L⊗M′,

(L � M)′ = L′ � M + L � M′,

(L + M)′ = L′ + M′,

(αL)′ = α′L + αL′,

(LL)′ = L′L + LL′,

(LM)′ = L′M + LM′,

(L ·M)′ = L′ ·M + L ·M′.
To remark that the derivative of any kind of product is made according to the usual rule
of the derivative of a product of functions.

Be R = {o;B} a reference frame of the euclidean space E , composed by an origin o
and a basis B = {e1, e2, e3} of V , ei · ej = δij∀i, j = 1, 2, 3 and let us consider a point
p(t) = (p1(t), p2(t), p3(t)). If the three coordinates pi(t) are three continuous functions over
the interval [t1, t2] ∈ R, then, by the definition given above, the mapping p(t) : [t1, t2]→ E
is a curve in E and the equation

p(t) = (p1(t), p2(t), p3(t)) →


p1 = p1(t)
p2 = p2(t)
p3 = p3(t)

is the parametric point equation of the curve: to each value of t ∈ [t1, t2] it corresponds a
point of the curve in E , see Fig. 4.1.

Chapitre 1 

 

 - 20 -

 

 

 

 

 

 

Figure 1.7 

 L(t)= Lij(t) ei�ej,    i, j= 1, 2, 3, 

est une courbe tensorielle. Souvent, en mécanique, le paramètre t est le temps de déroulement d’un 
certain événement; nous verrons dans les chapitres suivants plusieurs exemples de courbes de 
points, vecteurs et tenseurs dont le paramètre est le temps, et leur signification mécanique. 

Il faut aussi remarquer qu’une courbe peut avoir plusieurs représentations paramétriques : en fait, si 
t est le paramètre choisi pour représenter une courbe, par exemple une courbe de points, l’équation 
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décrit la même courbe, étant W lié à t par le changement de paramètre 
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1.22 DERIVEE D’UNE COURBE  

Considérons une courbe de points p= p(t); on définit dérivée en t= to de la courbe p(t) par rapport au 
paramètre t la limite 
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la dérivée d’une courbe de points, étant définie comme différence de points, est un vecteur, voir la 
figure 1.8. 

D’une façon analogue on peut définir la dérivée d’une courbe vectorielle, 

 
H
H

H

)()(
lim)(

0
oo

tt

tt
dt

td

o

rrr ��
 

o 

, 

et tensorielle 
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Encore, étant définies comme différences respectivement de vecteurs et de tenseurs, la dérivée d’un 
vecteur est un vecteur, voir encore la figure 1.8, et celle d’un tenseur un tenseur. Souvent, on 
indique les dérivées comme  

 LLrr c c c 
dt
d

dt
dp

dt
dp   ,  ,   

et si le paramètre t est le temps, comme 

 p(t) 

o 

e1 

e2 

e3 

r(t) 

t1 t2 t R 

 p(t)=(p1(t), p2(t), p3(t)) 

Figure 4.1: Mapping of a curve of points.

The vector function r(t) = p(t)−o is the position vector of point p inR; the equation

r(t) = ri(t)ei = r1(t)e1 + r2(t)e2 + r3(t)e3 →


r1 = r1(t)
r2 = r2(t)
r3 = r3(t)

is the parametric vector equation of the curve: to each value of t ∈ [t1, t2] it corresponds
a vector of V that determines a point of the curve in E through the operation p(t) =
o+ r(t).
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Similarly, if the components Lij(t) are continuous functions of a parameter t, the mapping
L(t) : [t1, t2]→ Lin(V) defined by

L(t) = Lij(t)ei ⊗ ej, i, j = 1, 2, 3,

is a curve of tensors. In the same way we can give a curve of fourth-rank tensors L(t) :
[t1, t2]→ Lin(V) by

L(t) = Lijkl(t)ei ⊗ ej ⊗ ek ⊗ el, i, j, k, l = 1, 2, 3.

To be noticed that the choice of the parameter is not unique: the equation p = p[τ(t)]
still represents the same curve p = p(t), through the change of parameter τ = τ(t).

The definition given above for the derivative of a curve of points p = p(t) in t = t0 is
equivalent to the following one (probably more familiar to the reader)

dp(t)

dt
= lim

ε→0

p(t0 + ε)− p(t0)

ε
;

represented in Fig. 4.2, it is apparent that r′(t) =
dp(t)

dt
is a vector.
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Figure 1.8 

Si on applique les opérations de limite aux composantes, on reconnaît immédiatement que  
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c’est-à-dire que la dérivée d’une courbe a comme composantes les dérivées des composantes de la 
courbe donnée. Sur la base de cette considération, c’est facile de comprendre les formules 
suivantes, qui généralisent aux courbes les règles de dérivation d’une fonction d’une variable réelle:  
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Un cas particulier, et important dans les applications, est celui d’un vecteur variable mais constant 
en module ; dans ce cas la dérivée est toujours orthogonale au vecteur donné. En fait, soit v= v(t), 
avec R� v)(tv . Cherchons la dérivée de la norme au carré, qui est sans doute nulle parce que la 
norme est constante par hypothèse : 

 02)()( 2  �c c���c c� c vvvvvvvvv , 

donc les deux vecteurs sont orthogonaux ; on constate immédiatement que le contraire est vrai 
aussi. 

Pour terminer, on peut introduire la dérivée seconde d’une courbe tout simplement en considérant 
que celle-ci n’est que la dérivée première de la courbe “ dérivée première ” de la courbe donnée, et 
ainsi de suite pour les dérivées d’ordre supérieur. 

 

1.23 INTEGRATION D’UNE COURBE, ABSCISSE CURVILIGNE 

L’intégrale d’une courbe de vecteurs est définie comme le vecteur qui a par composantes les 

 p(to) 

o 

e1 

e2 

e3 

r(to) 
 p(to+H) 

r(to+H) 

r’(to) 

Figure 4.2: Derivative of a curve.

An important case is that of a vector v(t) whose norm v(t) is constant ∀t:

(v2)′ = (v · v)′ = v′ · v + v · v′ = 2v′ · v = 0 : (4.1)

the derivative of such a vector is orthogonal to it ∀t. The contrary is also true, as
immediately apparent.

Finally, using the above rules and assuming that the reference frame R is independent
from t, we get easily that

p′(t) = p′i(t) ei,

v′(t) = v′i(t) ei,

L′(t) = L′ij(t) ei ⊗ ej,

L′(t) = L′ijkl(t) ei ⊗ ej ⊗ ek ⊗ el,

(4.2)
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i.e. that the derivative of a curve of points, vectors or tensors is simply calculated differ-
entiating the coordinates or the components.

More involved is to prove that

(L>)′ = L′>,

(L>)′ = L′>,

(det L)′ = det L tr(L′L−1) = det L L>
′ · L−1 = det L L′ · L−>,

the reader is addressed to the book of Gurtin for the proof.

4.3 Integral of a curve of vectors, length of a curve

We define integral of a curve of vectors r(t) between a and b ∈ [t1, t2] the curve that is
obtained integrating each component of the curve:∫ b

a

r(t) dt =

∫ b

a

ri(t) dt ei.

If the curve is regular, we can generalize the second fundamental theorem of the integral
calculus

r(t) = r(a) +

∫ t

a

r′(t∗) dt∗.

Because

r(t) = p(t)− o, r′(t) = (p(t)− o)′ = p′(t),

we get also

p(t) = p(a) +

∫ t

a

p′(t∗) dt∗.

The integral of a vector function is the generalization of the vector sum, see Fig. 4.3.
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Si la courbe r(t) est régulière, on peut généraliser le deuxième théorème fondamental du calcul 
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l’équation ci-dessus peut être réécrite comme 
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L’intégrale d’une fonction vectorielle est, d’une certaine façon, la généralisation de la somme 
vectorielle, voir la figure 1.9. 

 

 

 

 

 

 

 

 

Figure 1.9 

Une façon simple d’établir la position d’un point p(t) sur une courbe donnée, est celle de fixer un 
point quelconque po sur la courbe, et de mesurer la longueur de l’arc de courbe compris entre 
po=p(to) et p(t) ; cette longueur est appelée abscisse curviligne s(t), et on peut démontrer que 
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et donc s(t) est une fonction croissante avec t ; de la formule précédente on tire la longueur d’un arc 

 p(t) 

 p(a) 

o 

e1 

e2 

e3 

r(a) 
r(t) 

³ c
t

a
dtt **)(r

Figure 4.3: Integral of a vector curve.
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Be r(t) : [a, b] → E a regular curve, σ a partition of the type a = t0 < t1 < ... < tn = b,
and

σmax = max
i=1,...,n

|ti − ti−1|.

The length `σ of the polygonal line whose vertices are the points r(ti) is hence:

`σ =
n∑
i=1

|r(ti)− r(ti−1)|.

We define length of the curve r(t) the (positive) number

` := sup
σ
`σ.

Theorem 18. Be r(t) : [a, b]⇒ E a regular curve; then

` =

∫ b

a

|r′(t)|dt.

Proof. By the fundamental theorem of calculus,

r(ti)− r(ti−1) =

∫ ti

ti−1

r′(t)dt → |r(ti)− r(ti−1)| =
∣∣∣∣∫ ti

ti−1

r′(t)dt

∣∣∣∣ ≤ ∫ ti

ti−1

|r′(t)|dt,

whence

` ≤
∫ b

a

|r′(t)|dt. (4.3)

Because r′(t) is continuous on [a, b], ∀ε > 0 ∃δ > 0 such that |t−t| < δ ⇒ |r′(t)−r′(t)| < ε.
Be t ∈ [ti−1, ti] and σmax < δ, which is always possible by the choice of the partition σ;
by the triangular inequality,

|r′(t)| ≤ |r′(t)− r′(ti)|+ |r′(ti)| < ε+ |r′(ti)|,

whence ∫ ti

ti−1

|r′(t)|dt <
∫ ti

ti−1

|r′(ti)|dt+ ε(ti − ti−1) =

∣∣∣∣∫ ti

ti−1

r′(ti)dt

∣∣∣∣+ ε(ti − ti−1)

≤
∣∣∣∣∫ ti

ti−1

r′(t)dt

∣∣∣∣+

∣∣∣∣∫ ti

ti−1

(r′(ti)− r′(t))dt

∣∣∣∣+ ε(ti − ti−1)

≤ |r(ti)− r(ti−1)|+ 2ε(ti − ti−1).

Summing up over all the intervals [ti−1, ti] we get∫ b

a

|r′(t)|dt ≤ `σ + 2ε(b− a) ≤ `+ 2ε(b− a),

and because ε is arbitrary, ∫ b

a

|r′(t)|dt ≤ `,

which by eq. (4.3) implies the thesis.
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Theorem 19. The length of a curve does not depend upon its parameterization.

Proof. Be r(t) : [a, b] → E a regular curve and t = t(τ) : [c, d] → [a, b] a change of
parameter; then

` =

∫ b

a

|r′(t)|dt =

∫ d

c

|r′(t(τ))t′(τ)|dτ =

∫ d

c

|r′(τ)|dτ.

A simple way to determine a point p(t) on a curve is to fix a point p0 on the curve and to
measure the length s(t) of the arc of curve between p0 = p(t = 0) and p(t). This length
s(t) is called curvilinear abscissa2:

s(t) =

∫ t

0

|r′(t∗)|dt∗ =

∫ t

0

|(p(t∗)− o)′|dt∗. (4.4)

From eq. (4.4) we get

ds

dt
= |r′(t)| > 0,

so that s(t) is an increasing function of t and the length of an infinitesimal arc is

ds =
√
dr2

1 + dr2
2 + dr2

3.

For a plane curve y = f(x), we can always put t = x, which gives the parametric
equation

p(t) = (t, f(t)),

or in vector form

r(t) = t e1 + f(t) e2,

from which we obtain

ds

dt
= |r′(t)| = |p′(t)| =

√
1 + f ′2(t), (4.5)

that gives the length of a plane curve between t = x0 and t = x as a function of the
abscissa x:

s(x) =

∫ x

x0

√
1 + f ′2(t)dt.

2The curvilinear abscissa is also called arc-length or natural parameter.
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4.4 The Frenet-Serret basis

We define the tangent vector τ (t) to a regular curve p = p(t) the vector

τ (t) =
p′(t)

|p′(t)|
.

By the definition of derivative, this unit vector is always oriented as the increasing values
of t; the straight line tangent to the curve in p0 = p(t0) has hence equation

q(t̄) = p(t0) + t̄ τ (t0).

If the curvilinear abscissa s is chosen as parameter for the curve, through the change of
parameter s = s(t) we get

τ (t) =
p′(t)

|p′(t)|
=

p′[s(t)]

|p′[s(t)]|
=

1

s′(t)

dp(s)

ds

ds(t)

dt
=
dp(s)

ds
→ τ (s) = p′(s).

So, if the parameter of the curve is s, the derivative of the curve is τ , i.e. it is automatically
a unit vector. The above equation, in addition, shows that the change of parameter
does not change the direction of the tangent, because just a scalar, the derivative of the
parameter’s change, multiplies the vector. Nevertheless, generally speaking, a change of
parameter can change the orientation of the curve.

Because the norm of τ is constant, its derivative is a vector orthogonal to τ , see eq. (4.1).
That is why we call principal normal vector to a curve the unit vector

ν(t) =
τ ′(t)

|τ ′(t)|
. (4.6)

ν is defined only on the points of the curve where τ ′ 6= o which implies that ν is not
defined on the points of a straight line. This simply means that there is not, among the
infinite unit normal vectors to a straight line, a normal with special properties, a principal
one, uniquely linked to τ .

Unlike τ , whose orientation changes with the choice of the parameter, ν is an intrinsic
local characteristic of the curve: it is not affected by the choice of the parameter. In
fact, by its same definition, ν does not depend upon the reference frame; then, because
the direction of τ is also independent upon the parameter’s choice, the only factor that
could affect ν is the orientation of the curve, that depends upon the parameter. But a
change of the orientation affects, in (4.6), both τ and the sign of the increment dt, so
that τ ′(t) = dτ/dt does not change, neither ν, which is hence an intrinsic property of the
curve.

The vector
β(t) = τ (t)× ν(t)

is called the binormal vector; by construction, it is orthogonal to τ and ν and it is a unit
vector. In addition, it is evident that

τ × ν · β = 1,
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so the set {τ ,ν,β} forms a positively oriented othonormal basis that can be defined at
any regular point of a curve with τ ′ 6= o. Such a basis is called the Frenet-Serret local
basis, local in the sense that it changes with the position along the curve. The plane
τ − ν is the osculating plane, the plane ν − β the normal plane and the plane β − τ
the rectifying plane, see Fig. 4.4. The osculating plane is particularly important: if we
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Les trois vecteurs introduits ci-dessus sont évidemment orthogonaux deux à deux et de norme 
unitaire ; en outre c’est évident que  

 , 

et donc {τ, ν, β} est une base orthonormée directe, nommée trièdre de Frenet, définie en chaque 
point de la courbe, et qui change avec la position, figure 1.10 ; c’est pour cela que ce trièdre est 
appelé aussi trièdre local. Le plan τ−ν s’appelle plan osculateur, le plan ν−β plan normal et le plan  
β−τ plan rectifiant.  

 

 

 

 

 

 

 

 
 

Figure 1.10 

Le plan osculateur est particulièrement important : si on considère un plan qui passe par trois points 
quelconques, non alignés, de la courbe, ce plan tend vers le plan osculateur lorsque ces trois points 
se rapprochent l’un à l’autre tout en restant sur la courbe. En effet, on peut démontrer que le plan 
osculateur en un point donné de la courbe est le plan qui se rapproche mieux à la courbe au 
voisinage de ce point. Si la courbe est plane, le plan osculateur est le plan qui contient la courbe. 

On peut aussi démontrer que le vecteur normal ν est toujours dirigé du coté du plan rectifiant dans 
lequel se trouve la courbe, voire, pour les courbes planes, ν est toujours dirigé vers la concavité de 
la courbe. 

 

1.25 COURBURE D’UNE COURBE 

Il est important, dans plusieurs cas, de pouvoir évaluer de combien une courbe s’éloigne d’une ligne 
droite au voisinage d’un point. Pour cela, on calcule le vecteur tangent en deux points proches l’un 
de l’autre, l’un à l’abscisse curviligne s, et l’autre à s+ε, et on mesure l’angle χ(s, ε) qu’ils forment, 
voir la figure 1.11. On définit alors courbure de la courbe en s la limite 
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τ(s+ε) 

τ(s) v(s+ε) 

χ(s+ε) 

Figure 4.4: The Frenet-Serret basis.

consider a plane passing through three not aligned points of the curve, when these points
become closer and closer, still remaining on the curve, the plane tends to the osculating
plane: the osculating plane at a point of a curve is the plane that better approaches the
curve near the point. A plane curve is entirely contained in the osculating plane, which
is fixed.

The principal normal ν is always oriented towards the part of the space, with respect
to the rectifying plane, where the curve is; in particular, for a plane curve, ν is always
directed towards the concavity of the curve. To show it, it is sufficient to prove that the
vector p(t + ε) − p(t) forms with ν an angle ψ ≤ π/2, i.e. that (p(t + ε) − p(t)) · ν ≥ 0.
In fact,

p(t+ ε)− p(t) = ε p′(t) +
1

2
ε2p′′(t) + o(ε2) →

(p(t+ ε)− p(t)) · ν =
1

2
ε2p′′(t) · ν + o(ε2),

but
p′′(t) · ν = (τ ′|p′|+ τ |p′|′) · ν = (|τ ′||p′|ν + τ |p′|′) · ν = |τ ′||p′|,

so that, to within infinitesimal quantities of order o(ε2), we obtain

(p(t+ ε)− p(t)) · ν =
1

2
ε2|τ ′||p′| ≥ 0.

4.5 Curvature of a curve

It is important, in several situations, to evaluate how much a curve moves away from a
straight line, in the neighborhood of a point. To do that, we calculate the angle formed
by the tangents at two close points, determined by the curvilinear abscissae s and s+ ε,
and we measure the angle χ(s, ε) that they form, see Fig. 4.5.
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1.25 COURBURE D’UNE COURBE 

Il est important, dans plusieurs cas, de pouvoir évaluer de combien une courbe s’éloigne d’une ligne 
droite au voisinage d’un point. Pour cela, on calcule le vecteur tangent en deux points proches l’un 
de l’autre, l’un à l’abscisse curviligne s, et l’autre à s+H, et on mesure l’angle F(s, H) qu’ils forment, 
voir la figure 1.11. On définit alors courbure de la courbe en s la limite 
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Figure 1.11 

La courbure est donc un scalaire positif qui mesure la rapidité de variation de direction de la courbe 
par unité de parcours sur la courbe même ; c’est évident que pour une ligne droite la courbure est 
toujours nulle.  

