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Preface

This text is a support for different courses of the master of Mechanics of the University
Paris-Saclay.

The content of this text is an introduction, for graduate students, to tensor algebra and
analysis. Far from being exhaustive, the text focuses on some subjects, with the intention
of providing the reader with the main algebraic tools necessary for a modern course in
continuum mechanics.

The presentation of tensor algebra and analysis is intentionally done in Cartesian coordi-
nates, that are normally used for classical problems. Then, an entire chapter is devoted
to the passage to curvilinear coordinates and to the formalism of co- and contra-variant
components.

The tensor theory and results are specially applied to introduce some subjects concerning
differential geometry of curves and surfaces. Also in this case, the presentation is mainly
intended for applications to continuum mechanics.

Versailles, November 5, 2021
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Chapter 1

Points and vectors

1.1 Points and vectors

We consider in the following a point space £, whose elements are points p'. On & we
admit the existence of an operation, the difference of any of its two elements:

q—p, p,ge.

We associate to € a vector space V whose dimension is dim) = 3 and whose elements are
vectors v representing translations over &:

Vp,qe &, A veV| g—p=v.

Any element v € V is hence a transformation over £ that can be written, using the
previous definition, as :

VWweV, viE—=Elgq=v(p — q=p+V.

To remark that the result of the application of the translation v depends upon the argu-
ment p:

g=p+v#p+v=4¢,
whose geometric meaning is depicted in Fig. 1.1. Unlike difference, the sum of two points
is not defined and is meaningless.

We define the sum of two vectors u and v as the vector w such that

(u+v)(p) =ulv(p)) = w(p)
This means that, if
g=v(p)=p+v,
then
r=u(q) =q+u=w(p),

1€ is to be identified with the Euclidean three-dimensional space in which the events of classical
mechanics are intended to be set.
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Figure 1.1: Same translation over two different points.

see Fig. 1.2, which shows that the above definition actually coincides with the parallelo-
gram rule and that
u—+v=v-++u,

as obvious, for the sum over a vector space commutes. It is evident that the sum of more
than two vectors can be defined iteratively, summing up a vector at time to the sum of
the previous vectors.

The null vector o is defined as the difference of two coincident points:
o=p—p Vpe§

o is unique and the only vector such that
v+o=v VYvel.

In fact:

Vpel, v+to=v+p—p - p+Vv+o=p+V < Vv+o=V.

A linear combination of n vectors v; is defined as the vector?
W = kivi, kl S R, 1= 1, ., n.

The n + 1 vectors w, v;, ¢ = 1,...,n, are said to be linear independent if it does not
exist a set of n scalars k; such that the above equation is satisfied, linear dependent in the
opposite case.

2We adopt here and in the following the FEinstein notation for summations: all the times that an
index is repeated in a monomial, then summation with respect to that index, called the dummy index, is
understood. If a repeated index is underlined, then it is not a dummy index, i.e. there is no summation.

Figure 1.2: Sum of two vectors: the parallelogram rule.



1.2 Scalar product, distance, orthogonality

A scalar product on a vector space is a positive definite, symmetric, bilinear form. A form

w 1s a function
w:YxV =R,

i.e., w operates on a couple of vectors to give a real number, a scalar. We will indicate
the scalar product of two vectors u and v as

wu,v)=u-v.
The properties of bilinearity prescribe that, Vu,v € V and Va, 5 € R,

u-(av+pw)=au-v+pfu-w,

(cu+ pv)-w=au-w+fv-w,
while symmetry implies that
u-v=v-u vVu,ve.
Finally, the positive definiteness means that

v-v>0 VeV, v-v=0 < v=o.

Any two vectors are said to be orthogonal <=
u-v=0.

Thanks to the properties of the scalar product, we can define the Fuclidean norm of a
vector v as the nonnegative scalar, denoted equivalently by v or |v|,

v=|v|=yVv-Vv
The norm of a vector has the following properties:

lu+v| <wu+v (Minkowski's triangular inequality);
lu-v| <wwv (Schwarz's inequality);
\kv| = |k|v, k € R.

We define distance between two any points p and q¢ € &£ the scalar
d(p,q) = Ip — gl = lg —pl-
Similarly, the distance between two any vectors u and v € V is defined as
dlu,v) =|lu—v|=|v—ul.
Two points or two vectors are coincident if and only if their distance is null.

The unit sphere S of V is defined as the set of all the vectors whose norm is one:

S={veV|v=1}

3



1.3 Basis of V, expression of the scalar product

Generally speaking, a basis B of a vector space is any set of n linearly independent vectors,
where n is equal to the dimension of the vector space. In the case of V, n = 3, so that a
basis B of V is any set

B = {ej, e e3},

of three linearly independent vectors e;. The concept of basis of V is useful for representing
vectors: once a basis chosen, any vector v € V can be represented as a linear combination
of the vectors of the basis, where the coefficients v; of the linear combination are the
components of v:

V = v;€; = vie; + Uses + vUszes.

Though the choice of the elements of a basis is completely arbitrary, the only condition
being their linear independency, we will use in the following only orthonormal bases, that
are bases composed by mutually orthogonal vectors of S, i.e. satisfying

€e; ej = 5@‘,

where the symbol d;; is the so-called Kronecker’s delta:

5. — 1if i =7,

YN0 g £ .
The use of orthonormal bases has great advantages; for instance, it allows to give a very
simple rule for the calculation of the scalar product:

u-v=1ue; - vje; = uivj(S,-j = U;V; = UIV] + UV + U3Vs3.

In particular, it is
V-€, = V€L - €; :Ukéik = U, 1= 1,2,3.

So, the Cartesian components of a vector are the projection of the vector on the three
vectors of the basis B; such quantities are the director cosines of v in the basis B. In fact,
if 6 is the angle formed by two vectors u and v, then

u-v=uv cosb.

This relation is used to define the angle between two vectors,

u-v
0 = arccos ,
uv

which can be proved easily: given two vectors u and v, we look for ¢ € R such that the
vector u — cv be orthogonal to v:
u-v u-v

u—cv) v=0 << c=—-=
( ) V-V 02

Now, if u is inclined of § on v, its projection u, on the direction of v is

Uy = U COS b,

4



and, by construction (see Fig. 1.3), it is also

Uy = C V.
So
U U u -V
c=—cosl@ — —cosf = 5 = cosf = )
v v v U v
A
u-cv u
0
Uy v

Figure 1.3: Angle between two vectors.

To remark that, while the scalar product, being an intrinsic operation, does not change
for a change of basis, the components v; of a vector are not intrinsic quantities, but they
are basis-dependent: a change of the basis makes the components change. The way this
change is done will be introduced in Sect. 2.11.

A frame R for £ is composed by a point o € £, the origin, and a basis B of V:
R ={o,B} ={o0;e1,ey,e3}.

The use of a frame for £ is useful for determining the position of a point p, which can be
done through its Cartesian coordinates x;, defined as the components, in B, of the vector

p— o
ri=(p—o0)-€, i=1,23.

Of course, the coordinates depend upon both the choices of o and of B.

1.4 Exercices

1. Prove that the null vector is unique.

2. Prove that the norm of the null vector is zero.
3. Prove the inequality of Minkowski.

4. Prove the inequality of Schwarz.

5. Prove that

u-v=0 < |ju—v|=|u+v| Yuvel.

6. Prove the linear forms representation theorem: be v : V — R a linear function.
Then, 3! u € V such that
Y(v)=u-v Yvel.






Chapter 2

Second rank tensors

2.1 Second-rank tensors

A second-rank tensor L is any linear application from V to V:

L: V-V | L(aiui) = o;Lu; Vo, € R, u; € V, 1= 1, N

Though here V indicates the vector space of translations over £, the definition of tensor!

is more general and in particular )V can be any vector space.

