Chapter 1

Points and vectors

Points and vectors

We consider in the following a point space E, whose elements are points p1 . On E we admit the existence of an operation, the difference of any of its two elements: q -p, p, q ∈ E.

We associate to E a vector space V whose dimension is dimV = 3 and whose elements are vectors v representing translations over E: ∀p, q ∈ E, ∃! v ∈ V| q -p = v.

Any element v ∈ V is hence a transformation over E that can be written, using the previous definition, as :

∀v ∈ V, v : E → E| q = v(p) → q = p + v.
To remark that the result of the application of the translation v depends upon the argument p:

q = p + v = p + v = q ,
whose geometric meaning is depicted in Fig. 1.1. Unlike difference, the sum of two points is not defined and is meaningless.

We define the sum of two vectors u and v as the vector w such that

(u + v)(p) = u(v(p)) = w(p)
This means that, if q = v(p) = p + v, then r = u(q) = q + u = w(p),

-1 -translations.

Analysons donc les propriétés énoncées ci-dessus; on commence avec la dernière. Ecrire q = v(p) signifie que v est une transformation de E en lui-même, c'est à dire, on part d'un point de E pour arriver encore en un point de E, et que cette transformation est intégralement déterminée par la valeur prise sur un point de E. Graphiquement: Remarque: le même vecteur peut opérer différentes transformations, en fonction du point d'application: q = v(p), mais aussi q'= v(p').

Nous utiliserons, à la place de l'écriture q = v(p), une écriture qui a un sens géométrique plus direct:

q= p + v.
Elle définit la somme d'un point et d'un vecteur comme un point. De la relation ci-dessus on tire aussi la définition d'un vecteur de V comme la différence de deux points de E: 

+ v = v + u,
as obvious, for the sum over a vector space commutes. It is evident that the sum of more than two vectors can be defined iteratively, summing up a vector at time to the sum of the previous vectors.

The null vector o is defined as the difference of two coincident points:

o = p -p ∀p ∈ E;
o is unique and the only vector such that

v + o = v ∀v ∈ V.
In fact:

∀p ∈ E, v + o = v + p -p → p + v + o = p + v ⇐⇒ v + o = v.
A linear combination of n vectors v i is defined as the vector 2 w = k i v i , k i ∈ R, i = 1, ..., n.

The n + 1 vectors w, v i , i = 1, ..., n, are said to be linear independent if it does not exist a set of n scalars k i such that the above equation is satisfied, linear dependent in the opposite case.

2 We adopt here and in the following the Einstein notation for summations: all the times that an index is repeated in a monomial, then summation with respect to that index, called the dummy index, is understood. If a repeated index is underlined, then it is not a dummy index, i.e. there is no summation.
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La somme de deux points, ainsi que la différence d'un point avec un vecteur, ne sont pas définies.

On revient maintenant à la deuxième propriété:

E ∈ ∀ ∈ ∀ = + p p p et )) ( ( ) )( ( V v u, v u v u .
Soit q = v(p), ou q= p + v, et soit r= u(q), ou r= q + u. Alors,

r= p + v + u = p + w,
où w est le vecteur formé par la somme de u et de v. Graphiquement tout cela correspond à la fameuse règle du parallélogramme: 

Scalar product, distance, orthogonality

A scalar product on a vector space is a positive definite, symmetric, bilinear form. A form ω is a function ω : V × V → R, i.e., ω operates on a couple of vectors to give a real number, a scalar. We will indicate the scalar product of two vectors u and v as

ω(u, v) = u • v.
The properties of bilinearity prescribe that, ∀u, v ∈ V and ∀α, β ∈ R,

u • (αv + βw) = αu • v + βu • w, (αu + βv) • w = αu • w + βv • w,
while symmetry implies that

u • v = v • u ∀u, v ∈ V.
Finally, the positive definiteness means that

v • v > 0 ∀v ∈ V, v • v = 0 ⇐⇒ v = o.
Any two vectors are said to be orthogonal ⇐⇒

u • v = 0.
Thanks to the properties of the scalar product, we can define the Euclidean norm of a vector v as the nonnegative scalar, denoted equivalently by v or |v|,

v = |v| = √ v • v
The norm of a vector has the following properties:

|u + v| ≤ u + v (Minkowski s triangular inequality); |u • v| ≤ u v (Schwarz s inequality); |kv| = |k|v, k ∈ R.
We define distance between two any points p and q ∈ E the scalar

d(p, q) = |p -q| = |q -p|.
Similarly, the distance between two any vectors u and v ∈ V is defined as

d(u, v) = |u -v| = |v -u|.
Two points or two vectors are coincident if and only if their distance is null.

The unit sphere S of V is defined as the set of all the vectors whose norm is one:

S = {v ∈ V| v = 1}.

Basis of V, expression of the scalar product

Generally speaking, a basis B of a vector space is any set of n linearly independent vectors, where n is equal to the dimension of the vector space. In the case of V, n = 3, so that a basis B of V is any set B = {e 1 , e 2 , e 3 }, of three linearly independent vectors e i . The concept of basis of V is useful for representing vectors: once a basis chosen, any vector v ∈ V can be represented as a linear combination of the vectors of the basis, where the coefficients v i of the linear combination are the components of v: v = v i e i = v 1 e 1 + v 2 e 2 + v 3 e 3 .

Though the choice of the elements of a basis is completely arbitrary, the only condition being their linear independency, we will use in the following only orthonormal bases, that are bases composed by mutually orthogonal vectors of S, i.e. satisfying

e i • e j = δ ij ,
where the symbol δ ij is the so-called Kronecker's delta:

δ ij = 1 if i = j, 0 if i = j.
The use of orthonormal bases has great advantages; for instance, it allows to give a very simple rule for the calculation of the scalar product:

u • v = u i e i • v j e j = u i v j δ ij = u i v i = u 1 v 1 + u 2 v 2 + u 3 v 3 .
In particular, it is

v • e i = v k e k • e i = v k δ ik = v i , i = 1, 2, 3.
So, the Cartesian components of a vector are the projection of the vector on the three vectors of the basis B; such quantities are the director cosines of v in the basis B. In fact, if θ is the angle formed by two vectors u and v, then

u • v = u v cos θ.
This relation is used to define the angle between two vectors,

θ = arccos u • v u v ,
which can be proved easily: given two vectors u and v, we look for c ∈ R such that the vector u -cv be orthogonal to v:

(u -cv) • v = 0 ⇐⇒ c = u • v v • v = u • v v 2 .
Now, if u is inclined of θ on v, its projection u v on the direction of v is

u v = u cos θ,
and, by construction (see Fig. 1.3), it is also To remark that, while the scalar product, being an intrinsic operation, does not change for a change of basis, the components v i of a vector are not intrinsic quantities, but they are basis-dependent: a change of the basis makes the components change. The way this change is done will be introduced in Sect. 2.11.

u v = c v. So c = u v cos θ → u v cos θ = u • v v 2 ⇒ cos θ = u • v u v . u u-cv v u v
A frame R for E is composed by a point o ∈ E, the origin, and a basis B of V: R = {o, B} = {o; e 1 , e 2 , e 3 }.

The use of a frame for E is useful for determining the position of a point p, which can be done through its Cartesian coordinates x i , defined as the components, in B, of the vector p -o:

x i = (p -o) • e i , i = 1, 2, 3.

Of course, the coordinates depend upon both the choices of o and of B.

Exercices

1. Prove that the null vector is unique.

2. Prove that the norm of the null vector is zero.

3. Prove the inequality of Minkowski.

4. Prove the inequality of Schwarz.

Prove that

u • v = 0 ⇐⇒ |u -v| = |u + v| ∀u, v ∈ V.
6. Prove the linear forms representation theorem: be ψ : V → R a linear function.

Then, ∃! u ∈ V such that

ψ(v) = u • v ∀v ∈ V.
Chapter 2

Second rank tensors

Second-rank tensors

A second-rank tensor L is any linear application from V to V:

L : V → V | L(α i u i ) = α i Lu i ∀α i ∈ R, u i ∈ V, i = 1, ..., n.
Though here V indicates the vector space of translations over E, the definition of tensor1 is more general and in particular V can be any vector space.

Defining the sum of two tensors as

(L 1 + L 2 )u = L 1 u + L 2 u ∀u ∈ V, (2.1)
the product of a scalar by a tensor as (αL)u = α(Lu) ∀α ∈ R, u ∈ V and the null tensor O as the unique tensor such that

Ou = o ∀u ∈ V,
then the set of all the tensors L that operate on V forms a vector space, denoted by Lin(V). We define the identity tensor I as the unique tensor such that Iu = u ∀u ∈ V.

Different possible operations can be defined for second-rank tensors. We consider all of them in the following Sections.

Dyads, tensor components

For any couple of vectors u and v, the dyad2 u ⊗ v is the tensor defined by

(u ⊗ v)w = v • w u ∀w ∈ V.
The application defined above is actually a tensor because of the bi-linearity of the scalar product. The introduction of dyads allows for expressing any tensor as a linear combination of dyads. In fact, it can be proved that if B = {e 1 , e 2 , e 3 } is a basis of V, then the set of 9 dyads B 2 = {e i ⊗ e j , i, j = 1, 2, 3}, is a basis of Lin(V), i.e. dim(Lin(V)) = 9. This implies that any tensor L ∈ Lin(V) can be expressed as

L = L ij e i ⊗ e j , i, j = 1, 2, 3,
where the L ij s are the nine Cartesian components of L with respect to B 2 . The L ij s can be calculated easily:

e i • Le j = e i • L hk e h ⊗ e k e j = L hk e i • e h e k • e j = L hk δ ih δ jk = L ij .
The above expression is sometimes called the canonical decomposition of a tensor. The components of a dyad can be computed easily:

(u ⊗ v) ij = e i • (u ⊗ v) e j = u • e i v • e j = u i v j .
(2.2)

The components of a vector v result of the application of a tensor L on a vector u can now be easily calculated:

v = Lu = L ij (e i ⊗ e j )(u k e k ) = L ij u k δ jk e i = L ij u j e i → v i = L ij u j .
(2.3) Depending upon two indices, any second-rank tensor L can be represented by a matrix, whose entries are the Cartesian components of L in the basis B:

L =   L 11 L 12 L 13 L 21 L 22 L 23 L 31 L 32 L 33   ;
because any u ∈ V, depending upon only one index, can be represented by a column vector, eq. ( 2.3) represents actually the classical operation of the multiplication of a 3 × 3 matrix by a 3 × 1 vector.

Tensor product

The tensor product of L 1 and L 2 ∈ Lin(V) is defined as

(L 1 L 2 )v = L 1 (L 2 v) ∀v ∈ V.
By linearity and eq. ( 2.1) we get

[L(L 1 + L 2 )]v = L[(L 1 + L 2 )v] = L(L 1 v + L 2 v) = LL 1 v + LL 2 v = (LL 1 + LL 2 )v → L(L 1 + L 2 ) = LL 1 + LL 2 .
To remark that the tensor product is not symmetric:

L 1 L 2 = L 2 L 1 ;
however, by the same definition of the identity tensor and of tensor product,

IL = LI = L ∀L ∈ Lin(V).
The Cartesian components of a tensor L = AB can be easily calculated using eq.

(2.3):

L ij = e 1 • (AB)e j = e i • A(Be j ) = e i • A(B hk (e j ) k e h ) = B hk δ jk e i • Ae h = B hk δ jk e i • (A pq (e h ) q e p ) = A pq B hk δ jk δ qh δ ip = A ih B hj .
The above result simply corresponds to the rule of the multiplication of rows by lines of two matrices. Using it, the following two identities can be readily shown:

(a ⊗ b)(c ⊗ d) = b • c(a ⊗ d) ∀a, b, c, d ∈ V, A(a ⊗ b) = (Aa) ⊗ b ∀a, b ∈ V, A ∈ Lin(V).
(2.4)

Finally, the symbol L 2 is normally used to denote in short the product LL, ∀L ∈ Lin(V).

Transpose, symmetric and skew tensors

For any tensor L ∈ Lin(V), it exists just one tensor L , called the transpose of L, such that u

• Lv = v • L u ∀u, v ∈ V.
The transpose of the transpose of L is L:

u • Lv = v • L u = u • (L ) v ⇒ (L ) = L.
The Cartesian components of L are obtained swapping the indexes of the components of L:

L ij = e i • L e j = e j • (L ) e i = e j • Le i = L ji .
It is immediate to show that

(A + B) = A + B ∀A, B ∈ Lin(V), while u • (AB)v = Bv • A u = v • B A u ⇒ (AB) = B A . Moreover, u • (a ⊗ b)v = a • u b • v = v • (b ⊗ a)u ⇒ (a ⊗ b) = b ⊗ a.
(2.5)

A tensor L is symmetric ⇐⇒ L = L .
In such a case

L ij = L ij = L ji ⇐⇒ L ij = L ji .
A symmetric tensor is hence represented, in a given basis, by a symmetric matrix and has just six independent Cartesian components. Applying eq. ( 2.4) to I, it is immediately recognized that the identity tensor is symmetric:

I = I .
A tensor L is antisymmetric or skew ⇐⇒ L = -L .

In such a case (no summation on the index i, see footnote 2, Chap. 1)

L ij = -L ij = -L ji ⇐⇒ L ij = -L ji ⇒ L ii = 0 ∀i = 1, 2, 3.
A skew tensor is hence represented, in a given basis, by an antisymmetric matrix whose components on the diagonal are identically null, in any basis; finally, a skew tensor just depends upon three independent Cartesian components.

If we denote by Sym(V) the set of all the symmetric tensors and by Skw(V) that of all the skew tensors, then it is evident that, ∀α, β, λ, µ ∈ R,

Sym(V) ∩ Skw(V) = O, αA + βB ∈ Sym(V) ∀A, B ∈ Sym(V), λL + µM ∈ Skw(V) ∀L, M ∈ Skw(V),
so Sym(V) and Skw(V) are vector subspaces of Lin(V) with dim(Sym(V)) = 6, while dim(Skw(V)) = 3.

Any tensor L can be decomposed into the sum of a symmetric, L s , and an antisymmetric, L a , tensor:

L = L s + L a ,
with

L s = L + L 2 ∈ Sym(V)
and

L a = L -L 2 ∈ Skw(V),
so that, finally, Lin(V) = Sym(V) ⊕ Skw(V). For its same definition, that has been given without making use of any basis of V, the trace of a tensor is a tensor invariant, i.e. a quantity, extracted from a tensor, that does not depend upon the basis.

Trace, scalar product of tensors

Linearity implies that tr(αA + βB) = αtrA + βtrB ∀α, β ∈ R, A, B ∈ Lin(V).

It is just the linearity to give the rule for calculating the trace of a tensor L:

trL = tr(L ij e i ⊗ e j ) = L ij tr(e i ⊗ e j ) = L ij e i • e j = L ij δ ij = L ii .
A tensor is hence an operator whose sum of the components on the diagonal, trL = L 11 + L 22 + L 33 , is constant, regardless of the basis.

Following the same procedure above, it is readily seen that trL = trL, which implies, by linearity, that trL = 0 ∀L ∈ Skw(V).

The scalar product of tensors A and B is the positive definite, symmetric bilinear form defined by A • B = tr(A B).

This definition implies that, ∀L, M, N ∈ Lin(V), α, β ∈ R,

L • (αM + βN) = αL • M + βL • N, (αL + βM) • N = αL • N + βM • N, L • M = M • L, L • L > 0 ∀L ∈ Lin(V), L • L = 0 ⇐⇒ L = O.
Such properties give the rule for computing the scalar product of two tensors A and B:

A • B = A ij (e i ⊗ e j ) • B hk (e h ⊗ e k ) = A ij B hk (e i ⊗ e j ) • (e h ⊗ e k ) = A ij B hk tr[(e i ⊗ e j ) (e h ⊗ e k )] = A ij B hk tr[(e j ⊗ e i )(e h ⊗ e k )] = A ij B hk tr[e i • e h (e j ⊗ e k )] = A ij B hk e i • e h e j • e k = A ij B hk δ ih δ jk = A ij B ij .
Like in the case of vectors, the scalar product of two tensors is equal to the sum of the products of the corresponding components. In the same manner, it is easily shown that,

∀a, b, c, d ∈ V, (a ⊗ b) • (c ⊗ d) = a • c b • d = a i b j c i d j ,
while by the same definition of tensor scalar product,

trL = I • L ∀L ∈ Lin(V).
Similarly to vectors, we define Euclidean norm of a tensor L the nonnegative scalar, denoted either by L or |L|,

L = |L| = √ L • L = tr(L L) = L ij L ij ,
and the distance d(L, M) of two tensors L and M the norm of the tensor difference:

d(L, M) = |L -M| = |M -L|.

Spherical and deviatoric parts

Let L ∈ Sym(V); the spherical part of L is defined by

L sph = 1 3 trLI,
and the deviatoric part by

L dev = L -L sph , so that L = L sph + L dev .
To remark that trL sph = 1 3 trLtrI = trL ⇒ trL dev = 0, i.e. the deviatoric part is a traceless tensor. Let A, B ∈ Lin(V); then

A sph • B dev = 1 3 trAI • B dev = 1 3 trA trB dev = 0, (2.6) 
i.e. any spherical tensor is orthogonal to any deviatoric tensor.

The sets

Sph(V) := A sph ∈ Lin(V)| A sph = 1 3 trAI ∀A ∈ Lin(V) , Dev(V) := A dev ∈ Lin(V)| A dev = A -A sph ∀A ∈ Lin(V)
form two subspaces of Lin(V); the proof is left to the reader. For what proved above, Sph(V) and Dev(V) are two mutually orthogonal subspaces of Lin(V).

Determinant, inverse of a tensor

The reader is probably familiar with the concept of determinant of a matrix. We show here that the determinant of a second rank tensor can be defined intrinsically and that it corresponds with the determinant of the matrix that represents it in any basis of V. To this purpose, we need first to introduce a mapping:

ω : V × V × V → R is a skew trilinear form if ω(u, v, •), ω(u, •, v) and ω(•, u, v) are linear forms on V and if ω(u, v, w) = -ω(v, u, w) = -ω(u, w, v) = -ω(w, v, u) ∀u, v, w ∈ V. (2.7)
After this definition, we can state the following Theorem 1. Three vectors are linearly independent if and only if every skew trilinear form on them is not null.

Proof. In fact, be u = αv + βw; then, for any skew trilinear form ω,

ω(u, v, w) = ω(αv + βw, v, w) = αω(v, v, w) + βω(w, v, w) = 0
because of eq. (2.7), applied to the permutation of the positions of the two u and the two w.

It is evident that the set of all the skew trilinear forms is a vector space, that we denote by Ω, whose null element is the null form ω 0 :

ω 0 (u, v, w) = 0 ∀u, v, w ∈ V. For a given ω(u, v, w) ∈ Ω, any L ∈ Lin(V) induces another form ω L (u, v, w) ∈ Ω, defined as ω L (u, v, w) = ω(Lu, Lv, Lw) ∀u, v, w ∈ V.
A key point3 for the following developments is that dim Ω = 1.

This means that ∀ω 1 , ω 2 = ω 0 ∈ Ω, ∃λ ∈ R such that ω 2 (u, v, w) = λω 1 (u, v, w) ∀u, v, w ∈ V. So, ∀L ∈ Lin(V), it must exist λ L ∈ R such that ω(Lu, Lv, Lw) = ω L (u, v, w) = λ L ω(u, v, w) ∀u, v, w ∈ V.
(2.8)

The scalar4 λ L is the determinant of L and in the following it will be denoted as det L.

The determinant of a tensor L is an intrinsic quantity of L, i.e. it does not depend upon the particular form ω, nor on the basis of V. In fact, we have never introduced, so far, a basis for defining det L, hence it cannot depend upon the choice of a basis for V, i.e. det L is a tensor invariant. v, w). Moreover, by eq. (2.8) we get

Then, if ω 1 and ω 2 ∈ Ω, because dim Ω = 1, it exists k ∈ R, k = 0 such that ω 2 (u, v, w) = k ω 1 (u, v, w) ∀u, v, w ∈ V ⇒ ω 2 (Lu, Lv, Lw) = k ω 1 (Lu, Lv, Lw) → ω 2 L (u, v, w) = k ω 1 L (u,
ω 1 (Lu, Lv, Lw) = ω 1 L (u, v, w) = λ 1 L ω 1 (u, v, w), ω 2 (Lu, Lv, Lw) = ω 2 L (u, v, w) = λ 2 L ω 2 (u, v, w), so that λ 2 L k ω 1 (u, v, w) = λ 2 L ω 2 (u, v, w) = ω 2 L (u, v, w) = k ω 1 L (u, v, w) = λ 1 L k ω 1 (u, v, w) ⇐⇒ λ 1 L = λ 2
L , which proves that det L does not depend upon the skew trilinear form, but only upon L.

The definition given for det L let us prove some important properties. First of all,

det O = 0; in fact, ∀ω ∈ Ω, det O ω(u, v, w) = ω(Ou, Ov, Ow) = ω(o, o, o) = 0
because ω operates on three identical, i.e. linearly dependent, vectors. Then, if

L = I, det I ω(u, v, w) = ω(Iu, Iv, Iw) = ω(u, v, w)
if and only if det I = 1.

(2.9)

A third property is that ∀a, b ∈ V, det(a ⊗ b) = 0. (2.10) In fact, if L = a ⊗ b, then det L ω(u, v, w) = ω(Lu, Lv, Lw) = ω((b • u)a, (b • v)a, (b • w)a) = 0
because the three vectors on which ω ∈ Ω operates are linearly dependent; being u, v and w arbitrary, this implies eq. (2.10).

An important result is the Theorem 2. (Theorem of Binet): ∀A, B ∈ Lin(V)

det(AB) = det A det B.
(2.11)

Proof. ∀ω ∈ Ω, λ AB ω(u, v, w) = ω(ABu, ABv, ABw) = ω(A(Bu), A(Bv), A(Bw)) = λ A ω(Bu, Bv, Bw) = λ A λ B ω(u, v, w) ⇐⇒ λ AB = λ A λ B ,
which proves the theorem.

A tensor L is called singular if det L = 0, otherwise it is non-singular.

Considering eq. ( 2.8), one can easily see that, if in a basis

B of V it is L = L ij e i ⊗ e j , then det L = π∈P 3 π(1),π(2),π(3) L 1,π(1) L 2,π(2) L 3,π(3) ,
where P 3 is the set of all the permutations π of {1, 2, 3} and the i,j,k s are the components of the Ricci alternator:

i,j,k =    1 if (i, j, k) is an even permutation of (1, 2, 3), 0 if (i, j, k) is not a permutation, -1 if (i, j, k) is an odd permutation of (1, 2, 3).
The above rule for det L coincides with that for calculating the determinant of the matrix whose entries are the L ij s. This shows that, once chosen a basis B for V, det L coincides with the determinant of the matrix representing it in B, and finally that

det L = L 11 L 22 L 33 + L 12 L 23 L 31 + L 13 L 32 L 21 -L 11 L 23 L 32 -L 22 L 13 L 31 -L 33 L 12 L 21 .
(2.12)

This result shows immediately that ∀L ∈ Lin(V), and regardless of B, it is det L = det L.

(2.13) Using eq. (2.12), it is not difficult to show that, ∀α ∈ R, (2.14) where I 1 , I 2 and I 3 are the three principal invariants of L:

det(I + αL) = 1 + αI 1 + α 2 I 2 + α 3 I 3 ,
I 1 = trL, I 2 = tr 2 L -trL 2 2 , I 3 = det L. (2.15) A tensor L ∈ Lin(V) is said to be invertible if there is a tensor L -1 ∈ Lin(V), called the inverse of L, such that LL -1 = L -1 L = I. (2.16) If L is invertible, then L -1 is unique. By the above definition, if L is invertible, then u 1 = Lu ⇒ u = L -1 u 1 .
Theorem 3. Any invertible tensor maps triples of linearly independent vectors into triples of still linearly independent vectors.

Proof. Be L an invertible tensor and u 1 = Lu, v 1 = Lv, w 1 = Lw, where u, v, w are three linearly independent vectors. Let us suppose that

u 1 = hv 1 + kw 1 , h, k ∈ R.
Then, because L is invertible,

L -1 u 1 = L -1 (hv 1 + kw 1 ) = hL -1 v 1 + kL -1 w 1 = hv + kw,
which goes against the hypothesis. By consequence, u 1 , v 1 and w 1 are linearly independent.

This result, along with the definition of determinant, eq. (2.8), and Theorem 1, proves the

Theorem 4. (Invertibility theorem): L ∈ Lin(V) is invertible ⇐⇒ det L = 0.
Using the Theorem of Binet, 2, along with eqs. (2.9) and (2.16), we get

det L -1 = 1 det L .
Equation (2.16) applied to L -1 , along with the uniqueness of the inverse, gives immediately that (L -1 ) -1 = L,

while B -1 A -1 = B -1 A -1 AB(AB) -1 = (AB) -1 .
The operations of transpose and inversion commute:

L (L ) -1 = I = L -1 L = I = (L -1 L) = L (L -1 ) ⇒ (L -1 ) = (L ) -1 := L -.

Eigenvalues and eigenvectors of a tensor

If it exists a λ ∈ R and a v ∈ V, except the null vector, such that Lv = λv, (2.17) then λ is an eigenvalue and v an eigenvector, relatif to λ, of L. It is immediate to observe that, thanks to linearity, any eigenvector v of L is determined to within a multiplier, i.e., that kv is an eigenvector of L too, ∀k ∈ R. Often, the multiplier k is fixed in such a way that |v| = 1.

To determine the eigenvalues and eigenvectors of a tensor, we rewrite eq. (2.17) as

(L -λI)v = o.
(2.18)

The condition for this homogeneous system have a non null solution is

det(L -λI) = 0;
this is the so-called characteristic or Laplace's equation. In the case of a second rank tensor over V, the Laplace's equation is an algebraic equation of degree 3 with real coefficients. The roots of the Laplace's equation are the eigenvalues of L; because the components of L, and hence the coefficients of the characteristic equation, are all real, then the eigenvalues of L are all real or one real and two complex conjugate.

For any eigenvalue λ i , i = 1, 2, 3 of L, the corresponding eigenvectors v i can be found solving eq. (2.18), once put λ = λ i .

The proper space of L relatif to λ is the subspace of Lin(V) composed by all the vectors that satisfy eq. (2.18). The multiplicity of λ is the dimension of its proper space, while the spectrum of L is the set composed by all of its eigenvalues, each one with its multiplicity.

L has the same eigenvalues of L, because the Laplace's equation is the same in both the cases:

det(L -λI) = det(L -λI ) = det(L -λI) = det(L -λI).
However, this is not the case for the eigenvectors, that, generally speaking, are different, as a simple example can show.

Developing the Laplace's equation, it is easy to show that it can be written as

det(L -λI) = -λ 3 + I 1 λ 2 -I 2 λ + I 3 = 0,
which is merely an application of eq. (2.14). If we denote L 3 = LLL, using eq. (2.15) one can prove the Theorem 5. (Cayley-Hamilton Theorem): ∀L ∈ Lin(V),

L 3 -I 1 L 2 + I 2 L -I 3 I = O. A quadratic form defined by L is any form ω : V × V → R of the type ω = v • Lv; if ω > 0 ∀v ∈ V, ω = 0 ⇐⇒ v = o,
then ω and L are said to be positive definite. The eigenvalues of a positive definite tensor are positive. In fact, if λ is an eigenvalue of L, positive definite, and v its eigenvector, then

v • Lv = v • λv = λv 2 > 0 ⇐⇒ λ > 0.
Be v 1 and v 2 two eigenvectors of a symmetric tensor L relative to the eigenvalues λ 1 and λ 2 , respectively, with λ 1 = λ 2 ; then

λ 1 v 1 • v 2 = Lv 1 • v 2 = Lv 2 • v 1 = λ 2 v 2 • v 1 ⇐⇒ v 1 • v 2 = 0.
Actually, symmetric tensors have a particular importance, specified by the Theorem 6. (Spectral Theorem): the eigenvectors of a symmetric tensor form a basis of V.

This theorem5 is of the paramount importance in linear algebra: it proves that the eigenvalues of a symmetric tensor L are real valued and, remembering the definition of eigenvalues and eigenvectors, eq. (2.17), that it exists a basis B N = {u 1 , u 2 , u 3 } of V composed by eigenvectors of L, i.e. by vectors that are mutually orthogonal and that remain mutually orthogonal once transformed by L. Such a basis is called the normal basis.