Démontrons que la courbure est liée à la dérivée seconde de la courbe :  
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qui est une autre formule de calcul de la courbure. On obtient une formule encore meilleure si l’on 
considère que 
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par conséquent 
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Figure 4.5: Curvature of a curve.

We then define curvature of the curve in p = p(s) the limit

c(s) = lim
ε→0

∣∣∣∣χ(s, ε)

ε

∣∣∣∣ .
The curvature is hence a non-negative scalar that measures the rapidity of variation of
the direction of the curve per unit length of the curve (that is why c(s) is defined as a
function of the curvilinear abscissa); by its same definition, the curvature is an intrinsic
property of the curve, i.e. independent from the parameter’s choice. For a straight line,
the curvature is identically null everywhere.

The curvature is linked to the second derivative of the curve:

c(s) = lim
ε→0

∣∣∣∣χ(s, ε)

ε

∣∣∣∣ = lim
ε→0

∣∣∣∣sinχ(s, ε)

ε

∣∣∣∣ = lim
ε→0

∣∣∣∣2ε sin
χ(s, ε)

2

∣∣∣∣ =

lim
ε→0

∣∣∣∣v(s, ε)

ε

∣∣∣∣ = lim
ε→0

∣∣∣∣τ (s+ ε)− τ (s)

ε

∣∣∣∣ = |τ ′(s)| = |p′′(s)|.

Another formula for the calculation of c(s) can be obtained if we consider that

dτ [s(t)]

dt
=
dτ

ds

ds

dt
=
dτ

ds
|p′(t)| → dτ

ds
=

1

|p′(t)|
dτ

dt
,

so that

c(s) = |τ ′(s)| = 1

|p′(t)|

∣∣∣∣dτdt
∣∣∣∣ =
|τ ′(t)|
|p′(t)|

. (4.7)

A better formula can be obtained as follows:

dτ

ds
=

1

|p′(t)|
dτ

dt
=

1

|p′(t)|
d

dt

p′(t)

|p′(t)|
=

1

|p′|

p′′|p′| − p′p
′′ · p′

|p′|
|p′|2

=

p′′ − τ p′′ · τ
|p′|2

= (I− τ ⊗ τ )
p′′

|p′|2
.
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By consequence,

c(s) =

∣∣∣∣dτ (s)

ds

∣∣∣∣ =
1

|p′|2
|(I− τ ⊗ τ )p′′|.

Now, we use the following general formula expressing a skew tensor W:

WW = −1

2
|W|2(I−w ⊗w);

if we use this formula for τ , so that W is the axial tensor of τ , we get

I− τ ⊗ τ = −2
WW

|W|2
= −WW,

because if τ = (τ1, τ2, τ3), then

|W|2 =W ·W =

 0 −τ3 τ2

τ3 0 −τ1

−τ2 τ1 0

 ·
 0 −τ3 τ2

τ3 0 −τ1

−τ2 τ1 0

 =

2(τ 2
1 + τ 2

2 + τ 2
3 ) = 2.

So, recalling that for any skew tensor W,

W u = w × u ∀u ∈ V ,

with w the axial vector of W, we get

|(I− τ ⊗ τ )p′′| =| −WWp′′| = | −W(τ × p′′)| = | − τ × (τ × p′′)| =

|τ × (τ × p′′)| = |τ × p′′| = |p
′ × p′′|
|p′|

,

so that finally

c =
|p′ × p′′|
|p′|3

. (4.8)

Applying this last formula to a plane curve p(t) = (x(t), y(t)), we get

c =
|x′y′′ − x′′y′|
(x′2 + y′2)

3
2

and if the curve is given in the form y = y(x), so that the parameter t = x, then we
obtain

c =
|y′′|

(1 + y′2)
3
2

.

This last formula shows that if |y′| � 1, like in the infinitesimal theory of strain, then

c ' |y′′|.
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4.6 The Frenet-Serret formulae

From eqs. (4.6) for t = s and (4.7) we get

dτ

ds
= c ν (4.9)

which is the first Frenet-Serret Formula, giving the variation of τ per unit length of the
curve. Such a variation is a vector whose norm is the curvature and that has as direction
that of ν.

Let us now consider the variation of β per unit length of the curve; because β is a unit
vector, we have

dβ

ds
· β = 0,

and

β · τ = 0 ⇒ d(β · τ )

ds
=
dβ

ds
· τ + β · dτ

ds
= 0.

Through eq. (4.9) and because β · ν = 0 we get

dβ

ds
· τ = −c β · ν = 0,

so that
dβ

ds
is necessarily parallel to ν. We then put

dβ

ds
= ϑν,

which is the second Frenet-Serret formula. The scalar ϑ(s) is called the torsion of the
curve in p = p(s). So, we see that the variation of β per unit length is a vector parallel
to ν and proportional to the torsion of the curve.

We can now find the variation of ν per unit length of the curve:

dν

ds
=
d(β × τ )

ds
=
dβ

ds
× τ + β × dτ

ds
= ϑ ν × τ + c β × ν,

so finally
dν

ds
= −c τ − ϑ β,

which is the third Frenet-Serret formula: the variation of ν per unit length of the curve
is a vector of the rectifying plane.

The three formulae of Frenet-Serret (discovered independently by J. F. Frenet in 1847
and by J. A. Serret in 1851) can be condensed in the symbolic matrix product

τ ′

ν ′

β′

 =

 0 c 0
−c 0 −ϑ
0 ϑ 0


τ
ν
β

 .

The matrix in the equation above is called the matrix of Cartan, and it is skew.
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4.7 The torsion of a curve

We have introduced the torsion of a curve in the previous section, with the second formula
of Frenet-Serret. The torsion measures the deviation of a curve from flatness: if a curve is
planar, it belongs to the osculating plane and β, which is perpendicular to the osculating
pane, is hence a constant vector. So, its derivative is null and by the Frenet-Serret second
formula ϑ = 0.

Conversely, if ϑ = 0 everywhere, β is a constant vector and hence the osculating plane
does not change and the curve is planar. So we have that a curve is planar if and only if
the torsion is null ∀p(s).

Using the Frenet-Serret formulae in the expression of p′′′(s) we get a formula for the
torsion:

p′(t) = |p′|τ =
dp

ds

ds

dt
= s′τ ⇒ |p′| = s′ →

p′′(t) = s′′τ + s′τ ′ = s′′τ + s′2
dτ

ds
= s′′τ + c s′2ν →

p′′′(t) = s′′′τ + s′′τ ′ + (c s′2)′ν + c s′2ν ′ =

s′′′τ + s′′s′
dτ

ds
+ (c s′2)′ν + c s′3

dν

ds
=

s′′′τ + s′′s′cν + (c s′2)′ν − c s′3(cτ + ϑβ) =

(s′′′ − c2s′3)τ + (s′′s′c+ c′s′2 + 2c s′s′′)ν − c s′3ϑβ,

so that, through eq. (4.8), we get

p′ × p′′ · p′′′ =s′τ × (s′′τ + c s′2ν) · [(s′′′ − c2s′3)τ+

(s′′s′c+ c′s′2 + 2c s′s′′)ν − c s′3ϑβ] =

− c2s′6ϑ = −c2|p′|6ϑ = −|p
′ × p′′|2

|p′|6
|p′|6ϑ,

so that, finally,

ϑ = −p
′ × p′′ · p′′′

|p′ × p′′|2
.

To remark that while the curvature is linked to the second derivative of the curve, the
torsion is a function also of the third derivative.

Unlike curvature, which is intrinsically positive, the torsion can be negative. In fact, still
using the Frenet-Serret formulae,

p(s+ ε)− p(s) =ε p′ +
1

2
ε2p′′ +

1

6
ε3p′′′ + o(ε3) =

ετ +
1

2
ε2cν +

1

6
ε3(cν)′ + o(ε3) =

ετ +
1

2
ε2cν +

1

6
ε3(c′ν − c2τ − c ϑβ) + o(ε3) →

(p(s+ ε)− p(s)) · β = −1

6
ε3c ϑ+ o(ε3).
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The above dot product determines if the point p(s + ε) is located, with respect to the
osculating plane, on the side of β or on the opposite one, see Fig. 4.6: if following the
curve for increasing values of s, ε > 0, the point passes into the semi-space of β from the
opposite one, because 1/6 c ε3 > 0, it will be ϑ < 0, while in the opposite case it will be
ϑ > 0.
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cos α <0 :               

ce qui prouve que le vecteur dérivé de β par rapport à s doit être parallèle à ν. On pose alors 

 , 

qui est la deuxième formule de Frenet et Serret ; elle donne la variation du vecteur binormal par 
unité de s : cette variation est un vecteur proportionnel au vecteur normal, étant  le facteur de 
proportionnalité. La fonction scalaire est nommée torsion de la courbe.  

La troisième formule de Frenet et Serret concerne la variation de ν par unité de s : 

 , 

et donc 

 , 

qui est la troisième formule de Frenet et Serret : la variation de ν par unité de parcours est un 
vecteur du plan rectifiant. 

 

1.27 PROPRIETES DE LA TORSION 

La torsion est un scalaire qui mesure la déviation d’une courbe de la planéité : si une courbe est 
plane, elle appartient au plan osculateur, et le vecteur β, qui lui est perpendiculaire, est donc 
constant. Par conséquent la dérivée de β est nulle et donc, par la deuxième formule de Frenet et 
Serret, la torsion aussi. Le contraire est évidemment vrai aussi : si la torsion d’une courbe est nulle 
en tout point, alors la courbe est plane. Donc la condition nécessaire et suffisante pour qu’une 
courbe soit plane est que sa torsion soit nulle en tout point. 

La torsion, contrairement à la courbure qui est toujours positive, peut être négative. En particulier, 
une fois établi un sens de parcours sur la courbe, c’est-à-dire une fois choisie une abscisse 
curviligne, on peut démontrer que si, en suivant ce sens, la courbe sort du plan osculateur du côté de 
β, alors la torsion est négative, elle est positive dans le cas contraire, voire figure 1.12. Ce résultat 
est invariant: on peut démontrer que le signe de la torsion est une caractéristique intrinsèque de la 
courbe, et ne dépend pas du paramétrage choisi. 

 

 

 

 

 

 

 

 

Figure 1.12 

Ainsi que pour la courbure, on a une formule de calcul de la torsion : 
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Figure 4.6: Torsion of a curve.

This result is intrinsic, i.e. it does not depend upon the choice of the parameter, hence of
the positive orientation of the curve; in fact, ν is intrinsic, but changing the orientation
of the curve, τ , and hence β, change of orientation.

4.8 Osculating sphere and circle

The osculating sphere3 to a curve at a point p is a sphere to which the curve tends to
adhere in the neighborhood of p. Mathematically speaking, if qs is the center of the sphere
relative to point p(s), then

|p(s+ ε)− qs|2 = |p(s)− qs|2 + o(ε3).

Using this definition, discarding the terms of order o(ε3) and using the Frenet-Serret
formulae, we get:

|p(s+ ε)− qs|2 =|p(s)− qs + εp′ +
1

2
ε2p′′ +

1

6
ε3p′′′ + o(ε3)|2 =

|p(s)− qs + ετ +
1

2
ε2c ν +

1

6
ε3(cν)′ + o(ε3)|2 =

|p(s)− qs|2 + 2ε(p(s)− qs) · τ + ε2 + ε2c(p(s)− qs) · ν+

1

3
ε3(p(s)− qs) · (c′ν − c2τ − c ϑβ) + o(ε3),

which gives

(p(s)− qs) · τ = 0,

(p(s)− qs) · ν = −1

c
= −ρ,

(p(s)− qs) · β = − c′

c2ϑ
=
ρ′

ϑ
,

3The word osculating comes from the latin word osculo that means to kiss; an osculating sphere or
circle or plane is a geometric object that is very close to the curve, as close as two lovers are in a kiss.
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and finally

qs = p+ ρ ν − ρ′

ϑ
β, (4.10)

so the center of the sphere belongs to the normal plane; the sphere is not defined for a
plane curve. ρ is the radius of curvature of the curve, defined as

ρ =
1

c
.

The radius of the osculating sphere is

ρs = |p− qs| =

√
ρ2 +

(
ρ′

ϑ

)2

.

The intersection between the osculating sphere and the osculating plane at a same point
p is the osculating circle. This circle has the property to share the same tangent in p with
the curve and its radius is the radius of curvature, ρ. From eq. (4.10) we get the position
of the osculating circle center q:

q = p+ ρ ν. (4.11)

An example can be seen in Fig. 4.7, where the osculating plane, circle and sphere are
shown for a point p of a conical helix.

!
"

#

qp

!s

!
osculating plane

osculating circle
qs

osculating shpere

Figure 4.7: Osculating plane, circle and sphere for a point p of a conical helix.

The osculating circle is a diametral circle of the osculating sphere only when q = qs, so if
and only if

ρ′

ϑ
= − c′

c2ϑ
= 0,

i.e. when the curvature is constant.
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4.9 Evolute, involute and envelops of plane curves

For any plane curve γ(s), the center of the osculating circle q describes a curve δ(σ) that
is called the evolute of γ(s) (s and σ are curvilinear abscissae). A point q of the evolute
is then given by eq. (4.11). We call involute of a curve α(s) a curve β(σ) whose evolute
is α(s). We call envelop of a family of plane curves ϕ(s, κ), κ ∈ R being a parameter, a
curve that is tangent, in each of its points, to the curve of ϕ(s, κ) passing through that
point.

Let us consider the evolute δ(σ) of a curve γ(s); the tangent to δ(σ) is the vector, cf. eq.
(4.11),

τ δ =
dq

dσ
=
dq

ds

ds

dσ
.

But, cf. again eq. (4.11) and the Frenet-Serret formulae,

dq

ds
=
dp

ds
+
dρ

ds
ν + ρ

dν

ds
= τ +

dρ

ds
ν − ρ c τ =

dρ

ds
ν,

so

τ δ =
dq

dσ
=
dρ

ds

ds

dσ
ν.

Because ∣∣∣∣ dqdσ
∣∣∣∣ = |ν| = 1,

then
dρ

ds

ds

dσ
= 1 ⇒ dρ

ds
=
dσ

ds
and

τ δ = ν.

The evolute, δ(σ), of γ(s) is hence the envelop of its principal normals ν(s).

This result helps us in finding the equation of the involute β(σ) of a curve γ(s); let
p = p(s) be a point of γ(s); then, if b ∈ β(σ) it must be

(b− p) · ν = 0

where ν is the principal normal to γ(s) in p, because γ(s) is the evolute of β(σ), which
implies for the last result, that τ = νβ, with τ the tangent to γ(s) in p and νβ the
principal normal to β(σ) in b, see Fig. 4.8.

Therefore,
b(s)− p(s) = f(s)τ (s) → b(s) = p(s) + f(s)τ (s),

with f = f(s) a scalar function of s; to remark that b = b(s), i.e. the arc-length s of γ(s)
is the parameter also for β, but in general σ 6= s. Upon differentiation we get

b′(s) = (1− f ′(s))τ (s) + f(s)c(s)ν(s).

Then, because b′(s) = |b′(s)|τ β is orthogonal to νβ = τ , it is parallel to ν so it must
be

1− f ′(s) = 0 ⇒ f(s) = a− s, a ∈ R.
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Finally, the equation of the involute β(s) to γ(s) is

b(s) = p(s) + (a− s)τ (s),

and we remark that the involute is not unique.
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Figure 4.8: Evolute, δ, and involutes for a = 0,β, and a = 1, dashed, of a catenary γ.

4.10 The theorem of Bonnet

The curvature, c(s), and the torsion, ϑ(s), are the only differential parameters that com-
pletely describe a curve. In other words: given two functions c(s) and ϑ(s), then a curve
exists with such a curvature and torsion (to remark that there are no conditions bounding
these parameters). This is proved by the

Theorem 20. (Bonnet’s theorem): given two scalar functions c(s) ∈C1 and ϑ(s) ∈C0, it
always exists and is unique a curve γ ∈C3 whose curvilinear abscissa is s, curvature c(s)
and torsion ϑ(s).

Proof. Let

e =

 τ
ν
β


the column vector whose elements are the vectors of the Frenet-Serret basis. Then

de(s)

ds
= C(s)e(s) (4.12)
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with

C(s) =

 0 c(s) 0
−c(s) 0 −ϑ(s)

0 ϑ(s) 0


the matrix of Cartan. Adding the initial condition

e(0) =

 e1

e2

e3


we have a Cauchy problem for the basis e(0). As known, such a problem admits a unique
solution, i.e. we can associate to c(s) and ϑ(s) a family of bases e(s) (that are orthonormal,
because if one of them were not so, the Cartan’s matrix should not be skew). Call τ (s)
the first vector of the basis e(s) and define the function

p(s) := p0 +

∫ s

0

τ (s∗)ds∗;

p(s) is the curve looked for (it depends upon an arbitrary point p0, i.e. upon an inessential
rigid displacement). In fact, because |τ | = 1, then s is the curvilinear abscissa of the curve.
Then, it is sufficient to write the Frenet-Serret equations identifying them with the system
(4.12).

4.11 Canonic equations of a curve

We call canonic equations of a curve at a point p0 the equations of the curve referred to
the Frenet-Serret basis in p0. To this purpose, we expand the curve in a Taylor series of
initial point p0:

p(s) = p0 + s p′(0) +
1

2
s2p′′(0) +

1

3!
s3p′′′(0) + o(s3).

In the Frenet-Serret basis,

p′(0) = τ (0), p′′(0) = c(0)ν(0), p′′′(0) =
dcν

ds

∣∣∣∣
s=0

= c′(0)ν(0)−c2(0)τ (0)−c(0)ϑ(0)β(0),

so

p(s) = p0 + s τ (0) +
1

2
s2c(0)ν(0) +

1

6
s3(−c2(0)τ (0) + c′(0)ν(0)− c(0)ϑ(0)β(0)) + o(s3).

The coordinates of a point p(s) close to p0, in the basis (τ (0),ν(0),β(0)), are hence

p1(s) = s− 1

6
c2(0)s3 + o(s3),

p2(s) =
1

2
c(0)s2 +

1

6
c′(0)s3 + o(s3),

p3(s) = −1

6
c(0)ϑ(0)s3 + o(s3).

The projections of the curve onto the planes of the Frenet-Serret basis have hence, close
to p0 (i.e. retaining the first non null term in the expressions above), the following
equations:
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• on the osculating plane {
p1(s) = s,

p2(s) =
1

2
c(0)s2,

or, eliminating s,

p2 =
1

2
c(0)p2

1,

which is the equation of a parabola;

• on the rectifying plane {
p1(s) = s,
p3(s) = −1

6
c(0)ϑ(0)s3,

or, eliminating s,

p3 = −1

6
c(0)ϑ(0)p3

1,

which is the equation of a cubic parabola;

• on the normal plane {
p2(s) =

1

2
c(0)s2,

p3(s) = −1
6
c(0)ϑ(0)s3,

or, eliminating s,

p2
3 =

2

9

ϑ2(0)

c(0)
p3

2,

which is the equation of a semicubic parabola, with a cusp at the origin, hence a
singular point, though the curve p(s) is regular.