Defining the sum of two tensors as
(L1 + Ly)u =Lju+ Lou Yu e, (2.1)
the product of a scalar by a tensor as
(aL)u = a(Lu) YVa e RiueV
and the null tensor O as the unique tensor such that
Ou=oVYueV,

then the set of all the tensors L that operate on V forms a vector space, denoted by
Lin(V). We define the identity tensor I as the unique tensor such that

ITu=u VueV.

Different possible operations can be defined for second-rank tensors. We consider all of
them in the following Sections.

'We consider for the while only second-rank tensors, but we will see in the following how to introduce
tensors of higher ranks.



2.2 Dyads, tensor components

For any couple of vectors u and v, the dyad® u ® v is the tensor defined by
(u@v)w=v-wu VYw e V.

The application defined above is actually a tensor because of the bi-linearity of the scalar
product. The introduction of dyads allows for expressing any tensor as a linear combina-
tion of dyads. In fact, it can be proved that if B = {e1, e, e3} is a basis of V, then the
set of 9 dyads

B*={e;®ej, i,j =1,2,3},

is a basis of Lin(V), i.e. dim(Lin(V)) = 9. This implies that any tensor L € Lin()) can
be expressed as

L= Lij ei®ej, i,j — 1;2737

where the L;;s are the nine Cartesian components of L with respect to B2 The L;;s can
be calculated easily:

e; Lej = €; - Lhkeh (024 € ej = Lhkei e e - ej = Lhkéihéjk = LZ]

The above expression is sometimes called the canonical decomposition of a tensor. The
components of a dyad can be computed easily:

(u®v)ij:ei~(u®v)ej:u~eiv-ej:uivj. (22)

The components of a vector v result of the application of a tensor L on a vector u can
now be easily calculated:

v =Lu= Lij (ei X ej)(ukek) = Lijukéjkei = Lijujei — V; = Lijuj- (23)

Depending upon two indices, any second-rank tensor L can be represented by a matrix,
whose entries are the Cartesian components of L in the basis B:

Ly Lo Ly
L= Loy Loy Log |
L31 L3y Lss

because any u € V, depending upon only one index, can be represented by a column
vector, eq. (2.3) represents actually the classical operation of the multiplication of a 3 x 3
matrix by a 3 x 1 vector.

2In some texts, the dyad is also called tensor product; we prefer to use the term dyad because tensor
product can be ambiguous, as used to denote the product of two tensors, see Sect. 2.3.



2.3 Tensor product

The tensor product of Ly and Ly € Lin()V) is defined as
(LiLo)v = Ly(Lov) Vv e V.

By linearity and eq. (2.1) we get

[L(Ll + LQ)]V = L[(Ll + LQ)V] = L(le + LQV) =
LL1V + LLQV = (LLl + LLQ)V — L(Ll + LQ) = LL1 + LL2

To remark that the tensor product is not symmetric:
LiLy # LoLy;
however, by the same definition of the identity tensor and of tensor product,
IL=LI=LVL € Lin(V).

The Cartesian components of a tensor L = AB can be easily calculated using eq.
(2.3):

Lij = €1 - (AB)GJ = €; - A(Be]) = €; - A(Bhk(ej)k eh) = Bhkéjkei . Aeh
= Buxdjiei - (Apg(€n)q €p) = ApgBridjr0qndip = AinB;.

The above result simply corresponds to the rule of the multiplication of rows by lines of
two matrices. Using it, the following two identities can be readily shown:

(a®@b)(c®d)=b-cla®d) Va,b,c,d eV,

A(a®b) = (Aa)®b Va,b eV, A € Lin(V). (2.4)

Finally, the symbol L? is normally used to denote in short the product LL, VL €&
Lin(V).

2.4 Transpose, symmetric and skew tensors

For any tensor L € Lin(V), it exists just one tensor L', called the transpose of L, such
that
u-Lv=v-L'u VYu,ve.

The transpose of the transpose of L is L:

u-Lv=v-L'u=u-L")'v = (L") =L

The Cartesian components of LT are obtained swapping the indexes of the components
of L:
L;; =€;- LTej = ej . (LT)TGZ‘ = ej . Lei = Lﬂ

9



It is immediate to show that
(A+B)"=AT +B" VA B c Lin(V),
while
u-(AB)v=Bv-A'u=v-B'A'u = (AB)'=B'A".
Moreover,

u-(a@b)v=a-ub-v=v-(b®aju = (a®b) =b®a. (2.5)

A tensor L is symmetric <=
L=L".
In such a case
Lj=Lj=L; < Lj=Lj.
A symmetric tensor is hence represented, in a given basis, by a symmetric matrix and has

just six independent Cartesian components. Applying eq. (2.4) to I, it is immediately
recognized that the identity tensor is symmetric: I =1T.

A tensor L is antisymmetric or skew <=
L=-L"
In such a case (no summation on the index i, see footnote 2, Chap. 1)
Lj=-L,=-Lj < Lj=-Lj = Ly=0Vi=1,23.

A skew tensor is hence represented, in a given basis, by an antisymmetric matrix whose
components on the diagonal are identically null, in any basis; finally, a skew tensor just
depends upon three independent Cartesian components.

If we denote by Sym(V) the set of all the symmetric tensors and by Skw(V) that of all
the skew tensors, then it is evident that, Va, 8, A\, u € R,
Sym(V) N Skw(V) = O,
aA + B e Sym(V) YA, B € Sym(V),
AL + uM € Skw(V) VL,M € Skw(V),

so Sym(V) and Skw(V) are vector subspaces of Lin(V) with dim(Sym(V)) = 6, while
dim(Skw(V)) = 3.

Any tensor L can be decomposed into the sum of a symmetric, L*; and an antisymmetric,
L“, tensor:

L=L°+1"
with -
L° = L +2L € Sym(V)
and L LT
L = 5 € Skw(V),

so that, finally,
Lin(V) = Sym(V) @ Skw(V).

10



2.5 Trace, scalar product of tensors

It exists one and only one linear form
tr: Lin(V) — R,
called the trace, such that
tra®@b)=a-b Va,be V.

For its same definition, that has been given without making use of any basis of V. the
trace of a tensor is a tensor invariant, i.e. a quantity, extracted from a tensor, that does
not depend upon the basis.

Linearity implies that
tr(cA + 6B) = atrA + ptrB Vo, € R, A,B € Lin(V).
It is just the linearity to give the rule for calculating the trace of a tensor L:
trL = tr(L;je; ® ej) = Lijtr(e; ® ej) = L;; €; - €; = L;;0;; = Ly;.
A tensor is hence an operator whose sum of the components on the diagonal,
trLi = L1y + Lo + Las,
is constant, regardless of the basis.
Following the same procedure above, it is readily seen that
trL" = trL,
which implies, by linearity, that
trL =0 VL € Skw(V).
The scalar product of tensors A and B is the positive definite, symmetric bilinear form

defined by
A -B=tr(A'B).
This definition implies that, VL, M, N € Lin(V), «, 5 € R,
L-(aM+ gN)=aL-M+ gL -N,
(L + M) -N=aL-N+ M-N,
L-M=M-L,
L-L>0VLeLin(V), L-L=0 < L=0.
Such properties give the rule for computing the scalar product of two tensors A and
B:
A . B = Ai]’(ei ® ej) . Bhk(eh ® ek) = Aithk(ei ® ej) . (eh ® ek)
= Ay B tr[(e; @ €;) (e, ® €p)] = Ay B tr[(e; @ ;) (e, @ ey)]
= Al]Bhk‘ tr[ei : eh(ej & ek)] = AZJBhk €, €y €€
= Aij Bribindji = AijBij.