If λ i , i = 1, 2, 3, are the eigenvalues of L, then the components of L in B N are

L ij = u i • Lu j = u i • λ j u j = λ j δ ij so finally in B N it is L = λ i e i ⊗ e i ,
i.e. L is diagonal and is completely represented by its eigenvalues. In addition, it is easy to check that

I 1 = λ 1 + λ 2 + λ 3 , I 2 = λ 1 λ 2 + λ 2 λ 3 + λ 3 λ 1 , I 3 = λ 1 λ 2 λ 3 .
A tensor with a unique eigenvalue λ, of multiplicity 3, is said to be spherical; in such a case, any basis of V is B N and L = λI.

Eigenvalues and eigenvectors have also another important property: let us consider the quadratic form ω := v • Lv, ∀v ∈ S, defined by a symmetric tensor L. We look for the directions v ∈ S whereupon ω is stationary. Then, we have to solve the constrained problem

∇ v (v • Lv) = o, v ∈ S.
Using the Lagrange's multiplier technique, we solve the equivalent problem

∇ (v,λ) (v • Lv -λ(v 2 -1)) = 0,
which restitutes the equation Lv = λv and the constraint |v| = 1. The above equation is exactly the one defining the eigenvalue problem for L: the stationary values (i.e. the maximum and minimum) of ω corresponds hence to two eigenvalues of L and the directions v whereupon stationarity is get coincide with the respective eigenvectors.

Two tensors A and B are said to be coaxial if they have the same normal basis B N , i.e. if they share the same eigenvectors. Be u an eigenvector of A, relative to the eigenvalue λ A , and of B, relatif to λ B . Then,

ABu = Aλ B u = λ B Au = λ A λ B u = λ A Bu = Bλ A u = BAu,
which shows, on one hand, that also Bu is an eigenvector of 

Skew tensors and cross product

Because dim(V) = dim(Skw(V)) = 3, an isomorphism can be established between V and Skw(V), i.e. between vectors and skew tensors. We establish hence a way to associate in a unique way a vector to any skew tensor and inversely. To this purpose, we first introduce the following Theorem 8. The spectrum of any tensor W ∈ Skw(V) is {0} and the dimension of its proper space is 1.

Proof. This theorem states that zero is the only real eigenvalue of any skew tensor and that its multiplicity is 1. In fact, be w an eigenvector of W relative to the eigenvector λ.

Then λ 2 w 2 = Ww • Ww = w • W Ww = -w • WWw = -w • W(λw) = -λw • Ww = -λ 2 w 2 ⇐⇒ λ = 0. Then, if W = O its rank is necessarily 2, because det W = 0 ∀W ∈ Skw(V); hence, the equation Ww = o (2.19)
has ∞ 1 solutions, i.e. the multiplicity of λ is 1, which proves the theorem.

The last equation gives also the way the isomorphism is constructed: in fact, using eq.

(2.19) it is easy to check that if w = (a, b, c), then

w = (a, b, c) ⇐⇒ W =   0 -c b c 0 -a -b a 0   .
(2.20)

The proper space of W is called the axis of W and it is indicated by A(W):

A(W) = {u ∈ V| Wu = o}.
The consequence of what shown above is that dim A(W) = 1. With regard to eq. ( 2.20), one can check easily that the equation

u • u = 1 2 W • W (2.21)
is satisfied only by w and by its opposite -w. Because both these vectors belong to A(W), choosing one of them corresponds to choose an orientation for E, see below.

We will always fix our choice according to eq. (2.20), which fixes once and for all the isomorphism between V and Skw(V) that makes correspond any vector w with one and only one axial tensor W and vice-versa, any skew tensor W with a unique axial vector w.

It is worth noting that the above isomorphism between the vector spaces V and Skw(V) implies that to any linear combination of vectors a and b corresponds an equal linear combination of the corresponding axial tensors W a and W b and vice-versa, i.e. ∀a, b ∈ R

w = αa + βb ⇐⇒ W = αW a + βW b , (2.22) 
where W is the axial tensor of w. Such a property is immediately checked using eq.

(2.20).

It is useful, for further developments, to calculate the powers of W:

W 2 = WW = -W (-W ) = (WW) = (W 2 ) (2.23)
i.e. W 2 is symmetric. Moreover:

W 2 u = WWu = w × (w × u) = w • uw -w • wu = -(I -w ⊗ w)u ⇒ W 2 = -(I -w ⊗ w) (2.24)
So, applying recursively the previous results,

W 3 = WW 2 = -W(I -w ⊗ w) = -W + (Ww) ⊗ w= -W W 4 = WW 3 = -W 2 W 5 = WW 4 = -W 3 etc.
(2.25)

An important property of any couple axial tensor W -axial vector w is

WW = - 1 2 |W| 2 (I -w ⊗ w),
while eq. (2.21) can be generalized to any two axial couples w 1 , W 1 and w 2 , W 2 :

w 1 • w 2 = 1 2 W 1 • W 2 .
The proof of these two last properties is rather easy and left to the reader.

We define cross product of two vectors a and b the vector

a × b = W a b,
where W a is the axial tensor of a. If a = (a 1 , a 2 , a 3 ) and b = (b 1 , b 2 , b 3 ), then by eq.

(2.20) we get

a × b = (a 2 b 3 -a 3 b 2 , a 3 b 1 -a 1 b 3 , a 1 b 2 -a 2 b 1 ).
The cross product is bilinear: ∀a, b, u ∈ V, α, β ∈ R,

(αa + βb) × u = αa × u + βb × u, u × (αa + βb) = αu × a + βu × b.
In fact, the first equation above is a consequence of eq. (2.22), while the second one is a simple application to axial tensors of the same definition of tensor.

Three important results concerning the cross product are stated by the following theorems: Proof. This property is actually a consequence of the fact that any eigenvalue of a tensor is determined to within a multiplier:

a × b = W a b = o ⇐⇒ b = ka, k ∈ R,
for Theorem 8.

Theorem 10. (Orthogonality property):

a × b • a = a × b • b = 0. (2.26) Proof. a × b • a = W a b • a = b • W a a = -b • W a a = -b • o = 0, a×b • b = W a b • b = b • W a b = -b • W a b ⇐⇒ a × b • b = 0.
Theorem 11. a × b is the axial vector of the tensor (b ⊗ aa ⊗ b).

Proof. First of all, by eq. (2.5) we see that

(b ⊗ a -a ⊗ b) ∈ Skew(V). Then, (b ⊗ a -a ⊗ b)(a × b) = a • a × b b -b • a × b a = 0
for Theorem 10.

Theorem 11 allows for showing that, unlike the scalar product, the cross product is antisymmetric:

a × b = -b × a.
(2.27)

In fact, if W 1 = (b ⊗ a -a ⊗ b) is the axial tensor of a × b, W 2 = (-a ⊗ b + b ⊗ a) is that of -b × a.
But, evidently, W 1 = W 2 which implies eq. (2.27) for the isomorphism between V and Lin(V). This property and again Theorem 11 let us show the formula for the double cross product:

u × (v × w) = -(v × w) × u = -(w ⊗ v -v ⊗ w)u = u • w v -u • v w.
(2.28)

Another interesting result concerns the mixed product:

u × v • w = W u v • w = -v • W u w = -v • u × w = w × u • v, (2.29) 
and similarly

u × v • w = v × w • u.
Using this last result, we can obtain a formula for the norm of a cross product; if a = a e a and b = b e b , with e a , e b ∈ S, are two vectors forming the angle θ, then

(a × b) • (a × b) = a × b • (a × b) = (a × b) × a • b = -a × (a × b) • b = (-a • b a + a 2 b) • b = b • (a 2 I -a ⊗ a)b = a 2 b • (I -e a ⊗ e a )b = a 2 b 2 e b • (I -e a ⊗ e a )e b = a 2 b 2 (1 -cos 2 θ) = a 2 b 2 sin 2 θ → |a × b| = ab sin θ.
So, the norm of a cross product can be interpreted, geometrically, as the area of the parallelogram spanned by the two vectors. As a consequence, the absolute value of the mixed product (2.29) measures the volume of the prism delimited by three non coplanar vectors.

Because the cross product is antisymmetric and the scalar one is symmetric, it is easy to check that the form

β(u, v, w) = u × v • w
is a skew trilinear form. Then, eq. (2.8), we get

Lu × Lv • Lw = det L u × v • w.
(2.30)

Following the interpretation given above for the absolute value of the mixed product, we can conclude that | det L| can be interpreted as a coefficient of volume dilation. A geometrical interpretation can then be given to the case of a non invertible tensor, i.e.

of det L = 0: it crushes a prism into a flat region (the three original vectors become coplanar, i.e. linearly dependent).

The adjugate of L is the tensor

L * := (det L)L -.
From eq. (2.30) we get hence

det L u × v • w = Lu × Lv • Lw = L (Lu × Lv) • w ∀w ⇒ Lu × Lv = L * (u × v).

Orientation of a basis

It is immediate to observe that a basis B = {e 1 , e 2 , e 3 } can be oriented in two opposite ways6 : e.g., once two unit mutually orthogonal vectors e 1 and e 2 chosen, there are two opposite unit vectors perpendicular to both e 1 and e 2 that can be chosen to form B.

We say that B is positively oriented or right-handed if

e 1 × e 2 • e 3 = 1, while B is negatively oriented or left-handed if e 1 × e 2 • e 3 = -1.
Schematically, a right-handed basis is represented in Fig. 2.1, where a left-handed basis is represented too, with a dashed e 3 . 

Rotations

In the previous Chapter we have seen that the elements of V represent translations over E. A rotation, i.e. a rigid rotation of the space, is an operation that transforms any two vectors u and v into two other vectors u and v in such a way that

u = u , v = v , u • v = u • v , (2.31) 
i.e. it preserves norms and angles. Because a rotation is a transformation from V to V, rotations are tensors, i.e. we can write v = Rv, with R the rotation tensor or simply the rotation.

Conditions (2.31) impose some restrictions on R:

u • v = Ru • Rv = u • R Rv = u • v ⇐⇒ R R = I = RR .
A tensor that preserves angles belongs to Orth(V), the subspace of orthogonal tensors (we leave to the reader the proof that actually Orth(V) is a subspace of Lin(V). Replacing in the above equation v with u shows immediately that an orthogonal tensor preserves also the norms. By the uniqueness of the inverse, we see that

R ∈ Orth(V) ⇐⇒ R -1 = R .
The above condition is not sufficient to characterize a rotation; in fact, a rotation must transform a right-handed basis into another right-handed basis, i.e. it must preserve the orientation of the space. This means that it must be

e 1 × e 2 • e 3 = Re 1 × Re 2 • Re 3 = e 1 × e 2 • e 3 .
By eq. (2.30) we get hence the condition

7 det R(e 1 × e 2 • e 3 ) = e 1 × e 2 • e 3 ⇐⇒ det R = 1.
The tensors of Orth(V) that have a determinant equal to 1 form the subspace of proper rotations or simply rotations, indicated by Orth(V) + or also by SO(3). Only tensors of Orth(V) + represent rigid rotations of E8 .

Theorem 12. : each tensor R ∈ Orth(V) has the eigenvalue ±1, with +1 for rotations.

Proof. Be u an eigenvector of R ∈ Orth(V) corresponding to the eigenvalue λ. Because R preserves the norm, it is

Ru • Ru = λ 2 u 2 = u 2 → λ 2 = 1.
We now must prove that it exists at least one real eigenvector λ. To this end, we consider the characteristic equation

f (λ) = λ 3 + k 1 λ 2 + k 2 λ + k 3 = 0,
whose coefficients k i are real-valued, because R has real-valued components. It is immediate to recognize that lim

λ→±∞ f (λ) = ±∞.
So, because f (λ) is a real-valued continuous function, actually a polynomial of λ, it exists at least one λ 1 ∈ R such that f (λ 1 ) = 0.

In addition, we already know that ∀R ∈ Orth(V), det R = ±1 and that, if λ i , i = 1, 2, 3 are the eigenvalues of R, then det R = λ 1 λ 2 λ 3 . Hence, two are the possible cases:

i. λ 1 ∈ R and λ 2 , λ 3 ∈ C, with λ 3 = λ 2 , the complex conjugate of λ 2 ;

ii.

λ i ∈ R ∀i = 1, 2, 3.
Let us consider the case of R ∈ Orth(V) + , i.e. a (proper) rotation → det R = 1. Then, in the first case above,

det R = λ 1 λ 2 λ 2 = λ 1 [ 2 (λ 2 ) + 2 (λ 2 )]. But 2 (λ 2 ) + 2 (λ 2 ) = 1
because it is the square of the modulus of the complex eigenvalue λ 2 . So in this case det R = 1 ⇐⇒ λ 1 = 1.

In the second case, λ i ∈ R ∀i = 1, 2, 3, either λ 1 > 0, λ 2 , λ 3 < 0, or all of them are positive. Because the modulus of each eigenvalue must be equal to 1, either λ 1 = 1 or λ i = 1 ∀i = 1, 2, 3 (in this case R = I).

Following the same steps, one arrives easily to show that ∀S ∈ Orth(V) with det S = -1, it exists at least one real eigenvalue λ 1 = -1.

Generally speaking, a rotation tensor rotates the basis B = {e 1 , e 2 , e 3 } into the basis B = {e 1 , e 2 , e 3 }:

Re i = e i ∀i = 1, 2, 3 ⇒ R ij = e i • Re j = e i • e j .
(2.32)

This result actually means that the j-th column of R is composed by the components in the basis B of the vector e j of B . Because the two bases are orthonormal, such components are the director cosines of the axes of B with respect to B.

Geometrically speaking, any rotation is characterized by an axis of rotation w, |w| = 1 and by an amplitude ϕ, i.e. the angle through which the space is rotated about w. By definition, w is the (only) vector that is left unchanged by R, i.e.

Rw = w,

or, in other words, it is the eigenvector corresponding to the eigenvalue +1.

The question is then: how a rotation tensor R can be expressed by means of its geometrical parameters, w and ϕ? To this end we have a fundamental theorem:

Theorem 13. (Euler's rotation representation theorem): ∀R ∈ Orth(V) + ,

R = I + sin ϕW + (1 -cos ϕ)W 2 (2.33)
with ϕ the rotation's amplitude and W the axial tensor of the rotation axis w.

Proof. We observe preliminarily that

Rw = Iw + sin ϕWw + (1 -cos ϕ)WWw = Iw = w (2.34)
i.e. that eq. (2.33) actually defines a transformation that leaves unchanged the axis w, like a rotation about w must do, and that +1 is an eigenvalue of R.

We need now to prove that eq. (2.33) actually represents a rotation tensor, i.e. we must prove that RR = I, det R = 1.

Through eq. ( 2.25) we get

RR = (I + sin ϕW + (1 -cos ϕ)W 2 )(I + sin ϕW + (1 -cos ϕ)W 2 ) = (I + sin ϕW + (1 -cos ϕ)W 2 )(I -sin ϕW + (1 -cos ϕ)W 2 ) = I + 2(1 -cos ϕ)W 2 -sin 2 ϕW 2 + (1 -cos ϕ) 2 W 4 = I + 2(1 -cos ϕ)W 2 -sin 2 ϕW 2 -(1 -cos ϕ) 2 W 2 = I.
Then, through eq. (2.24) we obtain

R = I + sin ϕW + (1 -cos ϕ)W 2 = I + sin ϕW -(1 -cos ϕ)(I -w ⊗ w) = cos ϕI + sin ϕW + (1 -cos ϕ)w ⊗ w.
(2.35)

To go on, we need to express W and w ⊗ w; if w = (w 1 , w 2 , w 3 ), then by eq. (2.20) we have

W =   0 -w 3 w 2 w 3 0 -w 1 -w 2 w 1 0  
and by eq. (2.2)

w ⊗ w =   w 2 1 w 1 w 2 w 1 w 3 w 1 w 2 w 2 2 w 2 w 3 w 1 w 3 w 2 w 3 w 2 3   , that injected into eq. (2.35) gives R =   cos ϕ + (1 -cos ϕ)w 2 1 -w 3 sin ϕ + w 1 w 2 (1 -cos ϕ) w 2 sin ϕ + w 1 w 3 (1 -cos ϕ) w 3 sin ϕ + w 1 w 2 (1 -cos ϕ) cos ϕ + (1 -cos ϕ)w 2 2 -w 1 sin ϕ + w 2 w 3 (1 -cos ϕ) -w 2 sin ϕ + w 1 w 3 (1 -cos ϕ) w 1 sin ϕ + w 2 w 3 (1 -cos ϕ) cos ϕ + (1 -cos ϕ)w 2 3   .
(2.36)

This formula gives R as function exclusively of w and ϕ, the geometrical elements of the rotation. Then det R = (w 2 + (1 -w 2 ) cos ϕ)(cos 2 ϕ + w 2 sin 2 ϕ)

and because w = 1, det R = 1, which proves that eq. (2.33) actually represents a rotation.

We eventually need to prove that eq. (2.33) represents the rotation about w of amplitude ϕ. To this end, we choose an orthonormal basis B = {e 1 , e 2 , e 3 } of V such that w = e 3 , i.e. we analyze the particular case of a rotation of amplitude ϕ about e 3 . This is always possible, thanks to the arbitrariness of the basis of V. In such a case, eq. (2.32) gives

R =   cos ϕ -sin ϕ 0 sin ϕ cos ϕ 0 0 0 1   .
(2.37)

Moreover,

W =   0 -1 0 1 0 0 0 0 0   , w ⊗ w =   0 0 0 0 0 0 0 0 1   , W 2 = -(I -w ⊗ w) =   -1 0 0 0 -1 0 0 0 0   .
Hence

I + sin ϕW + (1 -cos ϕ)W 2 =   1 0 0 0 1 0 0 0 1   + sin ϕ   0 -1 0 1 0 0 0 0 0   + + (1 -cos ϕ)   -1 0 0 0 -1 0 0 0 0   =   cos ϕ -sin ϕ 0 sin ϕ cos ϕ 0 0 0 1   = R.
(2.38) Equation (2.33) gives another result: to obtain the inverse of R it is sufficient to change the sign of ϕ. In fact, because W ∈ Skw(V) and through eq. (2.23)

R -1 = R = (I + sin ϕW + (1 -cos ϕ)W 2 ) = I + sin ϕW + (1 -cos ϕ)(W 2 ) = I -sin ϕW + (1 -cos ϕ)W 2 = I + sin(-ϕ)W + (1 -cos(-ϕ))W 2 .
The knowledge of the inverse of a rotation allows also to perform the operation of change of basis, i.e. to determine the components of a vector or of a tensor in a basis B = {e 1 , e 2 , e 3 } rotated with respect to an original basis B = {e 1 , e 2 , e 3 } by a rotation R (in the following equation, a prime indicates a quantity specified in the basis B ). Considering that

e i = R -1 e i = R e i = R hk (e h ⊗ e k )e i = R hk δ ki e h
we get, for a vector u,

u = u i e i = u i R ki e k i.e. u k = R ki u i → u = R u.
We remark that, because R = R -1 , the operation of change of basis is just the opposite one of the rotation of the space (and actually, we have seen that it is sufficient to take the opposite of ϕ in eq. (2.33) to get R -1 ).

For a second-rank tensor L we get

L = L ij e i ⊗ e j = L ij R mi e m ⊗ R nj e n = R mi R nj L ij e m ⊗ e n , i.e. L mn = R mi R nj L ij → L = R LR.
We remark something that is typical of tensors: the components of a r-rank tensor in a rotated basis B depend upon the r-th powers of the directors cosines of the axes of B , i.e. on the r-th powers of the components R ij of R.

If a rotation tensor is known through its Cartesian components in a given basis B, it is easy to calculate its geometrical elements: the rotation axis w is the eigenvector of R corresponding to the eigenvalue 1, so it is found solving the equation Rw = w and then normalizing it, while the rotation amplitude ϕ can be found still using (2.33): because the trace of a tensor is an invariant, we get

trR = 3 + (1 -cos ϕ)tr(-I + w • w) = 1 + 2 cos ϕ → ϕ = arccos trR -1 2 .
It is interesting to consider the geometrical meaning of eq. (2.33). To this purpose we apply eq. (2.33) to a vector u, see Fig. 2.2

Ru = (I + sin ϕW + (1 -cos ϕ)W 2 )u = u + sin ϕw × u + (1 -cos ϕ)w × (w × u)
The rotated vector Ru is the sum of three vectors; in particular, sin ϕWu is always orthogonal to u, w and (1 -cos ϕ)W 2 u. If u • w = 0, see the sketch on the right in Fig. 2.2, then (1 -cos ϕ)W 2 u is also parallel to u.

Let us consider now a composition of rotations. In particular, let us imagine that a vector u is rotated first by R 1 , around w 1 through ϕ 1 , then by R 2 , around w 2 through ϕ 2 . So, first the vector u becomes the vector

u 1 = R 1 u.
Then, the vector u 1 is rotated about w 2 through ϕ 2 to become Let us now suppose to change the order of the rotations: R 2 first and then R 1 . The final result will be the vector

u 12 = R 2 u 1 = R 2 R 1 u.
u 21 = R 1 R 2 u.
(2.39)

Because the tensor product is not symmetric (i.e., it has not the commutativity property), generally speaking9 u 12 = u 21 .

In other words, the order of the rotations matters: changing the order of the rotations leads to a different final result. An example is shown in Fig. 2.3. This is a fundamental difference between rotations and displacements, that commute, see Fig. 1.2, because the composition of displacements is ruled by the sum of vectors:

w = u + v = v + u (2.40)
This difference, which is a major point in physics, comes from the difference of the operators: vectors for the displacements, tensors for the rotations.

Any rotation can be specified by the knowledge of three parameters. This can be easily seen from eq. (2.33): the parameters are the three components of w, that are not independent because w = |w| = w 2 1 + w 2 2 + w 2 3 = 1 and by the amplitude angle ϕ. The choice of the parameters by which to express a rotation is not unique. Besides the use of the Cartesian components of w and ϕ, other choices are possible, let us see three of them: i. physical angles: the rotation axis w is given through its spherical coordinates ψ, the longitude, 0 ≤ ψ < 2π, and θ, the colatitude, 0 ≤ θ ≤ π, see Fig. 2.4, the third parameter being the rotation amplitude ϕ. Then 

R =   cψ 2 sθ 2 + cϕ(cθ 2 + sψ 2 sθ 2 ) sψcψsθ 2 (1 -cϕ) -cθsϕ cψsθcθ(1 -cϕ) + sψsθsϕ sψcψsθ 2 (1 -cϕ) + cθsϕ sψ 2 sθ 2 + cϕ(cθ 2 + cψ 2 sθ 2 ) sψsθcθ(1 -cϕ) -cψsθsϕ cψsθcθ(1 -cϕ) -sψsθsϕ sψsθcθ(1 -cϕ) + cψsθsϕ cθ 2 + cϕ(cψ 2 sθ 2 + sψ 2 sθ 2 )   ,
where cψ = cos ψ, sψ = sin ψ, cθ = cos θ, sθ = sin θ, cϕ = cos ϕ, sϕ = sin ϕ. We remark that all the components of R so expressed depend upon the first powers of the circular functions of ϕ. Hence, for what said above, with this representation of the rotations, the components of a rotated r-rank tensor depend upon the r-th power of the circular functions of ϕ, i.e. of the physical rotation, but not on ψ nor on θ.

ii. Euler's angles: in this case the three parameters are the amplitude of three particular rotations into which the rotation is decomposed. Such parameters are the angles ψ, the precession, θ, the nutation, and ϕ, the proper rotation, see Fig. 2.5 These three rotations are represented in Fig. 2.6. The first one, of amplitude ψ, is made about z to carry the axis x onto the knots line x N , the line perpendicular to both the axes z and z , and y onto y; by eq. (2.32), in the frame {x, y, z} it is The second one, of amplitude θ, is made about x N to carry z onto z ; in the frame {x N , y, z} it is

R ψ =   cos ψ -sin ψ 0 sin ψ cos ψ 0 0 0 1   .
R θ =   1 0 0 0 cos θ -sin θ 0 sin θ cos θ   ,
while in the frame {x, y, z} The last rotation, of amplitude ϕ, is made about z to carry x N onto x and y onto y ; in the frame {x N , y, z } it is

R o θ = (R -1 ψ ) R θ R -1 ψ = R ψ R θ R ψ .
R ϕ =   cos ϕ -sin ϕ 0 sin ϕ cos ϕ 0 0 0 1   , while in {x, y, z} R o ϕ = (R -1 ψ ) (R -1 θ ) R ϕ R -1 θ R -1 ψ = R ψ R θ R ϕ R θ R ψ .
Any vector u is transformed, by the global rotation, into the vector

u = Ru.
But we can write also u = R o ϕ u, where u is the vector transformed by rotation R o θ , u = R o θ u, and u is the vector transformed by rotation R ψ ,

u = R ψ u. Finally, u = Ru = R o ϕ R o θ R ψ u → R = R o ϕ R o θ R ψ , i.e.
the global rotation tensor is obtained composing, in the opposite order of execution of the rotations, the three tensors all expressed in the original basis. However,

R = R o ϕ R o θ R ψ = R ψ R θ R ϕ R θ R ψ R ψ R θ R ψ R ψ = R ψ R θ R ϕ , i.e.
, the global rotation tensor is also equal to the composition of the three rotations, in the order of execution, if the three rotations are expressed in their own particular bases. This result is general, not bounded to the Euler's rotations nor to three rotations.

Performing the tensor multiplications we get

R =   cos ψ cos ϕ -sin ψ sin ϕ cos θ -cos ψ sin ϕ -sin ψ cos ϕ cos θ sin ψ sin θ sin ψ cos ϕ + cos ψ sin ϕ cos θ -sin ψ sin ϕ + cos ψ cos ϕ cos θ -cos ψ sin θ sin ϕ sin θ cos ϕ sin θ cos θ   .
The components of a vector u in the basis B are then given by

u = R u = R ϕ R θ R ψ u,
and those of a second-rank tensor

L = R LR = R ϕ R θ R ψ LR ψ R θ R ϕ .
iii. coordinate angles: in this case, the rotation R is decomposed into three successive rotations α, β, γ, respectively about the axes x, y and z of each rotation, i.e.

R = R α R β R γ with R α =   1 0 0 0 cos α -sin α 0 sin α cos α   , R β =   cos β 0 -sin β 0 1 0 sin β 0 cos β   , R γ =   cos γ -sin γ 0 sin γ cos γ 0 0 0 1   , so finally R =   cos β cos γ -cos β sin γ -sin β cos α sin γ -sin α sin β cos γ cos α cos γ + sin α sin β sin γ -sin α cos β sin α sin γ + cos α sin β cos γ sin α cos γ -cos α sin β sin γ cos α cos β   .
Let us now consider the case of small rotations, i.e. |ϕ| → 0. In such a case, sin ϕ ϕ, 1 -cos ϕ 0 and R I + ϕW, i.e. in the small rotations approximation, any vector u is transformed as (2.41) i.e. by a skew tensor, not by a rotation tensor. The term (1 -cos ϕ)W 2 u has disappeared (i.e., it is a higher order infinitesimal quantity) and the term ϕw × u is orthogonal to u.

Ru (I + ϕW)u = u + ϕw × u,
Because ϕ → 0, the arc is approximated by its tangent, the vector ϕw × u, see Fig. rotations, we get

u 1 = R 1 u = (I + ϕ 1 W 1 )u = u + ϕ 1 w 1 × u, u 21 = R 2 u 1 = (I + ϕ 2 W 2 )u 1 = u 1 + ϕ 2 w 2 × u 1 = u + ϕ 1 w 1 × u + ϕ 2 w 2 × u + ϕ 1 ϕ 2 w 2 × (w 1 × u).
If the order of the rotations is changed, the last term becomes ϕ 1 ϕ 2 w 1 × (w 2 × u), which is, in general, different from ϕ 1 ϕ 2 w 2 × (w 1 × u): strictly speaking, also small rotations do not commute10 . However, for small rotations, ϕ 1 ϕ 2 is negligible with respect to ϕ 1 and ϕ 2 : in this approximation, small rotations commute. To remark that the approximation (2.41) gives, for the displacements, a law which is quite similar to that of the velocities of the points of a rigid body:

v = v 0 + ω × (p -o) This is quite natural, because ω = dϕ dt ,
i.e. a small amplitude rotation can be seen as the rotation made with finite angular velocity ω in a small time interval dt.