In Fig. 4.9 the example of the projected curves for a circular helix.

4.12 Exercices

1. Using the same definition of derivative of a curve, prove the relations in Sect. (4.2).

2. Prove the relations in eq. (4.2).

3. The curve whose polar equation is

r = a θ, a ∈ R,

is an Archimede’s spiral. Find its curvature, its length for θ ∈ [0, 2π) and prove
that any straight line passing by the origin is divided by the spiral in segments of
constant length 2π a (that is why it is used to record disks).

4. The curve whose polar equation is

r = a ebθ, a, b ∈ R,

is the logarithmic spiral. Prove that the origin is an asymptotic point of the curve,
find its curvature and the length of the segment in which a straight line by the
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Figure 4.9: The projected curves of a circular helix.

origin is divided by two consecutive intersections with the spiral. Then prove that
the curve is plane and its equiangular property: the angle α between p(θ) − o and
τ (θ) is constant.

5. The curve whose parametric equation is

p(θ) = a(cos θ + θ sin θ)e1 + a(sin θ − θ cos θ)e2

with the parameter θ the angle formed by p(θ)− o with the x1−axis is the involute
of the circle. Find its curvature and length for θ ∈ [0, 2π) and prove that the
geometrical set of the points p(θ) + ρ(θ)ν(θ) is exactly the circle of center o and
radius a (that is why the involute of the circle is used to profile engrenages).

6. The curve whose parametric equation is

p(θ) = a cosωθe1 + a sinωθe2 + bωθe3

is a circular helix, i.e. a helix that winds on a circular cylinder of radius a. Show
that the angle formed by the helix and any generatrix of the cylinder is constant
(a property that defines a helix in the general case). Then, find its length for
θ ∈ [0, 2π), curvature, torsion and pitch (the distance, on a same generatrix, between
two successive intersections with the helix). Prove then the Bertrand’s theorem: a
curve is a cylindrical helix if and only if the ratio c/ϑ = const. Finally, prove that
for the above circular helix there are two constants A and B such that

p′ × p′′ = Au(θ) +Be3,

with
u = sinωθe1 − cosωθe2;
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find then A and B.

7. Find the equation of the cycloid, i.e. of the curve that is the trace of a point of a
circle of radius r rolling without slipping on a horizontal axis. Calculate the length
of the cycloid for a complete round of the circle, determine its curvature and show
that the evolute of the cycloid is the cycloid itself (Huygens, 1659).

8. The planar curve whose parametric equation is

p(t) = te1 + cosh te2

is the catenary (Jc. Bernoulli, 1690; Jn. Bernoulli, Leibniz, Huygens, 1691). It is
the equilibrium curve of a heavy perfectly flexible and inextensible cable. Calculate
the curvature of the catenary and the equation of its evolute and of its involutes.

9. The planar curve whose parametric equation is

p(t) =

(
cos t+ ln tan

t

2

)
e1 + sin te2

is a tractrix (Perrault, 1670; Newton, 1676; Huygens, 1693). This is the curve along
which an object moves, under the influence of friction, when pulled on a horizontal
plane by a line segment attached to a tractor that moves at a right angle to the
initial line between the object and the puller at an infinitesimal speed. Show that
the length of the tangent to the tractrix between the points on the tractrix itself
and the axis x is constant ∀t, calculate the length of the curve between t1 and
t2, calculate the curvature of the tractrix and finally show that its evolute is the
catenary.

10. For the curve whose cylindrical equation is{
r = 1,

z = sin θ

find the highest curvature and determine whether or not it is planar.

11. Be p = p(t) the path of a moving particle of masse m, t being the time. Define the
velocity and the acceleration of p as, respectively, the first and second derivative
of p with respect to t. Decompose these two vectors in the Frenet-Serret basis
and interpret physically the result. Recalling the second Newton’s Principle of
mechanics, what about the forces on p?
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Chapter 5

Tensor analysis: fields,
deformations

5.1 Introduction

In this chapter, we introduce the concepts of fields and deformations and the differential
operators linked to these ones. Some fundamental theorems on field analysis are also
recalled.

5.2 Scalar, vector and tensor fields

Let Ω ⊂ E and f : Ω → V . We say that f is continuous at p ∈ Ω ⇐⇒ ∀ sequence
πn = {pn ∈ Ω, n ∈ N} that converges to p ∈ E , the sequence {vn = f(pn), n ∈ N}
converges to f(p) in V . The function f(p) : Ω→ V is a vector field on Ω if it is continuous
at each p ∈ Ω. In the same way we can define a scalar field ϕ(p) : Ω → R and a tensor
field, L(p) : Ω→ Lin(V) or L(p) : Ω→ Lin(V).

A deformation is any continuous and bijective function f(p) : Ω → E , i.e. any transfor-
mation of a region Ω ⊂ E into another region of E ; bijectivity imposes that to any point
p ∈ Ω corresponds one and only point in the transformed region, and vice-versa. This is
a constraint imposed to a function from E to E ti represent a physical deformation of a
body.

Finally, the basic difference between fields/deformations and curves, is that a field or a
deformation is defined over a subset of E , not of R. In practice, this implies that the
components of the field/deformation are functions of three variables, the coordinates xi
of a point p ∈ Ω.
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5.3 Differentiation of fields, differential operators

Let f(p) : Ω → V ; we say that f is differentiable in p0 ∈ Ω ⇐⇒ ∃ gradf ∈ Lin(V) such
that

f(p0 + u) = f(p0) + gradf(p0) u + o(u)

when u → o. If f is differentiable ∀p ∈ Ω, gradf defines a tensor field on Ω called the
gradient of f . It is also possible to define higher order differential operators, using higher
order tensors, but this will not be done here. If f is continuous with gradf ∀p ∈ Ω, then
f is of class C1 (smooth).

Let f a vector field of class C1 on Ω. Then the divergence of f is the scalar field defined
by

divf := tr(gradf),

while the curl of f is the unique vector field curlf that satisfies the relation

(gradf − gradf>)u = (curlf)× u ∀u ∈ V .

The divergence of a tensor field L is the unique vector field divL that satisfies

(divL) · u = div(L>u) ∀u ∈ V .

Let ϕ(p) : Ω → R a scalar field over Ω. Similarly to what done for vector fields, we say
that ϕ is differentiable at p0 ∈ Ω ⇐⇒ ∃ gradϕ ∈ V such that

ϕ(p0 + u) = ϕ(p0) + gradϕ(p0) · u + o(u)

when u → o. If ϕ is differentiable ∀p ∈ Ω, gradϕ defines a vector field on Ω called the
gradient of ϕ. If gradϕ is differentiable, its gradient is the tensor gradIIϕ called second
gradient or Hessian. It is immediate to show that under continuity assumption,

gradIIϕ = (gradIIϕ)>.

A level set of a scalar field ϕ(p) is the set SL such that

ϕ(p) = const. ∀p ∈ SL.

By the same definition of differentiability of ϕ(p), we can prove that gradϕ(p) is a vector
that is orthogonal to SL at p. The curves of E that are tangent to gradϕ(p) ∀p ∈ Ω are the
streamlines of ϕ; they have the property to be orthogonal to any SL of ϕ ∀p ∈ Ω.

gradϕ allows to calculate the directional derivative of ϕ along any direction n ∈ S as

dϕ

dn
:= gradϕ · n.

The highest variation of ϕ is hence in the direction of gradϕ, and |gradϕ| is the value of
this variation; we remark also that gradϕ is a vector directed as the increasing values of
ϕ.
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Similarly, for a vector field f the directional derivative along any direction n ∈ S is defined
as

df

dn
:= gradf n.

Let ψ a scalar of vector field of class C2 at least. Then, the laplacian ∆ψ of ψ is defined
by

∆ψ := div(gradψ).

By the linearity of the trace, and hence of the divergence, we see easily that the laplacian of
a vector field is the vector field whose components are the laplacian of each corresponding
component of the field. A field is said to be harmonic on Ω if its laplacian is null ∀p ∈
Ω.

The definitions given above for differentiable field, gradient and class C1 can be repeated
verbatim for a deformation f(p) : Ω→ E .

Let ϕ, ψ two scalar fields, u,v,w vector fields, L a tensor field and W the axial tensor of
w. Then, the following properties hold:

grad(ϕψ) = ϕgradψ + ψgradϕ,

grad(ϕv) = ϕgradv + v ⊗ gradϕ,

(gradv)v = (curlv)× v +
1

2
gradv2,

grad(v ·w) = (gradw)>v + (gradv)>w = (gradw)v + (gradv)w + v × curlw + w × curlv,

grad(u · v w) = (u · v)gradw + (w ⊗ u)gradv + (w ⊗ v)gradu,

gradv · gradv> = div((gradv)v − (divv)v) + (divv)2,

div(ϕv) = ϕdivv + v · gradϕ,

div(v ⊗w) = vdivw + (gradv)w,

div(L>v) = L · gradv + v · divL,

div(ϕL) = ϕdivL + Lgradϕ,

div(gradv>) = grad(divv),

div((gradv)v) = gradv · gradv> + v · grad(divv),

div(v ×w) = w · curlv − v · curlw,

div(ϕLv) = ϕL> · gradv + ϕv · divL> + Lv · gradϕ,

div(curlv) = 0,

curl(ϕv) = ϕcurlv + gradϕ× v,

curl(curlv) = grad(divv)−∆v,

curl(gradϕ) = o,
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curl(v ×w) = (gradv)w − (gradw)v + vdivw −wdivv,

curlw = −divW,

∆(ϕψ) = 2gradϕ · gradψ + ϕ∆ψ + ψ∆ϕ,

∆(v ·w) = 2gradv · gradw + v ·∆w + w ·∆v.

The proof of these properties is a good exercice for the reader (see also the book of
Gurtin).

5.4 Theorems on fields

We recall here, without proof, some classical theorems on fields and operators.

Theorem 21. (on harmonic fields): if v(p) is a vector field of class ≥ C2 such that

divv = 0, curlv = o,

then v is harmonic: ∆v = o.

Theorem 22. (Potential theorem): let v(p) a vector field of class ≥ C1 on a simply
connected domain Ω ⊂ E; then

curlv = o ⇐⇒ v = gradϕ

with ϕ(p) a scalar field of class ≥ C2, the potential.

In what follows, Ω is a sufficiently regular region of E , whose boundary is ∂Ω and the
external normal n ∈ S.

Theorem 23. (Divergence lemma): let v(p) a vector field of class ≥ C1 on Ω; then∫
∂Ω

v ⊗ n ds =

∫
Ω

gradv dv.

Theorem 24. (Divergence or Gauss theorem): let ϕ,v,L respectively a scalar, vector
and tensor field on Ω of class ≥ C1. Then∫

∂Ω

ϕn ds =

∫
Ω

gradϕ dv,∫
∂Ω

v · n ds =

∫
Ω

divv dv,∫
∂Ω

Ln ds =

∫
Ω

divL dv.
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Theorem 25. (Curl theorem): let v(p) a vector field of class ≥ C1 on Ω; then

∫
∂Ω

n× v ds =

∫
Ω

curlv dv.

Theorem 26. (Stokes theorem): let v(p) a vector field of class ≥ C1 on Ω and be Σ an
open surface whose support is the closed line γ and n ∈ S the normal, see Fig. 5.1. Then

∮
γ

v · d` =

∫
Σ

curlv · n ds.

The parametric equation of γ must be chosen in such a way that

p′(t1)× p′(t2) · n > 0 ∀t2 > t1.

Figure 5.1: Scheme for the Stokes theorem.

Theorem 27. (Green’s formula): let ϕ(p), ψ(p) two scalar fields on Ω of class ≥ C2; then

∫
∂Ω

(
ψ
dϕ

dn
− ϕdψ

dn

)
ds =

∫
Ω

(ψ ∆ϕ− ϕ ∆ψ)dv.

Theorem 28. (Flux theorem): let v(p) a vector field of class ≥ C1 on an open subset R
of E. Then

divv = 0 ⇐⇒
∫
∂Ω

v · n ds = 0 ∀Ω ⊂ R.
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5.5 Differential operators in Cartesian coordinates

In what follows, f,v,L are respectively a scalar, vector and tensor field. The Cartesian
components1 of the differential operators are2

(gradf)i = fi,

(gradv)ij = vi,j,

divv = vi,i,

(divL)i = Lij,j,

∆f = f,ii,

(∆v)i = ∆vi = vi,jj,

curlv = (v3,2 − v2,3, v1,3 − v3,1, v2,1 − v1,2).

The so-called operator nabla ∇:

∇ :=
∂·
∂xi

ei =
∂·
∂x1

e1 +
∂·
∂x2

e2 +
∂·
∂x3

e3

is often used to indicate the differential operators:

gradf = ∇f,
divv = ∇ · v,
curlv = ∇× v,

∆f = ∇2f.

5.6 Differential operators in cylindrical coordinates

The cylindrical coordinates ρ, θ, z of a point p, whose Cartesian coordinates in the (fixed)
frame {o; e1, e2, e3} are p = (x1, x2, x3), are shown in Fig. 5.2. They are related together
by

ρ =
√
x2

1 + x2
2,

θ = arctan
x2

x1

,

z = x3,

or conversely

x1 = ρ cos θ,

x2 = ρ sin θ,

x3 = z.

To notice that ρ ≥ 0 and that the anomaly θ is bounded by 0 ≤ θ < 2π.

1In the following formulae, the Einstein summation rule holds.

2The comma indicates partial derivative, e.g. fi,j =
∂fi
∂xj

.
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Figure 5.2: Cylindrical coordinates.

In the (local) frame {p; eρ, eθ, ez}, the differential operators are

∇f =

(
f,ρ,

1

ρ
f,θ, f,z

)
,

∆f =
1

ρ
(ρf,ρ),ρ +

1

ρ2
f,θθ + f,zz,

∇v =


vρ,ρ

1

ρ
(vρ,θ − vθ) vρ,z

vθ,ρ
1

ρ
(vθ,θ + vρ) vθ,z

vz,ρ
1

ρ
vz,θ vz,z

 ,

divv = vρ,ρ +
1

ρ
(vθ,θ + vρ) + vz,z,

curlv =

(
1

ρ
vz,θ − vθ,z, vρ,z − vz,ρ,

1

ρ
((ρvθ),ρ − vρ,θ)

)
,

divL =


1

ρ
((ρLρρ),ρ + Lρθ,θ − Lθθ) + Lρz,z

Lθρ,ρ +
1

ρ
(Lθθ,θ + Lρθ + Lθρ) + Lθz,z

1

ρ
((ρLzρ),ρ + Lzθ,θ) + Lzz,z

 ,

∆v =

 ∆vρ
∆vθ
∆vz

 =


1

ρ
(ρvρ,ρ),ρ +

1

ρ2
vρ,θθ + vρ,zz −

1

ρ2
(vρ + 2vθ,θ)

1

ρ
(ρvθ,ρ),ρ +

1

ρ2
vθ,θθ + vθ,zz −

1

ρ2
(vθ − 2vρ,θ)

1

ρ
(ρvz,ρ),ρ +

1

ρ2
vz,θθ + vz,zz

 .
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5.7 Differential operators in spherical coordinates

The spherical coordinates r, ϕ, θ of a point p, whose Cartesian coordinates in the (fixed)
frame {o; e1, e2, e3} are p = (x1, x2, x3), are shown in Fig. 5.3. They are related together
by

r =
√
x2

1 + x2
2 + x2

3,

ϕ = arctan

√
x2

1 + x2
2

x3

,

θ = arctan
x2

x1

,

or conversely

x1 = r cos θ sinϕ,

x2 = r sin θ sinϕ,

x3 = r cosϕ.

To notice that r ≥ 0 and that the anomaly θ is bounded by 0 ≤ θ < 2π while the colatitude
ϕ by 0 ≤ ϕ ≤ π.

Figure 5.3: Spherical coordinates.

In the (local) frame {p; er, eϕ, eθ}, the differential operators are

∇f =

(
f,r,

1

r
f,ϕ,

1

r sinϕ
f,θ

)
,

∆f =
1

r2
(r2f,r),r +

1

r2 sinϕ
(f,θθ + (f,ϕ sinϕ),ϕ),

∇v =


vr,r

1

r
(vr,ϕ − vϕ)

1

r

(
1

sinϕ
vr,θ − vθ

)
vϕ,r

1

r
(vϕ,ϕ + vr)

1

r

(
1

sinϕ
vϕ,θ − vθ cotϕ

)
vθ,r

1

r
vθ,ϕ

1

r

(
1

sinϕ
vθ,θ + vr + vϕ cotϕ

)

 ,
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divv =
1

r2
(r2vr),r +

1

r sinϕ
(vϕ,ϕ sin θ + vθ,θ),

curlv =

(
1

r sinϕ
(vθ,ϕ sin θ − vϕ,θ),

1

r sinϕ
vr,θ −

1

r
(rvθ),r,

1

r
((rvϕ),r − vr,ϕ)

)
,

divL =


1

r2
(r2Lrr),r +

1

r
Lrϕ,ϕ +

1

r sinϕ
Lrθ,θ −

Lϕϕ + Lθθ
r

+
cotϕ

r
Lrϕ

1

r2
(r2Lϕr),r +

1

r
Lϕϕ,ϕ +

1

r sinϕ
Lϕθ,θ +

1

r
Lrϕ +

cotϕ

r
(Lϕϕ − Lθθ)

1

r2
(r2Lθr),r +

1

r
Lθϕ,ϕ +

1

r sinϕ
Lθθ,θ +

1

r
Lrθ +

cotϕ

r
(Lϕθ + Lθϕ)

 ,

∆v =


vr,rr +

2vr,r
r

+
vr,ϕϕ − 2vϕ,ϕ

r2
+
vr,ϕ − 2vϕ
r2 tanϕ

+
1

r2 sinϕ

(
vr,θθ
sinϕ

− 2vθ,θ

)
− 2vr

r2

vϕ,rr +
2vϕ,r
r

+
vϕ,ϕϕ + 2vr,ϕ

r2
+
vϕ,ϕ − vϕ cotϕ

r2 tanϕ
+

1

r2 sinϕ

(
vϕ,θθ
sinϕ

− 2vθ,θ cotϕ

)
− vϕ
r2

vθ,rr +
2vθ,r
r

+
vθ,ϕϕ
r2

+

(
vθ,ϕ +

2vϕ,θ
sinϕ

)
1

r2 tanϕ
+

1

r2 sinϕ

(
vθ,θθ
sinϕ

+ 2vr,θ

)
− vθ
r2 sin2 ϕ

 .

5.8 Exercices

1. Consider a rigid body B, and a point p0 ∈ B. From the kinematics of rigid bodies,
we now that the velocity of another point p ∈ B is given by

v(p) = v(p0) + ω × (p− p0),

with ω the angular velocity. Prove that

ω =
1

2
curlv.