11



Like in the case of vectors, the scalar product of two tensors is equal to the sum of the

products of the corresponding components. In the same manner, it is easily shown that,
Va,b,c,d € V,
(a®b) . (C®d> :a~cb~d:aibjcidj,

while by the same definition of tensor scalar product,
trL=1-L VL € Lin(V).

Similarly to vectors, we define Fuclidean norm of a tensor L the nonnegative scalar,
denoted either by L or |L|,

L=|L =VL-L=tr(LTL) = \/L;;Ly;,
and the distance d(L, M) of two tensors L and M the norm of the tensor difference:

d(L,M) = |L — M| = M — L.

2.6 Spherical and deviatoric parts

Let L € Sym(V); the spherical part of L is defined by
1
L = —trLI,
3

and the dewviatoric part by
Ldev —L— Lsph7

so that
L= Lsph + Lde'u'

To remark that .
trLPh = gtrLtrI =trL = trLé =0,

i.e. the deviatoric part is a traceless tensor. Let A, B € Lin(}); then
sph dev 1 dev 1 dev
AP B = gtrAI - B = gtrA trB*" = 0, (2.6)

i.e. any spherical tensor is orthogonal to any deviatoric tensor.

The sets
Sph(V) = {Asph € Lin(V)| A% = %trAI VA € Lm(V)} ,
Dev(V) := {A% € Lin(V)| A™ = A — A*" VA € Lin(V)}

form two subspaces of Lin()); the proof is left to the reader. For what proved above,
Sph(V) and Dev()V) are two mutually orthogonal subspaces of Lin()).

12



2.7 Determinant, inverse of a tensor

The reader is probably familiar with the concept of determinant of a matrix. We show
here that the determinant of a second rank tensor can be defined intrinsically and that it
corresponds with the determinant of the matrix that represents it in any basis of V. To
this purpose, we need first to introduce a mapping:

w:VYxVYxV—=R

is a skew trilinear form if w(u,v,-),w(u,-,v) and w(-,u,v) are linear forms on V and if
wu,v,w) =—w(v,u,w) = —w(u,w,v) = —w(w,v,u) Vu,v,w € V. (2.7)

After this definition, we can state the following

Theorem 1. Three vectors are linearly independent if and only if every skew trilinear
form on them is not null.

Proof. In fact, be u = av + fw; then, for any skew trilinear form w,
wu,v,w) =w(av+ pw,v,w) = aw(v,v,w) + fw(w,v,w) =0

because of eq. (2.7), applied to the permutation of the positions of the two u and the two
w. O

It is evident that the set of all the skew trilinear forms is a vector space, that we denote
by 2, whose null element is the null form wq:

wo(u,v,w) =0Vu,v,w e V.
For a given w(u,v,w) € Q, any L € Lin(V) induces another form wy(u,v,w) € €,

defined as
wr(u,v,w) = w(Lu, Lv,Lw) Yu,v,w € V.

A key point? for the following developments is that dim = 1.
This means that Vw, ws # wg € 2,3\ € R such that

wo(u, v, w) = wy(u,v,w) Vu,v,w € V.
So, VL € Lin(V), it must exist A\, € R such that

w(Lu, Lv,Lw) = wy(u,v,w) = \f w(u,v,w) YVu,v,w € V. (2.8)

3The proof of this statement is rather articulated and out of our scope; the interested reader is
addressed to the classical textbook of Halmos on linear algebra, §31 (see the bibiography). The theory
of the determinants is developed in §53.

13



The scalar* \j, is the determinant of L and in the following it will be denoted as det L.
The determinant of a tensor L is an intrinsic quantity of L, i.e. it does not depend upon
the particular form w, nor on the basis of V. In fact, we have never introduced, so far,
a basis for defining det L, hence it cannot depend upon the choice of a basis for V, i.e.
det L is a tensor invariant.

Then, if w! and w? € ©, because dim Q = 1, it exists k¥ € R, k # 0 such that
W, v,w) =k w'(u,v,w) Vu,v,w € ¥ =
w?(Lu,Lv,Lw) = k w'(Lu,Lv,Lw) —
wi(u,v,w) =k wj(u,v,w).

Moreover, by eq. (2.8) we get

w'(Lu,Lv, Lw) = w; (u,v,w) = \jw' (1, v, w),
w}(Lu,Lv,Lw) = w?(u,v,w) = A2w?(u,v,w),

so that

Mk w'(a,v,w) =X (u,v,w) =w(u,v,w) =
kwi(u,v,w) = Ak w'(u,v,w) < A} =A%,

which proves that det L does not depend upon the skew trilinear form, but only upon
L.

The definition given for det L let us prove some important properties. First of all,
det O = 0;
in fact, Vw € €,
det O w(u,v,w) =w(Ou,Ov,0w) = w(0,0,0) =0

because w operates on three identical, i.e. linearly dependent, vectors. Then, if L =
I
detI w(u,v,w) = w(Iu,Iv,Iw) = w(u,v,w)

if and only if
detI = 1. (2.9)

A third property is that Va,b € V,
det(a®b) =0. (2.10)
In fact, if L =a ® b, then
detL w(u,v,w) = w(Lu,Lv,Lw) = w((b-u)a,(b-v)a,(b-w)a) =0

because the three vectors on which w € () operates are linearly dependent; being u, v and
w arbitrary, this implies eq. (2.10).

An important result is the

4More precisely, det L is the function that associates a scalar with each tensor (Halmos, §53). We can
however, for the sake of practice, identify det L with the scalar associated to L, without consequences for
our purposes.
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Theorem 2. (Theorem of Binet): YA, B € Lin(V)
det(AB) = det A det B. (2.11)

Proof. Yw € Q,

Apw(u,v,w) = w(ABu, ABv, ABw) = w(A(Bu),A(Bv),A(Bw)) =
Aaw(Bu, Bv, Bw) = M Agw(u, v, w) <= Aap = AalAp,

which proves the theorem. O

A tensor L is called singular if det L = 0, otherwise it is non-singular.

Considering eq. (2.8), one can easily see that, if in a basis B of V it is L = L;je; ® ey,
then
det L = ex(1) m(@)2(3) L1n(t) L2y Lan(s)
TEP3
where Pj is the set of all the permutations 7 of {1, 2, 3} and the ¢, j ;s are the components
of the Ricct alternator:

1 if (i,7,k) 1is an even permutation of (1,2,3),
€ijh = 0 if (¢,7,k) is not a permutation,
—1 if (4,7,k) 1is an odd permutation of (1,2,3).

The above rule for det L coincides with that for calculating the determinant of the matrix
whose entries are the L;;s. This shows that, once chosen a basis B for V, det L coincides
with the determinant of the matrix representing it in B, and finally that

det L = L1y LogLsg + LigLog L3y + LizL3a Loy

(2.12)
— Ly1Log L3y — LogLizLar — LazLiaLay.
This result shows immediately that VL € Lin()V), and regardless of B, it is
detL" = det L. (2.13)
Using eq. (2.12), it is not difficult to show that, Vo € R,
det(I+aL) =1+ al; + oI, + oI5, (2.14)
where [, I, and I3 are the three principal invariants of L:
L =trL, I, = M, I3 =det L. (2.15)

A tensor L € Lin(V) is said to be invertible if there is a tensor L™ € Lin(V), called the
tmwverse of L, such that
LL'=L'L=1L (2.16)

If L is invertible, then L~! is unique. By the above definition, if L is invertible, then

u,=Lu=u=L"1u;.
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Theorem 3. Any invertible tensor maps triples of linearly independent vectors into triples
of still linearly independent vectors.