Reflexions

Let us consider now tensors S ∈ Orth(V) that are not a rotation, i.e. such that det S = -1.

Let us call S an improper rotation. A particular improper rotation, whose all eigenvalues are equal to -1, is the inversion or reflexion tensor

S I = -I.
The effect of S I is to transform any basis B into the basis -B, i.e. with all the basis vectors changed of orientation (or, which is the same, to change the sign of all the components of a vector). In other words, S I changes the orientation of the space. This is also the effect of any other improper rotation S, that can be decomposed into a proper rotation R followed by the reflexion S I11 : S = S I R.

(2.42)

Be n ∈ S, then S R = I -2n ⊗ n (2.43)
is the tensor that operates the transformation of symmetry with respect to a plane orthogonal to n. In fact

S R n = -n, S R m = m ∀m ∈ V : m • n = 0.
S R is an improper rotation; in fact, eqs. (2.4), (2.14) and exercice 11,

(I -2n ⊗ n)(I -2n ⊗ n) = (I -2n ⊗ n)(I -2n ⊗ n) = I -2n ⊗ n -2n ⊗ n + 4(n ⊗ n)(n ⊗ n) = I, det(I -2n ⊗ n) = 1 -2tr(n ⊗ n) + 4 tr 2 (n ⊗ n) -tr(n ⊗ n)(n ⊗ n) 2 -8 det(n ⊗ n) = -1.
Be S = S I R an improper rotation; then

(Su) × (Sv) = (S I Ru) × (S I Rv) = det(S I R) (S I R) -1 (u × v) = det S I det R(R -1 S -1 I ) (u × v) = -(-R -1 I) (u × v) = R(u × v).
The transformation by S of any vector u gives

Su = S I Ru = -Ru,
i.e. it changes the orientation of the rotated vector; this is not the case when the same improper rotations transforms the vectors of a cross product: the rotated vector result of the cross product does not change of orientation, i.e. the cross product is insensitive to a reflexion. That is why, strictly speaking, the result of a cross product is not a vector, but a pseudo-vector: it behaves like vectors apart for the reflexions. For the same reason a scalar result of a mixed product (scalar plus cross product of three vectors) is called a pseudo-scalar, because in this case the scalar result of the mixed product changes of sign under a reflexion, as it is easy to be seen.

Polar decomposition

Theorem 14. (Square root theorem): be L ∈ Sym(V) and positive definite; then is exists a unique tensor U ∈ Sym(V) and positive definite such that

L = U 2 .
Proof. Existence: be L, U, V ∈ Sym(V) positive definite and

L = ω i e i ⊗ e i a spectral decomposition of L, ω i > 0 ∀i. Define U as U = √ ω i e i ⊗ e i ;
then, by eq. ( 2.4) 1 we get U 2 = L.

Uniqueness: suppose that also

V 2 = L
and be e an eigenvector of L corresponding to the (positive) eigenvalue ω.

Then, if λ = √ ω, O = (U 2 -λI)e = (U -λI)(U -λI)e,
and put v = (U -λI)e,

we get Uv = -λv ⇒ v = o ⇒ Ue = λe
because U is positive definite and -λ cannot be an eigenvalue of U, because λ > 0. In the same way Ve = λe ⇒ Ue = Ve for every eigenvector e of L. Because, spectral theorem, it exists a basis of eigenvectors of L, U = V.

We symbolically write that U = √ L.

For any F ∈ Lin(V), both FF and

F F clearly ∈ Sym(V). If in addition det F > 0, then u • F Fu = (Fu) • (Fu) ≥ 0 and the zero value is obtained ⇐⇒ Fu = o and because F is invertible, ⇐⇒ u = o.
As a consequence, F F is positive definite. In the same way it can be proved that FF is also positive definite.

An important tensor decomposition is given by the Theorem 15. (Polar decomposition theorem): ∀F ∈ Lin(V)| det F > 0 exist and are uniquely determined two positive definite tensors U, V ∈ Sym(V) and a rotation R such that

F = RU = VR.
Proof. Uniqueness: Be F = RU a right polar decomposition of F; because R ∈ Orth(V) + and U ∈ Sym(V),

F F = UR RU = U 2 → U = √ F F.
By the Square-root Theorem, tensor U is unique, and because

R = FU -1 ,
R is unique too.

Be now F = VR a left polar decomposition of F; by the same procedure, we get

FF = V 2 → V = √ FF , so V is unique and also R = V -1 F.
Existence: be

U = √ F F so U ∈ Sym(V)
and it is positive definite, and let

R = FU -1 .
To prove that F = RU is a right polar decomposition, we just have to show that R ∈ Orth(V) + . Since det F > 0, det U > 0 (the latter because all the eigenvalues of U are strictly positive), by the Theorem of Binet also det

R > 0. Then R R = (FU -1 ) (FU -1 ) = U -1 F FU -1 = U -1 U 2 U -1 = I ⇒ R ∈ Orth(V) + .
Let now

V = RUR ; then V ∈ Sym(V)
and is positive definite, see exercice 16, and

VR = RUR R = RU = F,
which completes the proof.

Exercices

1. Prove that Lo = o ∀L ∈ Lin(V).
2. Prove that, if a straight line r has the direction of u ∈ S, then the tensor giving the projection of a vector v ∈ V on r is u ⊗ u, while the one giving the projection on a direction orthogonal to r is Iu ⊗ u.

For any

α ∈ R, a, b ∈ V and A, B ∈ Lin(V), prove that (αA) = αA , (A + B) = A + B , (a ⊗ b)A = a ⊗ (A b).
4. Prove that trI = 3, trO = 0, tr(AB) = tr(BA) ∀A, B ∈ Lin(V).

5. Prove that, ∀L, M, N ∈ Lin(V),

L • M = L • M, LM • N = L • NM = M • L N.
6. Prove that Sym(V) and Skw(V) are orthogonal, i.e. prove that

A • B = 0 ∀A ∈ Sym(V), B ∈ Skw(V).
7. For any L ∈ Lin(V), prove that, if A ∈ Sym(V), then

A • L = A • L s , while if B ∈ Skw(V), then B • L = B • L a .
8. Express by components the second principal invariant I 2 of a tensor L.

9. Prove that, if a = (a 1 , a 2 , a 3 ), b = (b 1 , b 2 , b 3 ), c = (c 1 , c 2 , c 3 ), then a × b • c = det   a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3   .
10. Prove the uniqueness of the inverse tensor.

11. Show, using the Cartesian components, that all the dyads are singular.

12. Prove that if L is invertible and

α ∈ R -{0} then (αL) -1 = α -1 L -1 .
13. Prove that any form defined by a tensor L can be written as a scalar product of tensors:

v • Lw = L • v ⊗ w ∀v, w ∈ V, L ∈ Lin(V).
14. Prove that, if W is the axial tensor of w, then

WW = - 1 2 |W| 2 (I -w ⊗ w).
15. Prove that for any two axial couples w 1 , W 1 and w 2 , W 2 , it is:

w 1 • w 2 = 1 2 W 1 • W 2 .
16. Let L ∈ Sym(V) and positive definite and R ∈ Orth(V) + ; then prove that RLR ∈ Sym(V) and that it is positive definite. 17. Let A, B, C, D ∈ Lin(V); prove that

A • (BCD) = (B A) • (CD) = (AD ) • (BC).
18. Prove that the spectrum of L sph is composed by only

λ sph = 1 3 trL,
and that any u ∈ S is an eigenvector.

19. Prove that the eigenvalues λ dev of L dev are given by

λ dev = λ -λ sph ,
where λ is an eigenvalue of L.

Chapter 3

Fourth rank tensors

Fourth-rank tensors

A fourth-rank tensor L is any linear application from Lin(V) to Lin(V):

L : Lin(V) → Lin(V)|L(α i A i ) = α i LA i ∀α i ∈ R, A i ∈ Lin(V), i = 1, ..., n.
Defining the sum of two fourth-rank tensors as

(L 1 + L 2 )A = L 1 A + L 2 A ∀A ∈ Lin(V),
the product of a scalar by a fourth-rank tensor as

(αL)A = α(LA) ∀α ∈ R, A ∈ Lin(V)
and the null fourth-rank tensor O as the unique tensor such that

OA = O ∀A ∈ Lin(V),
then the set of all the tensors L that operate on Lin(V) forms a vector space, denoted by Lin(V). We define the fourth-rank identity tensor I as the unique tensor such that

IA = A ∀A ∈ Lin(V).
It is apparent that the algebra of fourth-rank tensors is similar to that of second-rank tensors and in fact the operations with fourth-rank tensors can be introduced in almost the same way, in some sense shifting from V to Lin(V) the operations. However, the algebra of fourth-rank tensors is richer than that of the second-rank ones and some care must be paid.

In the following sections, we consider some of the operations that can be done with fourth-rank tensors.

Dyads, tensor components

For any couple of tensors A and B ∈ Lin(V), the (tensor) dyad A ⊗ B is the fourth-rank tensor defined by

(A ⊗ B)L := B • L A ∀L ∈ Lin(V).
The application defined above is actually a fourth-rank tensor because of the bi-linearity of the scalar product of second-rank tensors. Applying this rule to the nine dyads of the basis B 2 = {e i ⊗ e j , i, j = 1, 2, 3} of Lin(V) let us introduce the 81 fourth-rank tensors e i ⊗ e j ⊗ e k ⊗ e l := (e i ⊗ e j ) ⊗ (e k ⊗ e l ) that form a basis B 4 = {e i ⊗ e j ⊗ e k ⊗ e l , i, j = 1, 2, 3} for Lin(V). We remark hence that dim(Lin(V)) = 81. A useful result is that (e i ⊗ e j ⊗ e k ⊗ e l )(e p ⊗ e q ) = (e k ⊗ e l ) • (e p ⊗ e q )(e i ⊗ e j ) = δ kp δ lq (e i ⊗ e j ).

(3.1)

Any fourth-rank tensor can be expressed as the linear combination (the canonical decomposition) L = L ijkl e i ⊗ e j ⊗ e k ⊗ e l , i, j = 1, 2, 3, where the L ijkl s are the 81 Cartesian components of L with respect to B 4 . The L ijkl s are defined by the operation:

(e i ⊗ e j ) • L(e k ⊗ e l ) = (e i • e j ) • (L pqrs e p ⊗ e q ⊗ e r ⊗ e s )(e k ⊗ e l ) = (e i ⊗ e j ) • (L pqrs δ rk δ sl e p ⊗ e q ) = L pqrs δ rk δ sl δ ip δ jq = L ijkl .
The components of a tensor dyad can be computed without any difficulty:

A ⊗ B = (A ij e i ⊗ e j ) ⊗ (B kl e k ⊗ e l ) = A ij B kl e i ⊗ e j ⊗ e k ⊗ e l ⇒ (A ⊗ B) ijkl = A ij B kl , so that in particular ((a ⊗ b) ⊗ (c ⊗ d)) ijkl = a i b j c k d l .
Concerning the identity of Lin(V),

I ijkl := (e i ⊗ e l ) • I(e k ⊗ e l ) = (e i ⊗ e j ) • (e k ⊗ e l ) = e i • e k e j • e l = δ ik δ jl → I = δ ik δ jl (e i ⊗ e l ⊗ e k ⊗ e l ).
The components of A ∈ Lin(V) result of the application of L ∈ Lin(V) on B ∈ Lin(V) can now be easily calculated:

A = LB = L ijkl (e i ⊗ e j ⊗ e k ⊗ e l )(B pq e p ⊗ e q ) = L ijkl B pq δ kp δ lq (e i ⊗ e j ) = L ijkl B kl (e i ⊗ e j ) → A ij = L ijkl B kl . (3.2) Moreover, L(A ⊗ B)C = L((A ⊗ B)C) = L(B • CA) = B • C LA = ((LA) ⊗ B)C ⇒ L(A ⊗ B) = (LA) ⊗ B.
Using this result and eq. ( 3.1), we can determine the components of a product of fourthrank tensors:

AB = A ijkl (e i ⊗ e j ⊗ e k ⊗ e l )B pqrs (e p ⊗ e q ⊗ e r ⊗ e s ) = A ijkl B pqrs (e i ⊗ e j ⊗ e k ⊗ e l )(e p ⊗ e q ) ⊗ (e r ⊗ e s ) = A ijkl B pqrs [(e i ⊗ e j ⊗ e k ⊗ e l )(e p ⊗ e q )] ⊗ (e r ⊗ e s ) = A ijkl B pqrs [δ kp δ lq (e i ⊗ e j )] ⊗ (e r ⊗ e s ) = A ijkl B klrs (e i ⊗ e j ⊗ e r ⊗ e s ) ⇒ (AB) ijrs = A ijkl B klrs .
(3.3)

Depending upon four indices, a fourth-rank tensor L cannot be represented by a matrix; however, we will see in Sect. 3.8 that a matrix representation of a fourth-rank tensor is still possible, and that it is currently used in some cases, e.g. in elasticity.

Conjugation product, transpose, symmetries

For any two tensors A, B ∈ Lin(V) we call conjugation product the the tensor A B ∈ Lin(V) defined by the operation

(A B)L := ALB ∀L ∈ Lin(V).
As a consequence, for the vectors of B,

(e i ⊗ e j ) (e k ⊗ e l ) = e i ⊗ e k ⊗ e j ⊗ e l , (3.4) so that (A B) ijkl = A ik B jl .
Moreover, by the uniqueness of the identity I, ∀A ∈ Lin(V),

(I I)A = IAI = A ⇒ I = I I.
The transpose of a fourth-rank tensor L is the unique tensor L such that

A • (LB) = B • (L A) ∀A, B ∈ Lin(V).

By this definition, putting

A = e i ⊗ e j , B = e k ⊗ e l gives (L ) ijkl = L klij .
A consequence is that

A • (LB) = B • (L A) = A • (L ) B ⇒ (L ) = L.
Then, using

M • (A ⊗ B) L = L • (A ⊗ B)M = L • AM • B = M • (BA • L) = M • (B ⊗ A)L, M • (A B) L = L • (A B)M = L • AMB = A L • MB = M A L • B = (M A L) • (B ) = L AM • B = AM • LB = M • A LB = M • (A B )L, so that (A ⊗ B) = B ⊗ A, (A B) = A B . A tensor L ∈ Lin(V) is symmetric ⇐⇒ L = L . It is then evident that L = L ⇒ L ijkl = L klij ,
relations called major symmetries. These symmetries are 36 on the whole, so that a symmetric fourth-rank tensor has 45 independent components. Moreover,

A B = (A B) = A B ⇐⇒ A = A , B = B , A ⊗ B = (A ⊗ B) = B ⊗ A ⇐⇒ B = λA, λ ∈ R.
Let us now consider the case of a L ∈ Lin(V) such that

LA = (LA) ∀A ∈ Lin(V).
Then, by eq. (3.2),

L ijkl = L jikl ,
relations called left minor symmetries: a tensor L having the left minor symmetries has values in Sym(V). On the whole, the left minor symmetries are 27. Finally, consider the case of a L ∈ Lin(V) such that

LA = L(A ) ∀A ∈ Lin(V);
then, again by eq. (3.2), we get

L ijlk = L jilk ,
relations called minor right-symmetries, whose total number is also 27. It is immediate to recognize that if L has the minor right-symmetries, then

LW = O ∀W ∈ Skw(V).
We say that a tensor has the minor symmetries if it has both the right and left minor symmetries; the total number of minor symmetries is 45, because actually some of the left and right minor symmetries are the same, so a tensor with the minor symmetries has 36 independent components.

If L ∈ Lin(V) has the major and minor symmetries, then the independent symmetry relations are actually 60 (some minor and major symmetries coincide), so in such a case L depends upon 21 independent components only. This is the case of the elasticity tensor.

Finally, the 6 Cauchy-Poisson symmetries are those of the type

L ijkl = L ikjl .
A tensor having the major, minor and Cauchy-Poisson symmetries is completely symmetric, i.e. swapping any couple of indices gives an identical component. In that case, the number of independent components is of only 15.

Trace and scalar product of fourth-rank tensors

We can introduce the scalar product between fourth-rank tensors in the same way used for second-rank tensors. We first introduce the concept of trace for fourth-rank tensors once again using the dyad (here, the tensor dyad):

tr 4 A ⊗ B := A • B.
The easy proof that tr 4 : Lin(V) → R is a linear form is based upon the properties of scalar product of second-rank tensors and it is left to the reader. An immediate result is that tr

4 A ⊗ B = A ij B ij ,
Then, using the canonical decomposition, we have that

tr 4 L = tr 4 (L ijkl (e i ⊗ e j ) ⊗ (e k ⊗ e l )) = L ijkl (e i ⊗ e j ) • (e k ⊗ e l ) = L ijkl δ ik δ jl = L ijij and that tr 4 L = tr 4 (L klij (e i ⊗ e j ) ⊗ (e k ⊗ e l )) = L klij (e i ⊗ e j ) • (e k ⊗ e l ) = L klij δ ik δ jl = L ijij = tr 4 L.
Then, we define the scalar product of fourth-rank tensors as

A • B := tr 4 (A B).
By the properties of tr 4 , the scalar product is a positive definite symmetric bilinear form:

αA • βB = tr 4 (αA βB) = αβtr 4 (A B) = αβA • B, A • B = tr 4 (A B) = tr 4 (A B) = tr 4 (B A) = B • A, A • A = tr 4 (A A) = (A A) ijij = A klij A klij > 0 ∀A ∈ Lin(V), A • A = 0 ⇐⇒ A = O.

By components

A • B = tr 4 ((A klij e i ⊗ e j ⊗ e k ⊗ e l )(B pqrs e p ⊗ e q ⊗ e r ⊗ e s )) = tr 4 (A klij B pqrs δ kp δ lq (e i ⊗ e j ) ⊗ (e r ⊗ e s )) = A klij B pqrs δ kp δ lq (e i ⊗ e j ) • (e r ⊗ e s ) = A klij B pqrs δ kp δ lq δ ir δ js = A klij B klij .
The rule for computing the scalar product is hence always the same already seen for vectors and second-rank tensors: all the indexes are to be saturated.

In complete analogy with vectors and second-rank tensors, we say that A is orthogonal to

B ⇐⇒ A • B = 0
and we define the norm of L as

|L| := √ L • L = tr 4 L L = L ijkl L ijkl .

Projectors, identities

For the spherical part of any A ∈ Sym(V) we can write

A sph := 1 3 trAI = 1 3 I • AI = 1 3 (I ⊗ I)A = S sph A,
where

S sph := 1 3 I ⊗ I
is the spherical projector, i.e. the fourth-rank tensor that extracts from any A ∈ Lin(V) its spherical part. Moreover,

A dev := A -A sph = IA -S sph A = D dev A,
where

D dev := I -S sph
is the deviatoric projector, i.e. the fourth-rank tensor that extracts from any A ∈ Lin(V) its deviatoric part. It is worth noting that

I = S sph + D dev .
Moreover, about the components of S sph ,

S sph ijkl = (e i ⊗ e j ) • 1 3 (I ⊗ I)(e k ⊗ e l ) = 1 3 (e i ⊗ e j ) • I(e k ⊗ e l ) • I = 1 3 tr(e i ⊗ e j )tr(e k ⊗ e l ) = 1 3 δ ij δ kl → S sph = 1 3 δ ij δ kl (e i ⊗ e j ⊗ e k ⊗ e l ).
To remark that S sph = (S sph ) .

We introduce now the tensor I s , restriction of I to A ∈ Sym(V). It can be introduced as follows: ∀A ∈ Sym(V)

A = 1 2 (A + A ),
and

A = IA = 1 2 (IA + IA ) = 1 2 (I ijkl A kl + I ijkl A lk )(e i ⊗ e j ⊗ e k ⊗ e l );
because A = A there is insensitivity to the swap of indexes k and l, so

A = 1 2 (I ijkl A kl + I ijlk A lk )(e i ⊗ e j ⊗ e k ⊗ e l ) = 1 2 (δ ik δ jl + δ il δ jk )A kl (e i ⊗ e j ⊗ e k ⊗ e l ).
Then, if we admit the interchangeability of indexes k and l, i.e. if we postulate the existence of the minor right-symmetries for I, then I = I s , with

I s = 1 2 (δ ik δ jl + δ il δ jk )(e i ⊗ e j ⊗ e k ⊗ e l ).
It is apparent that

I s ijkl = I s klij , i.e. I s = (I s ) , but also that I s ijkl = 1 2 (δ il δ jk + δ ik δ jl ) = I s jikl ,
i.e., I s has also the minor left-symmetries; in other words, I s has the major and minor symmetries, like an elasticity tensor, while this is not the case for I. In fact

I ijkl = I jilk = δ ik δ jl = δ il δ jk = I jikl = I ijlk .
Because S sph and D dev operate on Sym(V), it is immediate to recognize that it is also

D dev = I s -S sph ⇒ I s = S sph + D dev .
It is worth noting that

(D dev ) = (I s -S sph ) = (I s ) -(S sph ) = I s -S sph = D dev .
We can now determine the components of D dev :

D dev ijkl = I s ijkl -S sph ijkl = 1 2 (δ ik δ jl + δ il δ jk ) - 1 3 δ ij δ kl → D dev = 1 2 (δ ik δ jl + δ il δ jk ) - 1 3 δ ij δ kl (e i ⊗ e j ⊗ e k ⊗ e l ).
To remark that the result (2.6) implies that S sph and D dev are orthogonal projectors, i.e. they project the same A ∈ Sym(V) into two orthogonal subspaces of V, Sph(V) and Dev(V).

The tensor T trp ∈ Lin(V) defined by the operation

T trp A := A ,
is the transposition projector, whose components are

T trp ijkl = (e i ⊗ e j ) • T trp (e k ⊗ e l ) = (e i ⊗ e j ) • (e l ⊗ e k ) = δ il δ jk .
The following operation defines the symmetry projector S sym ∈ Lin(V):

S sym A = 1 2 (A + A ) ∀A ∈ Lin(V),
while the antisymmetry projector W skw ∈ Lin(V) is defined by

W skw A = 1 2 (A -A ) ∀A ∈ Lin(V).
Also S sym and W skw are orthogonal projectors, because they project the same A ∈ Lin(V) into two orthogonal subspaces of Lin(V): Sym(V) and Skw(V), see exercice 6 of Chap. 2.

We prove now two properties of the projectors: ∀A ∈ Lin(V),

(S sym + W skw )A = 1 2 (A + A ) + 1 2 (A -A ) = A = IA ⇒ S sym + W skw = I. (3.5) Then, (S sym -W skw )A = 1 2 (A+A )- 1 2 (A-A ) = A = T trp A ⇒ S sym -W skw = T trp . (3.6)

Orthogonal conjugator

For any U ∈ Orth(V) we define its orthogonal conjugator U ∈ Lin(V) as

U := U U.
Theorem 16. (orthogonality of U): the orthogonal conjugator is an orthogonal tensor of Lin(V), i.e. it preserves the scalar product between tensors:

UA • UB = A • B ∀A, B ∈ Lin(V).
Proof. By the assertion in exercice 17 of Chap. 2, and because U ∈ Orth(V), we have

UA • UB = (U U)A • (U U)B = UAU • UBU = U UAU • BU = AU • BU = AU U • B = A • B.
Just as for tensors of Orth(V), it is also

UU = U U = I.
In fact, see the assertion of exercice 3,

UU = (U U)(U U ) = UU UU = I I = I. (3.7)
The orthogonal conjugators have also some properties in relation with projectors:

Theorem 17. : S sph is unaffected by any orthogonal conjugator, while D dev commutes with any orthogonal conjugator.

Proof. For any L ∈ Sym(V) and U ∈ Orth(V),

US sph L = (U U) 1 3 I ⊗ I L = 1 3 (trL)(U U)I = 1 3 (trL)UIU = 1 3 (trL)I = 1 3 I • LI = 1 3 (I ⊗ I)L = S sph L.
Moreover,

S sph UL = 1 3 I ⊗ I (U U)L = 1 3 (I ⊗ I)(ULU ) = 1 3 (I • ULU )I = 1 3 tr(ULU )I = 1 3 tr(U UL)I = 1 3 (trL)I = 1 3 I • LI = 1 3 (I ⊗ I)L = S sph L.
Thus, we have proved that S sph U = US sph = S sph , i.e. that the spherical projector S sph is unaffected by any orthogonal conjugator. Further

D dev UL = (I s -S sph )UL = I s UL -S sph UL = UL -S sph L = (U -S sph )L and UD dev L = U(I s -S sph )L = UI s L -US sph L = UL -S sph L = (U -S sph )L, so that D dev U = UD dev .

Rotations and symmetries

We ponder now how to rotate a fourth-rank tensor, i.e., what are the components of

L = L ijkl e i ⊗ e j ⊗ e k ⊗ e l
in a basis B = {e 1 , e 2 , e 3 } obtained rotating the basis B = {e 1 , e 2 , e 3 } by the rotation R = R ij e i ⊗ e j , R ∈ Orth(V) + . The procedure is exactly the same already seen for vectors and second-rank tensors:

L = L ijkl e i ⊗ e j ⊗ e k ⊗ e l = L ijkl R pi e p ⊗ R qj e q ⊗ R rk e r ⊗ R sl e s = R pi R qj R rk R sl L ijkl e p ⊗ e q ⊗ e r ⊗ e s , i.e. L pqrs = R pi R qj R rk R sl L ijkl .
We see clearly that the components of L in the basis B are a linear combination of those in B, the coefficients of the linear combination being fourth-powers of the director cosines, the R ij s. The introduction of the orthogonal conjugator1 of the rotation R,

R = R R,
allows to give a compact expression for the rotation of second-and fourth-rank tensors (for completeness we recall also that of a vector w);

w = R w, L = R LR = (R R )L = R L, L = (R R )L(R R) = R LR.
The check of the above relations with the orthogonal conjugator R is left to the reader. It is worth noting that actually these transformations are valid not only for R ∈ Orth(V) + , but more generally for any U ∈ Orth(V), i.e. also for symmetries.

If by U we denote the tensor of change of basis under any orthogonal transformation, i.e., if we put U = R for the rotations, then the above relations become

w = Uw, L = ULU = (U U)L = UL, L = (U U)L(U U) = ULU . (3.8) Finally, we say that L ∈ Lin(V) or L ∈ Lin(V) is invariant under an orthogonal transfor- mation U if ULU = L, ULU = L;
right multiplying both terms by U or by U and through eq. (3.7), we get that L or L are invariant under U ⇐⇒ UL = LU, UL = LU, i.e. ⇐⇒ L and U, or L and U commute. This relation allows, e.g., the analysis of material symmetries in elasticity.

If a tensor is invariant under any orthogonal transformation, i.e. if the previous equations hold true ∀U ∈ Orth(V) then the tensor is said to be isotropic. A general result2 is that a fourth-rank tensor L is isotropic ⇐⇒ exist two scalar functions λ, µ such that LA = 2µA + λtrA I ∀A ∈ Sym(V). The reader is addressed to the book of Gurtin (see references) for the proof of this result and for a deeper insight in isotropic functions.