2. Prove the relations at the end of Sect. 5.3.

3. Prove the three forms of the Gauss Theorem using the Divergence lemma.

4. Make use of the tensor form of the Gauss Theorem to prove the Curl Theorem.

5. Prove the following identities using the Gauss theorem:∫
∂Ω

v · Ln ds =

∫
Ω

(v · divL + L · ∇v)dv,∫
∂Ω

(Ln)⊗ v ds =

∫
Ω

((divL)⊗ v + L(∇v>))dv,∫
∂Ω

(w · n)v ds =

∫
Ω

(vdivw + (∇v)w)dv.
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Chapter 6

Curvilinear coordinates

6.1 Introduction

All the developments done in the previous Chapters are intended for the case where alge-
braic and differential operators are expressed in a Cartesian frame, i.e. with rectangular
coordinates. The points of E are thus referred to a system of coordinates taken along
straight lines that are mutually orthogonal and with the same unit along each one of the
directions of the frame. Though this is a very important and common case, it is not the
only possibility and in many cases non rectangular coordinate frames are used or arise
in the mathematical developments (a typical example is that of the geometry of surfaces,
see Chapter 7). A non rectangular coordinate frame is a frame where coordinates can be
taken along non orthogonal directions, or along some lines that intersect at right angles
but that are not straight lines or even when both of these situations occur. This situation
is often denoted in the literature as that of curvilinear coordinates; the transformations
to be done to algebraic and differential operators in the case of curvilinear coordinates is
the topic of this Chapter.

6.2 Curvilinear coordinates, metric tensor

Let us consider an arbitrary origin o of E and an orthonormal basis e = {e1, e2, e3} of V ; we
will indicate the coordinates of a point p ∈ E with respect to the frame R = {o; e1, e2, e3}
by xk : p = (x1, x2, x3). Then, we consider also another set of coordinate lines for E ,
where the position of a point p ∈ E with respect to the same arbitrary origin o of E is now
determined by a set of three numbers zj : p = {z1, z2, z3}. Nothing is a-priori asked to
coordinates zj, namely they do not need to be a set of Cartesian coordinates, i.e. referring
to an orthonormal basis of V . In principle, the coordinates zj can be taken along non
straight lines, that do not need to be mutually orthogonal at o and also with different
units along each line. That is why we call the zjs curvilinear coordinates, see Fig. 6.1.
Any point p ∈ E can be identified by either set of coordinates; mathematically, this means
that there must be an isomorphism between the xks and the zjs, i.e. invertible relations
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Figure 6.1: Cartesian and curvilinear coordinates.

of the kind

zj = zj(x1, x2, x3) = zj(xk), xk = xk(z
1, z2, z3) = xk(z

j) ∀j, k = 1, 2, 3 (6.1)

exist between the two sets of coordinates. The distance between two points p, q ∈ E
is

s =
√

(p− q) · (p− q) =
√

(xpk − x
q
k)(x

p
k − x

q
k)

but this is no longer true for curvilinear coordinates:

s 6=
√

(zjp − zjq)(zjp − zjq).

However, if p→ q, we can define

dxk = xpk − x
q
k, dzj = zj

p − zjq,

so using eq. (6.1)2

dxk =
∂xk
∂zj

dzj. (6.2)

The (infinitesimal) distance between p and q will then be

ds =
√
dxkdxk =

√
∂xk
∂zj

∂xk
∂zl

dzjdzl =
√
gjldzjdzl,

where

gjl = glj =
∂xk
∂zj

∂xk
∂zl

(6.3)

are the covariant1 components of the metric tensor g. To notice that, as g defines a
positive quadratic form (the length of a vector), it is a positive definite symmetric tensor,
so

det g > 0. (6.4)

Coming back to the vector notation, from eq. (6.2) we get

dx = dxiei =
∂xi
∂zk

dzkei;

1The notion of co- and contra-variant components will be detailed later.
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Figure 6.2: Tangent vectors to the curvilinear coordinates lines.

introducing the vector gk,

gk :=
∂xi
∂zk

ei, (6.5)

we can write

dx = dzkgk.

We see hence that a vector dx can be expressed as a linear combination of the vectors
gk; these ones form therefore a basis, called the local basis. Generally speaking, gk /∈ S
and it is clearly tangent to the lines zj = const. This can be seen in Fig. 6.2 for a
two-dimensional case:

dx = lim
∆x→0

∆x = lim
∆x→0

xi(z
1, z2 + ∆z2, z3)− xi(z1, z2, z3)

∆z2
∆z2ei =

∂xi
∂z2

eidz
2 = g2dz

2.

Then

gk · gl =
∂xi
∂zk

ei ·
∂xj
∂zl

ej =
∂xi
∂zk

∂xj
∂zl

δij = gkl, (6.6)

i.e. the components of the metric tensor g are the scalar products of the tangent vectors
gks. If the curvilinear coordinates are orthogonal, i.e. if gh · gk = 0 ∀h, k = 1, 2, 3, h 6= k,
then g is diagonal. If, in addition, gk ∈ S ∀k = 1, 2, 3, then g = I: it is the case of
Cartesian coordinates. As an example, let us consider the case of polar coordinates,

{
x1 = r cos θ,
x2 = r sin θ,

{
z1 = r =

√
x2

1 + x2
2,

z2 = θ = arctan
x2

x1

.

Hence, Fig. 6.3,

g1 =
∂x1

∂z1
e1 +

∂x2

∂z1
e2 = cos θe1 + sin θe2 = er,

g2 =
∂x1

∂z2
e1 +

∂x2

∂z2
e2 = −r sin θe1 + r cos θe2 = reθ.

To remark that |g1| = 1 but |g2| 6= 1 and it is variable with the position.
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Figure 6.3: Tangent vectors to the polar coordinates lines.

6.3 Co- and contra-variant components

The notion of co- and contra-variant components is important in the geometry of surfaces.
A geometrical way to introduce the concept of covariant and contravariant components is
to consider how to represent a vector v in the z−system. There are basically two ways,
cf. Fig. 6.4, referred, for the sake of simplicity, to a planar case:

i. contravariant components: v is projected parallel to z1 and z2; they are indicated by
superscripts: v = (v1, v2, v3);

ii. covariant components: v is projected perpendicularly to z1 and z2; they are indicated
by subscripts: v = (v1, v2, v3);

Figure 6.4: Contravariant, left, and covariant, right, components of a vector in a plane.

Still referring to the planar case in Fig. 6.4, if the Cartesian components2 of v are
v = (vx1 , v

x
2 ), we get{

v1 = h(vx1 sinα2 − vx2 cosα2),
v2 = h(−vx1 sinα1 + vx2 cosα1),

{
v1 = vx1 cosα1 + vx2 sinα1,
v2 = vx1 cosα2 + vx2 sinα2,

(6.7)

and conversely{
vx1 = v1 cosα1 + v2 cosα2,
vx2 = v1 sinα1 + v2 sinα2,

{
vx1 = h(v1 sinα2 − v2 sinα1),
vx2 = h(−v1 cosα2 + v2 cosα1),

(6.8)

2In the following, we use the superscript x to indicate a Cartesian component.
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with

h =
1

sin(α2 − α1)
.

It is apparent that the Cartesian coordinates are at the same time co- and contra-variant.
Still on a planar scheme, we can see how to pass from a system of coordinates to another
one, cf. Fig. 6.5 For a point p the Cartesian coordinates (x1, x2) are related to the

Figure 6.5: Relation between Cartesian and contravariant components.

contravariant ones by

x1 = z1 cosα1 + z2 cosα2,

x2 = z1 sinα1 + z2 sinα2,

and conversely

z1 = h(x1 sinα2 − x2 cosα2),

z2 = h(−x1 sinα1 + x2 cosα1).

So, differentiating we get

∂x1

∂z1
= cosα1,

∂x1

∂z2
= cosα2,

∂x2

∂z1
= sinα1,

∂x2

∂z2
= sinα2,

and

∂z1

∂x1

= h sinα2,
∂z1

∂x2

= −h cosα2,

∂z2

∂x1

= −h sinα1,
∂z2

∂x2

= h cosα1.

Injecting these expressions into eqs. (6.7) and (6.8) gives

v1 = vx1
∂x1

∂z1
+ vx2

∂x2

∂z1
,

v2 = vx1
∂x1

∂z2
+ vx2

∂x2

∂z2
,

→ vi =
∂xk
∂zi

vxk (6.9)
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and

v1 = vx1
∂z1

∂x1

+ vx2
∂z1

∂x2

,

v2 = vx1
∂z2

∂x1

+ vx2
∂z2

∂x2

,

→ vi =
∂zi

∂xk
vxk . (6.10)

If now we calculate

ghiv
i = ghi

∂zi

∂xk
vxk ,

from eq. (6.3) and by the chain rule3 we get

ghiv
i =

∂xj
∂zh

∂xj
∂zi

∂zi

∂xk
vxk

=
∂xj
∂zh

∂xj
∂xk

vxk =
∂xj
∂zh

δjkv
x
k =

∂xk
∂zh

vxk = vh,

i.e. we obtain the rule of lowering of the indices for passing from contravariant to covariant
components:

vh = ghiv
i.

Introducing the inverse4 to ghi as

ghi =
∂zh

∂xk

∂zi

∂xk
, (6.11)

we get, still using the chain rule,

ghivi = ghi
∂xk
∂zi

vxk =
∂zh

∂xj

∂zi

∂xj

∂xk
∂zi

vxk

=
∂zh

∂xj

∂xk
∂xj

vxk =
∂zh

∂xj
δjkv

x
k =

∂zh

∂xk
vxk = vh,

which is the rule of raising of the indices for passing from covariant to contravariant
components:

vh = ghivi.

Still applying the chain rule, by eq. (6.9) we get

∂zi

∂xl
vi =

∂zi

∂xl
∂xk
∂zi

vxk =
∂xk
∂xl

vxk = δklv
x
k

i.e.

vxk =
∂zi

∂xk
vi, (6.12)

3The reader can easily see that, in practice, the chain rule allows to handle the derivatives as fractions.
4To prove that the contravariant components gpq are the inverse of the covariant ones, gpq is direct:

gpqgpq =
∂zp

∂xk

∂zq

∂xk

∂xj
∂zp

∂xj
∂zq

= δjkδjk = 1.
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which is the converse of eq. (6.9). In the same way we get the converse of eq. (6.10):

vxk =
∂xk
∂zi

vi. (6.13)

Let us now calculate the norm v of a vector v; starting from the Cartesian components
and using the last two results,

v =
√

v · v =
√
vxkv

x
k =

√
∂zi

∂xk
vi
∂zj

∂xk
vj =

√
∂zi

∂xk
∂zj

∂xk
vivj =

√
gijvivj,

or also

v =
√

v · v =
√
vxkv

x
k =

√
∂xk
∂zi

vi
∂xk
∂zj

vj =

√
∂xk
∂zi

∂xk
∂zj

vivj =
√
gijvivj

and even

v =
√

v · v =
√
vxkv

x
k =

√
∂zi

∂xk
vi
∂xk
∂zj

vj =

√
∂zi

∂xk

∂xk
∂zj

vivj =
√
δijviv

j =
√
vivi.

Through eq. (6.13) and by the definition of the tangent vectors to the lines of curvilinear
coordinates, eq. (6.5), for a vector v we get

v = vxi ei = vk
∂xi
∂zk

ei = vkgk.

We see hence that the contravariant components are actually the components of v in
the basis composed by the gks, the tangents to the lines of curvilinear coordinates. In a
similar manner, if we introduce the dual basis whose vectors gk are defined as

gk :=
∂zk

∂xi
ei, (6.14)

proceeding in the same way we obtain that

v = vxi ei = vk
∂zk

∂xi
ei = vkg

k,

i.e. the covariant components are actually the components of v in the dual basis. Finally,
for a vector we have, alternatively,

v = vxi ei = vkgk = vkg
k. (6.15)

Just as for the gks, we have

gh · gk =

(
∂zh

∂xi
ei

)
·
(
∂zk

∂xj
ej

)
=
∂zh

∂xi

∂zk

∂xj
δij =

∂zh

∂xi

∂zk

∂xi
= ghk;

moreover

gh · gk =

(
∂zh

∂xi
ei

)
·
(
∂xj
∂zk

ej

)
=
∂zh

∂xi

∂xj
∂zk

δij =
∂zh

∂xi

∂xi
∂zk

=
∂zh

∂zk
= δhk,
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and by the symmetry of the scalar product

δ k
h := gh · gk = gk · gh = δkh.

The last equations defines the orthogonality conditions for the g-vectors. Using these
results and eq. (6.15) we have also

vk = δkhv
h = gk · vhgh = gk · v = gk · vhgh = gkhvh,

vk = δ h
k vh = gk · vhgh = gk · v = gk · vhgh = gkhv

h,

so founding again the rules of raising and lowering of the indices.

What done for a vector, can be transposed, using a similar approach, to tensors. In
particular, for a second-rank tensor L we get

Lij =
∂zi

∂xh

∂zj

∂xk
Lxhk,

Lij =
∂xh
∂zi

∂xk
∂zj

Lxhk,

(6.16)

for the contravariant and covariant components, respectively, while we can also introduce
the mixed components

Li j =
∂zi

∂xh

∂xk
∂zj

Lxhk,

L j
i =

∂xh
∂zi

∂zj

∂xk
Lxhk.

(6.17)

Conversely,

Lxhk =
∂xh
∂zi

∂xk
∂zj

Lij,

Lxhk =
∂zi

∂xh

∂zj

∂xk
Lij,

Lxhk =
∂xh
∂zi

∂zj

∂xk
Li j,

Lxhk =
∂zi

∂xh

∂xk
∂zj

L j
i .

(6.18)

Also for L, the rule of lowering or raising the indices is valid:

Lij = gihgjkLhk, Lij = gihgjkL
hk.

From eq. (6.18) and by the same definitions of gij, eq.(6.3), and gij, eq. (6.11), we
get

L = Lxijei ⊗ ej =
∂xi
∂zh

∂xj
∂zk

Lhkei ⊗ ej = Lhkgh ⊗ gk

and

L = Lxijei ⊗ ej =
∂zh

∂xi

∂zk

∂xj
Lhkei ⊗ ej = Lhkg

h ⊗ gk.
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In the same manner, the tensor mixed components are also found:

L = Lxijei ⊗ ej =
∂xi
∂zh

∂zk

∂xj
Lhkei ⊗ ej = Lhkgh ⊗ gk

and

L = Lxijei ⊗ ej =
∂zk

∂xj

∂xi
∂zh

L k
h ei ⊗ ej = L k

h gh ⊗ gk.

We see hence that a second-rank tensor can be given with four different combinations
of coordinates; even more complex is the case of higher order tensors, that will not be
treated here.

Still by eqs.(6.3) and (6.11) and applying the chain rule to δij =
∂zi

∂zj
, we get

gij =
∂xk
∂zi

∂xk
∂zj

=
∂xh
∂zi

∂xk
∂zj

δhk,

gij =
∂zi

∂xk

∂zj

∂xk
=
∂zi

∂xh

∂zj

∂xk
δhk,

δij =
∂zi

∂xh

∂xk
∂zj

δhk,

δ j
i =

∂xh
∂zi

∂zj

∂xk
δhk.

(6.19)

So, applying eq. (6.18) to the identity tensor we get

I = δijei ⊗ ej =
∂xi
∂zh

∂xj
∂zk

Ihkei ⊗ ej = Ihkgh ⊗ gk,

but, by eqs. (6.16) and (6.19),

Ihk =
∂zh

∂xi

∂zk

∂xj
δij = ghk

so finally
I = ghkgh ⊗ gk.

Proceeding in the same manner, we get also

I = ghkg
h ⊗ gk = δhkgh ⊗ gk = δ k

h gh ⊗ gk.

We see hence that the ghks represent I in covariant coordinates, the ghks in the contravari-
ant ones and the δ k

h s and δhks in mixed coordinates.

6.4 Spatial derivatives of fields in curvilinear coordi-

nates

Let ϕ a spatial5 scalar field, ϕ : E → R. Generally speaking,

ϕ = ϕ(zj(xi)),

5The term spatial here refers to differentiation with respect to spatial coordinates, that can be Carte-
sian or curvilinear.
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or also

ϕ = ϕ(xj(z
k)),

where the xjs, z
ks are respectively Cartesian and curvilinear coordinates, related as in eq.

(6.1). By the chain rule
∂ϕ

∂xj
=

∂ϕ

∂zk
∂zk

∂xj
(6.20)

and inversely
∂ϕ

∂zk
=

∂ϕ

∂xj

∂xj
∂zk

.

We remark that the last quantity transforms like the components of a covariant vector,
cf. eq.(6.9).

The gradient of ϕ is the vector that in the Cartesian basis is defined by

∇ϕ =
∂ϕ

∂xj
ej;

so, by eqs. (6.14) and (6.20) we get that in the dual basis

∇ϕ =
∂ϕ

∂zk
∂zk

∂xj
ej =

∂ϕ

∂zk
gk.

We see hence that in curvilinear coordinates the nabla operator is defined by

∇(·) =
∂ ·
∂zk

gk. (6.21)

The contravariant components of the gradient can be obtained by the covariant ones
upon multiplication by the components of the inverse (contravariant) metric tensor, eq.
(6.11):

ghk
∂ϕ

∂zk
=
∂zh

∂xi

∂zk

∂xi

∂ϕ

∂xj

∂xj
∂zk

= δij
∂ϕ

∂xj

∂zh

∂xi
=

∂ϕ

∂xj

∂zh

∂xj
→ ∇ϕ =

∂ϕ

∂xj

∂zh

∂xj
gh.

Let us now consider a vector field v : E → V ; we want to calculate the spatial derivative
of its Cartesian components. By the chain rule and eq. (6.13) we get

∂vxi
∂xj

=
∂vxi
∂zk

∂zk

∂xj
=
∂zk

∂xj

∂

∂zk

(
∂xi
∂zh

vh
)

=
∂zk

∂xj

(
∂xi
∂zh

∂vh

∂zk
+

∂2xi
∂zk∂zl

vl
)

=
∂zk

∂xj

∂xi
∂zh

(
∂vh

∂zk
+
∂zh

∂xm

∂2xm
∂zk∂zl

vl
)
,

whence
∂zh

∂xi

∂xj
∂zk

∂vxi
∂xj

=
∂vh

∂zk
+
∂zh

∂xm

∂2xm
∂zk∂zl

vl. (6.22)
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Comparing this result with eq. (6.17)1 we see that the first member actually corresponds
to the components of a mixed tensor field which is the gradient of the vector field v, that
we write as

vh;k =
∂vh

∂zk
+ Γhklv

l, (6.23)

where the

Γhkl =
∂zh

∂xm

∂2xm
∂zk∂zl

(6.24)

are the Christoffel symbols. We immediately see that Γhkl = Γhlk. The quantity vh;k is

the covariant derivative of the contravariant components vh. It can be proved that the
Christoffel symbols can be written also as

Γhkl =
1

2
ghm

(
∂gmk
∂zl

+
∂gml
∂zk

− ∂gkl
∂zm

)
. (6.25)

Proceeding in the same way for the covariant components of v, but now using eqs. (6.12)
and (6.17)1, we get

vh;k =
∂vh
∂zk
− Γlkhvl,

which is the covariant derivative of the covariant components vh.