Proof. Be L an invertible tensor and u; = Lu,v; = Lv,w; = Lw, where u,v,w are
three linearly independent vectors. Let us suppose that

u; = hvy + kwy, h, k € R.
Then, because L is invertible,
L 'u; = L7 (hvy + kwy) = hL7'v, + kL7 'wy = hv + kw,

which goes against the hypothesis. By consequence, uy, vy and w; are linearly indepen-
dent. O

This result, along with the definition of determinant, eq. (2.8), and Theorem 1, proves
the

Theorem 4. (Invertibility theorem): L € Lin(V) is invertible <= detL # 0.
Using the Theorem of Binet, 2, along with eqs. (2.9) and (2.16), we get

1
detL™!' = )
¢ det L

Equation (2.16) applied to L™!, along with the uniqueness of the inverse, gives immedi-
ately that
(L)™' =L,

while
B'A'=B'A'AB(AB) ' = (AB)™.

The operations of transpose and inversion commute:
L'LTNH)'=I=L'L=1"=(L"'L)' =L (L) =
(Lfl)T — (LT)fl = LfT'

2.8 Eigenvalues and eigenvectors of a tensor
If it exists a A € R and a v € V, except the null vector, such that

Lv = \v, (2.17)

then X is an eigenvalue and v an eigenvector, relatif to A, of L. It is immediate to observe
that, thanks to linearity, any eigenvector v of L is determined to within a multiplier, i.e.,
that kv is an eigenvector of L too, Vk € R. Often, the multiplier £ is fixed in such a way
that |v| = 1.
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To determine the eigenvalues and eigenvectors of a tensor, we rewrite eq. (2.17) as
(L—-AI)v =o. (2.18)
The condition for this homogeneous system have a non null solution is
det(L — A\I) = 0;

this is the so-called characteristic or Laplace’s equation. In the case of a second rank tensor
over V, the Laplace’s equation is an algebraic equation of degree 3 with real coefficients.
The roots of the Laplace’s equation are the eigenvalues of L; because the components of L,
and hence the coefficients of the characteristic equation, are all real, then the eigenvalues
of L are all real or one real and two complex conjugate.

For any eigenvalue \;, i = 1,2,3 of L, the corresponding eigenvectors v; can be found
solving eq. (2.18), once put A = \;.

The proper space of L relatif to A is the subspace of Lin(}) composed by all the vec-
tors that satisfy eq. (2.18). The multiplicity of X is the dimension of its proper space,
while the spectrum of L is the set composed by all of its eigenvalues, each one with its
multiplicity.

LT has the same eigenvalues of L, because the Laplace’s equation is the same in both the
cases:

det(L" — AI) = det(L"T — MXI") = det(L — AI) " = det(L — AI).

However, this is not the case for the eigenvectors, that, generally speaking, are different,
as a simple example can show.

Developing the Laplace’s equation, it is easy to show that it can be written as
det(L — M) = =N\ + LA\* — LA+ I3 = 0,

which is merely an application of eq. (2.14). If we denote L = LLL, using eq. (2.15)
one can prove the

Theorem 5. (Cayley-Hamilton Theorem): YL € Lin(V),

L) - L1+ LL—L,I=0.

A quadratic form defined by L is any form w : V x V — R of the type
w=v-Lv;

ifw>0VweV, w=0 <= v =o0,then wand L are said to be positive definite. The
eigenvalues of a positive definite tensor are positive. In fact, if A is an eigenvalue of L,
positive definite, and v its eigenvector, then

v-Lv=v- Av=) W’ >0 < \>0.
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Be vy and v, two eigenvectors of a symmetric tensor L relative to the eigenvalues \; and
A9, respectively, with Ay #£ \o; then

)\1V1'V2:LV1'V2:LV2'V1:)\2V2'V1 < vy vy =0.

Actually, symmetric tensors have a particular importance, specified by the

Theorem 6. (Spectral Theorem): the eigenvectors of a symmetric tensor form a basis of

V.

This theorem? is of the paramount importance in linear algebra: it proves that the eigen-
values of a symmetric tensor L are real valued and, remembering the definition of eigenval-
ues and eigenvectors, eq. (2.17), that it exists a basis By = {u;, ug, ug} of ¥ composed by
eigenvectors of L, i.e. by vectors that are mutually orthogonal and that remain mutually
orthogonal once transformed by L. Such a basis is called the normal basis.

If \;;i=1,2,3, are the eigenvalues of L, then the components of L in By are
Lij =u; - Lllj =u; - )\jllj = /\]51
so finally in By it is
L = )\iei X €e;,

i.e. L is diagonal and is completely represented by its eigenvalues. In addition, it is easy
to check that

A tensor with a unique eigenvalue A, of multiplicity 3, is said to be spherical; in such a
case, any basis of V is By and
L =)L

Eigenvalues and eigenvectors have also another important property: let us consider the
quadratic form w := v - Lv, Vv € §, defined by a symmetric tensor L. We look for
the directions v € & whereupon w is stationary. Then, we have to solve the constrained
problem

Ve(v-Lv) =0, veS.

Using the Lagrange’s multiplier technique, we solve the equivalent problem
V(v -Lv—A(v*—1)) =0,

which restitutes the equation
Lv =)A\v

and the constraint |v| = 1. The above equation is exactly the one defining the eigenvalue
problem for L: the stationary values (i.e. the maximum and minimum) of w corresponds

5The proof of the spectral theorem is omitted here; the interested reader can find a proof of it in the
classical text of Halmos, page 155, see the bibliography.
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hence to two eigenvalues of L and the directions v whereupon stationarity is get coincide
with the respective eigenvectors.

Two tensors A and B are said to be coazial if they have the same normal basis By, i.e.
if they share the same eigenvectors. Be u an eigenvector of A, relative to the eigenvalue
A4, and of B, relatif to Ag. Then,

ABu = A)gu = AgAu = M Agu=),Bu=B)\u=BAu,

which shows, on one hand, that also Bu is an eigenvector of A, relative to the same
eigenvalue \4; in the same way, of course, Au is an eigenvector of B relative to Ag. In
other words, this shows that B leaves unchanged any proper space of A, and viceversa.
On the other hand, we see that, at least for what concerns the eigenvectors, two tensors
commute if and only if they are coaxial. Because any vector can be written as a linear
combination of the vectors of By, and for the linearity of tensors, we finally have proved
the

Theorem 7. (Commutation Theorem): two tensors commute if and only if they are
coaxial.

2.9 Skew tensors and cross product

Because dim(V) = dim(Skw(V)) = 3, an isomorphism can be established between V and
Skw(V), i.e. between vectors and skew tensors. We establish hence a way to associate in a
unique way a vector to any skew tensor and inversely. To this purpose, we first introduce
the following

Theorem 8. The spectrum of any tensor W € Skw(V) is {0} and the dimension of its
proper space 15 1.

Proof. This theorem states that zero is the only real eigenvalue of any skew tensor and
that its multiplicity is 1. In fact, be w an eigenvector of W relative to the eigenvector A.
Then

MNw?=Ww - Ww=w-W Ww=—-w-WWw
=—w-WOw) = -Iw-Ww = -\w? <= \=0.
Then, if W # O its rank is necessarily 2, because det W = 0 YW € Skw(V); hence, the

equation

Ww =o0 (2.19)

has oo! solutions, i.e. the multiplicity of X is 1, which proves the theorem. ]

The last equation gives also the way the isomorphism is constructed: in fact, using eq.
(2.19) it is easy to check that if w = (a,b, ), then

0 —c b
w=(a,bc) <= W= | ¢ 0 —a |. (2.20)
b a 0
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The proper space of W is called the axis of W and it is indicated by A(W):
A(W) = {u € V| Wu = o}.