The Kelvin formalism

As already mentioned, though fourth-rank tensors cannot be organized in and represented by a matrix, a matrix formalism for these operators exists. Such formalism is due to Kelvin3 and it is strictly related to the theory of elasticity, i.e. it concerns the Cauchy's stress tensor σ, the strain tensor ε and the elasticity tensor E. The relation between σ and ε is given by the celebrated (generalized) Hooke's law:

σ = Eε.
Both σ, ε ∈ Sym(V) while E = E and it has also the minor symmetries, so E has just 21 independent components 4 . In the Kelvin formalism, the six independent components of σ and ε are organized into column vectors and renumbered as follows

{σ} =                σ 1 = σ 11 σ 2 = σ 22 σ 3 = σ 33 σ 4 = √ 2σ 23 σ 5 = √ 2σ 31 σ 6 = √ 2σ 12                , {ε} =                ε 1 = ε 11 ε 2 = ε 22 ε 3 = ε 33 ε 4 = √ 2ε 23 ε 5 = √ 2ε 31 ε 6 = √ 2ε 12                .
The elasticity tensor E is reduced to a 6 × 6 matrix [E], consequence of the minor symmetries induced by the symmetry of σ and ε; this matrix is symmetric because E = E :

[E] =          E 11 = E 1111 E 12 = E 1122 E 13 = E 1133 E 14 = √ 2E 1123 E 15 = √ 2E 1131 E 16 = √ 2E 1112 E 12 = E 1122 E 22 = E 2222 E 23 = E 2233 E 24 = √ 2E 2223 E 25 = √ 2E 2231 E 26 = √ 2E 2212 E 13 = E 1133 E 23 = E 2233 E 33 = E 3333 E 34 = √ 2E 3323 E 35 = √ 2E 3331 E 36 = √ 2E 3312 E 14 = √ 2E 1123 E 24 = √ 2E 2223 E 34 = √ 2E 3323 E 44 = 2E 2323 E 45 = 2E 2331 E 46 = 2E E 15 = √ 2E 1131 E 25 = √ 2E 2231 E 35 = √ 2E 3331 E 45 = 2E 2331 E 55 = 2E 3131 E 56 = 2E E 16 = √ 2E 1112 E 26 = √ 2E 2212 E 36 = √ 2E 3312 E 46 = 2E 2312 E 56 = 2E 3112 E 66 = 2E          .
In this way, the matrix product

{σ} = [E]{ε} (3.9)
is equivalent to the tensor form of the Hooke's law and all the operations can be done by the aid of classical matrix algebra5 , e.g. the computation of the inverse of E, the compliance tensor.

An important operation is the expression of tensor U in eq. (3.8) in the Kelvin formalism; some tedious but straightforward passages give the result:

[U ] =        U 2 11 U 2 12 U 2 13 √ 2U 12 U 13 √ 2U 13 U 11 √ 2U 11 U 12 U 2 21 U 2 22 U 2 23 √ 2U 22 U 23 √ 2U 23 U 21 √ 2U 21 U 22 U 2 31 U 2 32 U 2 33 √ 2U 32 U 33 √ 2U 33 U 31 √ 2U 31 U 32 √ 2U 21 U 31 √ 2U 22 U 32 √ 2U 23 U 33 U 23 U 32 + U 22 U 33 U 33 U 21 + U 31 U 23 U 31 U 22 + U 32 U 21 √ 2U 31 U 11 √ 2U 32 U 12 √ 2U 33 U 13 U 32 U 13 + U 33 U 12 U 31 U 13 + U 33 U 11 U 31 U 12 + U 32 U 11 √ 2U 11 U 21 √ 2U 12 U 22 √ 2U 13 U 23 U 12 U 23 + U 13 U 22 U 11 U 23 + U 13 U 21 U 11 U 22 + U 12 U 21       
With some work, it can be checked that

[U ][U ] = [U ] [U ] = [I], i.e. that [U ] is an orthogonal matrix in R 6 . Of course, [R] = [U ]
is the matrix that in the Kelvin formalism represents the tensor R = U . The change of basis for σ and ε are hence done through the relations

{σ } = [U ]{σ}, {ε } = [U ]{ε},
which applied to eq. (3.9) give

{σ} = [E]{ε} → [U ] {σ } = [E][U ] {ε } → {σ } = [U ][E][U ] {ε } i.e. in the basis B {σ } = [E ]{ε }, where [E ] = [U ][E][U ] = [R] [E][R]
is the matrix representing E in B in the Kelvin formalism. Though it is possible to give the expression of the components of [E ], they are so long that they are omitted here.

Exercices

1. Prove eq. (3.4).

Prove that

A ⊗ BL = A ⊗ L B. 3. Prove that (A B)(C D) = AC BD.
4. Prove eq. (3.3) using the result of the previous exercice.

Prove that (

A ⊗ B)(C D) = A ⊗ ((C D )B). 6. Prove that (A B)(C ⊗ D) = ((A B)C) ⊗ D.
7. Let p ∈ S and P = p ⊗ p; then prove that P P = P ⊗ P.

8. Prove that, ∀A ∈ Lin(V), IA = AI = A.

Show that

(A ⊗ B) • (C ⊗ D) = A • C B • D.
10. Show that

S sph = I |I| ⊗ I |I| .
11. Show that dim(Sph(V)) = 1, dim(Dev(V)) = 5. 50 12. Show the following properties of S sph and D dev :

S sph S sph = S sph , D dev D dev = D dev , S sph D dev = D dev S sph = O.
13. Prove the results in eqs. (3.5) and (3.6) using the components.

14. Show that

S sph • S sph = 1, D dev • D dev = 5, S sph • D dev = 0.
15. Explicit the orthogonal conjugator S R of the tensor S R in eq. (2.43).
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Chapter 4

Tensor analysis: curves

Curves of points, vectors and tensors

The scalar products in V, Lin(V) and Lin(V) allow us to define a norm, the Euclidean norm, so they automatically endow these spaces with a metric, i.e. we are able to measure and calculate a distance between two elements of such a space and in E. This allows us to generalise the concepts of continuity and differentiability already known in R, whose definition intrinsically makes use of a distance between real quantities.

Let π n = {p n ∈ E, n ∈ N} a sequence of points in E. We say that π n converges to p ∈ E if

lim n→∞ d(p n -p) = 0.
A similar definition can be given for sequences of vectors or tensors of any rank. Through this definition of convergence we can now precise the concepts of continuity and of curve.

Let [a, b] an interval of R; the function

p = p(t) : [a, b] → E is continuous at t ∈ [a, b] if for each sequence {t n ∈ [a, b], n ∈ N} that converges to t the sequence π n defined by p n = p(t n ) ∀n ∈ N converges to p(t) ∈ E. The function p = p(t) is a curve in E ⇐⇒ it is continuous ∀t ∈ [a, b].
In the same way we can define a curve of vectors and of tensors:

v = v(t) : [a, b] → V, L = L(t) : [a, b] → Lin(V), L = L(t) : [a, b] → Lin(V).
Mathematically, a curve is a function that lets correspond to a real value t (the parameter) in an interval an element of a space, E, V, Lin(V) or L(V). A similar definition can be given for a curve of tensors of any rank. We then say that the curve v is differentiable in

Differention of curves

Let v = v(t) : [a, b] → V a curve
t 0 ∈]a, b[ ⇐⇒ ∃v ∈ V such that v(t) -v(t 0 ) = (t -t 0 )v + o(t -t 0 ).
We call v the derivative of v 1 , also indicated by dv dt . Applying the definition of derivative to v we define the second derivative v of v and recursively all the derivatives of higher orders. We say that v is of class C n if it is continuous with its derivatives up to the order n;

if n ≥ 1, v is said to be smooth. A curve v(t) of class C n is said to be regular if v = o ∀t.
Similar definitions can be given for curves in E, Lin(V) and Lin(V), so defining derivatives of points and tensors. We remark that the derivative of a curve in E, defined as a difference of points, is a curve in V (we say, in short, that the derivative of a point is a vector). For what concerns tensors, the derivative of a tensor of rank r is a tensor of the same rank.

Let u, v curves in V, L, M curves in Lin(V), L, M curves in Lin(V) and α a scalar function, all of them defined and at least of class C 1 on [a, b]. The same definition of derivative of a curve gives the following results, whose proof is let to the reader:

(u + v) = u + v , (αv) = α v + αv , (u • v) = u • v + u • v , (u × v) = u × v + u × v , (u ⊗ v) = u ⊗ v + u ⊗ v , (L + M) = L + M , (αL) = α L + αL , (Lv) = L v + Lv , (LM) = L M + LM , (L • M) = L • M + L • M , 1
The symbol ˙is also used, but it is usually reserved, in physics, to the case where t is the time.

(L

⊗ M) = L ⊗ M + L ⊗ M , (L M) = L M + L M , (L + M) = L + M , (αL) = α L + αL , (LL) = L L + LL , (LM) = L M + LM , (L • M) = L • M + L • M .
To remark that the derivative of any kind of product is made according to the usual rule of the derivative of a product of functions.

Be R = {o; B} a reference frame of the euclidean space E, composed by an origin o and a basis B = {e 1 , e 2 , e 3 } of V, e i • e j = δ ij ∀i, j = 1, 2, 3 and let us consider a point p(t) = (p 1 (t), p 2 (t), p 3 (t)). If the three coordinates p i (t) are three continuous functions over the interval [t 1 , t 2 ] ∈ R, then, by the definition given above, the mapping p(t) : [t 1 , t 2 ] → E is a curve in E and the equation

p(t) = (p 1 (t), p 2 (t), p 3 (t)) →    p 1 = p 1 (t) p 2 = p 2 (t) p 3 = p 3 (t)
is the parametric point equation of the curve: to each value of t ∈ [t 1 , t 2 ] it corresponds a point of the curve in E, see Fig. 4.1. The vector function r(t) = p(t)-o is the position vector of point p in R; the equation

r(t) = r i (t)e i = r 1 (t)e 1 + r 2 (t)e 2 + r 3 (t)e 3 →    r 1 = r 1 (t) r 2 = r 2 (t) r 3 = r 3 (t)
is the parametric vector equation of the curve: to each value of t ∈ [t 1 , t 2 ] it corresponds a vector of V that determines a point of the curve in E through the operation p(t) = o + r(t).

Similarly, if the components L ij (t) are continuous functions of a parameter t, the mapping L(t) : [t 1 , t 2 ] → Lin(V) defined by

L(t) = L ij (t)e i ⊗ e j , i, j = 1, 2, 3,
is a curve of tensors. In the same way we can give a curve of fourth-rank tensors L(t) :

[t 1 , t 2 ] → Lin(V) by

L(t) = L ijkl (t)e i ⊗ e j ⊗ e k ⊗ e l , i, j, k, l = 1, 2, 3.
To be noticed that the choice of the parameter is not unique: the equation p = p[τ (t)] still represents the same curve p = p(t), through the change of parameter τ = τ (t).

The definition given above for the derivative of a curve of points p = p(t) in t = t 0 is equivalent to the following one (probably more familiar to the reader)

dp(t) dt = lim ε→0 p(t 0 + ε) -p(t 0 ) ε ;
represented in Fig. 4.2, it is apparent that r (t) = dp(t) dt is a vector. An important case is that of a vector v(t) whose norm v(t) is constant ∀t:

M L M L M L u L u L u L v u v u v u v v v u v u v u v u v u v u v v v v u v u R R R R t t
0 2 ) ( ) ( 2 v v v v v v v v v ,
(v 2 ) = (v • v) = v • v + v • v = 2v • v = 0 : (4.1)
the derivative of such a vector is orthogonal to it ∀t. The contrary is also true, as immediately apparent.

Finally, using the above rules and assuming that the reference frame R is independent from t, we get easily that

p (t) = p i (t) e i , v (t) = v i (t) e i , L (t) = L ij (t) e i ⊗ e j , L (t) = L ijkl (t) e i ⊗ e j ⊗ e k ⊗ e l , (4.2) 
i.e. that the derivative of a curve of points, vectors or tensors is simply calculated differentiating the coordinates or the components.

More involved is to prove that

(L ) = L , (L ) = L , (det L) = det L tr(L L -1 ) = det L L • L -1 = det L L • L -,
the reader is addressed to the book of Gurtin for the proof.

Integral of a curve of vectors, length of a curve

We define integral of a curve of vectors r(t) between a and b ∈ [t 1 , t 2 ] the curve that is obtained integrating each component of the curve:

b a r(t) dt = b a r i (t) dt e i .
If the curve is regular, we can generalize the second fundamental theorem of the integral calculus

r(t) = r(a) + t a r (t * ) dt * . Because r(t) = p(t) -o, r (t) = (p(t) -o) = p (t),
we get also

p(t) = p(a) + t a p (t * ) dt * .
The integral of a vector function is the generalization of the vector sum, see Fig. 4.3.

Chapitre 1 intégrales de chaque composante du vecteur donné : The length σ of the polygonal line whose vertices are the points r(t i ) is hence:

) ) ( , ) ( , ) ( ( ) ( ) ( 3 2 1 b a b a b a b a dt t
σ = n i=1 |r(t i ) -r(t i-1 )|.
We define length of the curve r(t) the (positive) number := sup Proof. By the fundamental theorem of calculus,

r(t i ) -r(t i-1 ) = t i t i-1 r (t)dt → |r(t i ) -r(t i-1 )| = t i t i-1 r (t)dt ≤ t i t i-1 |r (t)|dt, whence ≤ b a |r (t)|dt. (4.3) Because r (t) is continuous on [a, b], ∀ε > 0 ∃δ > 0 such that |t-t| < δ ⇒ |r (t)-r (t)| < ε. Be t ∈ [t i-1 , t i
] and σ max < δ, which is always possible by the choice of the partition σ; by the triangular inequality,

|r (t)| ≤ |r (t) -r (t i )| + |r (t i )| < ε + |r (t i )|, whence t i t i-1 |r (t)|dt < t i t i-1 |r (t i )|dt + ε(t i -t i-1 ) = t i t i-1 r (t i )dt + ε(t i -t i-1 ) ≤ t i t i-1 r (t)dt + t i t i-1 (r (t i ) -r (t))dt + ε(t i -t i-1 ) ≤ |r(t i ) -r(t i-1 )| + 2ε(t i -t i-1 ).
Summing up over all the intervals [t i-1 , t i ] we get A simple way to determine a point p(t) on a curve is to fix a point p 0 on the curve and to measure the length s(t) of the arc of curve between p 0 = p(t = 0) and p(t). This length s(t) is called curvilinear abscissa 2 :

s(t) = t 0 |r (t * )|dt * = t 0 |(p(t * ) -o) |dt * . (4.4)
From eq. ( 4.4) we get ds dt = |r (t)| > 0, so that s(t) is an increasing function of t and the length of an infinitesimal arc is

ds = dr 2 1 + dr 2 2 + dr 2 3 .
For a plane curve y = f (x), we can always put t = x, which gives the parametric equation

p(t) = (t, f (t)),
or in vector form

r(t) = t e 1 + f (t) e 2 ,
from which we obtain

ds dt = |r (t)| = |p (t)| = 1 + f 2 (t), (4.5)
that gives the length of a plane curve between t = x 0 and t = x as a function of the abscissa x:

s(x) = x x 0 1 + f 2 (t)dt.
2 The curvilinear abscissa is also called arc-length or natural parameter.
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The Frenet-Serret basis

We define the tangent vector τ (t) to a regular curve p = p(t) the vector

τ (t) = p (t) |p (t)| .
By the definition of derivative, this unit vector is always oriented as the increasing values of t; the straight line tangent to the curve in p 0 = p(t 0 ) has hence equation

q( t) = p(t 0 ) + t τ (t 0 ).
If the curvilinear abscissa s is chosen as parameter for the curve, through the change of parameter s = s(t) we get

τ (t) = p (t) |p (t)| = p [s(t)] |p [s(t)]| = 1 s (t) dp(s) ds ds(t) dt = dp(s) ds → τ (s) = p (s).
So, if the parameter of the curve is s, the derivative of the curve is τ , i.e. it is automatically a unit vector. The above equation, in addition, shows that the change of parameter does not change the direction of the tangent, because just a scalar, the derivative of the parameter's change, multiplies the vector. Nevertheless, generally speaking, a change of parameter can change the orientation of the curve.

Because the norm of τ is constant, its derivative is a vector orthogonal to τ , see eq. (4.1).

That is why we call principal normal vector to a curve the unit vector

ν(t) = τ (t) |τ (t)| . (4.6)
ν is defined only on the points of the curve where τ = o which implies that ν is not defined on the points of a straight line. This simply means that there is not, among the infinite unit normal vectors to a straight line, a normal with special properties, a principal one, uniquely linked to τ .

Unlike τ , whose orientation changes with the choice of the parameter, ν is an intrinsic local characteristic of the curve: it is not affected by the choice of the parameter. In fact, by its same definition, ν does not depend upon the reference frame; then, because the direction of τ is also independent upon the parameter's choice, the only factor that could affect ν is the orientation of the curve, that depends upon the parameter. But a change of the orientation affects, in (4.6), both τ and the sign of the increment dt, so that τ (t) = dτ /dt does not change, neither ν, which is hence an intrinsic property of the curve.

The vector

β(t) = τ (t) × ν(t)
is called the binormal vector; by construction, it is orthogonal to τ and ν and it is a unit vector. In addition, it is evident that

τ × ν • β = 1,
so the set {τ , ν, β} forms a positively oriented othonormal basis that can be defined at any regular point of a curve with τ = o. Such a basis is called the Frenet-Serret local basis, local in the sense that it changes with the position along the curve. The plane τν is the osculating plane, the plane νβ the normal plane and the plane βτ the rectifying plane, see Fig. Le plan osculateur est particulièrement important : si on considère un plan qui passe par trois points quelconques, non alignés, de la courbe, ce plan tend vers le plan osculateur lorsque ces trois points se rapprochent l'un à l'autre tout en restant sur la courbe. En effet, on peut démontrer que le plan osculateur en un point donné de la courbe est le plan qui se rapproche mieux à la courbe au voisinage de ce point. Si la courbe est plane, le plan osculateur est le plan qui contient la courbe.

On peut aussi démontrer que le vecteur normal ν est toujours dirigé du coté du plan rectifiant dans lequel se trouve la courbe, voire, pour les courbes planes, ν est toujours dirigé vers la concavité de la courbe.

COURBURE D'UNE COURBE

Il est important, dans plusieurs cas, de pouvoir évaluer de combien une courbe s'éloigne d'une ligne droite au voisinage d'un point. Pour cela, on calcule le vecteur tangent en deux points proches l'un de l'autre, l'un à l'abscisse curviligne s, et l'autre à s+ε, et on mesure l'angle χ(s, ε) qu'ils forment, voir la figure 1.11. On définit alors courbure de la courbe en s la limite . consider a plane passing through three not aligned points of the curve, when these points become closer and closer, still remaining on the curve, the plane tends to the osculating plane: the osculating plane at a point of a curve is the plane that better approaches the curve near the point. A plane curve is entirely contained in the osculating plane, which is fixed.

The principal normal ν is always oriented towards the part of the space, with respect to the rectifying plane, where the curve is; in particular, for a plane curve, ν is always directed towards the concavity of the curve. To show it, it is sufficient to prove that the vector p(t + ε) -p(t) forms with ν an angle ψ ≤ π/2, i.e. that (p(t + ε) -p(t)) • ν ≥ 0. In fact,

p(t + ε) -p(t) = ε p (t) + 1 2 ε 2 p (t) + o(ε 2 ) → (p(t + ε) -p(t)) • ν = 1 2 ε 2 p (t) • ν + o(ε 2 ), but p (t) • ν = (τ |p | + τ |p | ) • ν = (|τ ||p |ν + τ |p | ) • ν = |τ ||p |,
so that, to within infinitesimal quantities of order o(ε 2 ), we obtain

(p(t + ε) -p(t)) • ν = 1 2 ε 2 |τ ||p | ≥ 0.

Curvature of a curve

It is important, in several situations, to evaluate how much a curve moves away from a straight line, in the neighborhood of a point. To do that, we calculate the angle formed by the tangents at two close points, determined by the curvilinear abscissae s and s + ε, and we measure the angle χ(s, ε) that they form, see Fig. 4.5.

- We then define curvature of the curve in p = p(s) the limit

c(s) = lim ε→0 χ(s, ε) ε .
The curvature is hence a non-negative scalar that measures the rapidity of variation of the direction of the curve per unit length of the curve (that is why c(s) is defined as a function of the curvilinear abscissa); by its same definition, the curvature is an intrinsic property of the curve, i.e. independent from the parameter's choice. For a straight line, the curvature is identically null everywhere.

The curvature is linked to the second derivative of the curve:

c(s) = lim ε→0 χ(s, ε) ε = lim ε→0 sin χ(s, ε) ε = lim ε→0 2 ε sin χ(s, ε) 2 = lim ε→0 v(s, ε) ε = lim ε→0 τ (s + ε) -τ (s) ε = |τ (s)| = |p (s)|.
Another formula for the calculation of c(s) can be obtained if we consider that

dτ [s(t)] dt = dτ ds ds dt = dτ ds |p (t)| → dτ ds = 1 |p (t)| dτ dt , so that c(s) = |τ (s)| = 1 |p (t)| dτ dt = |τ (t)| |p (t)| . (4.7)
A better formula can be obtained as follows:

dτ ds = 1 |p (t)| dτ dt = 1 |p (t)| d dt p (t) |p (t)| = 1 |p | p |p | -p p • p |p | |p | 2 = p -τ p • τ |p | 2 = (I -τ ⊗ τ ) p |p | 2 . By consequence, c(s) = dτ (s) ds = 1 |p | 2 |(I -τ ⊗ τ )p |.
Now, we use the following general formula expressing a skew tensor W:

WW = - 1 2 |W| 2 (I -w ⊗ w);
if we use this formula for τ , so that W is the axial tensor of τ , we get

I -τ ⊗ τ = -2 WW |W| 2 = -WW, because if τ = (τ 1 , τ 2 , τ 3 ), then |W| 2 =W • W =   0 -τ 3 τ 2 τ 3 0 -τ 1 -τ 2 τ 1 0   •   0 -τ 3 τ 2 τ 3 0 -τ 1 -τ 2 τ 1 0   = 2(τ 2 1 + τ 2 2 + τ 2 3 ) = 2.
So, recalling that for any skew tensor W,

W u = w × u ∀u ∈ V,
with w the axial vector of W, we get

|(I -τ ⊗ τ )p | =| -WWp | = | -W(τ × p )| = | -τ × (τ × p )| = |τ × (τ × p )| = |τ × p | = |p × p | |p | , so that finally c = |p × p | |p | 3 . (4.8)
Applying this last formula to a plane curve p(t) = (x(t), y(t)), we get

c = |x y -x y | (x 2 + y 2 ) 3 2
and if the curve is given in the form y = y(x), so that the parameter t = x, then we obtain

c = |y | (1 + y 2 ) 3 2
.

This last formula shows that if |y | 1, like in the infinitesimal theory of strain, then c |y |.

The Frenet-Serret formulae

From eqs. (4.6) for t = s and (4.7) we get

dτ ds = c ν (4.9)
which is the first Frenet-Serret Formula, giving the variation of τ per unit length of the curve. Such a variation is a vector whose norm is the curvature and that has as direction that of ν.

Let us now consider the variation of β per unit length of the curve; because β is a unit vector, we have

dβ ds • β = 0,
and

β • τ = 0 ⇒ d(β • τ ) ds = dβ ds • τ + β • dτ ds = 0.
Through eq. ( 4.9) and because β • ν = 0 we get

dβ ds • τ = -c β • ν = 0,
so that dβ ds is necessarily parallel to ν. We then put

dβ ds = ϑν,
which is the second Frenet-Serret formula. The scalar ϑ(s) is called the torsion of the curve in p = p(s). So, we see that the variation of β per unit length is a vector parallel to ν and proportional to the torsion of the curve.

We can now find the variation of ν per unit length of the curve:

dν ds = d(β × τ ) ds = dβ ds × τ + β × dτ ds = ϑ ν × τ + c β × ν, so finally dν ds = -c τ -ϑ β,
which is the third Frenet-Serret formula: the variation of ν per unit length of the curve is a vector of the rectifying plane.

The three formulae of Frenet-Serret (discovered independently by J. F. Frenet in 1847 and by J. A. Serret in 1851) can be condensed in the symbolic matrix product

   τ ν β    =   0 c 0 -c 0 -ϑ 0 ϑ 0      τ ν β    .
The matrix in the equation above is called the matrix of Cartan, and it is skew.

The torsion of a curve

We have introduced the torsion of a curve in the previous section, with the second formula of Frenet-Serret. The torsion measures the deviation of a curve from flatness: if a curve is planar, it belongs to the osculating plane and β, which is perpendicular to the osculating pane, is hence a constant vector. So, its derivative is null and by the Frenet-Serret second formula ϑ = 0.

Conversely, if ϑ = 0 everywhere, β is a constant vector and hence the osculating plane does not change and the curve is planar. So we have that a curve is planar if and only if the torsion is null ∀p(s).

Using the Frenet-Serret formulae in the expression of p (s) we get a formula for the torsion:

p (t) = |p |τ = dp ds ds dt = s τ ⇒ |p | = s → p (t) = s τ + s τ = s τ + s 2 dτ ds = s τ + c s 2 ν → p (t) = s τ + s τ + (c s 2 ) ν + c s 2 ν = s τ + s s dτ ds + (c s 2 ) ν + c s 3 dν ds = s τ + s s cν + (c s 2 ) ν -c s 3 (cτ + ϑβ) = (s -c 2 s 3 )τ + (s s c + c s 2 + 2c s s )ν -c s 3 ϑβ,
so that, through eq. (4.8), we get

p × p • p =s τ × (s τ + c s 2 ν) • [(s -c 2 s 3 )τ + (s s c + c s 2 + 2c s s )ν -c s 3 ϑβ] = -c 2 s 6 ϑ = -c 2 |p | 6 ϑ = - |p × p | 2 |p | 6 |p | 6 ϑ, so that, finally, ϑ = - p × p • p |p × p | 2 .
To remark that while the curvature is linked to the second derivative of the curve, the torsion is a function also of the third derivative.

Unlike curvature, which is intrinsically positive, the torsion can be negative. In fact, still using the Frenet-Serret formulae,

p(s + ε) -p(s) =ε p + 1 2 ε 2 p + 1 6 ε 3 p + o(ε 3 ) = ετ + 1 2 ε 2 cν + 1 6 ε 3 (cν) + o(ε 3 ) = ετ + 1 2 ε 2 cν + 1 6 ε 3 (c ν -c 2 τ -c ϑβ) + o(ε 3 ) → (p(s + ε) -p(s)) • β = - 1 6 ε 3 c ϑ + o(ε 3 ).
The above dot product determines if the point p(s + ε) is located, with respect to the osculating plane, on the side of β or on the opposite one, see Fig. 4.6: if following the curve for increasing values of s, ε > 0, the point passes into the semi-space of β from the opposite one, because 1/6 c ε3 > 0, it will be ϑ < 0, while in the opposite case it will be ϑ > 0.

- This result is intrinsic, i.e. it does not depend upon the choice of the parameter, hence of the positive orientation of the curve; in fact, ν is intrinsic, but changing the orientation of the curve, τ , and hence β, change of orientation.

Osculating sphere and circle

The osculating sphere 3 to a curve at a point p is a sphere to which the curve tends to adhere in the neighborhood of p. Mathematically speaking, if q s is the center of the sphere relative to point p(s), then

|p(s + ε) -q s | 2 = |p(s) -q s | 2 + o(ε 3 ).
Using this definition, discarding the terms of order o(ε 3 ) and using the Frenet-Serret formulae, we get:

|p(s + ε) -q s | 2 =|p(s) -q s + εp + 1 2 ε 2 p + 1 6 ε 3 p + o(ε 3 )| 2 = |p(s) -q s + ετ + 1 2 ε 2 c ν + 1 6 ε 3 (cν) + o(ε 3 )| 2 = |p(s) -q s | 2 + 2ε(p(s) -q s ) • τ + ε 2 + ε 2 c(p(s) -q s ) • ν+ 1 3 ε 3 (p(s) -q s ) • (c ν -c 2 τ -c ϑβ) + o(ε 3 ), which gives (p(s) -q s ) • τ = 0, (p(s) -q s ) • ν = - 1 c = -ρ, (p(s) -q s ) • β = - c c 2 ϑ = ρ ϑ ,
and finally

q s = p + ρ ν - ρ ϑ β, (4.10)
so the center of the sphere belongs to the normal plane; the sphere is not defined for a plane curve. ρ is the radius of curvature of the curve, defined as

ρ = 1 c .
The radius of the osculating sphere is

ρ s = |p -q s | = ρ 2 + ρ ϑ 2 .
The intersection between the osculating sphere and the osculating plane at a same point p is the osculating circle. This circle has the property to share the same tangent in p with the curve and its radius is the radius of curvature, ρ. From eq. ( 4.10) we get the position of the osculating circle center q: q = p + ρ ν. The osculating circle is a diametral circle of the osculating sphere only when q = q s , so if and only if

ρ ϑ = - c c 2 ϑ = 0,
i.e. when the curvature is constant.

Evolute, involute and envelops of plane curves

For any plane curve γ(s), the center of the osculating circle q describes a curve δ(σ) that is called the evolute of γ(s) (s and σ are curvilinear abscissae). A point q of the evolute is then given by eq. (4.11). We call involute of a curve α(s) a curve β(σ) whose evolute is α(s). We call envelop of a family of plane curves ϕ(s, κ), κ ∈ R being a parameter, a curve that is tangent, in each of its points, to the curve of ϕ(s, κ) passing through that point.