Using eqs. (6.22) and (6.23), we conclude that

divv :=
∂vxi
∂xi

= vh;h.

Then, applying the operator divergence so defined to the gradient of the scalar field ϕ we
obtain, in arbitrary coordinates z, the Laplacian ∆ϕ as

∆ϕ =

(
ghk

∂ϕ

∂zk

)
;h

=
∂

∂zh

(
ghk

∂ϕ

∂zk

)
+ Γhhjg

jk ∂ϕ

∂zk
.

Using the definition of the nabla operator in curvilinear coordinates, eq. (6.21), jointly
to the fact that, cf. Sect. 5.5,

div∇f = ∇ · ∇f,
we get the the following representation of the Laplace operator in curvilinear coordi-
nates:

∆(·) = ∇ · ∇(·) =

(
∂

∂zk

(
∂(·)
∂zh

gh
))
· gk =

∂2(·)
∂zk∂zh

gh · gk +
∂gh

∂zk
∂(·)
∂zh
· gk

=
∂2(·)
∂zk∂zh

ghk +
∂gh

∂zk
· gk ∂(·)

∂zh
.

Let us now calculate the spatial derivatives of the components of a 2nd-rank tensor L: by
eqs. (6.18)1 and (6.24) we get

∂Lxij
∂xk

=
∂zh

∂xk

∂

∂zh

(
∂xi
∂zn

∂xj
∂zp

Lnp
)

=
∂zh

∂xk

∂xi
∂zn

∂xj
∂zp

(
∂Lnp

∂zh
+ ΓnhrL

rp + ΓphrL
nr

)
,
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which implies that

∂Lnp

∂zh
+ ΓnhrL

rp + ΓphrL
nr =

∂xk
∂zh

∂zn

∂xi

∂zp

∂xj

∂Lxij
∂xk

. (6.26)

So, eq. (6.16), we can conclude that the expression

Lnp;h =
∂Lnp

∂zh
+ ΓnhrL

rp + ΓphrL
nr (6.27)

represents the covariant derivative of the contravariant components of the second-rank
tensor L. In a similar manner, this time by eq. (6.18)2, we obtain the covariant derivatives
of the covariant components of L:

∂Lnp
∂zh

− ΓrnhLrp − ΓrphLnr =
∂xk
∂zh

∂xi
∂zn

∂xj
∂zp

∂Lxij
∂xk

,

i.e.

Lnp;h =
∂Lnp
∂zh

− ΓrphLnr − ΓrnhLpr. (6.28)

The same procedure with eqs. (6.18)3, 4 gives the covariant derivatives of the mixed
components of L:

Lnp;h =
∂Lnp
∂zh

+ ΓnhrL
r
p − ΓrphL

n
r,

L n
p ;h =

∂L n
p

∂zh
− ΓrphL

n
r + ΓnhrL

r
p .

(6.29)

Equations (6.27), (6.28) and (6.29) represents the different forms of the components of a
third-rank tensor ∇L, the gradient of L.

If in eqs. (6.26) and (6.27) we put p = h, we get

Lnh;h =
∂Lnh

∂zh
+ ΓnhrL

rh + ΓhhrL
nr =

∂xk
∂zh

∂zn

∂xi

∂zh

∂xj

∂Lxij
∂xk

= δkj
∂zn

∂xi

∂Lxij
∂xk

=
∂zn

∂xi

∂Lxij
∂xj

,

which are the components of the contravariant vector field divL, the divergence of L.

6.5 Exercices

1. Write g and ds for cylindrical coordinates.

2. Write g and ds for spherical coordinates.

3. Find the length of a cylindrical helix on a cylinder of radius R between the angles
θ and θ + 2π.

4. A curve is traced in a quarter of circle of radius R, see Fig. 6.6; when the quarter of
circle is rolled into a cone, the curve appears as indicated in the figure, after having
described, in the plane, a complete circle. Determine the length ` of the curve, first
using the polar coordinates in the plane of the quarter of circle, then the cylindrical
ones for case of the curve on the cone.
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Figure 6.6: Curve in a plane and on a cone.

5. Calculate g for a planar system of coordinates composed by two axes z1 and z2

inclined respectively of α1 and α2 on the axis x1.

6. Calculate the gis for a system of spherical coordinates.

7. In the plane, elliptical coordinates are defined by the relations

x1 = c cosh z1 cos z2, x2 = c sinh z1 sin z2, z1 ∈ (0,∞), z2 ∈ [0, 2π);

show that the lines z1 = const., z2 = const. are confocal ellipses and hyperbolae,
determine the axes of the ellipses in terms of the parameter c, discuss the limit
case of ellipses that degenerate into a crack and determine its length. Finally, find
g,g1,g2.

8. Determine the co- and contra-variant components of a tensor L in cylindrical coor-
dinates.

9. Determine the co- and contra-variant components of a tensor L in spherical coordi-
nates.

10. For the case of exercise 5, calculate the vectors gk and gk, design these vectors and
check the orthogonality conditions gh · gk = δhk.

11. Show that
trL = Lxii = gijLij = gijL

ij = Li i = L j
j .

12. Prove eq. (6.25).

13. Prove the Lemme of Ricci:

∂gjk
∂zh

= Γijhgik + Γikhgji.

14. Using eq. (6.25) find the Christoffel symbols for the cylindrical, spherical and ellip-
tical (in the plane) coordinates.

15. Write the Laplace operator in cylindrical and spherical coordinates.

16. Prove that
gnp;h = gnp;h = 0.
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Chapter 7

Surfaces in E

7.1 Surfaces in E, coordinate lines, tangent planes

A function f(u, v) : Ω ⊂ R2 → E of class ≥C1 and such that its Jacobian

J =



∂f1

∂u

∂f1

∂v
∂f2

∂u

∂f2

∂v
∂f3

∂u

∂f3

∂v


has maximum rank (rank[J]=2) defines a surface in E , see Fig. 7.1. We say also that f is
an immersion of Ω into E and that the subset Σ ⊂ E image of f is the support or trace of
the surface f .

u

v !

x1

x2

x3

u0

v0 q

f(u,v)

o

p=f(q) f,u
f,v

Tp"

"

 v=v0

 u
=u

0

Figure 7.1: General scheme of a surface and of the tangent space at a point p.

We will also indicate derivatives with respect to the variables u, v by, e.g.,
∂f

∂u
= f,u etc.
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The condition on the rank of J is equivalent to impose that

f,u(u, v)× f,v(u, v) 6= o ∀(u, v) ∈ Ω. (7.1)

The normal to the surface f is the vector N ∈ S defined as

N :=
f,u × f,v
|f,u × f,v|

. (7.2)

A regular point of Σ is a point where N is defined; if N is defined ∀p ∈ Σ then the surface
is said to be regular.

A function γ(t) : G ⊂ R → Ω whose parametric equation is γ(t) = (u(t), v(t)) describes
a curve in Ω whose image, through f , is a curve

γ̂(t) = f(u(t), v(t)) : G ⊂ R→ Σ ⊂ E .

As a special case of curve in Ω, let us consider the curves of the type v = v0 or u = u0,
with u0, v0 some constants. Then, their image through f are two curves f(u, v0), f(u0, v)
on Σ called coordinate lines, see Fig. 7.1. The tangent vectors to the coordinate lines
are respectively the vectors f,u(u, v0) and f,v(u0, v), while the tangent to a curve γ̂(t) =
f(u(t), v(t)) is the vector

γ̂ ′(t) = f,u
du

dt
+ f,v

dv

dt
, (7.3)

i.e. the tangent vector to any curve on Σ is a linear combination of the tangent vectors
to the coordinate lines. To remark that the tangent vectors f,u(u, v0) and f,v(u0, v) are
necessarily non null and linear independent as consequence of the assumption on the rank
of J , and hence of the existence of N, i.e. of the regularity of Σ. They determine a plane
that contains the tangents to all the curves on Σ passing by p = f(u0, v0) and form a basis
on this plane, called the natural basis. Such a plane is the tangent plane to Σ in p and is
indicated by TpΣ; this plane is actually the space spanned by f,u(u, v0) and f,v(u0, v) and
is also called the tangent vector space.

Let us consider two open subsets Ω1,Ω2 ⊂ R2; a diffeomorphism1 of class Ck between Ω1

and Ω2 is a bijective map ϑ : Ω1 → Ω2 of class Ck with also its inverse of class Ck; the
diffeomorphism is smooth if k =∞.

Let Ω1,Ω2 be two open subsets of R2, f : Ω2 → E a surface and ϑ : Ω1 → Ω2 a smooth
diffeomorphism. Then the surface F = f ◦ ϑ : Ω1 → E is a change of parameterization for
f . In practice, the function defining the surface changes, but not Σ, its trace in E . Let
(U, V ) be the coordinates in Ω1 and (u, v) in Ω2; then, by the chain rule,

F,U = f,u
∂u

∂U
+ f,v

∂v

∂U
,

F,V = f,u
∂u

∂V
+ f,v

∂v

∂V
,

1The definition of diffeomorphism, of course, can be given for subsets of Rn, n ≥ 1; here, we bound
the definition to the case of interest.
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or, denoting by Jϑ the Jacobian of ϑ,{
F,U

F,V

}
= [Jϑ]>

{
f,u
f,v

}
,

whence
F,U × F,V = det[Jϑ] f,u × f,v.

This result shows that the regularity of the surface, condition (7.1), the tangent plane
and the tangent space vector do not depend upon the parameterization of Σ. From the
last equation, we get also

N(U, V ) = sgn(det[Jϑ]) N(u, v);

we say that the change of parameterization preserves the orientation if det[Jϑ] > 0, and
that it inverses the parameterization in the opposite case.

7.2 Surfaces of revolution

A surface of revolution is a surface whose trace is obtained letting rotate a plane curve,
say γ, around an axis, say x3. To be more specific, and without loss of generality, let
γ : G ⊂ R → R2 be a regular curve of the plane x2 = 0, whose parametric equation is

γ(u) :

{
x1 = ϕ(u),
x3 = ψ(u),

ϕ(u) > 0 ∀u ∈ G. (7.4)

Then, the subset Σγ ⊂ E defined by

Σγ :=
{

(x1, x2, x3) ∈ E|x2
1 + x2

2 = ϕ2(u), x3 = ψ(u), u ∈ G
}

is the trace of a surface of revolution of the curve γ(u) around the axis x3. A general
parameterization of such a surface is

f(u, v) : G× (−π, π]→ E|


x1 = ϕ(u) cos v,
x2 = ϕ(u) sin v,
x3 = ψ(u).

(7.5)

It is readily checked that this parameterization actually defines a regular surface:

f,u =


ϕ′(u) cos v
ϕ′(u) sin v
ψ′(u)

 , f,v =


−ϕ(u) sin v
ϕ(u) cos v

0

 → f,u × f,v =


−ϕ(u)ψ′(u) cos v
−ϕ(u)ψ′(u) sin v

ϕ(u)ϕ′(u)


so that

|f,u × f,v| = ϕ2(u)(ϕ′2(u) + ψ′2(u)) 6= 0 ∀u ∈ G
for being γ(u) a regular curve, i.e. with γ ′(u) 6= o ∀u ∈ G. A meridian is a curve in E
intersection of the trace of f , Σγ, with a plane containing the axis x3; the equation of a
meridian is obtained fixing the value of v, say v = v0:

x1 = ϕ(u) cos v0,
x2 = ϕ(u) sin v0,
x3 = ψ(u).
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A parallel is a curve in E intersection of Σγ with a plane orthogonal to x3; the equation
of a parallel, which is a circle with center on the axis x3, is obtained fixing the value of u,
say u = u0: 

x1 = ϕ(u0) cos v,
x2 = ϕ(u0) sin v,
x3 = ψ(u0),

or also {
x2

1 + x2
2 = ϕ(u0)2,

x3 = ψ(u0);

the radius of the circle is ϕ(u0).

A loxodrome or rhumb line is a curve on Σγ crossing all the meridians at the same an-
gle.

Some important examples of surfaces of revolution are:

• the sphere:

f(u, v) :
[
−π

2
,
π

2

]
× (−π, π]→ E|


x1 = cosu cos v,
x2 = cosu sin v,
x3 = sin v;

• the catenoid:

f(u, v) : [−a, a]× (−π, π]→ E|


x1 = coshu cos v,
x2 = coshu sin v,
x3 = u;

• the pseudo-sphere:

f(u, v) : [0, a]× (−π, π]→ E|


x1 = sinu cos v,
x2 = sinu sin v,

x3 = cosu+ ln
(

tan
u

2

)
;

(7.6)

• the hyperbolic hyperboloid:

f(u, v) : [−a, a]× (−π, π]→ E|


x1 = cosu− v sinu,
x2 = sinu+ v cosu,
x3 = v.

7.3 Ruled surfaces

A ruled surface (also named a scroll) is a surface with the property that through every
one of its points there is a straight line that lies on the surface. A ruled surface can be
seen as the set of points swept by a moving straight line. We say that a surface is doubly
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Figure 7.2: Surfaces of revolution. From the left: sphere, catenoid, pseudo-sphere, hyper-
bolic hyperboloid.

ruled if through every one of its points there are two distinct straight lines that lie on the
surface.

Any ruled surface can be represented by a parameterization of the form

f(u, v) = γ(u) + vλ(u), (7.7)

where γ(u) is a regular smooth curve, the directrix, and λ(u) is a smooth curve. Fixing
u = u0 gives a generator line f(u0, v) of the surface; the vectors λ(u) 6= o describe the
directions of the generators. Some important examples of ruled surfaces are:

• cones: for these surfaces, all the straight lines pass through a point, the apex of the
cone, choosing the apex as the origin, then it must be λ(u) = kγ(u), k ∈ R→

f(u, v) = vγ(u);

• cylinders: a ruled surface is a cylinder ⇐⇒ λ(u) = const. In this case, it is always
possible to choose λ(u) ∈ S and γ(u) a planar curve lying in a plane orthogonal to
λ(u) (it is sufficient to choose the curve γ∗(u) = (I− λ(u)⊗ λ(u))γ(u));

• helicoids: a surface generated by rotating and simultaneously displacing a curve,
the profile curve, along an axis is a helicoid. Any point of the profile curve is the
starting point of a circular helix. Generally speaking, we get a helicoid if

γ(u) = (0, 0, ϕ(u)), λ(u) = (cosu, sinu, 0), ϕ(u) : R→ R.

• Möbius strip: it is a ruled surface with

γ(u) = (cos 2u, sin 2u, 0), λ(u) = (cosu cos 2u, cosu sin 2u, sinu).

7.4 First fundamental form of a surface

We call first fundamental form of a surface, denoted by I(·, ·), the restriction of the scalar
product to the tangent vector space TpΣ. We recall that a scalar product is a positive
definite symmetric form. Let us consider two vectors w1 = a1f,u+b1f,v,w2 = a2f,u+b2f,v ∈
TpΣ; then

I(w1,w2) = w1 ·w2 = a1a2f
2
,u + (a1b2 + a2b1)f,u · f,v + b1b2f

2
,v
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Figure 7.3: Ruled surfaces. From the left: elliptical cone, elliptical cylinder, helicoid,
Möbius strip.

is the first form of f(u, v); if w1 = w2 = w = af,u + bf,v, then

I(w) = w2 = a2f2
,u + 2abf,u · f,v + b2f2

,v

is a positive form ∀w ∈ TpΣ. We can rewrite I(·, ·) in the form

I(w1,w2) = w1 · g w2,

where2

g =

[
f,u · f,u f,u · f,v
f,v · f,u f,v · f,v

]
is actually the metric tensor g of Σ, cf. eq. (6.6). In fact, f,u and f,v are the tangent
vectors to the coordinate lines on Σ, i.e. they coincide with the vectors gks.

Through I(·, ·) we can calculate some important quantities regarding the geometry of
Σ:

• metric on Σ: ∀ds ∈ Σ,

ds2 = ds · ds = I(ds);

so, if

ds = f,udu+ f,vdv

then

ds2 = f2
,udu

2 + 2f,u · f,vdu dv + f2
,vdv

2; (7.8)

• length ` of a curve γ : [t1, t2] ⊂ R → Σ: we know, eq. (4.4), that the length of a
curve is the integral of the tangent vector:

` =

∫ t2

t1

|γ ′(t)|dt =

∫ t2

t1

√
γ ′(t) · γ ′(t)dt

2Often, in texts on differential geometry, tensor g is indicated as

g =

[
E F
F G

]
,

where E := f,u · f,u, F := f,u · f,v, G := f,v · f,v.
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and hence, see eq. (7.3), if we call w = (u′, v′) the tangent vector to γ, expressed
by its components in the natural basis,

` =

∫ t2

t1

√
u′2f2

,u + 2u′v′f,u · f,v + v′2f2
,vdt =

∫ t2

t1

√
(u′, v′) · g (u′, v′)dt

=

∫ t2

t1

√
I(w)dt;

(7.9)

• angle θ formed by two vectors w1,w2 ∈ TpΣ:

cos θ =
w1 ·w2

|w1||w2|
=

I(w1,w2)√
I(w1)

√
I(w2)

;

• area of a small surface on Σ: be f,udu and f,vdv two small vectors on Σ, forming
together the angle θ, that are the transformed, through3 f : Ω → Σ, of two small
orthogonal vectors du, dv ∈ Ω; then the area dA of the parallelogram determined
by them is

dA = |f,udu× f,vdv| = |f,u × f,v|du dv =
√

f2
,uf

2
,v sin2 θdu dv

=
√

f2
,uf

2
,v(1− cos2 θ)du dv =

√
f2
,uf

2
,v − f2

,uf
2
,v cos2 θdu dv

=
√

f2
,uf

2
,v − (f,u · f,v)2du dv =

√
det gdu dv;

the term
√

det g is hence the dilatation factor of the areas; recalling eq. (6.4), we
see that the previous expression has a sense ∀f(u, v), i.e. for any parameterization
of the surface.

7.5 Second fundamental form of a surface

Be f : Ω→ Σ a regular surface, {f,u, f,v} the natural basis for TpΣ and N ∈ S the normal
to Σ defined as in (7.2). We call map of Gauss of Σ the map ϕΣ : Σ→ S that associates
to each p ∈ Σ its N : ϕΣ(p) = N(p). To each subset σ ⊂ Σ the map of Gauss associates
hence a subset σS ⊂ S, Fig. 7.4 (e.g. the Gauss map of a plane is just a point of S).