The consequence of what shown above is that dim A(W) = 1. With regard to eq. (2.20),
one can check easily that the equation

1
u-u:§W'W (2.21)

is satisfied only by w and by its opposite —w. Because both these vectors belong to
A(W), choosing one of them corresponds to choose an orientation for &, see below.
We will always fix our choice according to eq. (2.20), which fixes once and for all the
isomorphism between V and Skw(V) that makes correspond any vector w with one and
only one azial tensor W and vice-versa, any skew tensor W with a unique axial vector
w.

It is worth noting that the above isomorphism between the vector spaces V and Skw(V)
implies that to any linear combination of vectors a and b corresponds an equal linear
combination of the corresponding axial tensors W, and W, and vice-versa, i.e. Va,b € R

w=oaa+ b <= W =aW, + W,, (2.22)

where W is the axial tensor of w. Such a property is immediately checked using eq.
(2.20).

It is useful, for further developments, to calculate the powers of W:
W2=WW=-W'(-W') = (WW) = (W)" (2.23)
i.e. W2 is symmetric. Moreover:

Wu=WWu=wx (WXu)=w-uw—w-wu

2.24
= (I-wawu = W=-I-waw) (2.24)
So, applying recursively the previous results,
W =WW?= -WI-wew)=-W+ (Ww)®@w=-W
Wi =WWwW3= _W?
(2.25)

W’ = WWi= —-W*

etc.

An important property of any couple axial tensor W - axial vector w is
1
WW = —§\W|2(I —WRW),
while eq. (2.21) can be generalized to any two axial couples wq, W1 and wo, Wy :
1
Wi - Wo = §W1 . WQ.
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The proof of these two last properties is rather easy and left to the reader.

We define cross product of two vectors a and b the vector
axb=W,b,

where W,, is the axial tensor of a. If a = (aj,as,a3) and b = (by, by, b3), then by eq.
(2.20) we get
a x b = (agbs — asbs, azby — a1bs, a;by — ashy).

The cross product is bilinear: Va,b,u €V, a, € R,

(a4 Ob) x u=caa x u+ b x u,
u x (ea+ fb) =au x a+ fu x b.

In fact, the first equation above is a consequence of eq. (2.22), while the second one is a
simple application to axial tensors of the same definition of tensor.

Three important results concerning the cross product are stated by the following theo-
rems:

Theorem 9. (Condition of parallelism): two vectors a and b are parallel, i.e. b =
ka, ke R, <=
axb=o.

Proof. This property is actually a consequence of the fact that any eigenvalue of a tensor
is determined to within a multiplier:

axb=W,b=0 <= b=ka, keR,

for Theorem 8. [l

Theorem 10. (Orthogonality property):

axb-a=axb-b=0. (2.26)

Proof.

axb-a=W,b-a=b-W/a=-b-W,a=-b-0=0,
axb-b=W,b-b=b-W/b=-b-W,b «<= axb-b=0.

Theorem 11. a X b is the azial vector of the tensor (b ® a—a® b).
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Proof. First of all, by eq. (2.5) we see that
(b®a—a®b) e Skew(V).
Then,
(b®a—a®b)laxb)=a-axbb—-b-axba=0
for Theorem 10. O

Theorem 11 allows for showing that, unlike the scalar product, the cross product is anti-
symmetric:

axb=—-bxa. (2.27)

In fact, if W; = (b ® a —a ® b) is the axial tensor of a x b, Wy = (—a® b +b® a) is
that of —b x a. But, evidently, W; = Wy which implies eq. (2.27) for the isomorphism
between V and Lin(V). This property and again Theorem 11 let us show the formula for
the double cross product:

UX (VXW)=—(VXW)Xu=—(WRV-—VRAWuU=Uu-WV—Uu-VWw. (2.28)
Another interesting result concerns the mixed product:
uxv-w=W,v-w=—-v- WWwW=—-Vv-uXw=wXu-v, (2.29)
and similarly
UXV - W=VXW-U

Using this last result, we can obtain a formula for the norm of a cross product; if a = a e,
and b = b e, with e,, e, € S, are two vectors forming the angle #, then

(axb)-(axb)=axb-(axb)=(axb)xa-b=—-ax(axb)-b=
(—ra-ba+a’b)-b=b-(a’I-a®ab=a’b-(I-e,Qe,)b=
a’b* ey - (I — e, ®e,)ey = a’b*(1 — cos? §) = a*b*sin” § — |a x b| = absin 6.
So, the norm of a cross product can be interpreted, geometrically, as the area of the
parallelogram spanned by the two vectors. As a consequence, the absolute value of the

mixed product (2.29) measures the volume of the prism delimited by three non coplanar
vectors.

Because the cross product is antisymmetric and the scalar one is symmetric, it is easy to
check that the form
flu,v,w) =uxv-w

is a skew trilinear form. Then, eq. (2.8), we get
LuxLv-Lw=detLuxv-w. (2.30)

Following the interpretation given above for the absolute value of the mixed product,
we can conclude that |det L| can be interpreted as a coefficient of volume dilation. A
geometrical interpretation can then be given to the case of a non invertible tensor, i.e.
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of detL = 0: it crushes a prism into a flat region (the three original vectors become
coplanar, i.e. linearly dependent).

The adjugate of L is the tensor
L* := (det L)L~ ".
From eq. (2.30) we get hence

detLuxv-w=LuxLv-Lw=L"(LuxLv) - w Yw=
Lu x Lv =L*(u x v).

2.10 Orientation of a basis

It is immediate to observe that a basis B = {ej, e, e3} can be oriented in two opposite
ways®: e.g., once two unit mutually orthogonal vectors e; and e, chosen, there are two
opposite unit vectors perpendicular to both e; and e, that can be chosen to form B.

We say that B is positively oriented or right-handed if
e Xey-e3=1,
while B is negatively oriented or left-handed if
e; X ey-e3=—1.

Schematically, a right-handed basis is represented in Fig. 2.1, where a left-handed basis
is represented too, with a dashed ej3.

€3

,/i\ei

€ |
|
|
v
Figure 2.1: Right- and left-handed bases.

With a right-handed basis, by definition the axial tensors of the three vectors of the basis
are

W, =e3@e; —e;®es,
W, =e; ®e; —e3®ey,
W63262®61—81®62.

6Tt is evident that this is true also for one- and two-dimensional vector spaces.
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2.11 Rotations

In the previous Chapter we have seen that the elements of V represent translations over
E. A rotation, i.e. a rigid rotation of the space, is an operation that transforms any two
vectors u and v into two other vectors u’ and v’ in such a way that

u=u, v=0, u-v=u-v, (2.31)

i.e. it preserves norms and angles. Because a rotation is a transformation from V to V,
rotations are tensors, i.e. we can write

with R the rotation tensor or simply the rotation.

Conditions (2.31) impose some restrictions on R:
v.v=Ru-Rv=u-R'Rv=u-v < R'R=I=RR".

A tensor that preserves angles belongs to Orth(V), the subspace of orthogonal tensors (we
leave to the reader the proof that actually Orth()V) is a subspace of Lin(V). Replacing in
the above equation v with u shows immediately that an orthogonal tensor preserves also
the norms. By the uniqueness of the inverse, we see that

RcOrth(V) —< R '=R".