Let us consider the evolute δ(σ) of a curve γ(s); the tangent to δ(σ) is the vector, cf. eq. 

(s) = (1 -f (s))τ (s) + f (s)c(s)ν(s). Then, because b (s) = |b (s)|τ β is orthogonal to ν β = τ , it is parallel to ν so it must be 1 -f (s) = 0 ⇒ f (s) = a -s, a ∈ R.

The theorem of Bonnet

The curvature, c(s), and the torsion, ϑ(s), are the only differential parameters that completely describe a curve. In other words: given two functions c(s) and ϑ(s), then a curve exists with such a curvature and torsion (to remark that there are no conditions bounding these parameters). This is proved by the Theorem 20. (Bonnet's theorem): given two scalar functions c(s) ∈C 1 and ϑ(s) ∈C 0 , it always exists and is unique a curve γ ∈C 3 whose curvilinear abscissa is s, curvature c(s) and torsion ϑ(s). p(s) is the curve looked for (it depends upon an arbitrary point p 0 , i.e. upon an inessential rigid displacement). In fact, because |τ | = 1, then s is the curvilinear abscissa of the curve. Then, it is sufficient to write the Frenet-Serret equations identifying them with the system (4.12).

Canonic equations of a curve

We call canonic equations of a curve at a point p 0 the equations of the curve referred to the Frenet-Serret basis in p 0 . To this purpose, we expand the curve in a Taylor series of initial point p 0 :

p(s) = p 0 + s p (0) + 1 2 s 2 p (0) + 1 3! s 3 p (0) + o(s 3 ).
In the Frenet-Serret basis,

p (0) = τ (0), p (0) = c(0)ν(0), p (0) = dcν ds s=0 = c (0)ν(0)-c 2 (0)τ (0)-c(0)ϑ(0)β(0), so p(s) = p 0 + s τ (0) + 1 2 s 2 c(0)ν(0) + 1 6 s 3 (-c 2 (0)τ (0) + c (0)ν(0) -c(0)ϑ(0)β(0)) + o(s 3 ).
The coordinates of a point p(s) close to p 0 , in the basis (τ (0), ν(0), β(0)), are hence

p 1 (s) = s - 1 6 c 2 (0)s 3 + o(s 3 ), p 2 (s) = 1 2 c(0)s 2 + 1 6 c (0)s 3 + o(s 3 ), p 3 (s) = - 1 6 c(0)ϑ(0)s 3 + o(s 3 ).
The projections of the curve onto the planes of the Frenet-Serret basis have hence, close to p 0 (i.e. retaining the first non null term in the expressions above), the following equations:

• on the osculating plane

p 1 (s) = s, p 2 (s) = 1 2 c(0)s 2 , or, eliminating s, p 2 = 1 2 c(0)p 2 1
, which is the equation of a parabola;

• on the rectifying plane p 1 (s) = s, p 3 (s) = -1 6 c(0)ϑ(0)s 3 , or, eliminating s, 0)ϑ(0)p 3 1 , which is the equation of a cubic parabola;

p 3 = - 1 6 c(
• on the normal plane

p 2 (s) = 1 2 c(0)s 2 , p 3 (s) = -1 6 c(0)ϑ(0)s 3 , or, eliminating s, p 2 3 = 2 9 ϑ 2 (0) c(0) p 3 2 ,
which is the equation of a semicubic parabola, with a cusp at the origin, hence a singular point, though the curve p(s) is regular.

In Fig. 4.9 the example of the projected curves for a circular helix.

Exercices

1. Using the same definition of derivative of a curve, prove the relations in Sect. (4.2).

2. Prove the relations in eq. (4.2).

3. The curve whose polar equation is

r = a θ, a ∈ R,
is an Archimede's spiral. Find its curvature, its length for θ ∈ [0, 2π) and prove that any straight line passing by the origin is divided by the spiral in segments of constant length 2π a (that is why it is used to record disks).

4. The curve whose polar equation is

r = a e bθ , a, b ∈ R,
is the logarithmic spiral. Prove that the origin is an asymptotic point of the curve, find its curvature and the length of the segment in which a straight line by the with the parameter θ the angle formed by p(θ) -o with the x 1 -axis is the involute of the circle. Find its curvature and length for θ ∈ [0, 2π) and prove that the geometrical set of the points p(θ) + ρ(θ)ν(θ) is exactly the circle of center o and radius a (that is why the involute of the circle is used to profile engrenages).

6. The curve whose parametric equation is p(θ) = a cos ωθe 1 + a sin ωθe 2 + bωθe 3 is a circular helix, i.e. a helix that winds on a circular cylinder of radius a. Show that the angle formed by the helix and any generatrix of the cylinder is constant (a property that defines a helix in the general case). Then, find its length for θ ∈ [0, 2π), curvature, torsion and pitch (the distance, on a same generatrix, between two successive intersections with the helix). Prove then the Bertrand's theorem: a curve is a cylindrical helix if and only if the ratio c/ϑ = const. Finally, prove that for the above circular helix there are two constants A and B such that p × p = Au(θ) + Be 3 , with u = sin ωθe 1 -cos ωθe 2 ; find then A and B.

7. Find the equation of the cycloid, i.e. of the curve that is the trace of a point of a circle of radius r rolling without slipping on a horizontal axis. Calculate the length of the cycloid for a complete round of the circle, determine its curvature and show that the evolute of the cycloid is the cycloid itself (Huygens, 1659).

8. The planar curve whose parametric equation is

p(t) = te 1 + cosh te 2
is the catenary (Jc. Bernoulli, 1690;Jn. Bernoulli, Leibniz, Huygens, 1691). It is the equilibrium curve of a heavy perfectly flexible and inextensible cable. Calculate the curvature of the catenary and the equation of its evolute and of its involutes.

9. The planar curve whose parametric equation is , 1670;Newton, 1676;Huygens, 1693). This is the curve along which an object moves, under the influence of friction, when pulled on a horizontal plane by a line segment attached to a tractor that moves at a right angle to the initial line between the object and the puller at an infinitesimal speed. Show that the length of the tangent to the tractrix between the points on the tractrix itself and the axis x is constant ∀t, calculate the length of the curve between t 1 and t 2 , calculate the curvature of the tractrix and finally show that its evolute is the catenary.

p(t) = cos t + ln tan t 2 e 1 + sin te 2 is a tractrix (Perrault
10. For the curve whose cylindrical equation is r = 1, z = sin θ find the highest curvature and determine whether or not it is planar.

11. Be p = p(t) the path of a moving particle of masse m, t being the time. Define the velocity and the acceleration of p as, respectively, the first and second derivative of p with respect to t. Decompose these two vectors in the Frenet-Serret basis and interpret physically the result. Recalling the second Newton's Principle of mechanics, what about the forces on p?

Chapter 5

Tensor analysis: fields, deformations

Introduction

In this chapter, we introduce the concepts of fields and deformations and the differential operators linked to these ones. Some fundamental theorems on field analysis are also recalled.

Scalar, vector and tensor fields

Let Ω ⊂ E and f : Ω → V. We say that f is continuous at p ∈ Ω ⇐⇒ ∀ sequence

π n = {p n ∈ Ω, n ∈ N} that converges to p ∈ E, the sequence {v n = f (p n ), n ∈ N} converges to f (p) in V. The function f (p) : Ω → V is a vector field on Ω if it is continuous at each p ∈ Ω.
In the same way we can define a scalar field ϕ(p) : Ω → R and a tensor field, L(p) : Ω → Lin(V) or L(p) : Ω → Lin(V).

A deformation is any continuous and bijective function f (p) : Ω → E, i.e. any transformation of a region Ω ⊂ E into another region of E; bijectivity imposes that to any point p ∈ Ω corresponds one and only point in the transformed region, and vice-versa. This is a constraint imposed to a function from E to E ti represent a physical deformation of a body.

Finally, the basic difference between fields/deformations and curves, is that a field or a deformation is defined over a subset of E, not of R. In practice, this implies that the components of the field/deformation are functions of three variables, the coordinates x i of a point p ∈ Ω.

Differentiation of fields, differential operators

Let f (p) : Ω → V; we say that f is differentiable in

p 0 ∈ Ω ⇐⇒ ∃ gradf ∈ Lin(V) such that f (p 0 + u) = f (p 0 ) + gradf (p 0 ) u + o(u)
when u → o. If f is differentiable ∀p ∈ Ω, gradf defines a tensor field on Ω called the gradient of f . It is also possible to define higher order differential operators, using higher order tensors, but this will not be done here. If f is continuous with gradf ∀p ∈ Ω, then f is of class C 1 (smooth).

Let f a vector field of class C 1 on Ω. Then the divergence of f is the scalar field defined by divf := tr(gradf ), while the curl of f is the unique vector field curlf that satisfies the relation

(gradf -gradf )u = (curlf ) × u ∀u ∈ V.
The divergence of a tensor field L is the unique vector field divL that satisfies

(divL) • u = div(L u) ∀u ∈ V.
Let ϕ(p) : Ω → R a scalar field over Ω. Similarly to what done for vector fields, we say that ϕ is differentiable at

p 0 ∈ Ω ⇐⇒ ∃ gradϕ ∈ V such that ϕ(p 0 + u) = ϕ(p 0 ) + gradϕ(p 0 ) • u + o(u)
when u → o. If ϕ is differentiable ∀p ∈ Ω, gradϕ defines a vector field on Ω called the gradient of ϕ. If gradϕ is differentiable, its gradient is the tensor grad II ϕ called second gradient or Hessian. It is immediate to show that under continuity assumption, grad II ϕ = (grad II ϕ) .

A level set of a scalar field ϕ(p) is the set S L such that

ϕ(p) = const. ∀p ∈ S L .
By the same definition of differentiability of ϕ(p), we can prove that gradϕ(p) is a vector that is orthogonal to S L at p. The curves of E that are tangent to gradϕ(p) ∀p ∈ Ω are the streamlines of ϕ; they have the property to be orthogonal to any S L of ϕ ∀p ∈ Ω.

gradϕ allows to calculate the directional derivative of ϕ along any direction n ∈ S as

dϕ dn := gradϕ • n.
The highest variation of ϕ is hence in the direction of gradϕ, and |gradϕ| is the value of this variation; we remark also that gradϕ is a vector directed as the increasing values of ϕ.

Similarly, for a vector field f the directional derivative along any direction n ∈ S is defined as df dn := gradf n.

Let ψ a scalar of vector field of class C 2 at least. Then, the laplacian ∆ψ of ψ is defined by ∆ψ := div(gradψ).

By the linearity of the trace, and hence of the divergence, we see easily that the laplacian of a vector field is the vector field whose components are the laplacian of each corresponding component of the field. A field is said to be harmonic on Ω if its laplacian is null ∀p ∈ Ω.

The definitions given above for differentiable field, gradient and class C 1 can be repeated verbatim for a deformation f (p) : Ω → E.

Let ϕ, ψ two scalar fields, u, v, w vector fields, L a tensor field and W the axial tensor of w. Then, the following properties hold:

grad(ϕψ) = ϕgradψ + ψgradϕ, grad(ϕv) = ϕgradv + v ⊗ gradϕ, (gradv)v = (curlv) × v + 1 2 gradv 2 , grad(v • w) = (gradw) v + (gradv) w = (gradw)v + (gradv)w + v × curlw + w × curlv, grad(u • v w) = (u • v)gradw + (w ⊗ u)gradv + (w ⊗ v)gradu, gradv • gradv = div((gradv)v -(divv)v) + (divv) 2 , div(ϕv) = ϕdivv + v • gradϕ, div(v ⊗ w) = vdivw + (gradv)w, div(L v) = L • gradv + v • divL, div(ϕL) = ϕdivL + Lgradϕ, div(gradv ) = grad(divv), div((gradv)v) = gradv • gradv + v • grad(divv), div(v × w) = w • curlv -v • curlw, div(ϕLv) = ϕL • gradv + ϕv • divL + Lv • gradϕ, div(curlv) = 0, curl(ϕv) = ϕcurlv + gradϕ × v, curl(curlv) = grad(divv) -∆v, curl(gradϕ) = o, curl(v × w) = (gradv)w -(gradw)v + vdivw -wdivv, curlw = -divW, ∆(ϕψ) = 2gradϕ • gradψ + ϕ∆ψ + ψ∆ϕ, ∆(v • w) = 2gradv • gradw + v • ∆w + w • ∆v.
The proof of these properties is a good exercice for the reader (see also the book of Gurtin).

Theorems on fields

We recall here, without proof, some classical theorems on fields and operators. 

γ v • d = Σ curlv • n ds.
The parametric equation of γ must be chosen in such a way that 

p (t 1 ) × p (t 2 ) • n > 0 ∀t 2 > t 1 .

Differential operators in Cartesian coordinates

In what follows, f, v, L are respectively a scalar, vector and tensor field. The Cartesian components1 of the differential operators are2 

(gradf ) i = f i , (gradv) ij = v i,j , divv = v i,i , (divL) i = L ij,j , ∆f = f ,ii , (∆v) i = ∆v i = v i,jj , curlv = (v 3,2 -v 2,3 , v 1,3 -v 3,1 , v 2,1 -v 1,2 ).
The so-called operator nabla ∇:

∇ := ∂• ∂x i e i = ∂• ∂x 1 e 1 + ∂• ∂x 2 e 2 + ∂• ∂x 3 e 3
is often used to indicate the differential operators:

gradf = ∇f, divv = ∇ • v, curlv = ∇ × v, ∆f = ∇ 2 f.

Differential operators in cylindrical coordinates

The cylindrical coordinates ρ, θ, z of a point p, whose Cartesian coordinates in the (fixed) frame {o; e 1 , e 2 , e 3 } are p = (x 1 , x 2 , x 3 ), are shown in Fig. 5.2. They are related together by

ρ = x 2 1 + x 2 2 , θ = arctan x 2 x 1 , z = x 3 ,
or conversely

x 1 = ρ cos θ, x 2 = ρ sin θ, x 3 = z.
To notice that ρ ≥ 0 and that the anomaly θ is bounded by 0 ≤ θ < 2π. In the (local) frame {p; e ρ , e θ , e z }, the differential operators are

∇f = f ,ρ , 1 ρ f ,θ , f ,z , ∆f = 1 ρ (ρf ,ρ ) ,ρ + 1 ρ 2 f ,θθ + f ,zz , ∇v =        v ρ,ρ 1 ρ (v ρ,θ -v θ ) v ρ,z v θ,ρ 1 ρ (v θ,θ + v ρ ) v θ,z v z,ρ 1 ρ v z,θ v z,z        , divv = v ρ,ρ + 1 ρ (v θ,θ + v ρ ) + v z,z , curlv = 1 ρ v z,θ -v θ,z , v ρ,z -v z,ρ , 1 ρ ((ρv θ ) ,ρ -v ρ,θ ) , divL =        1 ρ ((ρL ρρ ) ,ρ + L ρθ,θ -L θθ ) + L ρz,z L θρ,ρ + 1 ρ (L θθ,θ + L ρθ + L θρ ) + L θz,z 1 ρ ((ρL zρ ) ,ρ + L zθ,θ ) + L zz,z        , ∆v =   ∆v ρ ∆v θ ∆v z   =        1 ρ (ρv ρ,ρ ) ,ρ + 1 ρ 2 v ρ,θθ + v ρ,zz - 1 ρ 2 (v ρ + 2v θ,θ ) 1 ρ (ρv θ,ρ ) ,ρ + 1 ρ 2 v θ,θθ + v θ,zz - 1 ρ 2 (v θ -2v ρ,θ ) 1 ρ (ρv z,ρ ) ,ρ + 1 ρ 2 v z,θθ + v z,zz        .

Differential operators in spherical coordinates

The spherical coordinates r, ϕ, θ of a point p, whose Cartesian coordinates in the (fixed) frame {o; e 1 , e 2 , e 3 } are p = (x 1 , x 2 , x 3 ), are shown in Fig. 5.3. They are related together by

r = x 2 1 + x 2 2 + x 2 3 , ϕ = arctan x 2 1 + x 2 2 x 3 , θ = arctan x 2 x 1 ,
or conversely

x 1 = r cos θ sin ϕ, x 2 = r sin θ sin ϕ, x 3 = r cos ϕ.

To notice that r ≥ 0 and that the anomaly θ is bounded by 0 ≤ θ < 2π while the colatitude ϕ by 0 ≤ ϕ ≤ π. In the (local) frame {p; e r , e ϕ , e θ }, the differential operators are

∇f = f ,r , 1 r f ,ϕ , 1 r sin ϕ f ,θ , ∆f = 1 r 2 (r 2 f ,r ) ,r + 1 r 2 sin ϕ (f ,θθ + (f ,ϕ sin ϕ) ,ϕ ), ∇v =         v r,r 1 r (v r,ϕ -v ϕ ) 1 r 1 sin ϕ v r,θ -v θ v ϕ,r 1 r (v ϕ,ϕ + v r ) 1 r 1 sin ϕ v ϕ,θ -v θ cot ϕ v θ,r 1 r v θ,ϕ 1 r 1 sin ϕ v θ,θ + v r + v ϕ cot ϕ         , divv = 1 r 2 (r 2 v r ) ,r + 1 r sin ϕ (v ϕ,ϕ sin θ + v θ,θ ), curlv = 1 r sin ϕ (v θ,ϕ sin θ -v ϕ,θ ), 1 r sin ϕ v r,θ - 1 r (rv θ ) ,r , 1 r ((rv ϕ ) ,r -v r,ϕ ) , divL =        1 r 2 (r 2 L rr ) ,r + 1 r L rϕ,ϕ + 1 r sin ϕ L rθ,θ - L ϕϕ + L θθ r + cot ϕ r L rϕ 1 r 2 (r 2 L ϕr ) ,r + 1 r L ϕϕ,ϕ + 1 r sin ϕ L ϕθ,θ + 1 r L rϕ + cot ϕ r (L ϕϕ -L θθ ) 1 r 2 (r 2 L θr ) ,r + 1 r L θϕ,ϕ + 1 r sin ϕ L θθ,θ + 1 r L rθ + cot ϕ r (L ϕθ + L θϕ )        , ∆v =         v r,rr + 2v r,r r + v r,ϕϕ -2v ϕ,ϕ r 2 + v r,ϕ -2v ϕ r 2 tan ϕ + 1 r 2 sin ϕ v r,θθ sin ϕ -2v θ,θ - 2v r r 2 v ϕ,rr + 2v ϕ,r r + v ϕ,ϕϕ + 2v r,ϕ r 2 + v ϕ,ϕ -v ϕ cot ϕ r 2 tan ϕ + 1 r 2 sin ϕ v ϕ,θθ sin ϕ -2v θ,θ cot ϕ - v ϕ r 2 v θ,rr + 2v θ,r r + v θ,ϕϕ r 2 + v θ,ϕ + 2v ϕ,θ sin ϕ 1 r 2 tan ϕ + 1 r 2 sin ϕ v θ,θθ sin ϕ + 2v r,θ - v θ r 2 sin 2 ϕ         .

Exercices

1. Consider a rigid body B, and a point p 0 ∈ B. From the kinematics of rigid bodies, we now that the velocity of another point p ∈ B is given by

v(p) = v(p 0 ) + ω × (p -p 0 ),
with ω the angular velocity. Prove that ω = 1 2 curlv.

2. Prove the relations at the end of Sect. 5.3.

3. Prove the three forms of the Gauss Theorem using the Divergence lemma.

4. Make use of the tensor form of the Gauss Theorem to prove the Curl Theorem.

5. Prove the following identities using the Gauss theorem:

∂Ω v • Ln ds = Ω (v • divL + L • ∇v)dv, ∂Ω (Ln) ⊗ v ds = Ω ((divL) ⊗ v + L(∇v ))dv, ∂Ω (w • n)v ds = Ω (vdivw + (∇v)w)dv.
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Chapter 6

Curvilinear coordinates

Introduction

All the developments done in the previous Chapters are intended for the case where algebraic and differential operators are expressed in a Cartesian frame, i.e. with rectangular coordinates. The points of E are thus referred to a system of coordinates taken along straight lines that are mutually orthogonal and with the same unit along each one of the directions of the frame. Though this is a very important and common case, it is not the only possibility and in many cases non rectangular coordinate frames are used or arise in the mathematical developments (a typical example is that of the geometry of surfaces, see Chapter 7). A non rectangular coordinate frame is a frame where coordinates can be taken along non orthogonal directions, or along some lines that intersect at right angles but that are not straight lines or even when both of these situations occur. This situation is often denoted in the literature as that of curvilinear coordinates; the transformations to be done to algebraic and differential operators in the case of curvilinear coordinates is the topic of this Chapter.

Curvilinear coordinates, metric tensor

Let us consider an arbitrary origin o of E and an orthonormal basis e = {e 1 , e 2 , e 3 } of V; we will indicate the coordinates of a point p ∈ E with respect to the frame R = {o; e 1 , e 2 , e 3 } by x k : p = (x 1 , x 2 , x 3 ). Then, we consider also another set of coordinate lines for E, where the position of a point p ∈ E with respect to the same arbitrary origin o of E is now determined by a set of three numbers z j : p = {z 1 , z 2 , z 3 }. Nothing is a-priori asked to coordinates z j , namely they do not need to be a set of Cartesian coordinates, i.e. referring to an orthonormal basis of V. In principle, the coordinates z j can be taken along non straight lines, that do not need to be mutually orthogonal at o and also with different units along each line. That is why we call the z j s curvilinear coordinates, see Fig. 6.1. Any point p ∈ E can be identified by either set of coordinates; mathematically, this means that there must be an isomorphism between the x k s and the z j s, i.e. invertible relations of the kind

z j = z j (x 1 , x 2 , x 3 ) = z j (x k ), x k = x k (z 1 , z 2 , z 3 ) = x k (z j ) ∀j, k = 1, 2, 3 (6.1)
exist between the two sets of coordinates. The distance between two points p, q

∈ E is s = (p -q) • (p -q) = (x p k -x q k )(x p k -x q k
) but this is no longer true for curvilinear coordinates: s = (z j p -z j q )(z j p -z j q ). However, if p → q, we can define dx k = x p k -x q k , dz j = z j p -z j q , so using eq. (6.1)

2 dx k = ∂x k ∂z j dz j . (6.2)
The (infinitesimal) distance between p and q will then be

ds = dx k dx k = ∂x k ∂z j ∂x k ∂z l dz j dz l = g jl dz j dz l ,
where

g jl = g lj = ∂x k ∂z j ∂x k ∂z l (6.3)
are the covariant1 components of the metric tensor g. To notice that, as g defines a positive quadratic form (the length of a vector), it is a positive definite symmetric tensor, so det g > 0.

(6.4)

Coming back to the vector notation, from eq. ( 6.2) we get

dx = dx i e i = ∂x i ∂z k dz k e i ;
Figure 6.2: Tangent vectors to the curvilinear coordinates lines.

introducing the vector g k ,

g k := ∂x i ∂z k e i , (6.5) 
we can write dx = dz k g k .

We see hence that a vector dx can be expressed as a linear combination of the vectors g k ; these ones form therefore a basis, called the local basis. Generally speaking, g k / ∈ S and it is clearly tangent to the lines z j = const. This can be seen in Fig. 6.2 for a two-dimensional case:

dx = lim ∆x→0 ∆x = lim ∆x→0 x i (z 1 , z 2 + ∆z 2 , z 3 ) -x i (z 1 , z 2 , z 3 ) ∆z 2 ∆z 2 e i = ∂x i ∂z 2 e i dz 2 = g 2 dz 2 .
Then

g k • g l = ∂x i ∂z k e i • ∂x j ∂z l e j = ∂x i ∂z k ∂x j ∂z l δ ij = g kl , (6.6) 
i.e. the components of the metric tensor g are the scalar products of the tangent vectors

g k s. If the curvilinear coordinates are orthogonal, i.e. if g h • g k = 0 ∀h, k = 1, 2, 3, h = k, then g is diagonal.
If, in addition, g k ∈ S ∀k = 1, 2, 3, then g = I: it is the case of Cartesian coordinates. As an example, let us consider the case of polar coordinates,

x 1 = r cos θ, x 2 = r sin θ, z 1 = r = x 2 1 + x 2 2 , z 2 = θ = arctan x 2 x 1 .
Hence, Fig. 6.3,

g 1 = ∂x 1 ∂z 1 e 1 + ∂x 2 ∂z 1 e 2 = cos θe 1 + sin θe 2 = e r , g 2 = ∂x 1 ∂z 2 e 1 + ∂x 2
∂z 2 e 2 = -r sin θe 1 + r cos θe 2 = re θ .

To remark that |g 1 | = 1 but |g 2 | = 1 and it is variable with the position.

with

h = 1 sin(α 2 -α 1 )
.

It is apparent that the Cartesian coordinates are at the same time co-and contra-variant. Still on a planar scheme, we can see how to pass from a system of coordinates to another one, cf. Fig. 6.5 For a point p the Cartesian coordinates (x 1 , x 2 ) are related to the Figure 6.5: Relation between Cartesian and contravariant components.

contravariant ones by

x 1 = z 1 cos α 1 + z 2 cos α 2 , x 2 = z 1 sin α 1 + z 2 sin α 2 ,
and conversely

z 1 = h(x 1 sin α 2 -x 2 cos α 2 ), z 2 = h(-x 1 sin α 1 + x 2 cos α 1 ).
So, differentiating we get

∂x 1 ∂z 1 = cos α 1 , ∂x 1 ∂z 2 = cos α 2 , ∂x 2 ∂z 1 = sin α 1 , ∂x 2 ∂z 2 = sin α 2 ,
and

∂z 1 ∂x 1 = h sin α 2 , ∂z 1 ∂x 2 = -h cos α 2 , ∂z 2 ∂x 1 = -h sin α 1 , ∂z 2 ∂x 2 = h cos α 1 .
Injecting these expressions into eqs. (6.7) and (6.8) gives

v 1 = v x 1 ∂x 1 ∂z 1 + v x 2 ∂x 2 ∂z 1 , v 2 = v x 1 ∂x 1 ∂z 2 + v x 2 ∂x 2 ∂z 2 , → v i = ∂x k ∂z i v x k (6.9)
and

v 1 = v x 1 ∂z 1 ∂x 1 + v x 2 ∂z 1 ∂x 2 , v 2 = v x 1 ∂z 2 ∂x 1 + v x 2 ∂z 2 ∂x 2 , → v i = ∂z i ∂x k v x k .
(6.10)

If now we calculate

g hi v i = g hi ∂z i ∂x k v x k ,
from eq. ( 6.3) and by the chain rule 3 we get

g hi v i = ∂x j ∂z h ∂x j ∂z i ∂z i ∂x k v x k = ∂x j ∂z h ∂x j ∂x k v x k = ∂x j ∂z h δ jk v x k = ∂x k ∂z h v x k = v h ,
i.e. we obtain the rule of lowering of the indices for passing from contravariant to covariant components:

v h = g hi v i .
Introducing the inverse 4 to g hi as

g hi = ∂z h ∂x k ∂z i ∂x k , (6.11) 
we get, still using the chain rule,

g hi v i = g hi ∂x k ∂z i v x k = ∂z h ∂x j ∂z i ∂x j ∂x k ∂z i v x k = ∂z h ∂x j ∂x k ∂x j v x k = ∂z h ∂x j δ jk v x k = ∂z h ∂x k v x k = v h ,
which is the rule of raising of the indices for passing from covariant to contravariant components:

v h = g hi v i .
Still applying the chain rule, by eq. ( 6.9) we get

∂z i ∂x l v i = ∂z i ∂x l ∂x k ∂z i v x k = ∂x k ∂x l v x k = δ kl v x k i.e. v x k = ∂z i ∂x k v i , (6.12) 
3 The reader can easily see that, in practice, the chain rule allows to handle the derivatives as fractions. 4 To prove that the contravariant components g pq are the inverse of the covariant ones, g pq is direct:

g pq g pq = ∂z p ∂x k ∂z q ∂x k ∂x j ∂z p ∂x j ∂z q = δ jk δ jk = 1.
which is the converse of eq. (6.9). In the same way we get the converse of eq. (6.10):

v x k = ∂x k ∂z i v i . (6.13)
Let us now calculate the norm v of a vector v; starting from the Cartesian components and using the last two results,

v = √ v • v = v x k v x k = ∂z i ∂x k v i ∂z j ∂x k v j = ∂z i ∂x k ∂z j ∂x k v i v j = g ij v i v j , or also v = √ v • v = v x k v x k = ∂x k ∂z i v i ∂x k ∂z j v j = ∂x k ∂z i ∂x k ∂z j v i v j = g ij v i v j
and even

v = √ v • v = v x k v x k = ∂z i ∂x k v i ∂x k ∂z j v j = ∂z i ∂x k ∂x k ∂z j v i v j = δ i j v i v j = v i v i .
Through eq. ( 6.13) and by the definition of the tangent vectors to the lines of curvilinear coordinates, eq. ( 6.5), for a vector v we get

v = v x i e i = v k ∂x i ∂z k e i = v k g k .
We see hence that the contravariant components are actually the components of v in the basis composed by the g k s, the tangents to the lines of curvilinear coordinates. In a similar manner, if we introduce the dual basis whose vectors g k are defined as (6.14) proceeding in the same way we obtain that

g k := ∂z k ∂x i e i ,
v = v x i e i = v k ∂z k ∂x i e i = v k g k ,
i.e. the covariant components are actually the components of v in the dual basis. Finally, for a vector we have, alternatively,

v = v x i e i = v k g k = v k g k . (6.15)
Just as for the g k s, we have

g h • g k = ∂z h ∂x i e i • ∂z k ∂x j e j = ∂z h ∂x i ∂z k ∂x j δ ij = ∂z h ∂x i ∂z k ∂x i = g hk ; moreover g h • g k = ∂z h ∂x i e i • ∂x j ∂z k e j = ∂z h ∂x i ∂x j ∂z k δ ij = ∂z h ∂x i ∂x i ∂z k = ∂z h ∂z k = δ h k ,
and by the symmetry of the scalar product

δ k h := g h • g k = g k • g h = δ k h .
The last equations defines the orthogonality conditions for the g-vectors. Using these results and eq. ( 6.15) we have also

v k = δ k h v h = g k • v h g h = g k • v = g k • v h g h = g kh v h , v k = δ h k v h = g k • v h g h = g k • v = g k • v h g h = g kh v h ,
so founding again the rules of raising and lowering of the indices.