We want to study how N(p) varies at the varying of p on Σ. To this purpose, we calculate
the change of N per unit length of a curve γ(s) ∈ Σ, i.e., we study how N varies along
any curve of Σ per unit of length of the curve itself; that is why we parameterize the curve
with its arc-length s 4. Be N = Ni(u, v)ei; then

dN

ds
=
dNi(u(s), v(s))

ds
ei =

(
∂Ni

∂u

du

ds
+
∂Ni

∂v

dv

ds

)
ei

= ∇Ni · τei = (ei ⊗∇Ni)τ = (∇N) τ =
dN

dτ
.

3For the sake of conciseness, from now on we will indicate a surface as the function f : Ω → Σ, with
f = f(u, v), (u, v) ∈ Ω ⊂ R2 and Σ ⊂ E .

4Actually, it is possible to introduce the following concepts also more generally, for any parameteriza-
tion of the curve; anyway, for the sake of simplicity, we will just use the parameter s in the following.
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Figure 7.4: The map of Gauss.

The change of N is hence related to the directional derivative of N along the tangent τ
to γ(s), which is a linear operator on TpΣ. Moreover, as N ∈ S, then, cf. eq. (4.1),

N ·N,u = N ·N,v = 0 ⇒ N,u,N,v ∈ TpΣ.

We then call Weingarten operator LW : TpΣ → TpΣ the opposite of the directional
derivative of N:

LW (τ ) := −dN
dτ

.

Hence,

LW (f,u) = −N,u, LW (f,v) = −N,v. (7.10)

Because LW is linear, then it exists a tensor X on TpΣ such that

LW (v) = Xv ∀v ∈ TpΣ. (7.11)

For any two vectors w1,w2 ∈ TpΣ, we define second fundamental form of a surface,
denoted by II(w1,w2) the bilinear form

II(w1,w2) := I(LW (w1),w2).

Theorem 29. (Symmetry of the second fundamental form): ∀w1,w2 ∈ TpΣ, II(w1,w2) =
II(w2,w1).

Proof. Because I and LW are linear, it is sufficient to prove the thesis for the natural
basis {f,u, f,v} of TpΣ, and, by the symmetry of I, it is sufficient to prove that

I(LW (f,u), f,v) = I(f,u,LW (f,v)),

i.e. that

I(−N,u, f,v) = I(f,u,−N,v)
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and in the end that

N,u · f,v = f,u ·N,v.

To this end, we recall that

N · f,u = 0 = N · f,v,

so, differentiating the first equation by v and the second one by u, we get

N,v · f,u = −N · f,uv = N,u · f,v. (7.12)

The second fundamental form defines a quadratic, bilinear symmetric form:

II(w1,w2) = I(LW (w1),w2) = I(w1,LW (w2)) = I(w1,Xw2) = w1 · gXw2 = w1 ·Bw2,

where

B := gX. (7.13)

In the natural basis {f,u, f,v} of TpΣ, by eq. (7.12), it is5

Bij = II(f,i, f,j) = I(LW (f,i), f,j) = −N,i · f,j = N · f,ij; (7.14)

tensor X can then be calculated by eq. (7.13):

X = g−1B. (7.15)

By eq. (7.14), because f,ij = f,ji or simply because II(·, ·) is symmetric, we get that

B = B>.

7.6 Curvatures of a surface

Be f : Ω→ Σ a regular surface and γ(s) : G ⊂ R→ Σ a regular curve on Σ parameterized
with the arc length s. We call curvature vector of γ(s) the vector κ(s) defined as

κ(s) := c(s)ν(s) = γ ′′(s),

where ν(s) is the principal normal to γ(s). Then, we call normal curvature κN(s) of γ(s)
the projection of κ(s) onto N(s), the normal to Σ:

κN(s) := κ(s) ·N(s) = c(s) ν(s) ·N(s) = γ ′′(s) ·N(s).

5In many texts on differential geometry, the following symbols are used:

L = f,uu ·N = −f,u ·N,u,

M = f,uv ·N = −f,u ·N,v,

N = f,vv ·N = −f,v ·N,v.
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Theorem 30. The normal curvature κN(s) of γ(s) ∈ Σ depends uniquely on τ (s):

κN(s) = τ (s) ·Bτ (s) = II(τ (s), τ (s)). (7.16)

Proof.
γ(s) = γ(u(s), v(s)) → τ (s) = γ ′(s) = f,uu

′ + f,vv
′,

therefore τ = (u′, v′) in the natural basis and

κ(s) = γ ′′(s) = f,uu
′′ + f,vv

′′ + f,uuu
′2 + 2f,uvu

′v′ + f,vvv
′2

and finally, by eqs. (7.2) and (7.14),

κN(s) = γ ′′(s) ·N(s) = B11u
′2 + 2B12u

′v′ +B22v
′2 = τ ·Bτ = II(τ , τ ).

If now s = s(t) is a change of parameter for γ, then

γ ′(t) = |γ ′(t)|τ (t),

so, by the linearity of II(·, ·) we get

II(γ ′(t),γ ′(t)) = |γ ′(t)|2II(τ (t), τ (t)) = |γ ′(t)|2κN(t)

and finally

κN(t) =
II(γ ′(t),γ ′(t))

I(γ ′(t),γ ′(t))
.

To each point p ∈ Σ it corresponds uniquely (in the assumption of regularity of the surface
f : Ω→ Σ) a tangent plane and a tangent space vector TpΣ. In p, there are infinite tangent
vectors to Σ, all of them belonging to TpΣ. We can associate a curvature to each direction
t ∈ TpΣ, i.e. to each tangent direction, in the following way: let us consider the bundle
H of planes whose support is the straight line through p and parallel to N. Then any
plane H ∈ H is a normal plane to Σ in p; each normal plane is uniquely determined by
a tangent direction t and the (planar) curve γNt := H ∩ Σ is called a normal section of
Σ. If ν and N are respectively the principal normal to γNt and the normal to Σ in p,
then

ν = ±N

for each normal section. We have in this way defined a function that to each tangent
direction t ∈ TpΣ associates the normal curvature κN of the normal section γNt:

κN : S ∩ TpΣ→ R| κN(t) =
II(t, t)

I(t, t)
.

By the bilinearity of the second fundamental form, κN(t) = κN(−t).

A point p ∈ Σ is said to be a umbilical point if κN(t) = const. ∀t, it is a planar point
if κN(t) = 0 ∀t. In all the other points, κN takes a minimum and a maximum value on
distinct directions t ∈ TpΣ.
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Because B = B>, by the spectral theorem it exists an orthonormal basis {u1,u2} of TpΣ
such that

B = βiui ⊗ ui,

with βi the eigenvalues of B. In such a basis, by eq. (7.13) we get

κN(ui) =
II(ui,ui)

I(ui,ui)
=

ui ·Bui
ui · gui

=
ui · gXui
ui · gui

.

Then, because {u1,u2} is an orthonormal basis, g = I and

κN(ui) = ui ·Xui = βi,

i.e. X and B shares the same eigenvalues and eigenvectors. Moreover, cf. Sect. 2.8,
we know that the two directions u1,u2 are the directions whereupon the quadratic form
in the previous equation gets its maximum, κ1, and minimum, κ2, values, and in such a
basis

X = κiui ⊗ ui.

We call κ1 and κ2 the principal curvatures of Σ in p and u1,u2 the principal directions of
Σ in p, see Fig. 7.5.

x1

x2

x3

o

Tp!

!

u2
N

p u1

Figure 7.5: Principal curvatures.

We call Gaussian curvature K the product of the principal curvatures:

K := κ1κ2 = det X.

By eq. (7.15) and the Theorem of Binet, it is also

K =
det B

det g
. (7.17)
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We define mean curvature H of a surface6 f : Ω → Σ at a point p ∈ Σ the mean of the
principal curvatures at p:

H :=
κ1 + κ2

2
=

1

2
trX.

Of course, a change of parameterization of a surface can change the orientation, cf. Sect.
7.1, which induces a change of N into its opposite one and by consequence of the sign of
the second fundamental form and hence of the normal and principal curvatures. These
last are hence defined to less the sign, and the mean curvature too, while the principal
directions, umbilicality, flatness and Gaussian curvature are intrinsic to Σ, i.e. they do
not depend on its parameterization.

7.7 The theorem of Rodrigues

Principal directions of curvature have a property which is specified by the

Theorem 31. (Theoreom of Rodrigues): be f(u, v) a surface of class at least C2 and
λ = (λu, λv) ∈ TpΣ; then

dN(p)

dλ
= −κλλ (7.18)

if and only if λ is a principal direction; κλ is the principal curvature relative to λ.

Proof. Let λ be a principal direction of TpΣ. Because |N| = 1, then

dN

dλ
· λ = 0; (7.19)

moreover,

dN

dλ
= ∇N λ =

 0 0 0
0 0 0

N,u N,v 1

 λu
λv
0

 = N,uλu + N,vλv. (7.20)

Be µ = (µu, µv) the other principal direction of TpΣ; then

λ · µ = 0 → I(λ,µ) = II(λ,µ) = 0.

Moreover
dN

dλ
· µ = −II(λ,µ) = 0

which implies, together with eq. (7.19),

dN

dλ
= αλ. (7.21)

6The concept of mean curvature of a surface was introduced for the first time by Sophie Germain, in
her celebrated work on the elasticity of plates.
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Therefore
dN

dλ
· λ = −II(λ) = αλ · λ = αI(λ)

and finally

α = −II(λ)

I(λ)
= −κλ.

Contrarily, if we assume eq. (7.21), like before we get α = −κλ and to end we just need
to prove that λ is a principal direction. From eqs. (7.20) and (7.21) we get

λuN,u + λvN,v = −κλ(λuf,u + λvf,v).

Projecting this equation onto f,u and f,v gives the two equations

Lλu +Mλv = κλ(Eλu + Fλv),

Mλu +Nλv = κλ(Eλu +Gλv),
(7.22)

with the symbols E,F,G, L,M and N defined in Notes 2 and 5. Let w = (wu, wv) ∈ TpΣ
and consider the function

ζ(w, κλ) = II(w)− κλI(w);

it is easy to check that ζ,
∂ζ

∂wu
and

∂ζ

∂wv
take zero value for w = λ0, with λ0 the eigenvector

of the principal direction relative to κλ, which gives the system of equations
II(λ0)− κλI(λ0) = 0,

∂II(λ0)

∂wu
− κλ

∂II(λ0)

∂wu
= 0,

∂II(λ0)

∂wv
− κλ

∂II(λ0)

∂wv
= 0.

Developing the derivatives and making some standard passages, eq. (7.22) is found again,
which proves that λ is necessarily the principal direction relative to κλ.

This theorems states hence that the derivative of N along a given direction is a vector
parallel to such a direction only when this is a principal direction of curvature.

7.8 Classification of the points of a surface

Be f : Ω→ Σ a regular surface and p ∈ Σ a non-planar point. Then, we say that

• p is an elliptic point if K(p) > 0;

• p is a hyperbolic point if K(p) < 0;

• p is a parabolic point if K(p) = 0.

To remark that, by eq. (7.17), because det g > 0, eq. (6.4), the value of det B is sufficient
to determine the type of a point on Σ.
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Theorem 32. If p is an elliptical point of σ, then it exists a neighbourhood U ∈ Σ of p
such that all the points q ∈ U belong to the same half-space into which E is divided by the
tangent plane TpΣ.

Proof. For the sake of simplicity and without loss of generality, we can always chose a
parameterization f(u, v) of the surface such that p = f(0, 0). Expanding f(u, v) into
a Taylor’s series around (0, 0) we get the position of a point q = f(u, v) ∈ Σ in the
nighbourhood of p (though not indicated for the sake of shortness, all the derivatives are
intended to be calculated at (0, 0)):

f(u, v) = f,uu+ f,vv +
1

2
(f,uuu

2 + 2f,uvuv + f,vvv
2) + o(u2 + v2).

The distance with sign d(q) of q ∈ Σ from the tangent plane TpΣ is the projection onto
N, i.e.:

d(q) =
1

2
(f,uuu

2 + 2f,uvuv + f,vvv
2) ·N + o(u2 + v2)

=
1

2
(B11u

2 + 2B12uv +B22v
2) + o(u2 + v2),

or, which is the same, once put w = uf,u + vf,v,

d(q) = II(w,w) + o(u2 + v2). (7.23)

If p is an elliptic point, the principal curvatures have the same sign because K = κ1κ2 >
0 ⇒ the sign of II(w,w) does not depend upon w, i.e. upon the tangent vector. As a
consequence the sign of d(q) does not change with w⇒ ∀q ∈ U, Σ is on the same side of
the tangent plane TpΣ.

Figure 7.6: Elliptic, left, hyperbolic, center, and parabolic, the two last on the right,
points.

Theorem 33. If p is a hyperbolic point of Σ, then for each neighbourhood U ∈ Σ of p
there are points q ∈ U that are in half-spaces on the opposite sides with respect to the
tangent plane TpΣ.

Proof. The proof is identical to that of the previous theorem, until eq. (7.23); if now p is
a hyperbolic point, the principal curvatures have opposite sign and by consequence d(q)
changes of sign at least two times in any neighbourhood U of p⇒ there are points q ∈ U
lying in half-spaces on the opposite sides with respect to the tangent plane TpΣ.
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In a parabolic point, there are different possibilities: Σ is on one side of the space with
respect to TpΣ, like for the case of a cylinder, or not, like, e.g., for the points (0, v) of the
surface, see Fig. 7.6, 

x = (u3 + 2) cos v,
y = (u3 + 2) sin v,
z = −u.

This is the case also for planar points: e.g., the point (0, 0, 0) is a planar point for both
the surfaces

z = x4 + y4, z = x3 − 3xy2,

but in the first case, all the surface is on one side from the tangent plane, while it is on
both sides for the second case (the so-called monkey’s saddle), see Fig.7.7.

Figure 7.7: Two different planar points.

7.9 Developable surfaces

Let us now consider a ruled surface f : Ω→ Σ like in eq. (7.7); then

f,u = γ ′ + vλ′, f,v = λ, f,u × f,v = γ ′ × λ+ vλ′ × λ, f,uv = λ′, f,vv = o.

by consequence, B22 = N · f,vv = 0 ⇒ det B = −B2
12: the points of Σ are hyperbolic or

parabolic. Namely, the parabolic points are those with

B12 = N · f,uv =
f,u × f,v
|f,u × f,v|

· f,uv = 0 ⇐⇒ (γ ′ × λ+ vλ′ × λ) · λ′ = γ ′ × λ · λ′ = 0.

To remark that ruled surfaces made of parabolic points have null Gaussian curvature
everywhere: K = 0.

Let us consider ruled surfaces having only parabolic points; then,

Theorem 34. For a ruled surface f(u, v) = γ(u) + vλ(u), the following are equivalents:

i. γ ′,λ,λ′ are linearly dependent;

ii. N,v = o.
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Proof. Condition ii implies that N does not change along a straight line lying on the
ruled surface⇒ f,u× f,v = γ ′×λ+ vλ′×λ does not depend on v as well. This is possible
⇐⇒ γ ′ × λ and λ′ × λ are linearly dependent, i.e. ⇐⇒

(γ ′ × λ)× (λ′ × λ) = (λ′ × λ · γ ′)λ− (λ′ × λ · λ)γ ′ = (λ′ × λ · γ ′)λ = o,

i.e. when λ,λ′ and γ ′ are coplanar, which proves the thesis.

We say that a ruled surface is developable if one of the conditions of Theorem 34 is
satisfied. A developable surface is a surface that can be flattened without distortion onto
a plane, i.e.it can be bent without stretching or shearing or vice-versa, it can be obtained
by transforming a plane. To remark that only ruled surfaces are developable (but not all
the ruled surfaces are developable).

It is immediate to check that a cylinder or a cone are developable surfaces, while the
helicoid, the hyperbolic hyperboloid or the hyperbolic paraboloid are not. Another clas-
sical example of developable surface is the ruled surface of the tangents to a curve: be
γ(t) : G ⊂ R→ E a regular smooth curve; then the ruled surface of the tangents to γ is
the surface f(u, v) : G× R→ Σ defined by

f(u, v) = γ(u) + vγ ′(u).

In Fig. 7.8, the ruled surface of the tangents to a cylindrical helix.

Figure 7.8: The ruled surface of the tangents to a cylindrical helix.

7.10 Points of a surface of revolution

Let us now consider a surface of revolution f : Ω→ Σγ like in eq. (7.5) and, for the sake
of simplicity, be u the natural parameter of the curve in eq. (7.4) generating the surface.
Then

ϕ′2(u) + ψ′2(u) = 1, ψ′′(u)ϕ′(u)− ψ′(u)ϕ′′(u) = c(u).

We can then calculate:

• the vectors of the natural basis:

f,u =


ϕ′(u) cos v
ϕ′(u) sin v
ψ′(u)

 , f,v =


−ϕ(u) sin v
ϕ(u) cos v

0

 ;

• the normal to the surface

N =


−ψ′(u) cos v
−ψ′(u) sin v

ϕ′(u)

 ;
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• the metric tensor (i.e. the first fundamental form):

g =

[
1 0
0 ϕ2(u)

]
;

• the second derivatives of f :

f,uu =


ϕ′′(u) cos v
ϕ′′(u) sin v
ψ′′(u)

 , f,uv =


−ϕ′(u) sin v
ϕ′(u) cos v

0

 , f,vv =


−ϕ(u) cos v
−ϕ(u) sin v

0

 ;

• tensor B (i.e. the second fundamental form):

B =

[
c(u) 0

0 ϕ(u)ψ′(u)

]
;

• the Gaussian curvature K:

K = det X =
det B

det g
=
c(u)ψ′(u)

ϕ(u)
.

Therefore, points of Σγ where c(u) and ψ′(u) have the same sign are elliptic, hyperbolic
otherwise. Parabolic points correspond to inflexion points of γ(u), if c(u) = 0, or to
points with horizontal tangent to γ(u), if ψ′(u) = 0.

As an example, let us consider the case of the pseudo-sphere, eq. (7.6). Then,

ϕ(u) = sinu, ψ(u) = cosu+ ln tan
u

2
.

Some simple calculations give

ψ′(u) = − sinu+
1

sinu
, c(u) = −| tanu|

| cotu|
;

by consequence

K =
c(u)ψ′(u)

ϕ(u)
= −

(− sinu+ 1
sinu

)| tanu|
sinu| cotu|

= −1.

Finally, K = const. = −1, which is the reason for the name of this surface.

7.11 Lines of curvature, conjugated directions, asymp-

totic directions

A line of curvature is a curve on a surface with the property to be tangent, at each point,
to a principal direction.
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Theorem 35. The lines of curvature of a surface are the solutions to the differential
equation

X21u
′2 + (X22 −X11)u′v′ −X12v

′2 = 0.