The above condition is not sufficient to characterize a rotation; in fact, a rotation must
transform a right-handed basis into another right-handed basis, i.e. it must preserve the
orientation of the space. This means that it must be

e; x ey -e; =Re; x Rey- Res = e X e;-e3.
By eq. (2.30) we get hence the condition”
detR(e1 X €9 '83) =€ X €y -e3 < detR = 1.

The tensors of Orth(V) that have a determinant equal to 1 form the subspace of proper
rotations or simply rotations, indicated by Orth(V)" or also by SO(3). Only tensors of
Orth(V)™" represent rigid rotations of 8.

Theorem 12. : each tensor R € Orth(V) has the eigenvalue £1, with +1 for rotations.

Proof. Be u an eigenvector of R € Orth(V) corresponding to the eigenvalue \. Because
R preserves the norm, it is

Ru-Ru=)\u?’=uv®> - =1

"From the condition RTR = I and through eq.(2.13) and the Theorem of Binet, we recognize imme-
diately that det R = £1 VR € Orth(V).

8A tensor S € Orth(V) such that det S = —1 represents a transformation that changes the orientation
of the space, like mirror symmetries do, see Sect. 2.12.
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We now must prove that it exists at least one real eigenvector \. To this end, we consider
the characteristic equation

FOO) =N+ kA + ko + &y = 0,

whose coefficients k; are real-valued, because R has real-valued components. It is imme-
diate to recognize that
lim f(\) = +oc0.

A—+too

So, because f(\) is a real-valued continuous function, actually a polynomial of A, it exists
at least one \; € R such that

In addition, we already know that YR € Orth(V),det R = +1 and that, if \;;i = 1,2,3
are the eigenvalues of R, then det R = A\; A\ A3. Hence, two are the possible cases:

i. Ay € R and Ay, A3 € C, with A3 = Xy, the complex conjugate of \y;
oA ERVI=1,2,3.

Let us consider the case of R € Orth(V)™, i.e. a (proper) rotation — det R = 1. Then,
in the first case above,

detR = )\1)\2X2 = )\1[%2()\2) + SQ(AQ)]

But
R2(A2) + % (Ae) = 1

because it is the square of the modulus of the complex eigenvalue As. So in this case
detR=1 < X\ =1.

In the second case, \; € R Vi = 1,2,3, either Ay > 0,2, A3 < 0, or all of them are

positive. Because the modulus of each eigenvalue must be equal to 1, either \; = 1 or
Ai =1Vi=1,2,3 (in this case R =1I).

Following the same steps, one arrives easily to show that VS € Orth(V) with det S = —1,
it exists at least one real eigenvalue \; = —1. O]

Generally speaking, a rotation tensor rotates the basis B = {e;, e, e3} into the basis
B ={e}, €}, e}

Rei:e; VZ:1,2,3 = Rij:ei'Rej :elwe;. (232)
This result actually means that the j-th column of R is composed by the components in

the basis B of the vector € of B'. Because the two bases are orthonormal, such components
are the director cosines of the axes of B’ with respect to B.

Geometrically speaking, any rotation is characterized by an axis of rotation w,|w| = 1
and by an amplitude ¢, i.e. the angle through which the space is rotated about w. By
definition, w is the (only) vector that is left unchanged by R, i.e.

Rw = w,
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or, in other words, it is the eigenvector corresponding to the eigenvalue +1.

The question is then: how a rotation tensor R can be expressed by means of its geometrical
parameters, w and ¢? To this end we have a fundamental theorem:

Theorem 13. (Euler’s rotation representation theorem): VR € Orth(V)*,
R =1+ sin oW + (1 — cos p)W? (2.33)

with o the rotation’s amplitude and W' the axial tensor of the rotation axis w.

Proof. We observe preliminarily that
Rw = Iw + sinpWw + (1 —cosp)) WWw =Iw = w (2.34)

i.e. that eq. (2.33) actually defines a transformation that leaves unchanged the axis w,
like a rotation about w must do, and that +1 is an eigenvalue of R.

We need now to prove that eq. (2.33) actually represents a rotation tensor, i.e. we must
prove that
RR' =1, detR=1.

Through eq. (2.25) we get
RR" = (I +sin oW + (1 — cos o) W?)(I + sin oW + (1 — cos p)W?) "
= (I+ sin W + (1 — cos ) W?)(I — sin oW + (1 — cos p)W?)
=14 2(1 — cos p)W? —sin? pW? + (1 — cos p)*W*
=T+2(1 —cosp)W? —sin® 9W? — (1 — cos p)*W?= L.
Then, through eq. (2.24) we obtain
R =1+ sin oW + (1 — cos p)W?
=I+sineW — (1 —cosp)(I—w®w) (2.35)
= cos Il + sin YW + (1 — cos p)w @ w.

To go on, we need to express W and w @ w; if w = (wy, ws, w3), then by eq. (2.20) we

have
0 —Ws3 Wao
W = W3 0 —Wq
— W2 w1 0

and by eq. (2.2)
2
w1 W1W2 W1W3
wWRW= | ww, w5 wows |,
WiwWws3 wWo2W3 U)%

that injected into eq. (2.35) gives

cos ¢ + (1 — cos p)w? —wssin g + wiwy(l — cosp)  wesin @ + wiws(1l — cos )
R=| wssingp+ wws(l— cosy) cosp + (1 — cos p)w3 —wy sin p + wews (1 — cos p)
—wy sin @ + wiws(1 — cosp)  wysinp + wyws(1 — cos ) cos p + (1 — cos p)w3
(2.36)
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This formula gives R as function exclusively of w and ¢, the geometrical elements of the
rotation. Then
det R = (w? + (1 — w?) cos p)(cos? p 4+ w? sin? p)

and because w = 1,det R = 1, which proves that eq. (2.33) actually represents a rotation.

We eventually need to prove that eq. (2.33) represents the rotation about w of amplitude
¢. To this end, we choose an orthonormal basis B = {e;, es,e3} of V such that w = e3,
i.e. we analyze the particular case of a rotation of amplitude ¢ about es. This is always
possible, thanks to the arbitrariness of the basis of V. In such a case, eq. (2.32) gives

cosp —singp 0

R=| sing cosp 0. (2.37)
0 0 1
Moreover,
0 -1 0 0 00
W=|1 0 0|, woaw=|00 0],
0 0 O 0 01
~1 0 0
w? I-wew) 0 -1 0
0O 0 0
Hence
1 00 0 -1 0
I+singW + (1—cosp)W? =10 1 0 | +sinp| 1 0 0|+
0 0 1 0 0 O
(2.38)
-1 0 0 cosp —singp 0
+(1—cosp)| 0 =10 smgp cosgp 0 | =R.
0 0 0 1
[

Equation (2.33) gives another result: to obtain the inverse of R it is sufficient to change
the sign of ¢. In fact, because W € Skw(V) and through eq. (2.23)
R!'=R" =T +singW + (1 —cos)W?) T =1 +5sinpW' + (1 —cosp)(W?)"
=T —sinpW + (1 — cos p)W? = I + sin(—¢)W + (1 — cos(—p)) W2,

The knowledge of the inverse of a rotation allows also to perform the operation of change of
basis, i.e. to determine the components of a vector or of a tensor in a basis B’ = {€/, €}, €5}
rotated with respect to an original basis B = {eq, €3, €3} by a rotation R (in the following
equation, a prime indicates a quantity specified in the basis B’). Considering that

=R7'e; =R'e; = Ry (e, ® ¢ )e; = Ry e,
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we get, for a vector u,

u = u;e; = qu;eﬁc

i.e.
/I _ pT I T

We remark that, because RT = R}, the operation of change of basis is just the opposite
one of the rotation of the space (and actually, we have seen that it is sufficient to take
the opposite of ¢ in eq. (2.33) to get R7!).