What done for a vector, can be transposed, using a similar approach, to tensors. In particular, for a second-rank tensor L we get

L ij = ∂z i ∂x h ∂z j ∂x k L x hk , L ij = ∂x h ∂z i ∂x k ∂z j L x hk , (6.16) 
for the contravariant and covariant components, respectively, while we can also introduce the mixed components

L i j = ∂z i ∂x h ∂x k ∂z j L x hk , L j i = ∂x h ∂z i ∂z j ∂x k L x hk .
(6.17)

Conversely,

L x hk = ∂x h ∂z i ∂x k ∂z j L ij , L x hk = ∂z i ∂x h ∂z j ∂x k L ij , L x hk = ∂x h ∂z i ∂z j ∂x k L i j , L x hk = ∂z i ∂x h ∂x k ∂z j L j i .
(6.18) Also for L, the rule of lowering or raising the indices is valid:

L ij = g ih g jk L hk , L ij = g ih g jk L hk .
From eq. (6.18) and by the same definitions of g ij , eq.( 6.3), and g ij , eq. ( 6.11), we get

L = L x ij e i ⊗ e j = ∂x i ∂z h ∂x j ∂z k L hk e i ⊗ e j = L hk g h ⊗ g k and L = L x ij e i ⊗ e j = ∂z h ∂x i ∂z k ∂x j L hk e i ⊗ e j = L hk g h ⊗ g k .
In the same manner, the tensor mixed components are also found:

L = L x ij e i ⊗ e j = ∂x i ∂z h ∂z k ∂x j L h k e i ⊗ e j = L h k g h ⊗ g k and L = L x ij e i ⊗ e j = ∂z k ∂x j ∂x i ∂z h L k h e i ⊗ e j = L k h g h ⊗ g k .
We see hence that a second-rank tensor can be given with four different combinations of coordinates; even more complex is the case of higher order tensors, that will not be treated here.

Still by eqs.(6.3) and (6.11) and applying the chain rule to δ i j = ∂z i ∂z j , we get

g ij = ∂x k ∂z i ∂x k ∂z j = ∂x h ∂z i ∂x k ∂z j δ hk , g ij = ∂z i ∂x k ∂z j ∂x k = ∂z i ∂x h ∂z j ∂x k δ hk , δ i j = ∂z i ∂x h ∂x k ∂z j δ hk , δ j i = ∂x h ∂z i ∂z j ∂x k δ hk . (6.19)
So, applying eq. ( 6.18) to the identity tensor we get

I = δ ij e i ⊗ e j = ∂x i ∂z h
∂x j ∂z k I hk e i ⊗ e j = I hk g h ⊗ g k , but, by eqs. (6.16) and (6.19),

I hk = ∂z h ∂x i ∂z k ∂x j δ ij = g hk so finally I = g hk g h ⊗ g k .
Proceeding in the same manner, we get also

I = g hk g h ⊗ g k = δ h k g h ⊗ g k = δ k h g h ⊗ g k .
We see hence that the g hk s represent I in covariant coordinates, the g hk s in the contravariant ones and the δ k h s and δ h k s in mixed coordinates.

Spatial derivatives of fields in curvilinear coordinates

Let ϕ a spatial5 scalar field, ϕ : E → R. Generally speaking,

ϕ = ϕ(z j (x i )),
or also

ϕ = ϕ(x j (z k )),
where the x j s, z k s are respectively Cartesian and curvilinear coordinates, related as in eq. (6.1). By the chain rule ∂ϕ ∂x j = ∂ϕ ∂z k ∂z k ∂x j (6.20)

and inversely ∂ϕ ∂z k = ∂ϕ ∂x j ∂x j ∂z k .

We remark that the last quantity transforms like the components of a covariant vector, cf. eq.( 6.9).

The gradient of ϕ is the vector that in the Cartesian basis is defined by ∇ϕ = ∂ϕ ∂x j e j ; so, by eqs. (6.14) and (6.20) we get that in the dual basis

∇ϕ = ∂ϕ ∂z k ∂z k ∂x j e j = ∂ϕ ∂z k g k .
We see hence that in curvilinear coordinates the nabla operator is defined by

∇(•) = ∂ • ∂z k g k . (6.21)
The contravariant components of the gradient can be obtained by the covariant ones upon multiplication by the components of the inverse (contravariant) metric tensor, eq. (6.11):

g hk ∂ϕ ∂z k = ∂z h ∂x i ∂z k ∂x i ∂ϕ ∂x j ∂x j ∂z k = δ ij ∂ϕ ∂x j ∂z h ∂x i = ∂ϕ ∂x j ∂z h ∂x j → ∇ϕ = ∂ϕ ∂x j ∂z h ∂x j g h .
Let us now consider a vector field v : E → V; we want to calculate the spatial derivative of its Cartesian components. By the chain rule and eq. ( 6.13) we get (6.22) Comparing this result with eq. ( 6.17) 1 we see that the first member actually corresponds to the components of a mixed tensor field which is the gradient of the vector field v, that we write as (6.23) where the

∂v x i ∂x j = ∂v x i ∂z k ∂z k ∂x j = ∂z k ∂x j ∂ ∂z k ∂x i ∂z h v h = ∂z k ∂x j ∂x i ∂z h ∂v h ∂z k + ∂ 2 x i ∂z k ∂z l v l = ∂z k ∂x j ∂x i ∂z h ∂v h ∂z k + ∂z h ∂x m ∂ 2 x m ∂z k ∂z l v l , whence ∂z h ∂x i ∂x j ∂z k ∂v x i ∂x j = ∂v h ∂z k + ∂z h ∂x m ∂ 2 x m ∂z k ∂z l v l .
v h ;k = ∂v h ∂z k + Γ h kl v l ,
Γ h kl = ∂z h ∂x m ∂ 2 x m ∂z k ∂z l (6.24)
are the Christoffel symbols. We immediately see that Γ h kl = Γ h lk . The quantity v h ;k is the covariant derivative of the contravariant components v h . It can be proved that the Christoffel symbols can be written also as

Γ h kl = 1 2 g hm ∂g mk ∂z l + ∂g ml ∂z k - ∂g kl ∂z m . (6.25)
Proceeding in the same way for the covariant components of v, but now using eqs. (6.12) and (6.17) 1 , we get

v h;k = ∂v h ∂z k -Γ l kh v l , which is the covariant derivative of the covariant components v h .
Using eqs. (6.22) and (6.23), we conclude that divv :=

∂v x i ∂x i = v h ;h .
Then, applying the operator divergence so defined to the gradient of the scalar field ϕ we obtain, in arbitrary coordinates z, the Laplacian ∆ϕ as ∆ϕ = g hk ∂ϕ ∂z k

;h = ∂ ∂z h g hk ∂ϕ ∂z k + Γ h hj g jk ∂ϕ ∂z k .
Using the definition of the nabla operator in curvilinear coordinates, eq. ( 6.21), jointly to the fact that, cf. Sect. 5.5, div∇f = ∇ • ∇f, we get the the following representation of the Laplace operator in curvilinear coordinates:

∆(•) = ∇ • ∇(•) = ∂ ∂z k ∂(•) ∂z h g h • g k = ∂ 2 (•) ∂z k ∂z h g h • g k + ∂g h ∂z k ∂(•) ∂z h • g k = ∂ 2 (•) ∂z k ∂z h g hk + ∂g h ∂z k • g k ∂(•) ∂z h .
Let us now calculate the spatial derivatives of the components of a 2 nd -rank tensor L: by eqs. (6.18) 1 and (6.24) we get represents the covariant derivative of the contravariant components of the second-rank tensor L. In a similar manner, this time by eq. ( 6.18) 2 , we obtain the covariant derivatives of the covariant components of L:

∂L x ij ∂x k = ∂z h ∂x k ∂ ∂z h ∂x i ∂z n ∂x j ∂z p L np =
∂L np ∂z h -Γ r nh L rp -Γ r ph L nr = ∂x k ∂z h ∂x i ∂z n ∂x j ∂z p ∂L x ij ∂x k , i.e. L np;h = ∂L np ∂z h -Γ r ph L nr -Γ r nh L pr .
(6.28)

The same procedure with eqs. (6.18) 3 , 4 gives the covariant derivatives of the mixed components of L:

L n p;h = ∂L n p ∂z h + Γ n hr L r p -Γ r ph L n r , L n p ;h = ∂L n p ∂z h -Γ r ph L n r + Γ n hr L r p .
(6.29) Equations (6.27), (6.28) and (6.29) represents the different forms of the components of a third-rank tensor ∇L, the gradient of L.

If in eqs. (6.26) and (6.27) we put p = h, we get

L nh ;h = ∂L nh ∂z h + Γ n hr L rh + Γ h hr L nr = ∂x k ∂z h ∂z n ∂x i ∂z h ∂x j ∂L x ij ∂x k = δ kj ∂z n ∂x i ∂L x ij ∂x k = ∂z n ∂x i ∂L x ij ∂x j ,
which are the components of the contravariant vector field divL, the divergence of L.

Exercices

1. Write g and ds for cylindrical coordinates.

2. Write g and ds for spherical coordinates.

3. Find the length of a cylindrical helix on a cylinder of radius R between the angles θ and θ + 2π.

4. A curve is traced in a quarter of circle of radius R, see Fig. 6.6; when the quarter of circle is rolled into a cone, the curve appears as indicated in the figure, after having described, in the plane, a complete circle. Determine the length of the curve, first using the polar coordinates in the plane of the quarter of circle, then the cylindrical ones for case of the curve on the cone. 5. Calculate g for a planar system of coordinates composed by two axes z 1 and z 2 inclined respectively of α 1 and α 2 on the axis x 1 .

6. Calculate the g i s for a system of spherical coordinates.

7. In the plane, elliptical coordinates are defined by the relations

x 1 = c cosh z 1 cos z 2 , x 2 = c sinh z 1 sin z 2 , z 1 ∈ (0, ∞), z 2 ∈ [0, 2π);
show that the lines z 1 = const., z 2 = const. are confocal ellipses and hyperbolae, determine the axes of the ellipses in terms of the parameter c, discuss the limit case of ellipses that degenerate into a crack and determine its length. Finally, find g, g 1 , g 2 .

8. Determine the co-and contra-variant components of a tensor L in cylindrical coordinates.

9. Determine the co-and contra-variant components of a tensor L in spherical coordinates.

10. For the case of exercise 5, calculate the vectors g k and g k , design these vectors and check the orthogonality conditions

g h • g k = δ h k . 11. Show that trL = L x ii = g ij L ij = g ij L ij = L i i = L j j .
12. Prove eq. (6.25).

13. Prove the Lemme of Ricci:

∂g jk ∂z h = Γ i jh g ik + Γ i kh g ji .
14. Using eq. (6.25) find the Christoffel symbols for the cylindrical, spherical and elliptical (in the plane) coordinates.

15. Write the Laplace operator in cylindrical and spherical coordinates.

16. Prove that g np ;h = g np;h = 0.
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Chapter 7

Surfaces in E

7.1 Surfaces in E, coordinate lines, tangent planes

A function f (u, v) : Ω ⊂ R 2 → E of class ≥C 1 and such that its Jacobian J =         ∂f 1 ∂u ∂f 1 ∂v ∂f 2 ∂u ∂f 2 ∂v ∂f 3 ∂u ∂f 3 ∂v        
has maximum rank (rank[J]=2) defines a surface in E, see Fig. 7.1. We say also that f is an immersion of Ω into E and that the subset Σ ⊂ E image of f is the support or trace of the surface f . We will also indicate derivatives with respect to the variables u, v by, e.g., ∂f ∂u = f ,u etc.

The condition on the rank of J is equivalent to impose that

f ,u (u, v) × f ,v (u, v) = o ∀(u, v) ∈ Ω. (7.1)
The normal to the surface f is the vector N ∈ S defined as

N := f ,u × f ,v |f ,u × f ,v | . (7.2)
A regular point of Σ is a point where N is defined; if N is defined ∀p ∈ Σ then the surface is said to be regular.

A function γ(t) : G ⊂ R → Ω whose parametric equation is γ(t) = (u(t), v(t)) describes a curve in Ω whose image, through f , is a curve

γ(t) = f (u(t), v(t)) : G ⊂ R → Σ ⊂ E.
As a special case of curve in Ω, let us consider the curves of the type v = v 0 or u = u 0 , with u 0 , v 0 some constants. Then, their image through f are two curves f (u, v 0 ), f (u 0 , v) on Σ called coordinate lines, see Fig. 7.1. The tangent vectors to the coordinate lines are respectively the vectors f ,u (u, v 0 ) and f ,v (u 0 , v), while the tangent to a curve γ(t) = f (u(t), v(t)) is the vector

γ (t) = f ,u du dt + f ,v dv dt , (7.3) 
i.e. the tangent vector to any curve on Σ is a linear combination of the tangent vectors to the coordinate lines. To remark that the tangent vectors f ,u (u, v 0 ) and f ,v (u 0 , v) are necessarily non null and linear independent as consequence of the assumption on the rank of J, and hence of the existence of N, i.e. of the regularity of Σ. They determine a plane that contains the tangents to all the curves on Σ passing by p = f (u 0 , v 0 ) and form a basis on this plane, called the natural basis. Such a plane is the tangent plane to Σ in p and is indicated by T p Σ; this plane is actually the space spanned by f ,u (u, v 0 ) and f ,v (u 0 , v) and is also called the tangent vector space.

Let us consider two open subsets Ω

1 , Ω 2 ⊂ R 2 ; a diffeomorphism 1 of class C k between Ω 1 and Ω 2 is a bijective map ϑ : Ω 1 → Ω 2 of class C k with also its inverse of class C k ; the diffeomorphism is smooth if k = ∞.
Let Ω 1 , Ω 2 be two open subsets of R 2 , f : Ω 2 → E a surface and ϑ : Ω 1 → Ω 2 a smooth diffeomorphism. Then the surface F = f • ϑ : Ω 1 → E is a change of parameterization for f . In practice, the function defining the surface changes, but not Σ, its trace in E. Let (U, V ) be the coordinates in Ω 1 and (u, v) in Ω 2 ; then, by the chain rule,

F ,U = f ,u ∂u ∂U + f ,v ∂v ∂U , F ,V = f ,u ∂u ∂V + f ,v ∂v ∂V ,
or, denoting by J ϑ the Jacobian of ϑ,

F ,U F ,V = [J ϑ ] f ,u f ,v , whence F ,U × F ,V = det[J ϑ ] f ,u × f ,v .
This result shows that the regularity of the surface, condition (7.1), the tangent plane and the tangent space vector do not depend upon the parameterization of Σ. From the last equation, we get also

N(U, V ) = sgn(det[J ϑ ]) N(u, v);
we say that the change of parameterization preserves the orientation if det[J ϑ ] > 0, and that it inverses the parameterization in the opposite case.

Surfaces of revolution

A surface of revolution is a surface whose trace is obtained letting rotate a plane curve, say γ, around an axis, say x 3 . To be more specific, and without loss of generality, let γ : G ⊂ R → R 2 be a regular curve of the plane x 2 = 0, whose parametric equation is

γ(u) : x 1 = ϕ(u), x 3 = ψ(u), ϕ(u) > 0 ∀u ∈ G. (7.4)
Then, the subset Σ γ ⊂ E defined by Σ γ := (x 1 , x 2 , x 3 ) ∈ E|x 2 1 + x 2 2 = ϕ 2 (u), x 3 = ψ(u), u ∈ G is the trace of a surface of revolution of the curve γ(u) around the axis x 3 . A general parameterization of such a surface is

f (u, v) : G × (-π, π] → E|    x 1 = ϕ(u) cos v, x 2 = ϕ(u) sin v, x 3 = ψ(u). (7.5)
It is readily checked that this parameterization actually defines a regular surface:

f ,u =    ϕ (u) cos v ϕ (u) sin v ψ (u)    , f ,v =    -ϕ(u) sin v ϕ(u) cos v 0    → f ,u × f ,v =    -ϕ(u)ψ (u) cos v -ϕ(u)ψ (u) sin v ϕ(u)ϕ (u)    so that |f ,u × f ,v | = ϕ 2 (u)(ϕ 2 (u) + ψ 2 (u)) = 0 ∀u ∈ G
for being γ(u) a regular curve, i.e. with γ (u) = o ∀u ∈ G. A meridian is a curve in E intersection of the trace of f , Σ γ , with a plane containing the axis x 3 ; the equation of a meridian is obtained fixing the value of v, say v = v 0 :

   x 1 = ϕ(u) cos v 0 , x 2 = ϕ(u) sin v 0 , x 3 = ψ(u).
A parallel is a curve in E intersection of Σ γ with a plane orthogonal to x 3 ; the equation of a parallel, which is a circle with center on the axis x 3 , is obtained fixing the value of u, say u = u 0 :

   x 1 = ϕ(u 0 ) cos v, x 2 = ϕ(u 0 ) sin v, x 3 = ψ(u 0 ), or also x 2 1 + x 2 2 = ϕ(u 0 ) 2 , x 3 = ψ(u 0 );
the radius of the circle is ϕ(u 0 ).

A loxodrome or rhumb line is a curve on Σ γ crossing all the meridians at the same angle.

Some important examples of surfaces of revolution are:

• the sphere:

f (u, v) : - π 2 , π 2 × (-π, π] → E|    x 1 = cos u cos v, x 2 = cos u sin v, x 3 = sin v;
• the catenoid:

f (u, v) : [-a, a] × (-π, π] → E|    x 1 = cosh u cos v, x 2 = cosh u sin v, x 3 = u;
• the pseudo-sphere:

f (u, v) : [0, a] × (-π, π] → E|      x 1 = sin u cos v, x 2 = sin u sin v,
x 3 = cos u + ln tan u 2 ;

(7.6)

• the hyperbolic hyperboloid:

f (u, v) : [-a, a] × (-π, π] → E|    x 1 = cos u -v sin u, x 2 = sin u + v cos u, x 3 = v.

Ruled surfaces

A ruled surface (also named a scroll) is a surface with the property that through every one of its points there is a straight line that lies on the surface. A ruled surface can be seen as the set of points swept by a moving straight line. We say that a surface is doubly ruled if through every one of its points there are two distinct straight lines that lie on the surface.

Any ruled surface can be represented by a parameterization of the form

f (u, v) = γ(u) + vλ(u), (7.7) 
where γ(u) is a regular smooth curve, the directrix, and λ(u) is a smooth curve. Fixing u = u 0 gives a generator line f (u 0 , v) of the surface; the vectors λ(u) = o describe the directions of the generators. Some important examples of ruled surfaces are:

• cones: for these surfaces, all the straight lines pass through a point, the apex of the cone, choosing the apex as the origin, then it must be λ

(u) = kγ(u), k ∈ R → f (u, v) = vγ(u);
• cylinders: a ruled surface is a cylinder ⇐⇒ λ(u) = const. In this case, it is always possible to choose λ(u) ∈ S and γ(u) a planar curve lying in a plane orthogonal to λ(u) (it is sufficient to choose the curve γ * (u) = (I -λ(u) ⊗ λ(u))γ(u));

• helicoids: a surface generated by rotating and simultaneously displacing a curve, the profile curve, along an axis is a helicoid. Any point of the profile curve is the starting point of a circular helix. Generally speaking, we get a helicoid if γ(u) = (0, 0, ϕ(u)), λ(u) = (cos u, sin u, 0), ϕ(u) : R → R.

• Möbius strip: it is a ruled surface with γ(u) = (cos 2u, sin 2u, 0), λ(u) = (cos u cos 2u, cos u sin 2u, sin u).

First fundamental form of a surface

We call first fundamental form of a surface, denoted by I(•, •), the restriction of the scalar product to the tangent vector space T p Σ. We recall that a scalar product is a positive definite symmetric form. Let us consider two vectors w is the first form of f (u, v); if w 1 = w 2 = w = af ,u + bf ,v , then

1 = a 1 f ,u +b 1 f ,v , w 2 = a 2 f ,u +b 2 f ,v ∈ T p Σ; then I(w 1 , w 2 ) = w 1 • w 2 = a 1 a 2 f 2 ,u + (a 1 b 2 + a 2 b 1 )f ,u • f ,v + b 1 b 2 f 2 ,v
I(w) = w 2 = a 2 f 2 ,u + 2abf ,u • f ,v + b 2 f 2 ,v
is a positive form ∀w ∈ T p Σ. We can rewrite I(•, •) in the form

I(w 1 , w 2 ) = w 1 • g w 2 ,
where

2 g = f ,u • f ,u f ,u • f ,v f ,v • f ,u f ,v • f ,v
is actually the metric tensor g of Σ, cf. eq. (6.6). In fact, f ,u and f ,v are the tangent vectors to the coordinate lines on Σ, i.e. they coincide with the vectors g k s.

Through I(•, •) we can calculate some important quantities regarding the geometry of Σ:

• metric on Σ: ∀ds ∈ Σ, ds 2 = ds • ds = I(ds);

so, if ds = f ,u du + f ,v dv then ds 2 = f 2 ,u du 2 + 2f ,u • f ,v du dv + f 2 ,v dv 2 ; (7.8)
• length of a curve γ : [t 1 , t 2 ] ⊂ R → Σ: we know, eq. ( 4.4), that the length of a curve is the integral of the tangent vector:

= t 2 t 1 |γ (t)|dt = t 2 t 1 γ (t) • γ (t)dt
2 Often, in texts on differential geometry, tensor g is indicated as

g = E F F G , where E := f ,u • f ,u , F := f ,u • f ,v , G := f ,v • f ,v .
and hence, see eq. ( 7.3), if we call w = (u , v ) the tangent vector to γ, expressed by its components in the natural basis,

= t 2 t 1 u 2 f 2 ,u + 2u v f ,u • f ,v + v 2 f 2 ,v dt = t 2 t 1 (u , v ) • g (u , v )dt = t 2 t 1
I(w)dt;

(7.9)

• angle θ formed by two vectors w 1 , w 2 ∈ T p Σ:

cos θ = w 1 • w 2 |w 1 ||w 2 | = I(w 1 , w 2 )
I(w 1 ) I(w 2 ) ;

• area of a small surface on Σ: be f ,u du and f ,v dv two small vectors on Σ, forming together the angle θ, that are the transformed, through3 f : Ω → Σ, of two small orthogonal vectors du, dv ∈ Ω; then the area dA of the parallelogram determined by them is

dA = |f ,u du × f ,v dv| = |f ,u × f ,v |du dv = f 2 ,u f 2 ,v sin 2 θdu dv = f 2 ,u f 2 ,v (1 -cos 2 θ)du dv = f 2 ,u f 2 ,v -f 2 ,u f 2 ,v cos 2 θdu dv = f 2 ,u f 2 ,v -(f ,u • f ,v
) 2 du dv = det gdu dv; the term √ det g is hence the dilatation factor of the areas; recalling eq. ( 6.4), we see that the previous expression has a sense ∀f (u, v), i.e. for any parameterization of the surface.

Second fundamental form of a surface

Be f : Ω → Σ a regular surface, {f ,u , f ,v } the natural basis for T p Σ and N ∈ S the normal to Σ defined as in (7.2). We call map of Gauss of Σ the map ϕ Σ : Σ → S that associates to each p ∈ Σ its N : ϕ Σ (p) = N(p). To each subset σ ⊂ Σ the map of Gauss associates hence a subset σ S ⊂ S, Fig. 7.4 (e.g. the Gauss map of a plane is just a point of S).

We want to study how N(p) varies at the varying of p on Σ. To this purpose, we calculate the change of N per unit length of a curve γ(s) ∈ Σ, i.e., we study how N varies along any curve of Σ per unit of length of the curve itself; that is why we parameterize the curve with its arc-length s4 . Be N = N i (u, v)e i ; then The change of N is hence related to the directional derivative of N along the tangent τ to γ(s), which is a linear operator on T p Σ. Moreover, as N ∈ S, then, cf. eq. ( 4.1),

dN ds = dN i (u(s), v(s)) ds e i = ∂N i ∂u du ds + ∂N i ∂v dv ds e i = ∇N i • τ e i = (e i ⊗ ∇N i )τ = (∇N) τ = dN dτ .
N • N ,u = N • N ,v = 0 ⇒ N ,u , N ,v ∈ T p Σ.
We then call Weingarten operator L W : T p Σ → T p Σ the opposite of the directional derivative of N:

L W (τ ) := - dN dτ . Hence, L W (f ,u ) = -N ,u , L W (f ,v ) = -N ,v . (7.10)
Because L W is linear, then it exists a tensor X on T p Σ such that .11) For any two vectors w 1 , w 2 ∈ T p Σ, we define second fundamental form of a surface, denoted by II(w 1 , w 2 ) the bilinear form II(w 1 , w 2 ) := I(L W (w 1 ), w 2 ).

L W (v) = Xv ∀v ∈ T p Σ. ( 7 
Theorem 29. (Symmetry of the second fundamental form): ∀w 1 , w 2 ∈ T p Σ, II(w 1 , w 2 ) = II(w 2 , w 1 ).

Proof. Because I and L W are linear, it is sufficient to prove the thesis for the natural basis {f ,u , f ,v } of T p Σ, and, by the symmetry of I, it is sufficient to prove that

I(L W (f ,u ), f ,v ) = I(f ,u , L W (f ,v )), i.e. that I(-N ,u , f ,v ) = I(f ,u , -N ,v )
Because B = B , by the spectral theorem it exists an orthonormal basis {u

1 , u 2 } of T p Σ such that B = β i u i ⊗ u i ,
with β i the eigenvalues of B. In such a basis, by eq. ( 7.13) we get

κ N (u i ) = II(u i , u i ) I(u i , u i ) = u i • Bu i u i • gu i = u i • gXu i u i • gu i .
Then, because {u 1 , u 2 } is an orthonormal basis, g = I and

κ N (u i ) = u i • Xu i = β i ,
i.e. X and B shares the same eigenvalues and eigenvectors. Moreover, cf. Sect. 2.8, we know that the two directions u 1 , u 2 are the directions whereupon the quadratic form in the previous equation gets its maximum, κ 1 , and minimum, κ 2 , values, and in such a basis X = κ i u i ⊗ u i .