Proof. A curve γ(t) : G ⊂ R→ Σ ⊂ E is a line of curvature ⇐⇒

γ ′(t) = f,uu
′ + f,vv

′

is an eigenvector of X(t) ∀t, i.e. ⇐⇒ it exists a function µ(t) such that

X(t)γ ′(t) = µ(t)γ ′(t) ∀t.

In the natural basis of TpΣ, this condition reads like (we omit the dependence upon t for
the sake of simplicity) [

X11 X12

X21 X22

]{
u′

v′

}
= µ

{
u′

v′

}
,

which is satisfied ⇐⇒ the two vectors at the left and right sides are proportional, i.e. if

det

[
X11u

′ +X12v
′ u′

X21u
′ +X22v

′ v′

]
= 0 → X21u

′2 + (X22 −X11)u′v′ −X12v
′2 = 0.

As a corollary, if X is diagonal, then the coordinate lines are at the same time principal
directions and lines of curvature.

Theorem 36. A curve γ(u) : G ⊂ R→ Σ is a line of curvature ⇐⇒ the surface

f(u, v) = γ(u) + vN(γ(u)), (7.24)

is developable.

Proof. From Theorem 34 f(u, v) is developable ⇐⇒ γ ′ ·N ×N′ = 0. Because γ ′ and
N′ ∈ TpΣ, which is orthogonal to N, the surface will be developable ⇐⇒ γ ′ ×N′ = o.
Moreover, writing

γ ′ = f,uu
′ + f,vv

′

it is
N′ = N,uu

′ + N,vv
′ = −LW (γ ′),

hence f(u, v) is developable ⇐⇒ LW (γ ′)× γ ′ = o, i.e. when γ ′ is a principal direction.

The curve in eq. (7.24) is called the ruled surface of the normals.

Be p a non-planar point of a surface f : Ω→ Σ and v1,v2 two vectors of TpΣ. We say that
v1 and v2 are conjugated if II(v1,v2) = 0. The directions corresponding to v1 and v2 are
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called conjugated directions. Hence, the principal directions at a point p are conjugated;
if p is an umbilical point, any two orthogonal directions are conjugated.

The direction of a vector v ∈ TpΣ is said to be asymptotic if it is autoconjugated, i.e. if
II(v,v) = 0. An asymptotic direction is hence a direction where the normal curvature is
null. In a hyperbolic point there are two asymptotic directions, in a parabolic point only
one and in an elliptic point there are not asymptotic directions. An asymptotic line is a
curve on a surface with the property of being tangent at every point to an asymptotic
direction. The asymptotic lines are the solution of the differential equation

II(γ ′,γ ′) = 0 → B11u
′2 + 2B12u

′v′ +B22v
′2 = 0;

in particular, if B11 = B22 = 0 and B 6= O, then the coordinate lines are asymptotic lines.
Asymptotic lines exist only in the regions where K ≤ 0.

7.12 The Dupin’s conical curves

The conical curves of Dupin are the real curves in TpΣ whose equations are

II(v,v) = ±1, v ∈ S.

Be {u1,u2} the basis of the principal directions. Using polar coordinates, we can write

v = ρeρ, eρ = cos θu1 + sin θu2.

Therefore,

II(v,v) = ρ2II(eρ, eρ) = ρ2κN(eρ),

and the conicals’ equations are

ρ2(κ1 cos2 θ + κ2 sin2 θ) = ±1.

With the Cartesian coordinates ξ = ρ cos θ, η = ρ sin θ, we get

κ1ξ
2 + κ2η

2 = ±1.

The type of conical curves depend upon the kind of point on Σ:

• elliptical points: the principal curvatures have the same sign → one of the conical
curves is an ellipse, the other one the null set (actually, it is not a real curve);

• hyperbolic points: the principal curves have opposite signs→ the conical curves are
conjugated hyperbolae whose asymptotes coincide with the asymptotic directions;

• parabolic points: at least one of the principal curvatures is null→ one of the conical
curves degenerates into a couple of parallel straight lines, corresponding to the
asymptotic direction, the other one is the null set.

The three possible cases are depicted in Fig. 7.9
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Figure 7.9: The conical curves of Dupin; from the left: elliptic, hyperbolic and parabolic
points.

7.13 The Gauss-Weingarten equations

Be f : Ω → Σ a surface; for any point p ∈ Σ, consider the basis {f,u, f,v,N}, also called
the Gauss’ basis. It is the equivalent of the Frenet-Serret basis for the surfaces. We want
to calculate the derivatives of the vectors of this basis, i.e. we want to obtain, for the
surfaces, something equivalent to the Frenet-Serret equations.

Generally speaking, N ∈ S and N · f,u = N · f,v = 0, but f,u, f,v /∈ S and f,u · f,v 6= 0. In
other words, we are in a case of non-orthogonal (curvilinear) coordinates. So, if w is the
coordinate along the normal N, let us call, for the sake of convenience,

u = z1, v = z2,

while, for the vectors,
f,u = f,1 = g1, f,v = f,2 = g2,

with g1,g2 exactly the g-vectors of the coordinate lines on Σ. Then:

∂gi
∂zj
· gi =

1

2

∂(gi · gi)
∂zj

=
1

2

∂gii
∂zj

,

∂gi
∂zi
· gj =

∂(gi · gj)
∂zi

− ∂gi
∂zj
· gi =

∂gij
∂zi
− 1

2

∂gii
∂zj

,

i, j = 1, 2;

for the last equation we have used the identity

∂gj
∂zi

= f,ji = f,ij =
∂gi
∂zj

, i, j = 1, 2.

Using eq. (6.25), it can be proved that it is also7

∂gi
∂zj
· gh = Γhij i, j, h = 1, 2.

Moreover, by eq. (7.14),

∂gi
∂zj
·N = f,ij ·N = Bij i, j = 1, 2,

7The proof is rather cumbersome and it is omitted here; in many texts on differential geometry, the
Christoffel symbols are just introduced in this way, as the projection of the derivatives of vectors gis onto
the same vectors, i.e. as the coefficients of the Gauss equations.
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and, by eqs. (7.10), (7.11),

∂N

∂zi
· gj = −LW (gi) · gj = −Xgi · gj = −Xji, i, j = 1, 2,

while, because |N| = const. = 1, then, eq. (4.1),

∂N

∂zi
·N = 0 ∀i = 1, 2.

Finally, the decomposition of the derivatives of the vectors of the basis {f,u, f,v,N} onto
these same vectors gives the equations

∂gi
∂zj

= Γhijgh +BijN,

∂N

∂zj
= −Xijgi,

i, j = 1, 2; (7.25)

these are the Gauss-Weingarten equations (the first one is due to Gauss and the second
to Weingarten).

If now we make the scalar product of the Gauss equations by g1 and g2, i.e.

gk ·
∂gi
∂zj

= gk · (Γhijgh +BijN), i, j, k = 1, 2,

we get the following three systems of equations:
Γ1

11g11 + Γ2
11g21 =

1

2

∂g11

∂z1
,

Γ1
11g12 + Γ2

11g22 =
∂g12

∂z1
− 1

2

∂g11

∂z2
;

(7.26)


Γ1

12g11 + Γ2
12g21 =

1

2

∂g11

∂z2
,

Γ1
12g12 + Γ2

12g22 =
1

2

∂g22

∂z1
;

(7.27)


Γ1

22g11 + Γ2
22g21 =

∂g12

∂z2
− 1

2

∂g22

∂z1
,

Γ1
22g12 + Γ2

22g22 =
1

2

∂g22

∂z2
.

(7.28)

The determinant of each one of these systems is just det g 6= 0→ it is possible to express
the Christoffel symbols as functions of the gijs and of their derivatives, i.e. as functions
of the first fundamental form (the metric tensor).

7.14 The Theorema Egregium

The following theorem is a fundamental result due to Gauss:
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Theorem 37. (Theorema Egregium): the Gaussian curvature K of a surface f(u, v) :
Ω→ Σ depends only upon the first fundamental form of f .

Proof. Let us write the identity

∂2g1

∂z1∂z2
=

∂2g1

∂z2∂z1

using the Gauss equations (7.25)1:

Γ1
11g1,2 + Γ2

11g2,2 +B11N,2 + Γ1
11,2g1 + Γ2

11,2g2 +B11,2N =

Γ1
12g1,1 + Γ2

12g1,2 +B12N,1 + Γ1
12,1g1 + Γ2

12,1g2 +B12,1N,

where, for the sake of shortness, we have abridged
∂(·)
∂zj

by (·),j. Then, we use again

eqs. (7.25) to express g1,1,g1,2,g2,2,N,1 and N,2; after doing that and equating to 0 the
coefficient of g2 we get

B11X22 −B12X21 = Γ1
11Γ2

12 + Γ2
11Γ2

22 + Γ2
11,2 − Γ1

12Γ2
11 − Γ2

12Γ2
12 − Γ2

12,1;

by eq. (7.13) we get that

B11 = g11X11 + g12X21, B12 = g11X12 + g12X22,

that injected into the previous equation gives

g11 det X = Γ1
11Γ2

12 + Γ2
11Γ2

22 + Γ2
11,2 − Γ1

12Γ2
11 − Γ2

12Γ2
12 − Γ2

12,1. (7.29)

Putting equal to zero the coefficient of g1 a similar expression can be get also for g12.
Because g is positive definite, it is not possible that g11 = g12 = 0. So, remembering that
K = det X and the result of the previous Section, we see that it is possible to express K
through the coefficients of the first fundamental form and of its derivatives.

7.15 Minimal surfaces

A minimal surface is a surface f : Ω → Σ having the mean curvature H = 0 ∀p ∈ Σ.
Typical minimal surfaces are the catenoid and the helicoid. Other minimal surfaces are
the Enneper’s surface 

x1u−
u3

3
+ uv2,

x2 = v − v3

3
+ u2v,

x3 = u2 − v2,

the Costa’s surface and the Schoen’s gyroid, Fig. 7.10.

Theorem 38. The non-planar points of a minimal surface are hyperbolic.
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Figure 7.10: From the left, the minimal surfaces of Enneper, Costa and Schoen.

Proof. This is a direct consequence of the definition of mean curvatureH and of hyperbolic
points: H = 0 ⇐⇒ κ1κ2 < 0.

Be f : Ω→ Σ a regular surface and Q a subset of Ω with its boundary ∂Q a closed regular
curve in Ω; then R = f(Q) ⊂ Σ is a simple region of Σ. Let h : Q→ R a smooth function.
Then, we call normal variation of R the map ϕ : Q× (−ε, ε)→ E defined by

ϕ(u, v, t) = f(u, v) + t h(u, v)N(u, v).

For each fixed t, ϕ(u, v, t) is a surface with

ϕ,u(u, v, t) = f,u(u, v) + t h(u, v)N,u(u, v) + t h,u(u, v)N(u, v),

ϕ,v(u, v, t) = f,v(u, v) + t h(u, v)N,v(u, v) + t h,v(u, v)N(u, v).

If the first fundamental form of f is represented by the metric tensor g, we look for the
metric tensor gt representing the first fundamental form of ϕ(u, v, t) ∀t:

gt11 = ϕ,u ·ϕ,u = g11 + 2t h f,u ·N,u + t2(h2N2
,u + h2

,u),

gt12 = ϕ,u ·ϕ,v = g12 + t h(f,u ·N,v + f,v ·N,u) + t2(h2N,u ·N,v + huh,v),

gt22 = ϕ,v ·ϕ,v = g22 + 2t h f,v ·N,v + t2(h2N2
,v + h2

,v),

and by eq. (7.14)

gt11 = g11 − 2t h B11 + t2(h2N2
,u + h2

,u),

gt12 = g12 − 2t h B12 + t2(h2N,u ·N,v + huh,v),

gt22 = g22 − 2t h B22 + t2(h2N2
,v + h2

,v),

whence
det gt = det g − 2th(g11B22 − 2g12B12 + g22B11) + o(t2).

Then, by eq. (7.15), we get easily that

g11B22 − 2g12B12 + g22B11 = 2H det g,

so that
det gt = det g(1− 4thH) + o(t2).

We can now calculate the area A(t)of the simple region Rt = ϕ(u, v, t) corresponding to
the subset Q:

At =

∫
Q

√
det g(1− 4thH) + o(t2)dudv;
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For ε� 1 At is differentiable and its derivative for t = 0 is[
dAt

dt

]
t=0

= −
∫
Q

2hH
√

det gdudv.

Theorem 39. A surface f : Ω → Σ is minimal ⇐⇒
[
dAt

dt

]
t=0

= 0 ∀R ⊂ Σ and for

each normal variation.

Proof. If f is minimal, the condition is clearly satisfied (H = 0). Conversely, let us
suppose that ∃p = f(u, v) ∈ Σ|H(p) 6= 0. Be r1, r2 ∈ R such that |H| 6= 0 in the circle D2

with center p and radius r2 and |H| > 1
2
|H(p)| in the circle D1 with center p and radius

r1. Then, we chose a smooth function h(u, v) such that i. h = H inside D1, ii. hH > 0
inside D2 and iii. h = 0 outside D2. For the normal variation defined by such h(u, v) we
have

−
[
dAt

dt

]
t=0

=

∫
D2

2hH
√

det gdu dv ≥
∫
D1

2H2
√

det gdu dv

≥
∫
D1

H(p)2

2

√
det gdu dv =

H(p)2

2
A(f(D1))

⇒
[
dAt

dt

]
t=0

< 0

which contradicts the hypithesis.

The meaning of this theorem justifies the name of minimal surfaces: these are the surfaces
that have the minimal area among all the surfaces that share the same boundary.

7.16 Geodesics

Be f : Ω → Σ a surface and γ(t) : G ⊂ R → Σ a curve on Σ. A vector function
w(t) : G→ Tγ(t)Σ is called a vector field8 along γ(t). We call covariant derivative of w(t)
along γ(t) the vector field Dγw(t) : G→ V defined as9

Dγw := (I−N⊗N)
dw

dt
,

i.e. the projection of the derivative of w onto Tγ(t)Σ. It is always possible to decompose
w(t) into its components in the natural basis {f,u, f,v}:

w(t) = w1(t)f,u(γ(t)) + w2(t)f,v(γ(t)).

Differentiating we get (a prime here denotes the derivative with respect to t)

w′ = w′1f,u + w1(f,uuu
′ + f,uvv

′) + w′2f,v + w2(f,uvu
′ + f,vvv

′)

8More correctly, w(t) is a curve of vectors; however, it is normally called a vector field along a curve.
9The operator that gives the projection of w onto a vector orthogonal to N ∈ S, i.e. onto Tγ(t)Σ, is

I−N⊗N, cf. ex. 2, Chap.2.
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and using the Gauss equations, eq. (7.25)1, we get (summation on the dummy indexes,
u1 stands for u and u2 for v)

w′ = f,kw
′
k + (Γkijf,k +BijN)wiu

′
j, i, j, k = 1, 2,

so that the projection onto Tγ(t)Σ, i.e. Dγw(t) is

Dγw = (w′k + Γkijwiu
′
j)f,k. (7.30)

A parallel vector field w along γ is a vector field having Dγw = o ∀t. A regular curve γ
is a geodesic of Σ if the vector field γ ′ of the vectors tangent to γ is parallel along γ.

Theorem 40. A curve γ is a geodesic of Σ ⇐⇒ ν ×N = o.

Proof. If γ is a geodesic, then the derivative of its tangent γ ′ has a component only along
N, i.e. γ ′′ × N = o ⇒ γ ′ · γ ′′ = 0. The principal normal to γ, ν, is orthogonal to
γ ′ ⇒ ν ×N = o. Vice versa, if ν ×N = o, then γ ′′ is orthogonal to γ ′ ⇒ Dγγ

′ = o, i.e.
γ is a geodesic.

Theorem 41. If γ is a geodesic, then |γ ′| = const.

Proof. In a geodesic γ ′ · γ ′′ = 0⇒ d(γ ′ · γ ′)
dt

= 0⇒ |γ ′| = const.

This result shows that in a geodesic the parameter is always a multiple of the natural
parameter s.

Be γ(s) a curve on Σ parameterized by the the arc-length s. We call geodesic curvature
of γ(s) the function

κg := Dγτ · (N× τ ),

where τ = γ ′ ∈ S is the tangent vector to γ. Because N × τ ∈ S lies in TγΣ, the
component of τ ′ orthogonal to TγΣ gives a null contribution to κg, so we can write
also

κg = τ ′ · (N× τ ).

Theorem 42. A regular curve γ(s) is a geodesic ⇐⇒ κg = 0 ∀s.

Proof. If γ is a geodesic, clearly κg = 0. Vice versa, if κg = 0, then τ , τ ′ and N are
linearly dependent, i.e. coplanar. Because τ ′ · τ = N · τ = 0 ⇒ τ ′ × N = o ⇒ by
Theorem 40, γ is a geodesic.

Let us now write eq. (7.30) in the particular case of w = γ ′, i.e. w1 = u′, w2 = v′:

Dγw = (u′′k + Γkiju
′
iu
′
j)f,k;
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therefore, the geodesics are the solutions to the system of differential equations{
u′′ + Γ1

11u
′2 + 2Γ1

12u
′v′ + Γ1

22v
′2 = 0,

v′′ + Γ2
11u
′2 + 2Γ2

12u
′v′ + Γ2

22v
′2 = 0.

(7.31)

It can be shown that ∀p ∈ Σ and ∀w(p) ∈ TpΣ the geodesic is unique.

Be p a point of a regular surface f : Ω → Σ, α(v) : G ⊂ R → Σ a smooth regular curve
on Σ, v being the natural parameter and such that p = α(0). Consider the geodesic γv
passing through q = α(v) and such that γ ′v(0) = N(α(v)) × τ (v), with τ (v) the (unit)
tangent vector to α(v). Consider the map f(u, v) : Ω→ Σ defined posing f(u, v) = γv(u);
this is a surface whose coordinates (u, v) are called semigeodesic coordinates.

Let us see the form that the first fundamental form (i.e. the metric tensor g), the
Christoffel symbols and the Gaussian curvature take in semigeodesic coordinates. Curves
f(u, v0) = γv0(u) are geodesics and u is hence their natural parameter. Therefore,
f,u ∈ S ⇒ g11 = 1. Then, fuu(u, v0) is the derivative of the tangent vector to a
geodesic f(u, v0) = γv0(u)⇒ fuu(u, v0) has not a component along the tangent, hence, eq.
⇒ Γ1

11 = Γ2
11 = 0. Then, by eq. (7.26)1, we get g12,u = 0 ⇒ g12 does not depend upon

u⇒ g12(u, v) = g12(0, v) ∀u. Moreover, be θ the angle between the curve α, i.e. between
the coordinate line f(0, v), whose tangent vector is f,v(0, v), and the geodesic γv(u), whose

tangent vector at (0, v) is γ ′v(u). Then, θ =
π

2
, because γ ′v(0) = N(α(v)) × τ (v). As a

consequence, g12(0, v) = 0⇒ g12(u, v) = 0 ∀(u, v) ∈ Ω. Finally, putting g22 = g,

g =

[
1 0
0 g

]
,

with g > 0 because g is positive definite. Through systems (7.26), (7.27) and (7.28) we
obtain

Γ1
12 = 0, Γ2

12 =
g,u
2g
, Γ1

22 = −g,u
2
, Γ2

22 =
g,v
2g
,

and using eq. (7.29) we obtain

K = det X = −g,uu
2g

+
g2
,u

4g2
.