For a second-rank tensor L we get

L= Ll-jel- X €, = LinT-e’ & RT e’ = RT—;ZRZJLUG;TL & e;,

mi-m nj-n
ie.
L,=R,R,L;j - L =R'LR.

We remark something that is typical of tensors: the components of a r-rank tensor in a
rotated basis B’ depend upon the r-th powers of the directors cosines of the axes of B,
i.e. on the r-th powers of the components R;; of R.

If a rotation tensor is known through its Cartesian components in a given basis B, it is
easy to calculate its geometrical elements: the rotation axis w is the eigenvector of R
corresponding to the eigenvalue 1, so it is found solving the equation

Rw=w

and then normalizing it, while the rotation amplitude ¢ can be found still using (2.33):
because the trace of a tensor is an invariant, we get

trR—1

trR =3+ (1 —cosp)tr(—I+w-w)=1+2cosp — ¢ = arccos 5

It is interesting to consider the geometrical meaning of eq. (2.33). To this purpose we
apply eq. (2.33) to a vector u, see Fig. 2.2

Ru = (I + sin oW + (1 — cos ) W?)u
=u+sinpw x u+ (1 —cosp)w x (w X u)

The rotated vector Ru is the sum of three vectors; in particular, sin oWu is always
orthogonal to u, w and (1 — cos ¢)W?u. If u-w = 0, see the sketch on the right in Fig.
2.2, then (1 — cos ) W?u is also parallel to u.

Let us consider now a composition of rotations. In particular, let us imagine that a vector
u is rotated first by Ry, around w; through ¢, then by Ry, around wy through ¢s. So,
first the vector u becomes the vector

u; — Rlu.
Then, the vector u; is rotated about wo through ¢ to become

U9 = Rglll = RgRlu.
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w| (1-cosp) W2u (1-cosg) W2u

rotation axis

Figure 2.2: Rotation of a vector.

Let us now suppose to change the order of the rotations: Ry first and then R,. The final
result will be the vector
Ug1 — Rleu. (239)

Because the tensor product is not symmetric (i.e., it has not the commutativity property),
generally speaking®

u2 # Uy
In other words, the order of the rotations matters: changing the order of the rotations
leads to a different final result. An example is shown in Fig. 2.3.

rotation of 90°
about the axis y
rotation of 90°
about the axis z

T
rotation of 90°
about the axis y

=>

rotation of 90°
about the axis z

Figure 2.3: Non-commutativity of the rotations.
This is a fundamental difference between rotations and displacements, that commute, see
Fig. 1.2, because the composition of displacements is ruled by the sum of vectors:
w=u+v=v+u (2.40)

This difference, which is a major point in physics, comes from the difference of the oper-
ators: vectors for the displacements, tensors for the rotations.

9We have seen, Theorem 7, that two tensors commute <= they are coaxial, i.e. if they have the
same eigenvectors. Because the rotation axis is always a real eigenvector of a rotation tensor, if two
tensors operate a rotation about different axes they are not coaxial. Hence, the rotation tensors about
different axes never commute.

29



Any rotation can be specified by the knowledge of three parameters. This can be eas-
ily seen from eq. (2.33): the parameters are the three components of w, that are not

independent because
w=|w|=/w+wl+wi=1

and by the amplitude angle ¢. The choice of the parameters by which to express a rotation
is not unique. Besides the use of the Cartesian components of w and ¢, other choices are
possible, let us see three of them:

i. physical angles: the rotation axis w is given through its spherical coordinates v, the
longitude, 0 < ¢ < 27, and 6, the colatitude, 0 < 6 < 7, see Fig. 2.4, the third
parameter being the rotation amplitude p. Then

e; A

0

02

€

Figure 2.4: Physical angles.

w
w = (sinf cos 1, sinfsin1), cosf)) — 6 = arccosws, 1 = arctan -
w1y

and, eq. (2.36),

cp?s0? + cp(ch? + sp?s0?)  shesh*(1 — cp) — s cpstcd(1 — cp) + sihsOsp
R=| stcpsh*(1 —cp)+ clsp  si?s6? + cp(ch? + cp?s6?)  sipsOcH(1 — cp) — cipshsgp
cpscl(1 — cp) — spslsp  ssOch(1 — cp) + cbshsp  ch? + cp(c?sh? + sip?s0?)

where cip = cos, sp = siny,c = cosf,s0 = sinf,cp = cosp,sp = sinp. We
remark that all the components of R so expressed depend upon the first powers of
the circular functions of ¢. Hence, for what said above, with this representation of
the rotations, the components of a rotated r-rank tensor depend upon the r-th power
of the circular functions of ¢, i.e. of the physical rotation, but not on % nor on 6.

ii. Fuler’s angles: in this case the three parameters are the amplitude of three particular
rotations into which the rotation is decomposed. Such parameters are the angles 1,
the precession, 6, the nutation, and ¢, the proper rotation, see Fig. 2.5 These three
rotations are represented in Fig. 2.6. The first one, of amplitude v, is made about z
to carry the axis x onto the knots line x, the line perpendicular to both the axes z
and 2/, and y onto 7; by eq. (2.32), in the frame {z,y, z} it is

cosy —siny 0
Ry, = | sinyy cosy 0
0 0 1
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Figure 2.5: Euler’s angles.

The second one, of amplitude 6, is made about xy to carry z onto z’; in the frame
{zNn,7, 2} it is
1 0 0
Ro=| 0 cosf —sinf |,
0 sinf cosé

while in the frame {x,y, 2z}

R; = (R;")"RyR,' = R,R4R).

<l

Figure 2.6: Euler’s rotations, as seen from the respective axes of rotation.

The last rotation, of amplitude ¢, is made about 2’ to carry xy onto 2’ and 7 onto
y'; in the frame {zy,7, 2’} it is

cosp —singp 0
R,= | sinp cosp O [,
0 0 1
while in {z,y, z}
RS = (R;")(R;) " R,R; 'R, = R,RR, R/ R,

Any vector u is transformed, by the global rotation, into the vector

u’ = Ru.
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1il.

But we can write also
/ O:
u = RYu,

where T is the vector transformed by rotation R,

u = RJu,

and u is the vector transformed by rotation R,

=]

= R¢11.

Finally,
u =Ru= RIRJRyu — R =RIRGRy,

i.e. the global rotation tensor is obtained composing, in the opposite order of execu-
tion of the rotations, the three tensors all expressed in the original basis. However,

R = R’R{R, = RyRyR,R; R R,RsR R, = RyRyR,,

i.e., the global rotation tensor is also equal to the composition of the three rotations,
in the order of execution, if the three rotations are expressed in their own particular
bases. This result is general, not bounded to the Euler’s rotations nor to three
rotations.

Performing the tensor multiplications we get

cos Y cos p — sintsin pcosf — cossinp — siny coswcos  siny sin 6
R = | sinycos¢ + cosysinpcosf —sinysing + cos cospcosf — cospsinb
sin ¢ sin ¢ cos psiné cos

The components of a vector u in the basis B’ are then given by
T TRTRT
u =R u=R,R;R,u,
and those of a second-rank tensor

L'=R'LR =R R,;R/LR,RyR,.

coordinate angles: in this case, the rotation R is decomposed into three successive
rotations «, 3,7, respectively about the axes x, y and z of each rotation, i.e.