We call κ 1 and κ 2 the principal curvatures of Σ in p and u 1 , u 2 the principal directions of Σ in p, see Fig. 7.5. We call Gaussian curvature K the product of the principal curvatures:

K := κ 1 κ 2 = det X.
By eq. (7.15) and the Theorem of Binet, it is also

K = det B det g . ( 7 
.17)

We define mean curvature H of a surface6 f : Ω → Σ at a point p ∈ Σ the mean of the principal curvatures at p:

H := κ 1 + κ 2 2 = 1 2 trX.
Of course, a change of parameterization of a surface can change the orientation, cf. Sect. 7.1, which induces a change of N into its opposite one and by consequence of the sign of the second fundamental form and hence of the normal and principal curvatures. These last are hence defined to less the sign, and the mean curvature too, while the principal directions, umbilicality, flatness and Gaussian curvature are intrinsic to Σ, i.e. they do not depend on its parameterization. 

The theorem of Rodrigues

dN dλ = ∇N λ =   0 0 0 0 0 0 N ,u N ,v 1     λ u λ v 0   = N ,u λ u + N ,v λ v . (7.20) Be µ = (µ u , µ v ) the other principal direction of T p Σ; then λ • µ = 0 → I(λ, µ) = II(λ, µ) = 0. Moreover dN dλ • µ = -II(λ, µ) = 0
which implies, together with eq. (7.19), dN dλ = αλ. (7.21)

Theorem 32. If p is an elliptical point of σ, then it exists a neighbourhood U ∈ Σ of p such that all the points q ∈ U belong to the same half-space into which E is divided by the tangent plane T p Σ.

Proof. For the sake of simplicity and without loss of generality, we can always chose a parameterization f (u, v) of the surface such that p = f (0, 0). Expanding f (u, v) into a Taylor's series around (0, 0) we get the position of a point q = f (u, v) ∈ Σ in the nighbourhood of p (though not indicated for the sake of shortness, all the derivatives are intended to be calculated at (0, 0)):

f (u, v) = f ,u u + f ,v v + 1 2 (f ,uu u 2 + 2f ,uv uv + f ,vv v 2 ) + o(u 2 + v 2 ).
The distance with sign d(q) of q ∈ Σ from the tangent plane T p Σ is the projection onto N, i.e.:

d(q) = 1 2 (f ,uu u 2 + 2f ,uv uv + f ,vv v 2 ) • N + o(u 2 + v 2 ) = 1 2 (B 11 u 2 + 2B 12 uv + B 22 v 2 ) + o(u 2 + v 2 ),
or, which is the same, once put w = uf ,u + vf ,v , Theorem 33. If p is a hyperbolic point of Σ, then for each neighbourhood U ∈ Σ of p there are points q ∈ U that are in half-spaces on the opposite sides with respect to the tangent plane T p Σ.

d(q) = II(w, w) + o(u 2 + v 2 ). ( 7 
Proof. The proof is identical to that of the previous theorem, until eq. (7.23); if now p is a hyperbolic point, the principal curvatures have opposite sign and by consequence d(q) changes of sign at least two times in any neighbourhood U of p ⇒ there are points q ∈ U lying in half-spaces on the opposite sides with respect to the tangent plane T p Σ.

In a parabolic point, there are different possibilities: Σ is on one side of the space with respect to T p Σ, like for the case of a cylinder, or not, like, e.g., for the points (0, v) of the surface, see Fig

. 7.6,    x = (u 3 + 2) cos v, y = (u 3 + 2) sin v, z = -u.
This is the case also for planar points: e.g., the point (0, 0, 0) is a planar point for both the surfaces z = x 4 + y 4 , z = x 3 -3xy 2 , but in the first case, all the surface is on one side from the tangent plane, while it is on both sides for the second case (the so-called monkey's saddle), see Fig. 7.7. 

Developable surfaces

Let us now consider a ruled surface f : Ω → Σ like in eq. (7.7); then

f ,u = γ + vλ , f ,v = λ, f ,u × f ,v = γ × λ + vλ × λ, f ,uv = λ , f ,vv = o. by consequence, B 22 = N • f ,vv = 0 ⇒ det B = -B 2 
12 : the points of Σ are hyperbolic or parabolic. Namely, the parabolic points are those with

B 12 = N • f ,uv = f ,u × f ,v |f ,u × f ,v | • f ,uv = 0 ⇐⇒ (γ × λ + vλ × λ) • λ = γ × λ • λ = 0.
To remark that ruled surfaces made of parabolic points have null Gaussian curvature everywhere: K = 0.

Let us consider ruled surfaces having only parabolic points; then, Theorem 34. For a ruled surface f (u, v) = γ(u) + vλ(u), the following are equivalents:

i. γ , λ, λ are linearly dependent;

ii. N ,v = o.

Proof. Condition ii implies that N does not change along a straight line lying on the ruled surface ⇒ f ,u × f ,v = γ × λ + vλ × λ does not depend on v as well. This is possible ⇐⇒ γ × λ and λ × λ are linearly dependent, i.e. ⇐⇒

(γ × λ) × (λ × λ) = (λ × λ • γ )λ -(λ × λ • λ)γ = (λ × λ • γ )λ = o,
i.e. when λ, λ and γ are coplanar, which proves the thesis.

We say that a ruled surface is developable if one of the conditions of Theorem 34 is satisfied. A developable surface is a surface that can be flattened without distortion onto a plane, i.e.it can be bent without stretching or shearing or vice-versa, it can be obtained by transforming a plane. To remark that only ruled surfaces are developable (but not all the ruled surfaces are developable).

It is immediate to check that a cylinder or a cone are developable surfaces, while the helicoid, the hyperbolic hyperboloid or the hyperbolic paraboloid are not. Another classical example of developable surface is the ruled surface of the tangents to a curve: be γ(t) : G ⊂ R → E a regular smooth curve; then the ruled surface of the tangents to γ is the surface

f (u, v) : G × R → Σ defined by f (u, v) = γ(u) + vγ (u).
In Fig. 7.8, the ruled surface of the tangents to a cylindrical helix.

Figure 7.8: The ruled surface of the tangents to a cylindrical helix.

Points of a surface of revolution

Let us now consider a surface of revolution f : Ω → Σ γ like in eq. (7.5) and, for the sake of simplicity, be u the natural parameter of the curve in eq. ( 7.4) generating the surface. Then

ϕ 2 (u) + ψ 2 (u) = 1, ψ (u)ϕ (u) -ψ (u)ϕ (u) = c(u).
We can then calculate:

• the vectors of the natural basis:

f ,u =    ϕ (u) cos v ϕ (u) sin v ψ (u)    , f ,v =    -ϕ(u) sin v ϕ(u) cos v 0    ;
• the normal to the surface

N =    -ψ (u) cos v -ψ (u) sin v ϕ (u)    ;
• the metric tensor (i.e. the first fundamental form):

g = 1 0 0 ϕ 2 (u) ;
• the second derivatives of f :

f ,uu =    ϕ (u) cos v ϕ (u) sin v ψ (u)    , f ,uv =    -ϕ (u) sin v ϕ (u) cos v 0    , f ,vv =    -ϕ(u) cos v -ϕ(u) sin v 0    ;
• tensor B (i.e. the second fundamental form):

B = c(u) 0 0 ϕ(u)ψ (u) ;
• the Gaussian curvature K:

K = det X = det B det g = c(u)ψ (u) ϕ(u) .
Therefore, points of Σ γ where c(u) and ψ (u) have the same sign are elliptic, hyperbolic otherwise. Parabolic points correspond to inflexion points of γ(u), if c(u) = 0, or to points with horizontal tangent to γ(u), if ψ (u) = 0.

As an example, let us consider the case of the pseudo-sphere, eq. (7.6). Then,

ϕ(u) = sin u, ψ(u) = cos u + ln tan u 2 .
Some simple calculations give

ψ (u) = -sin u + 1 sin u , c(u) = - | tan u| | cot u| ; by consequence K = c(u)ψ (u) ϕ(u) = - (-sin u + 1 sin u )| tan u| sin u| cot u| = -1.
Finally, K = const. = -1, which is the reason for the name of this surface.

Lines of curvature, conjugated directions, asymptotic directions

A line of curvature is a curve on a surface with the property to be tangent, at each point, to a principal direction. called conjugated directions. Hence, the principal directions at a point p are conjugated; if p is an umbilical point, any two orthogonal directions are conjugated.

The direction of a vector v ∈ T p Σ is said to be asymptotic if it is autoconjugated, i.e. if II(v, v) = 0. An asymptotic direction is hence a direction where the normal curvature is null. In a hyperbolic point there are two asymptotic directions, in a parabolic point only one and in an elliptic point there are not asymptotic directions. An asymptotic line is a curve on a surface with the property of being tangent at every point to an asymptotic direction. The asymptotic lines are the solution of the differential equation

II(γ , γ ) = 0 → B 11 u 2 + 2B 12 u v + B 22 v 2 = 0;
in particular, if B 11 = B 22 = 0 and B = O, then the coordinate lines are asymptotic lines. Asymptotic lines exist only in the regions where K ≤ 0.

The Dupin's conical curves

The conical curves of Dupin are the real curves in T p Σ whose equations are

II(v, v) = ±1, v ∈ S.
Be {u 1 , u 2 } the basis of the principal directions. Using polar coordinates, we can write v = ρe ρ , e ρ = cos θu 1 + sin θu 2 .

Therefore,

II(v, v) = ρ 2 II(e ρ , e ρ ) = ρ 2 κ N (e ρ ),
and the conicals' equations are

ρ 2 (κ 1 cos 2 θ + κ 2 sin 2 θ) = ±1.
With the Cartesian coordinates ξ = ρ cos θ, η = ρ sin θ, we get

κ 1 ξ 2 + κ 2 η 2 = ±1.
The type of conical curves depend upon the kind of point on Σ:

• elliptical points: the principal curvatures have the same sign → one of the conical curves is an ellipse, the other one the null set (actually, it is not a real curve);

• hyperbolic points: the principal curves have opposite signs → the conical curves are conjugated hyperbolae whose asymptotes coincide with the asymptotic directions;

• parabolic points: at least one of the principal curvatures is null → one of the conical curves degenerates into a couple of parallel straight lines, corresponding to the asymptotic direction, the other one is the null set.

The three possible cases are depicted in Fig. 7.9

Figure 7.9: The conical curves of Dupin; from the left: elliptic, hyperbolic and parabolic points.

The Gauss-Weingarten equations

Be f : Ω → Σ a surface; for any point p ∈ Σ, consider the basis {f ,u , f ,v , N}, also called the Gauss' basis. It is the equivalent of the Frenet-Serret basis for the surfaces. We want to calculate the derivatives of the vectors of this basis, i.e. we want to obtain, for the surfaces, something equivalent to the Frenet-Serret equations.

Generally speaking, N ∈ S and N • f ,u = N • f ,v = 0, but f ,u , f ,v / ∈ S and f ,u • f ,v = 0. In other words, we are in a case of non-orthogonal (curvilinear) coordinates. So, if w is the coordinate along the normal N, let us call, for the sake of convenience,

u = z 1 , v = z 2 ,
while, for the vectors,

f ,u = f ,1 = g 1 , f ,v = f ,2 = g 2 ,
with g 1 , g 2 exactly the g-vectors of the coordinate lines on Σ. Then:

∂g i ∂z j • g i = 1 2 ∂(g i • g i ) ∂z j = 1 2 ∂g ii ∂z j , ∂g i ∂z i • g j = ∂(g i • g j ) ∂z i - ∂g i ∂z j • g i = ∂g ij ∂z i - 1 2
∂g ii ∂z j , i, j = 1, 2;

for the last equation we have used the identity

∂g j ∂z i = f ,ji = f ,ij = ∂g i ∂z j , i, j = 1, 2.
Using eq. ( 6.25), it can be proved that it is also7 

∂g i ∂z j • g h = Γ h ij i, j, h = 1, 2.
Moreover, by eq. (7.14),

∂g i ∂z j • N = f ,ij • N = B ij i, j = 1, 2,
and, by eqs. (7.10), (7.11), ∂N ∂z i • g j = -L W (g i ) • g j = -Xg i • g j = -X ji , i, j = 1, 2, while, because |N| = const. = 1, then, eq. (4.1),

∂N ∂z i • N = 0 ∀i = 1, 2.
Finally, the decomposition of the derivatives of the vectors of the basis {f ,u , f ,v , N} onto these same vectors gives the equations ∂g i ∂z j = Γ h ij g h + B ij N, ∂N ∂z j = -X ij g i , i, j = 1, 2;

(7.25) these are the Gauss-Weingarten equations (the first one is due to Gauss and the second to Weingarten).

If now we make the scalar product of the Gauss equations by g 1 and g 2 , i.e.

g k • ∂g i ∂z j = g k • (Γ h ij g h + B ij N), i, j, k = 1, 2,
we get the following three systems of equations: (7.28)

    
The determinant of each one of these systems is just det g = 0 → it is possible to express the Christoffel symbols as functions of the g ij s and of their derivatives, i.e. as functions of the first fundamental form (the metric tensor).

The Theorema Egregium

The following theorem is a fundamental result due to Gauss: α(t), in such coordinates we can get p = f (0, 0) and γ described by the equation v = 0. Be q ∈ U a point of γ, and consider a regular curve connecting p with q. The length (p, q) of such curve is (p, q) = q p u 2 + g v 2 dt ≥ q p u dt = |u q -u p |.

Observing that p = (u p , 0), q = (u q , 0), we remark that |u q -u p | is exactly the length of γ between p and q, because γ is parameterized with its arc-length.

There is another, direct and beautiful way to show that geodesics are the shortest path lines: the use of the methods of the calculus of variations 10 . The length (p, q) of a curve γ(t) ∈ Σ between two points p and q is given by the functional (7.9); it depends upon the first fundamental form, i.e. upon the metric tensor g on σ. For the sake of conciseness, be w = (w 1 ,t , w 2 ,t ) the tangent vector to the curve γ(w 1 , w 2 ) ∈ Σ. Then, (p, q) = q p I(w)dt = q p √ w • gwdt.

The curve γ(t) that minimizes (p, q) is the solution to the Euler-Lagrange equations = 2 g jk w j ,tt + ∂g jk ∂w l w l ,t w j ,t , j, h, k = 1, 2.

d
10 The reader is addressed to texts on the calculus of variations for an insight in the matter, cf. Suggested texts. Here, we just recall the fundamental fact to be used in the proof concerning geodesics: be 

J(t) =

125

The Euler-Lagrange equations are hence g jk w j ,tt + ∂g jk ∂w h w h ,t w j ,t -1 2 ∂g hj ∂w k w h ,t w j ,t = 0, , j, h, k = 1, 2, that can be rewritten as g jk w j ,tt + 1 2 ∂g jk ∂w h + ∂g hk ∂w j -∂g hj ∂w k w h ,t w j ,t = 0, j, h, k = 1, 2.

Multiplying by g lk we get g lk g jk w j ,tt + 1 2 g lk ∂g jk ∂w h + ∂g hk ∂w j -∂g hj ∂w k w h ,t w j ,t = 0, j, h, k, l = 1, 2.

and finally, because g lk g jk = δ lj and by eq. ( 6.25), we get w l ,tt + Γ l jh w j ,t w h ,t , j, h, l = 1, 2.

These are the differential equations whose solution is the curve of minimal length between two points of Σ; comparing these equations with those of a geodesic of Σ, eq. ( 7.31), we see that they are the same: the geodesics of a surface are hence the curves of minimal distance on the surface.

The Christoffel symbols of a plane are all null; as a consequence, the geodesic lines of a plane are straight lines. In fact, only such lines have a constant derivative.

Through systems (7.26), (7.27) and (7.28) we can calculate the Christoffel symbols for a revolution surface, eq. (7.5), which are all null excepted Γ 2 12 = ϕ ϕ , Γ 1 22 = -ϕ ϕ , so the system of differential equations (7.31) becomes

   u -ϕ ϕ v 2 = 0, v + 2 ϕ ϕ u v = 0.
It is direct to check that the meridians (u = t, v = v 0 ) are geodesic lines, while the parallels (u = u 0 , v = t) are geodesics ⇐⇒ ϕ (u 0 ) = 0.

The Gauss-Codazzi compatibility conditions

Let us consider a surface Σ whose points are determined by the vector function r : Ω ⊂ R 2 → Σ ⊂ E, r(α 1 , α 2 ) = x i (α 1 , α 2 ) i , with i , i = 1, 2, 3, the vectors of the orthonormal basis of the reference frame R = {o; 1 , 2 , 3 } and the parameters α 1 , α 2 chosen in such a way that the lines α 1 = const., α 2 = const. are lines of curvature, i.e. tangent at each point to the principal directions of curvature and hence mutually orthogonal11 . With such a choice, cf. eq. (7.8), ds 2 = A 2 1 dα 2 1 + A 2 2 dα 2 2 , with

A 1 = r 2 α 1 = dx i dα 1 dx i dα 1 , A 2 = r 2 α 2 = dx i dα 2 dx i dα 2
the so-called Lamé's parameters. We remark that along the lines of curvatures, i.e. the lines α i = const., i = 1, 2, that in short from now on we will call the lines α i , it is

ds 1 = A 1 dα 1 , ds 2 = A 2 dα 2 ,
and hence, these three vectors form the orthonormal (local) natural basis e = {e 1 , e 2 , e 3 }. We always make the choice of α 1 , α 2 such that e 3 is always directed to the convex side of Σ if the point is elliptic or parabolic, or to the side of the centres of negative curvature, if the point is hyperbolic.

λ 1 = ds 1 dα 1 = A 1 e 1 ,
We consider a vector v = v(p), p ∈ Σ, v = v 1 e 1 + v 2 e 2 + v 3 e 3 , and we want to calculate how it transforms when p changes. To this end, we need to calculate how e 1 , e 2 , e 3 change with α 1 , α 2 . Be q ∈ Σ a point in the neighborhood of p on the line α i and let us first consider the change of e 3 in passing from p to q. Because p and q belong to the same line α i , by the Theorem of Rodrigues we get (no summation on i in the following equations) ∂e 3 ∂λ i = -κ i λ i , i = 1, 2, i.e., by eq. ( 7.32),

∂e 3 ∂α i = A i R i e i , with R i = - 1 κ i
the (principal) radius of curvature along the line α i . The sign minus in the previous equation is due to the choice done above for orienting e 3 = N, that gives always N = -ν, with ν the principal normal to the line α i . This result can be obtained also directly, see e 3 (q) = e 3 (p) + de 3 and in the limit of q → p, de 3 tends to be parallel to q -p and lim q→p (q -p) = λ i = A i e i .

By the similitude of the triangles, it is evident that

|de 3 | |e 3 | = |q -p| R i ;
moreover,

de 3 = ∂e 3 ∂α i dα i e i .
Finally, as |e 3 | = 1, we get again (7.34) Implicitly, in this last proof, we have used the Theorem of Rodrigues, because we have assumed that de 3 is parallel to λ i , as it is, because line α i is a line of curvature.

∂e 3 ∂α i = A i R i e i .
We pass now to determine the changes of e 1 and e 2 ; to this purpose, we remark that (7.37)

Passing now to the 2nd-order derivatives, imposing the equality of mixed derivatives, gives some important differential relations between the Lamé's parameters A i and the radiuses of curvatures R i . In fact, from the identity ∂ 2 e 3 ∂α 1 ∂α 2 = ∂ 2 e 3 ∂α 2 ∂α 1 , and eqs. (7.37) 5,6 we get

∂ ∂α 2 A 1 R 1 e 1 = ∂ ∂α 1 A 2 R 2 e 2 , whence ∂ ∂α 2 A 1 R 1 e 1 + A 1 R 1 ∂e 1 ∂α 2 = ∂ ∂α 1 A 2 R 2 e 2 + A 2 R 2
∂e 2 ∂α 1 .

Injecting now eqs. (7.37) 2,3 into the last result and rearranging the terms gives

∂ ∂α 2 A 1 R 1 - 1 R 2 ∂A 1 ∂α 2 e 1 - ∂ ∂α 1 A 2 R 2 - 1 R 1 ∂A 2 ∂α 1 e 2 = 0,
that to be true needs that the two following conditions be identically satisfied:

∂ ∂α 2 A 1 R 1 - 1 R 2 ∂A 1 ∂α 2 = 0, ∂ ∂α 1 A 2 R 2 - 1 R 1
∂A 2 ∂α 1 = 0.

(7.38)

The above equations are known as the Codazzi conditions. Let us now consider the other identity ∂ 2 e 1 ∂α 1 ∂α 2 = ∂ 2 e 1 ∂α 2 ∂α 1 ; 130 still using eq. ( 7.37), with some standard passages this identity can be transformed to

∂ ∂α 1 1 A 1 ∂A 2 ∂α 1 + ∂ ∂α 2 1 A 2 ∂A 1 ∂α 2 + A 1 R 1 A 2 R 2 e 2 + ∂ ∂α 2 A 1 R 1 - 1 R 2
∂A 1 ∂α 2 e 3 = 0.

Again, for this equation to be identically satisfied, each of the expressions in square brackets must vanish, which gives two further differential conditions, but only the first one is new, as the second one corresponds to eq. ( 7.38) 1 . The new condition is hence (7.39) which is known as the Gauss condition. The last identity

∂ ∂α 1 1 A 1 ∂A 2 ∂α 1 + ∂ ∂α 2 1 A 2 ∂A 1 ∂α 2 + A 1 R 1 A 2 R 2 = 0,
∂ 2 e 2 ∂α 1 ∂α 2 = ∂ 2 e 2 ∂α 2 ∂α 1 does not add any further independent condition, as it can be easily checked. The meaning of the Gauss-Codazzi conditions, eqs. (7.38) and (7.39), is that of compatibility conditions: only when these conditions are satisfied by functions A 1 , A 2 , R 1 and R 2 , then such functions represent the Lamé's parameters and the principal radiuses of curvature of a surface, i.e. only in this case they define a surface, except for its position in space.

Exercices

1. Prove that a function of the type x 3 = f (x 1 , x 2 ), with f : Ω ⊂ R 2 → R smooth, defines a surface.

2. Show that the catenoid is the rotation surface of a catenary, then find its Gaussian curvature.

3. Show that the pseudo-sphere is the rotation surface of a tractrice and explain why the surface has this name (hint: look for its Gaussian curvature).

4. Prove that the regularity of a cone is satisfied at each point exception made for the apex and for the points on straight lines tangent to γ(u).

5. Prove that the hyperbolic hyperboloid is a doubly ruled surface.

6. Prove that the hyperbolic paraboloid, whose Cartesian equation is x 3 = x 1 x 2 , is a doubly ruled surface. Two very good and classical textbooks with an introduction to the calculus of variations for mechanicians are

• C. Lanczos: The variational principles of mechanics. University of Toronto Press, 1949,

• H. L. Langhaar: Energy methods in applied mechanics. Wiley, 1962. 
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 13 Figure 1.3: Angle between two vectors.

  It exists one and only one linear form tr : Lin(V) → R, called the trace, such that tr(a ⊗ b) = a • b ∀a, b ∈ V.

Theorem 9 .

 9 (Condition of parallelism): two vectors a and b are parallel, i.e. b = ka, k ∈ R, ⇐⇒ a × b = o.
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 2 Figure 2.1: Right-and left-handed bases.
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 22 Figure 2.2: Rotation of a vector.

Figure 2

 2 Figure 2.3: Non-commutativity of the rotations.
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 24 Figure 2.4: Physical angles.
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 2 Figure 2.5: Euler's angles.
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 2 Figure 2.6: Euler's rotations, as seen from the respective axes of rotation.

  Figure 2.7: Small rotations.
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 41 Figure 4.1: Mapping of a curve of points.
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 4 Figure 4.2: Derivative of a curve.

  Figure 4.3: Integral of a vector curve.

  Be r(t) : [a, b] ⇒ E a regular curve; then = b a |r (t)|dt.

  |dt ≤ σ + 2ε(b -a) ≤ + 2ε(b -a), and because ε is arbitrary, b a |r (t)|dt ≤ , which by eq. (4.3) implies the thesis. Theorem 19. The length of a curve does not depend upon its parameterization. Proof. Be r(t) : [a, b] → E a regular curve and t = t(τ ) : [c, d] → [a, b]

  4.4. The osculating plane is particularly important: if we introduits ci-dessus sont évidemment orthogonaux deux à deux et de norme unitaire ; en outre c'est évident que , et donc {τ, ν, β} est une base orthonormée directe, nommée trièdre de Frenet, définie en chaque point de la courbe, et qui change avec la position, figure 1.10 ; c'est pour cela que ce trièdre est appelé aussi trièdre local. Le plan τ-ν s'appelle plan osculateur, le plan ν-β plan normal et le plan β-τ plan rectifiant.
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 4 Figure 4.4: The Frenet-Serret basis.
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 45 Figure 4.5: Curvature of a curve.
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 46 Figure 4.6: Torsion of a curve.

  Figure 4.7: Osculating plane, circle and sphere for a point p of a conical helix.

  The evolute, δ(σ), of γ(s) is hence the envelop of its principal normals ν(s).This result helps us in finding the equation of the involute β(σ) of a curve γ(s); let p = p(s) be a point of γ(s); then, if b ∈ β(σ) it must be (b -p) • ν = 0where ν is the principal normal to γ(s) in p, because γ(s) is the evolute of β(σ), which implies for the last result, that τ = ν β , with τ the tangent to γ(s) in p and ν β the principal normal to β(σ) in b, see Fig.4.8. Therefore, b(s) -p(s) = f (s)τ (s) → b(s) = p(s) + f (s)τ (s),with f = f (s) a scalar function of s; to remark that b = b(s), i.e. the arc-length s of γ(s) is the parameter also for β, but in general σ = s. Upon differentiation we get b

Finally, the equationFigure 4

 4 Figure 4.8: Evolute, δ, and involutes for a = 0, β, and a = 1, dashed, of a catenary γ.

  whose elements are the vectors of the Frenet-Serret basis. Then de(s) ds = C(s)e(s) Cauchy problem for the basis e(0). As known, such a problem admits a unique solution, i.e. we can associate to c(s) and ϑ(s) a family of bases e(s) (that are orthonormal, because if one of them were not so, the Cartan's matrix should not be skew). Call τ (s) the first vector of the basis e(s) and define the function p(s) := p 0 + s 0 τ (s * )ds * ;

Figure 4 . 9 :

 49 Figure 4.9: The projected curves of a circular helix.

  Theorem 21. (on harmonic fields): if v(p) is a vector field of class ≥ C 2 such that divv = 0, curlv = o, then v is harmonic: ∆v = o. Theorem 22. (Potential theorem): let v(p) a vector field of class ≥ C 1 on a simply connected domain Ω ⊂ E; then curlv = o ⇐⇒ v = gradϕ with ϕ(p) a scalar field of class ≥ C 2 , the potential. In what follows, Ω is a sufficiently regular region of E, whose boundary is ∂Ω and the external normal n ∈ S. Theorem 23. (Divergence lemma): let v(p) a vector field of class ≥ C 1 on Ω; then ∂Ω v ⊗ n ds = Ω gradv dv. Theorem 24. (Divergence or Gauss theorem): let ϕ, v, L respectively a scalar, vector and tensor field on Ω of class ≥ C 1 . Then ∂Ω Theorem 25. (Curl theorem): let v(p) a vector field of class ≥ C 1 on Ω; then ∂Ω n × v ds = Ω curlv dv. Theorem 26. (Stokes theorem): let v(p) a vector field of class ≥ C 1 on Ω and be Σ an open surface whose support is the closed line γ and n ∈ S the normal, see Fig. 5.1. Then
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 51 Figure 5.1: Scheme for the Stokes theorem.
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 52 Figure 5.2: Cylindrical coordinates.
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 53 Figure 5.3: Spherical coordinates.
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 61 Figure 6.1: Cartesian and curvilinear coordinates.
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 66 Figure 6.6: Curve in a plane and on a cone.

Figure 7 . 1 :

 71 Figure 7.1: General scheme of a surface and of the tangent space at a point p.
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 72 Figure 7.2: Surfaces of revolution. From the left: sphere, catenoid, pseudo-sphere, hyperbolic hyperboloid.
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 73 Figure 7.3: Ruled surfaces. From the left: elliptical cone, elliptical cylinder, helicoid, Möbius strip.
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 74 Figure 7.4: The map of Gauss.

  Figure 7.5: Principal curvatures.