Given two points p1, p2 ∈ Σ, we define the distance d(p1, p2) as the infimum of the lengths
of the curves on Σ that rely the two points. We end with an important characterisation
of geodesics:

Theorem 43. Geodesics are the curves of minimal distance between two points of a
surface.

Proof. Be γ : G ⊂ R → Σ a geodesic on Σ, parameterized with the arc-length, and α a
smooth regular curve through p and orthogonal to γ. Through α, we set up a system of
semigeodesic coordinates in a neighbourhood U of p. With an opportune parameterization
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α(t), in such coordinates we can get p = f(0, 0) and γ described by the equation v = 0.
Be q ∈ U a point of γ, and consider a regular curve connecting p with q. The length
`(p, q) of such curve is

`(p, q) =

∫ q

p

√
u′2 + g v′2dt ≥

∣∣∣∣∫ q

p

u′dt

∣∣∣∣ = |uq − up|.

Observing that p = (up, 0), q = (uq, 0), we remark that |uq − up| is exactly the length of
γ between p and q, because γ is parameterized with its arc-length.

There is another, direct and beautiful way to show that geodesics are the shortest path
lines: the use of the methods of the calculus of variations10. The length `(p, q) of a curve
γ(t) ∈ Σ between two points p and q is given by the functional (7.9); it depends upon the
first fundamental form, i.e. upon the metric tensor g on σ. For the sake of conciseness,
be w = (w1

,t, w
2
,t) the tangent vector to the curve γ(w1, w2) ∈ Σ. Then,

`(p, q) =

∫ q

p

√
I(w)dt =

∫ q

p

√
w · gwdt.

The curve γ(t) that minimizes `(p, q) is the solution to the Euler-Lagrange equations

d

dt

∂F

∂w,t

− ∂F

∂w
= o → d

dt

∂F

∂wk,t
− ∂F

∂wk
= 0, k = 1, 2,

where

F (w,w,t, t) =
√

w · gw =
√
gijwi,tw

j
,t

It is more direct, and equivalent, to minimize J2(t), i.e. to write the Euler-Lagrange
equations for

Φ(w,w,t, t) := F 2(w,w,t, t) = gijw
i
,tw

j
,t.

Therefore:

∂Φ

∂wk,t
= 2gjkw

j
,t,

∂Φ

∂wk
=
∂ghj
∂wk

wh,tw
j
,t,

d

dt

∂Φ

∂wk,t
= 2

(
gjkw

j
,tt +

dgjk
dt

wj,t

)
= 2

(
gjkw

j
,tt +

∂gjk
∂wl

wl,tw
j
,t

)
,

j, h, k = 1, 2.

10The reader is addressed to texts on the calculus of variations for an insight in the matter, cf. Sug-
gested texts. Here, we just recall the fundamental fact to be used in the proof concerning geodesics:
be

J(t) =

∫ b

a

F (x,x′, t)dt

a functional to be minimized by a proper choice of the function x(t) (in the case of the geodesics,
J = `(p, q)); then, such a minimizing function can be found as solution of the Euler-Lagrange equations

d

dt

∂F

∂x′ −
∂F

∂x
= o.
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The Euler-Lagrange equations are hence

gjkw
j
,tt +

∂gjk
∂wh

wh,tw
j
,t −

1

2

∂ghj
∂wk

wh,tw
j
,t = 0, , j, h, k = 1, 2,

that can be rewritten as

gjkw
j
,tt +

1

2

(
∂gjk
∂wh

+
∂ghk
∂wj

− ∂ghj
∂wk

)
wh,tw

j
,t = 0, j, h, k = 1, 2.

Multiplying by glk we get

glkgjkw
j
,tt +

1

2
glk
(
∂gjk
∂wh

+
∂ghk
∂wj

− ∂ghj
∂wk

)
wh,tw

j
,t = 0, j, h, k, l = 1, 2.

and finally, because
glkgjk = δlj

and by eq. (6.25), we get

wl,tt + Γljhw
j
,tw

h
,t, j, h, l = 1, 2.

These are the differential equations whose solution is the curve of minimal length between
two points of Σ; comparing these equations with those of a geodesic of Σ, eq. (7.31), we
see that they are the same: the geodesics of a surface are hence the curves of minimal
distance on the surface.

The Christoffel symbols of a plane are all null; as a consequence, the geodesic lines of a
plane are straight lines. In fact, only such lines have a constant derivative.

Through systems (7.26), (7.27) and (7.28) we can calculate the Christoffel symbols for a
revolution surface, eq. (7.5), which are all null excepted

Γ2
12 =

ϕ′

ϕ
, Γ1

22 = −ϕ ϕ′,

so the system of differential equations (7.31) becomes u′′ − ϕ ϕ′v′2 = 0,

v′′ + 2
ϕ′

ϕ
u′v′ = 0.

It is direct to check that the meridians (u = t, v = v0) are geodesic lines, while the parallels
(u = u0, v = t) are geodesics ⇐⇒ ϕ′(u0) = 0.

7.17 The Gauss-Codazzi compatibility conditions

Let us consider a surface Σ whose points are determined by the vector function r : Ω ⊂
R2 → Σ ⊂ E , r(α1, α2) = xi(α1, α2)εi, with εi, i = 1, 2, 3, the vectors of the orthonormal
basis of the reference frame R = {o; ε1, ε2, ε3} and the parameters α1, α2 chosen in such
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a way that the lines α1 = const., α2 = const. are lines of curvature, i.e. tangent at each
point to the principal directions of curvature and hence mutually orthogonal11. With such
a choice, cf. eq. (7.8),

ds2 = A2
1dα

2
1 + A2

2dα
2
2,

with

A1 =
√

r2
α1

=

√
dxi
dα1

dxi
dα1

,

A2 =
√

r2
α2

=

√
dxi
dα2

dxi
dα2

the so-called Lamé’s parameters. We remark that along the lines of curvatures, i.e. the
lines αi = const., i = 1, 2, that in short from now on we will call the lines αi, it is

ds1 = A1dα1,

ds2 = A2dα2,

and hence,

λ1 =
ds1

dα1

= A1e1,

λ2 =
ds2

dα2

= A2e2

(7.32)

are the vectors tangent to the lines of curvature. Be

e1 =
1

A1

r,α1 , e2 =
1

A2

r,α2 , e3 = e1 × e2(= N); (7.33)

these three vectors form the orthonormal (local) natural basis e = {e1, e2, e3}. We always
make the choice of α1, α2 such that e3 is always directed to the convex side of Σ if the
point is elliptic or parabolic, or to the side of the centres of negative curvature, if the
point is hyperbolic.

We consider a vector v = v(p), p ∈ Σ,

v = v1e1 + v2e2 + v3e3,

and we want to calculate how it transforms when p changes. To this end, we need to
calculate how e1, e2, e3 change with α1, α2. Be q ∈ Σ a point in the neighborhood of p on
the line αi and let us first consider the change of e3 in passing from p to q. Because p and
q belong to the same line αi, by the Theorem of Rodrigues we get (no summation on i in
the following equations)

∂e3

∂λi
= −κiλi, i = 1, 2,

11The symbol r is here preferred to f , like α1 to u and α2 to v, to recall that we have made the
particular choice of coordinate lines that are lines of curvature. All the developments could be done
in a more general case, but this choice is made to obtain simpler relations, that preserves anyway the
generality because the lines of curvature exist everywhere.
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i.e., by eq. (7.32),
∂e3

∂αi
=
Ai
Ri

ei,

with

Ri = − 1

κi

the (principal) radius of curvature along the line αi. The sign minus in the previous
equation is due to the choice done above for orienting e3 = N, that gives always N = −ν,
with ν the principal normal to the line αi. This result can be obtained also directly, see
Fig. 7.11:

o

Ri

e3(p) e3(q)

de3

q line !ip

"

Figure 7.11: Variation of N = e3 along a line of curvature.

e3(q) = e3(p) + de3

and in the limit of q → p, de3 tends to be parallel to q − p and

lim
q→p

(q − p) = λi = Aiei.

By the similitude of the triangles, it is evident that

|de3|
|e3|

=
|q − p|
Ri

;

moreover,

de3 =
∂e3

∂αi
dαiei.

Finally, as |e3| = 1, we get again
∂e3

∂αi
=
Ai
Ri

ei. (7.34)

Implicitly, in this last proof, we have used the Theorem of Rodrigues, because we have
assumed that de3 is parallel to λi, as it is, because line αi is a line of curvature.

We pass now to determine the changes of e1 and e2; to this purpose, we remark that

∂r,α1

∂α2

=
∂2r

∂α2∂α1

=
∂2r

∂α1∂α2

=
∂r,α2

∂α1

,
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so by eq. (7.33) we get

∂(A1e1)

∂α2

=
∂(A2e2)

∂α1

. (7.35)

Let us study now
∂ej
∂αi

; as |ej| = 1, j = 1, 2,

∂ej
∂αi
· ej = 0 ∀i, j = 1, 2. (7.36)

Because e1 · e2 = 0,

∂e1

∂α1

· e2 =
∂(e1 · e2)

∂α1

− e1 ·
∂e2

∂α1

= −e1 ·
∂e2

∂α1

.

By eq. (7.35) we get

∂e2

∂α1

=
1

A2

∂(A1e1)

∂α2

− 1

A2

∂A2

∂α1

e2,

that injected in the previous equation gives, by eq. (7.36),

∂e1

∂α1

· e2 = − 1

A2

∂(A1e1)

∂α2

· e1 +
1

A2

∂A2

∂α1

e2 · e1 = −A1

A2

∂e1

∂α2

· e1−
1

A2

∂A1

∂α2

e1 · e1 = − 1

A2

∂A1

∂α2

.

Then, because e1 · e3 = 0,

∂e1

∂α1

· e3 =
∂(e1 · e3)

∂α1

− e1 ·
∂e3

∂α1

= −e1 ·
∂e3

∂α1

,

and by eq. (7.34)

∂e3

∂α1

=
A1

R1

e1,

so finally

∂e1

∂α1

· e3 = −A1

R1

.

Again through eqs. (7.35) and (7.36) we get

∂e1

∂α2

· e2 =
1

A1

∂(A2e2)

∂α1

· e2 −
1

A1

∂A1

∂α2

e1 · e2 =
A2

A1

∂e2

∂α1

· e2 +
1

A1

∂A2

∂α1

e2 · e2 =
1

A1

∂A2

∂α1

and also, by eq. (7.34)

∂e1

∂α2

· e3 =
∂(e1 · e3)

∂α2

− e1 ·
∂e3

∂α2

= −e1 ·
∂e3

∂α2

= −A2

R2

e1 · e2 = 0.
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The derivatives of e2 can be found in the same way and resuming, we have

∂e1

∂α1

= − 1

A2

∂A1

∂α2

e2 −
A1

R1

e3,

∂e1

∂α2

=
1

A1

∂A2

∂α1

e2,

∂e2

∂α1

=
1

A2

∂A1

∂α2

e1,

∂e2

∂α2

= − 1

A1

∂A2

∂α1

e1 −A2

R2

e3,

∂e3

∂α1

=
A1

R1

e1,

∂e3

∂α2

=
A2

R2

e2.

(7.37)

Passing now to the 2nd-order derivatives, imposing the equality of mixed derivatives, gives
some important differential relations between the Lamé’s parameters Ai and the radiuses
of curvatures Ri. In fact, from the identity

∂2e3

∂α1∂α2

=
∂2e3

∂α2∂α1

,

and eqs. (7.37)5,6 we get

∂

∂α2

(
A1

R1

e1

)
=

∂

∂α1

(
A2

R2

e2

)
,

whence
∂

∂α2

(
A1

R1

)
e1 +

A1

R1

∂e1

∂α2

=
∂

∂α1

(
A2

R2

)
e2 +

A2

R2

∂e2

∂α1

.

Injecting now eqs. (7.37)2,3 into the last result and rearranging the terms gives[
∂

∂α2

(
A1

R1

)
− 1

R2

∂A1

∂α2

]
e1 −

[
∂

∂α1

(
A2

R2

)
− 1

R1

∂A2

∂α1

]
e2 = 0,

that to be true needs that the two following conditions be identically satisfied:

∂

∂α2

(
A1

R1

)
− 1

R2

∂A1

∂α2

= 0,

∂

∂α1

(
A2

R2

)
− 1

R1

∂A2

∂α1

= 0.

(7.38)

The above equations are known as the Codazzi conditions. Let us now consider the other
identity

∂2e1

∂α1∂α2

=
∂2e1

∂α2∂α1

;
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still using eq. (7.37), with some standard passages this identity can be transformed
to [

∂

∂α1

(
1

A1

∂A2

∂α1

)
+

∂

∂α2

(
1

A2

∂A1

∂α2

)
+
A1

R1

A2

R2

]
e2 +

[
∂

∂α2

(
A1

R1

)
− 1

R2

∂A1

∂α2

]
e3 = 0.

Again, for this equation to be identically satisfied, each of the expressions in square
brackets must vanish, which gives two further differential conditions, but only the first
one is new, as the second one corresponds to eq. (7.38)1. The new condition is hence

∂

∂α1

(
1

A1

∂A2

∂α1

)
+

∂

∂α2

(
1

A2

∂A1

∂α2

)
+
A1

R1

A2

R2

= 0, (7.39)

which is known as the Gauss condition. The last identity

∂2e2

∂α1∂α2

=
∂2e2

∂α2∂α1

does not add any further independent condition, as it can be easily checked. The meaning
of the Gauss-Codazzi conditions, eqs. (7.38) and (7.39), is that of compatibility conditions:
only when these conditions are satisfied by functions A1, A2, R1 and R2, then such func-
tions represent the Lamé’s parameters and the principal radiuses of curvature of a surface,
i.e. only in this case they define a surface, except for its position in space.

7.18 Exercices

1. Prove that a function of the type x3 = f(x1, x2), with f : Ω ⊂ R2 → R smooth,
defines a surface.

2. Show that the catenoid is the rotation surface of a catenary, then find its Gaussian
curvature.

3. Show that the pseudo-sphere is the rotation surface of a tractrice and explain why
the surface has this name (hint: look for its Gaussian curvature).

4. Prove that the regularity of a cone is satisfied at each point exception made for the
apex and for the points on straight lines tangent to γ(u).

5. Prove that the hyperbolic hyperboloid is a doubly ruled surface.

6. Prove that the hyperbolic paraboloid, whose Cartesian equation is x3 = x1x2, is a
doubly ruled surface.

7. Consider the parameterization

f(u, v) = (1− v)γ(u) + vλ(u),

with

γ(u) = (cos(u− α), sin(u− α),−1), λ(u) = (cos(u+ α), sin(u+ α), 1).

Show that:
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• for α = 0 one gets a cylinder with equation x2
1 + x2

2 = 1;

• for α =
π

2
one gets a cone with equation x2

1 + x2
2 = x2

3;

• for 0 < α <
π

2
one gets a hyperbolic hyperboloid with equation

x2
1 + x2

2

cos2 α
− x2

3

cot2 α
= 1.

8. Calculate the first fundamental form of a sphere of radius R, determine the metric
on it, the area of a sector of surface between the longitudes θ1 and θ2 and the length
of the parallel at the latitude π/4 between these two longitudes.

9. Prove that the surface defined by

f(u, v) : Ω = R× (−π, π]→ E| f(u, v) =

(
cos v

coshu
,

sin v

coshu
,

sinhu

coshu

)
is a sphere; then show that the image of any straight line on Ω is a loxodromic line
on the sphere.

10. Calculate the vectors of the natural basis, the first and second fundamental form
and the tensors g,X,B for the catenoid.

11. Make the same for the helicoid of parametric equation

f(u, v) = γ(u) + vλ(u),

with
γ(u) = (0, 0, u), λ(u) = (cosu, sinu, 0).

12. Show that the catenoid and the helicoid are made of hyperbolic points.

13. Determine the geodesic lines of a circular cylinder.
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Suggested texts

There are many textbooks on tensors, differential geometry and calculus of variations. The
style, content, language of such books greatly depends upon the scientific community the
authors belong to: pure or applied mathematicians, theoretical mechanicians or engineers.
It is hence difficult to suggest some readings in the domain, in the end it is for a lot a
matter of personal taste.

This manuscript is greatly inspired by some classical methods, style and language that are
typical in the community of theoretical mechanics; the following few suggested readings
among several possible other ones belong to such a kind of scientific literature. They are
classical textbooks and though the list is far from being exhaustive, they constitute a
solid basis for the topics shortly developed in this manuscript, where the objective is to
make mathematics for mechanics.

A good introduction to tensor algebra and analysis, that greatly inspired the content of
this manuscript, are the two introductory chapters of the classical textbook

• M. E. Gurtin: An introduction to continuum mechanics. Academic Press, 1981,

or also, in the same style, the long article

• P. Podio-Guidugli: A primer in elasticity. Journal of Elasticity, v. 58: 1-104, 2000.

A short, effective introduction to tensor algebra and differential geometry of curves can
be found in the following text of exercices on analytical mechanics:

• P. Biscari, C. Poggi, E. G. Virga: Mechanics notebook. Liguori Editore, 1999.

A classical textbook on linear algebra to be recommended is

• P. R. Halmos: Finite-dimensional vector spaces. Van Nostrand Reynold, 1958.

In the previous textbooks, tensor algebra in curvilinear coordinates is not developed; an
introduction to this topic, specially intended for physicists and engineers, can be found
in

• W. H. Müller: An expedition to continuum theory. Springer, 2014,

that has largely influenced Chapter 6.

Two modern and application oriented textbooks on differential geometry of curves and
surfaces are
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• V. A. Toponogov: Differential geometry of curves and surfaces - A concise guide.
Birkhäuser, 2006,

• A. Pressley: Elementary differential geometry. Springer, 2010.

A short introduction to the differential geometry of surfaces, oriented to the mechanics
of shells, can be found in the classical book

• V. V. Novozhilov: Thin shell theory. Noordhoff LTD., 1964.

For what concerns the calculus of variations, a still valid textbook in the matter (and not
only) is

• R. Courant, D. Hilbert: Methods of mathematical physics. Interscience Publishers,
1953.

Two very good and classical textbooks with an introduction to the calculus of variations
for mechanicians are

• C. Lanczos: The variational principles of mechanics. University of Toronto Press,
1949,

• H. L. Langhaar: Energy methods in applied mechanics. Wiley, 1962.
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