  .23)If p is an elliptic point, the principal curvatures have the same sign because K = κ 1 κ 2 > 0 ⇒ the sign of II(w, w) does not depend upon w, i.e. upon the tangent vector. As a consequence the sign of d(q) does not change with w ⇒ ∀q ∈ U, Σ is on the same side of the tangent plane T p Σ.
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 7 Figure 7.6: Elliptic, left, hyperbolic, center, and parabolic, the two last on the right, points.
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 77 Figure 7.7: Two different planar points.

F

  (x, x , t)dt a functional to be minimized by a proper choice of the function x(t) (in the case of the geodesics, J = (p, q)); then, such a minimizing function can be found as solution of the Euler-Lagrange equations

  2 , e 3 = e 1 × e 2 (= N);(7.33) 

FigFigure 7

 7 Figure 7.11: Variation of N = e 3 along a line of curvature.

7.

  Consider the parameterizationf (u, v) = (1 -v)γ(u) + vλ(u), with γ(u) = (cos(u -α), sin(u -α), -1), λ(u) = (cos(u + α), sin(u + α), 1).Show that:• V. A. Toponogov: Differential geometry of curves and surfaces -A concise guide.Birkhäuser, 2006,• A. Pressley: Elementary differential geometry. Springer, 2010.A short introduction to the differential geometry of surfaces, oriented to the mechanics of shells, can be found in the classical book • V. V. Novozhilov: Thin shell theory. Noordhoff LTD., 1964. For what concerns the calculus of variations, a still valid textbook in the matter (and not only) is • R. Courant, D. Hilbert: Methods of mathematical physics. Interscience Publishers, 1953.

  A, relative to the same eigenvalue λ A ; in the same way, of course, Au is an eigenvector of B relative to λ B . In other words, this shows that B leaves unchanged any proper space of A, and viceversa. On the other hand, we see that, at least for what concerns the eigenvectors, two tensors commute if and only if they are coaxial. Because any vector can be written as a linear combination of the vectors of B N , and for the linearity of tensors, we finally have proved the

Theorem 7. (Commutation Theorem): two tensors commute if and only if they are coaxial.

  of vectors and g = g(t) : [a, b] → R a scalar function. We say that v is of the order o with respect to g in t 0 ⇐⇒

	lim t→t 0	|v(t)| |g(t)|	= 0,
	and we write		
	v(t) = o(g(t)) for t → t 0 .

  L ij (t) e i e j , i, j= 1, 2, 3, est une courbe tensorielle. Souvent, en mécanique, le paramètre t est le temps de déroulement d'un certain événement; nous verrons dans les chapitres suivants plusieurs exemples de courbes de points, vecteurs et tenseurs dont le paramètre est le temps, et leur signification mécanique.Il faut aussi remarquer qu'une courbe peut avoir plusieurs représentations paramétriques : en fait, si t est le paramètre choisi pour représenter une courbe, par exemple une courbe de points, l'équation
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	décrit la même courbe, étant lié à t par le changement de paramètre
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1.22 DERIVEE D'UNE COURBE Considérons une courbe de points p= p(t); on définit dérivée en t= t o de la courbe p(t) par rapport au p(t)=(p 1 (t), p 2 (t), p 3 (t))

  -dire que la dérivée d'une courbe a comme composantes les dérivées des composantes de la courbe donnée. Sur la base de cette considération, c'est facile de comprendre les formules suivantes, qui généralisent aux courbes les règles de dérivation d'une fonction d'une variable réelle:

																											Chapitre 1
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	Si on applique les opérations de limite aux composantes, on reconnaît immédiatement que
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v(t), avec

  Un cas particulier, et important dans les applications, est celui d'un vecteur variable mais constant en module ; dans ce cas la dérivée est toujours orthogonale au vecteur donné. En fait, soit v=

	t	t

R v ) (t v

. Cherchons la dérivée de la norme au carré, qui est sans doute nulle parce que la norme est constante par hypothèse :

  25 -droite au voisinage d'un point. Pour cela, on calcule le vecteur tangent en deux points proches l'un de l'autre, l'un à l'abscisse curviligne s, et l'autre à s+ , et on mesure l'angle (s, ) qu'ils forment, voir la figure 1.11. On définit alors courbure de la courbe en s la limite
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	La courbure est donc un scalaire positif qui mesure la rapidité de variation de direction de la courbe
	par unité de parcours sur la courbe même ; c'est évident que pour une ligne droite la courbure est
	toujours nulle.																				
	Démontrons que la courbure est liée à la dérivée seconde de la courbe :
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	D'ailleurs																				
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	qui est une autre formule de calcul de la courbure. On obtient une formule encore meilleure si l'on
	considère que																				
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  La torsion est un scalaire qui mesure la déviation d'une courbe de la planéité : si une courbe est plane, elle appartient au plan osculateur, et le vecteur β, qui lui est perpendiculaire, est donc constant. Par conséquent la dérivée de β est nulle et donc, par la deuxième formule de Frenet et Serret, la torsion aussi. Le contraire est évidemment vrai aussi : si la torsion d'une courbe est nulle en tout point, alors la courbe est plane. Donc la condition nécessaire et suffisante pour qu'une courbe soit plane est que sa torsion soit nulle en tout point.La torsion, contrairement à la courbure qui est toujours positive, peut être négative. En particulier, une fois établi un sens de parcours sur la courbe, c'est-à-dire une fois choisie une abscisse curviligne, on peut démontrer que si, en suivant ce sens, la courbe sort du plan osculateur du côté de β, alors la torsion est négative, elle est positive dans le cas contraire, voire figure 1.12. Ce résultat est invariant: on peut démontrer que le signe de la torsion est une caractéristique intrinsèque de la courbe, et ne dépend pas du paramétrage choisi.
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	Ainsi que pour la courbure, on a une formule de calcul de la torsion :	
			28 -			

  It is more direct, and equivalent, to minimize J 2 (t), i.e. to write the Euler-Lagrange equations for Φ(w, w ,t , t) := F 2 (w, w ,t , t) = g ij w i ,t w j ,t .

				dt	∂F ∂w ,t	-	∂F ∂w	= o →	d dt	∂F ∂w k ,t	-	∂F ∂w k = 0, k = 1, 2,
	where					F (w, w ,t , t) =	√ w • gw = g ij w i ,t w j ,t
	Therefore:							
	∂Φ ,t ∂w k	= 2g jk w j ,t ,				
	∂Φ ∂w k =	∂g hj ∂w k w h ,t w j ,t ,				
	d dt	∂Φ ∂w k ,t	= 2 g jk w j ,tt +	dg jk dt	w j ,t

  The derivatives of e 2 can be found in the same way and resuming, we have

	so by eq. (7.33) we get									
								∂e 1 ∂α 1	=				∂(A 1 e 1 ) ∂α 2	=	∂(A 2 e 2 ) ∂α 1 -1 A 2 ∂A 1 . ∂α 2	e 2 -	A 1 R 1	e 3 ,	(7.35)
	Let us study now	∂e j ∂α i	; as |e j | = 1, j = 1, 2, ∂e 1 ∂α 2 =	1 A 1	∂A 2 ∂α 1	e 2 ,
	Because e 1 • e 2 = 0,	∂e 2 ∂α 1 ∂e 2 ∂α 2 ∂e 1 ∂α 1 ∂e 3 ∂α 1 ∂e 3 ∂α 2	∂e j 1 A 2 ∂α i = -= 1 ∂A 1 • e j = 0 ∀i, j = 1, 2. e 1 , ∂α 2 A 1 ∂A 2 ∂α 1 e 1 • e 2 = ∂(e 1 • e 2 ) ∂α 1 -e 1 • ∂e 2 ∂α 1 = -e 1 • -A 2 R 2 ∂e 2 e 3 , ∂α 1 = A 1 e 1 , R 1 . = A 2 R 2 e 2 .	(7.36)
	By eq. (7.35) we get										
											∂e 2 ∂α 1	=	1 A 2	∂(A 1 e 1 ) ∂α 2	-	1 A 2	∂A 2 ∂α 1	e 2 ,
	that injected in the previous equation gives, by eq. (7.36),
	∂e 1 ∂α 1	• e 2 = -	1 A 2	∂(A 1 e 1 ) ∂α 2	• e 1 +	1 A 2	∂A 2 ∂α 1	e 2 • e 1 = -	A 1 A 2	∂e 1 ∂α 2	• e 1 -	1 A 2	∂A ∂α	e 1 • e 1 = -	1 A 2	∂A 1 ∂α 2	.
	Then, because e 1 • e 3 = 0,							
								∂e 1 ∂α 1	• e 3 =	∂(e 1 • e 3 ) ∂α 1	-e 1 •	∂e 3 ∂α 1	= -e 1 •	∂e 3 ∂α 1	,
	and by eq. (7.34)											
																		∂e 3 ∂α 1	=	A 1 R 1	e 1 ,
	so finally														
																	∂e 1 ∂α 1	• e 3 = -	A 1 R 1	.
	Again through eqs. (7.35) and (7.36) we get
	∂e 1 ∂α 2	• e 2 =	1 A 1	∂(A 2 e 2 ) ∂α 1	• e 2 -	1 A 1	∂A 1 ∂α 2	e 1 • e 2 =	A 2 A 1	∂e 2 ∂α 1	• e 2 +	1 A 1	∂A ∂α 1	e 2 • e 2 =	1 A 1	∂A 2 ∂α 1
	and also, by eq. (7.34)									
				∂e 1 ∂α 2		• e 3 =	∂r ,α 1 ∂α 2 ∂(e 1 • e 3 ) = ∂α 2 -e 1 • ∂ 2 r ∂α 2 ∂α 1 ∂e 3 = ∂α 2 = -e 1 • ∂ 2 r ∂α 1 ∂α 2	= ∂e 3 ∂α 2	∂r ,α 2 ∂α 1 = -, A 2 R 2	e 1 • e 2 = 0.
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E is to be identified with the Euclidean three-dimensional space in which the events of classical mechanics are intended to be set.

We consider for the while only second-rank tensors, but we will see in the following how to introduce tensors of higher ranks.

In some texts, the dyad is also called tensor product; we prefer to use the term dyad because tensor product can be ambiguous, as used to denote the product of two tensors, see Sect. 2.3.

The proof of this statement is rather articulated and out of our scope; the interested reader is addressed to the classical textbook of Halmos on linear algebra, §31 (see the bibiography). The theory of the determinants is developed in §53.

More precisely, det L is the function that associates a scalar with each tensor (Halmos, §53). We can however, for the sake of practice, identify det L with the scalar associated to L, without consequences for our purposes.

The proof of the spectral theorem is omitted here; the interested reader can find a proof of it in the classical text of Halmos, page 155, see the bibliography.

It is evident that this is true also for one-and two-dimensional vector spaces.

From the condition R R = I and through eq.(2.13) and the Theorem of Binet, we recognize immediately that det R = ±1 ∀R ∈ Orth(V).

 8 A tensor S ∈ Orth(V) such that det S = -1 represents a transformation that changes the orientation of the space, like mirror symmetries do, see Sect. 2.12.

We have seen, Theorem 7, that two tensors commute ⇐⇒ they are coaxial, i.e. if they have the same eigenvectors. Because the rotation axis is always a real eigenvector of a rotation tensor, if two tensors operate a rotation about different axes they are not coaxial. Hence, the rotation tensors about different axes never commute.

This can happen for some vectors, all the times that w 1 • u = w 2 • u, like for the case of a vector u orthogonal to both w 1 and w 2 ; however, this is no more than a curiosity, it has no importance in practice.

The application of the Binet's Theorem shows immediately that det S = -1, while S I R(S I R) = S I RR S I = -I(-I) = I: the decomposition in eq. (2.42) actually gives an improper rotation.

Here the symbol R indicates the orthogonal conjugator of R, not the set of real numbers.

Actually, this is a quite famous result in classical elasticity, the Lamé's equation, defining an isotropic elastic material.

W. Thomson (Lord Kelvin): Elements of a mathematical theory of elasticity. Philos. Trans. R. Soc., 146,

481-498, 1856. Later, Voigt (W. Voigt: Lehrbuch der Kristallphysik. B. G. Taubner, Leipzig, 1910) gave another, similar matrix formalism for tensors, more widely known than the Kelvin one, but less effective.4 Actually, the Kelvin formalism can be extended without major difficulties also to tensors that do not possess all the symmetries.

Mehrabadi and Cowin have shown that the Kelvin formalism transforms second-and fourth-rank tensors on R 3 into vectors and second-rank tensors on R

(M. M. Mehrabadi, S. C. Cowin: Eigentensors of linear anisotropic elastic materials. Q. J.Mech. Appl. Math., 43, 15-41, 1990).

The word osculating comes from the latin word osculo that means to kiss; an osculating sphere or circle or plane is a geometric object that is very close to the curve, as close as two lovers are in a kiss.

In the following formulae, the Einstein summation rule holds.

The comma indicates partial derivative, e.g. f i,j = ∂f i ∂x j .

The notion of co-and contra-variant components will be detailed later.

The term spatial here refers to differentiation with respect to spatial coordinates, that can be Cartesian or curvilinear.

The definition of diffeomorphism, of course, can be given for subsets of R n , n ≥ 1; here, we bound the definition to the case of interest.

For the sake of conciseness, from now on we will indicate a surface as the function f : Ω → Σ, with f = f (u, v), (u, v) ∈ Ω ⊂ R 2 and Σ ⊂ E.

Actually, it is possible to introduce the following concepts also more generally, for any parameterization of the curve; anyway, for the sake of simplicity, we will just use the parameter s in the following.

The concept of mean curvature of a surface was introduced for the first time by Sophie Germain, in her celebrated work on the elasticity of plates.

The proof is rather cumbersome and it is omitted here; in many texts on differential geometry, the Christoffel symbols are just introduced in this way, as the projection of the derivatives of vectors g i s onto the same vectors, i.e. as the coefficients of the Gauss equations.

The symbol r is here preferred to f , like α 1 to u and α 2 to v, to recall that we have made the particular choice of coordinate lines that are lines of curvature. All the developments could be done in a more general case, but this choice is made to obtain simpler relations, that preserves anyway the generality because the lines of curvature exist everywhere.

Co-and contra-variant components

The notion of co-and contra-variant components is important in the geometry of surfaces. A geometrical way to introduce the concept of covariant and contravariant components is to consider how to represent a vector v in the z-system. There are basically two ways, cf. Fig. 6.4, referred, for the sake of simplicity, to a planar case: i. contravariant components: v is projected parallel to z 1 and z 2 ; they are indicated by superscripts: v = (v 1 , v 2 , v 3 );

ii. covariant components: v is projected perpendicularly to z 1 and z 2 ; they are indicated by subscripts: v = (v 1 , v 2 , v 3 ); Figure 6.4: Contravariant, left, and covariant, right, components of a vector in a plane.

Still referring to the planar case in Fig. 6.4, if the Cartesian components 2 of v are v = (v x 1 , v x 2 ), we get (6.7) and conversely

(6.8) 2 In the following, we use the superscript x to indicate a Cartesian component.

and in the end that

To this end, we recall that

so, differentiating the first equation by v and the second one by u, we get

(7.12)

The second fundamental form defines a quadratic, bilinear symmetric form:

where B := gX. (7.13)

In the natural basis {f ,u , f ,v } of T p Σ, by eq. ( 7.12), it is 5

tensor X can then be calculated by eq. ( 7.13): 

Curvatures of a surface

Be f : Ω → Σ a regular surface and γ(s) : G ⊂ R → Σ a regular curve on Σ parameterized with the arc length s. We call curvature vector of γ(s) the vector κ(s) defined as

where ν(s) is the principal normal to γ(s). Then, we call normal curvature κ N (s) of γ(s) the projection of κ(s) onto N(s), the normal to Σ:

5 In many texts on differential geometry, the following symbols are used:
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Theorem 30. The normal curvature κ N (s) of γ(s) ∈ Σ depends uniquely on τ (s):

) in the natural basis and

and finally, by eqs. (7.2) and (7.14),

If now s = s(t) is a change of parameter for γ, then

so, by the linearity of II(•, •) we get

and finally

To each point p ∈ Σ it corresponds uniquely (in the assumption of regularity of the surface f : Ω → Σ) a tangent plane and a tangent space vector T p Σ. In p, there are infinite tangent vectors to Σ, all of them belonging to T p Σ. We can associate a curvature to each direction t ∈ T p Σ, i.e. to each tangent direction, in the following way: let us consider the bundle H of planes whose support is the straight line through p and parallel to N. Then any plane H ∈ H is a normal plane to Σ in p; each normal plane is uniquely determined by a tangent direction t and the (planar) curve γ N t := H ∩ Σ is called a normal section of Σ. If ν and N are respectively the principal normal to γ N t and the normal to Σ in p, then ν = ±N for each normal section. We have in this way defined a function that to each tangent direction t ∈ T p Σ associates the normal curvature κ N of the normal section γ N t :

By the bilinearity of the second fundamental form, κ N (t) = κ N (-t).

A point p ∈ Σ is said to be a umbilical point if κ N (t) = const. ∀t, it is a planar point if κ N (t) = 0 ∀t. In all the other points, κ N takes a minimum and a maximum value on distinct directions t ∈ T p Σ.

Therefore

and finally

Contrarily, if we assume eq. (7.21), like before we get α = -κ λ and to end we just need to prove that λ is a principal direction. From eqs. (7.20) and (7.21) we get

Projecting this equation onto f ,u and f ,v gives the two equations (7.22) with the symbols E, F, G, L, M and N defined in Notes 2 and 5. Let w = (w u , w v ) ∈ T p Σ and consider the function

it is easy to check that ζ, ∂ζ ∂w u and ∂ζ ∂w v take zero value for w = λ 0 , with λ 0 the eigenvector of the principal direction relative to κ λ , which gives the system of equations

Developing the derivatives and making some standard passages, eq. ( 7.22) is found again, which proves that λ is necessarily the principal direction relative to κ λ .

This theorems states hence that the derivative of N along a given direction is a vector parallel to such a direction only when this is a principal direction of curvature.

Classification of the points of a surface

Be f : Ω → Σ a regular surface and p ∈ Σ a non-planar point. Then, we say that

To remark that, by eq. ( 7.17), because det g > 0, eq. ( 6.4), the value of det B is sufficient to determine the type of a point on Σ.

Theorem 35. The lines of curvature of a surface are the solutions to the differential equation

In the natural basis of T p Σ, this condition reads like (we omit the dependence upon t for the sake of simplicity)

which is satisfied ⇐⇒ the two vectors at the left and right sides are proportional, i.e. if det

As a corollary, if X is diagonal, then the coordinate lines are at the same time principal directions and lines of curvature.

The curve in eq. ( 7.24) is called the ruled surface of the normals.

Be p a non-planar point of a surface f : Ω → Σ and v 1 , v 2 two vectors of T p Σ. We say that v 1 and v 2 are conjugated if II(v 1 , v 2 ) = 0. The directions corresponding to v 1 and v 2 are Theorem 37. (Theorema Egregium): the Gaussian curvature K of a surface f (u, v) : Ω → Σ depends only upon the first fundamental form of f .

Proof. Let us write the identity

using the Gauss equations (7.25) 1 :

where, for the sake of shortness, we have abridged ∂(•) ∂z j by (•) ,j . Then, we use again eqs. (7.25) to express g 1,1 , g 1,2 , g 2,2 , N ,1 and N ,2 ; after doing that and equating to 0 the coefficient of g 2 we get

by eq. ( 7.13) we get that

that injected into the previous equation gives

Putting equal to zero the coefficient of g 1 a similar expression can be get also for g 12 .

Because g is positive definite, it is not possible that g 11 = g 12 = 0. So, remembering that K = det X and the result of the previous Section, we see that it is possible to express K through the coefficients of the first fundamental form and of its derivatives.

Minimal surfaces

A minimal surface is a surface f : Ω → Σ having the mean curvature H = 0 ∀p ∈ Σ. Typical minimal surfaces are the catenoid and the helicoid. Other minimal surfaces are the Enneper's surface

the Costa's surface and the Schoen's gyroid, Fig. 7.10.

Theorem 38. The non-planar points of a minimal surface are hyperbolic. Proof. This is a direct consequence of the definition of mean curvature H and of hyperbolic points:

Be f : Ω → Σ a regular surface and Q a subset of Ω with its boundary ∂Q a closed regular curve in Ω; then

Then, we call normal variation of R the map ϕ :

For each fixed t, ϕ(u, v, t) is a surface with

If the first fundamental form of f is represented by the metric tensor g, we look for the metric tensor g t representing the first fundamental form of ϕ(u, v, t) ∀t:

), and by eq. (7.14)

Then, by eq. ( 7.15), we get easily that

We can now calculate the area A(t)of the simple region R t = ϕ(u, v, t) corresponding to the subset Q:

For 1 A t is differentiable and its derivative for t = 0 is

Theorem 39. A surface f : Ω → Σ is minimal ⇐⇒ dA t dt t=0 = 0 ∀R ⊂ Σ and for each normal variation.

Proof. If f is minimal, the condition is clearly satisfied (H = 0). Conversely, let us suppose that ∃p = f (u, v) ∈ Σ|H(p) = 0. Be r 1 , r 2 ∈ R such that |H| = 0 in the circle D 2 with center p and radius r 2 and |H| > 1 2 |H(p)| in the circle D 1 with center p and radius r 1 . Then, we chose a smooth function h(u, v) such that i. h = H inside D 1 , ii. hH > 0 inside D 2 and iii. h = 0 outside D 2 . For the normal variation defined by such h(u, v) we have

which contradicts the hypithesis.

The meaning of this theorem justifies the name of minimal surfaces: these are the surfaces that have the minimal area among all the surfaces that share the same boundary.

Geodesics

Be f : Ω → Σ a surface and γ(t) : G ⊂ R → Σ a curve on Σ. A vector function w(t) : G → T γ(t) Σ is called a vector field 8 along γ(t). We call covariant derivative of w(t) along γ(t) the vector field D γ w(t) : G → V defined as 9

i.e. the projection of the derivative of w onto T γ(t) Σ. It is always possible to decompose w(t) into its components in the natural basis {f ,u , f ,v }:

Differentiating we get (a prime here denotes the derivative with respect to t)

8 More correctly, w(t) is a curve of vectors; however, it is normally called a vector field along a curve. 9 The operator that gives the projection of w onto a vector orthogonal to N ∈ S, i.e. onto T γ(t) Σ, is I -N ⊗ N, cf. ex. 2, Chap.2. and using the Gauss equations, eq. ( 7.25) 1 , we get (summation on the dummy indexes, u 1 stands for u and u 2 for v)

so that the projection onto T γ(t) Σ, i.e. D γ w(t) is

(7.30)

A parallel vector field w along γ is a vector field having D γ w = o ∀t. A regular curve γ is a geodesic of Σ if the vector field γ of the vectors tangent to γ is parallel along γ.

Proof. If γ is a geodesic, then the derivative of its tangent γ has a component only along

This result shows that in a geodesic the parameter is always a multiple of the natural parameter s.

Be γ(s) a curve on Σ parameterized by the the arc-length s. We call geodesic curvature of γ(s) the function

where τ = γ ∈ S is the tangent vector to γ. Because N × τ ∈ S lies in T γ Σ, the component of τ orthogonal to T γ Σ gives a null contribution to κ g , so we can write also

Theorem 42. A regular curve γ(s) is a geodesic ⇐⇒ κ g = 0 ∀s.

Proof. If γ is a geodesic, clearly κ g = 0. Vice versa, if κ g = 0, then τ , τ and N are linearly dependent, i.e. coplanar. Because τ

Let us now write eq. (7.30) in the particular case of w = γ , i.e. w 1 = u , w 2 = v :

123 therefore, the geodesics are the solutions to the system of differential equations

It can be shown that ∀p ∈ Σ and ∀w(p) ∈ T p Σ the geodesic is unique.

Be p a point of a regular surface f : Ω → Σ, α(v) : G ⊂ R → Σ a smooth regular curve on Σ, v being the natural parameter and such that p = α(0). Consider the geodesic γ v passing through q = α(v) and such that γ v (0) = N(α(v)) × τ (v), with τ (v) the (unit) tangent vector to α(v). Consider the map f (u, v) : Ω → Σ defined posing f (u, v) = γ v (u); this is a surface whose coordinates (u, v) are called semigeodesic coordinates.

Let us see the form that the first fundamental form (i.e. the metric tensor g), the Christoffel symbols and the Gaussian curvature take in semigeodesic coordinates. Curves f (u, v 0 ) = γ v 0 (u) are geodesics and u is hence their natural parameter. Therefore, f ,u ∈ S ⇒ g 11 = 1. Then, f uu (u, v 0 ) is the derivative of the tangent vector to a geodesic f (u, v 0 ) = γ v 0 (u) ⇒ f uu (u, v 0 ) has not a component along the tangent, hence, eq. ⇒ Γ 1 11 = Γ 2 11 = 0. Then, by eq. ( 7.26) 1 , we get g 12,u = 0 ⇒ g 12 does not depend upon u ⇒ g 12 (u, v) = g 12 (0, v) ∀u. Moreover, be θ the angle between the curve α, i.e. between the coordinate line f (0, v), whose tangent vector is f ,v (0, v), and the geodesic γ v (u), whose tangent vector at (0

Finally, putting g 22 = g, g = 1 0 0 g , with g > 0 because g is positive definite. Through systems (7.26), (7.27) and (7.28) we obtain

, and using eq. ( 7.29) we obtain

4g 2 .

Given two points p 1 , p 2 ∈ Σ, we define the distance d(p 1 , p 2 ) as the infimum of the lengths of the curves on Σ that rely the two points. We end with an important characterisation of geodesics:

Theorem 43. Geodesics are the curves of minimal distance between two points of a surface.

Proof. Be γ : G ⊂ R → Σ a geodesic on Σ, parameterized with the arc-length, and α a smooth regular curve through p and orthogonal to γ. Through α, we set up a system of semigeodesic coordinates in a neighbourhood U of p. With an opportune parameterization

• for α = 0 one gets a cylinder with equation x 2 1 + x 2 2 = 1; • for α = π 2 one gets a cone with equation x 2 1 + x 2 2 = x 2 3 ;

• for 0 < α < π 2 one gets a hyperbolic hyperboloid with equation

8. Calculate the first fundamental form of a sphere of radius R, determine the metric on it, the area of a sector of surface between the longitudes θ 1 and θ 2 and the length of the parallel at the latitude π/4 between these two longitudes. 9. Prove that the surface defined by

is a sphere; then show that the image of any straight line on Ω is a loxodromic line on the sphere.

10. Calculate the vectors of the natural basis, the first and second fundamental form and the tensors g, X, B for the catenoid.

11. Make the same for the helicoid of parametric equation

with γ(u) = (0, 0, u), λ(u) = (cos u, sin u, 0).

12. Show that the catenoid and the helicoid are made of hyperbolic points.

13. Determine the geodesic lines of a circular cylinder.

Suggested texts

There are many textbooks on tensors, differential geometry and calculus of variations. The style, content, language of such books greatly depends upon the scientific community the authors belong to: pure or applied mathematicians, theoretical mechanicians or engineers. It is hence difficult to suggest some readings in the domain, in the end it is for a lot a matter of personal taste.

This manuscript is greatly inspired by some classical methods, style and language that are typical in the community of theoretical mechanics; the following few suggested readings among several possible other ones belong to such a kind of scientific literature. They are classical textbooks and though the list is far from being exhaustive, they constitute a solid basis for the topics shortly developed in this manuscript, where the objective is to make mathematics for mechanics.

A good introduction to tensor algebra and analysis, that greatly inspired the content of this manuscript, are the two introductory chapters of the classical textbook A short, effective introduction to tensor algebra and differential geometry of curves can be found in the following text of exercices on analytical mechanics:

• P. Biscari, C. Poggi, E. G. Virga: Mechanics notebook. Liguori Editore, 1999.

A classical textbook on linear algebra to be recommended is

• P. R. Halmos: Finite-dimensional vector spaces. Van Nostrand Reynold, 1958. In the previous textbooks, tensor algebra in curvilinear coordinates is not developed; an introduction to this topic, specially intended for physicists and engineers, can be found in

• W. H. Müller: An expedition to continuum theory. Springer, 2014, that has largely influenced Chapter 6.

Two modern and application oriented textbooks on differential geometry of curves and surfaces are