R = R.,RsR,

with

1 0 0 cosf 0 —sing cosy —siny 0
R,=|0 cosa —sina | ,Rg= 0 1 0 R, = | siny cosy 0

| 0 sina cosa sinfg 0 cosf 0 0 1
so finally

[ cos (3 cos 7y — cos [sinvy —sin
R = | cosasiny —sinasin fcosy cosacosy + sinasinfsiny —sina cos

| sinasiny + cosasin fcosy sinacosy — cosasinfsiny  cosacos 3
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Let us now consider the case of small rotations, i.e. |¢| — 0. In such a case,
sing ~ @, 1—cosp>~0
and
R~1+ oW,
i.e. in the small rotations approximation, any vector u is transformed as

Ru~ (I+¢W)u=u-+pw X u, (2.41)

i.e. by a skew tensor, not by a rotation tensor. The term (1 — cos ¢)W?2u has disappeared
(i.e., it is a higher order infinitesimal quantity) and the term pw x u is orthogonal to u.
Because ¢ — 0, the arc is approximated by its tangent, the vector pw x u, see Fig. 2.7.
Applying to eq. (2.41) the procedure already seen for the composition of finite amplitude

A
w
@ Wxu

Ru

i

rotation axis

Figure 2.7: Small rotations.

rotations, we get

wuy =Rju=T+p1Wi)u=u+¢w; X u,
uo; = Rouy = (IT+ paWso)u; = ug + pows X Uy
=Uu-+ ;W] X U+ oWy X U

+ 1wy X (W1 X u).

If the order of the rotations is changed, the last term becomes p;pow; X (Wo X u), which
is, in general, different from 1paws X (W1 X u): strictly speaking, also small rotations do
not commute!'®. However, for small rotations, (¢, is negligible with respect to ¢; and
9. in this approximation, small rotations commute. To remark that the approximation
(2.41) gives, for the displacements, a law which is quite similar to that of the velocities of
the points of a rigid body:

v=vo+wX(p—o)
This is quite natural, because
de
o
i.e. a small amplitude rotation can be seen as the rotation made with finite angular
velocity w in a small time interval dt.

w =

10This can happen for some vectors, all the times that w; - u = wy - u, like for the case of a vector u
orthogonal to both w; and wo; however, this is no more than a curiosity, it has no importance in practice.
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2.12 Reflexions

Let us consider now tensors S € Orth(V) that are not a rotation, i.e. such that det S = —1.
Let us call S an improper rotation. A particular improper rotation, whose all eigenvalues
are equal to -1, is the inversion or reflexion tensor

Sr=-L

The effect of Sy is to transform any basis B into the basis —B, i.e. with all the basis vectors
changed of orientation (or, which is the same, to change the sign of all the components
of a vector). In other words, S; changes the orientation of the space. This is also the
effect of any other improper rotation S, that can be decomposed into a proper rotation

R followed by the reflexion S;'*:
S—S/R. (2.42)

Ben € S, then
Sp=I1-2n®n (2.43)

is the tensor that operates the transformation of symmetry with respect to a plane or-
thogonal to n. In fact

Sgn=-n, Spm=mVvVme): m-n=0.
Sk is an improper rotation; in fact, eqs. (2.4), (2.14) and exercice 11,

I-2n®@n)(I-2n®n)' =(I-2n®n)(I-2n®n)
=I-2n®n—-2n®@n+4(n®n)(n®n) =1,
r’(n®n) — tr(n ® n)(n ® n)

t
detI—-2n®n)=1—-2tr(n®n) +4 5

—8det(n®n) = —1.

Be S = S;R an improper rotation; then

(Su) x (Sv) = (S;Ru) x (S;Rv) = det(S,;R) [(S;R)™]" (uxv)
=detS;det R(R7!'S7H T (uxv) = —(-R')T(uxv)=R(uxv).

The transformation by S of any vector u gives
Su = S;Ru = —Ru,

i.e. it changes the orientation of the rotated vector; this is not the case when the same
improper rotations transforms the vectors of a cross product: the rotated vector result of
the cross product does not change of orientation, i.e. the cross product is insensitive to
a reflexion. That is why, strictly speaking, the result of a cross product is not a vector,
but a pseudo-vector: it behaves like vectors apart for the reflexions. For the same reason
a scalar result of a mixed product (scalar plus cross product of three vectors) is called a
pseudo-scalar, because in this case the scalar result of the mixed product changes of sign
under a reflexion, as it is easy to be seen.

The application of the Binet’s Theorem shows immediately that detS = —1, while S;R(S;R)" =
S/RR'S] = —I(-I)" = IL: the decomposition in eq. (2.42) actually gives an improper rotation.
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2.13 Polar decomposition

Theorem 14. (Square root theorem): be L € Sym(V) and positive definite; then is exists
a unique tensor U € Sym(V) and positive definite such that

L =U%
Proof. Existence: be L, U,V € Sym(V) positive definite and
L= w;€e; K e;

a spectral decomposition of L, w; > 0 Vi. Define U as

U= \/Eei & (S
then, by eq. (2.4); we get
U’ =L.
Uniqueness: suppose that also
VZ=L

and be e an eigenvector of L corresponding to the (positive) eigenvalue w. Then, if

A=V,
O = (U2 — M)e = (U — \I)(U — e,

and put
v = (U = Al)e,
we get

Uv=-)\v = v=0 = Ue=)e

because U is positive definite and —\ cannot be an eigenvalue of U, because A > 0. In
the same way

Ve = e = Ue = Ve
for every eigenvector e of L. Because, spectral theorem, it exists a basis of eigenvectors

of L, U=V. O

We symbolically write that

U =L

For any F € Lin(V), both FF' and F'F clearly € Sym(V). If in addition det F > 0,
then
u-F'Fu= (Fu) - (Fu) >0

and the zero value is obtained <= Fu = o and because F is invertible, <= u = o.
As a consequence, FTF is positive definite. In the same way it can be proved that FF'
is also positive definite.

An important tensor decomposition is given by the
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Theorem 15. (Polar decomposition theorem): VF € Lin(V)|detF > 0 exist and are
uniquely determined two positive definite tensors U,V € Sym(V) and a rotation R such
that

F =RU = VR.

Proof. Uniqueness: Be F = RU a right polar decomposition of F; because R € Orth(V)"
and U € Sym(V),

F'F=UR'RU=U’—-U=VFTF.
By the Square-root Theorem, tensor U is unique, and because
R=FU ',

R is unique too.

Be now F = VR a left polar decomposition of F; by the same procedure, we get
FF'=V? 5V =VFFT,

so V is unique and also
R=V'F.

Existence: be

U=VFTF
so U € Sym(V) and it is positive definite, and let

R=FU".
To prove that F = RU is a right polar decomposition, we just have to show that R €
Orth(V)". Since detF > 0,det U > 0 (the latter because all the eigenvalues of U are
strictly positive), by the Theorem of Binet also det R > 0. Then

R'R=(FU ) (FU ) =U'F'FU ' =U'U*U' =I= R € Orth(V)*.

Let now

V =RUR';

then V € Sym(V) and is positive definite, see exercice 16, and
VR=RUR'R=RU=F,
which completes the proof. O
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2.14 Exercices

1.

10.
11.
12.

Prove that
Lo=o0 VL € Lin(V).

. Prove that, if a straight line r has the direction of u € §, then the tensor giving the

projection of a vector v € V on r is u ® u, while the one giving the projection on a
direction orthogonal to 7 is I —u ® u.

. For any « € R;a,b € V and A,B € Lin(V), prove that

(aA)T =aAT, (A+B)T=AT+B", (a®b)A=a® (A"h).

. Prove that

trI =3, trO =0, tr(AB)=tr(BA) VA,B € Lin(V).

. Prove that, VL, M,N € Lin(V),

L' M ' =L-M, LM-N=L-NM'=M-L'N.

. Prove that Sym(V) and Skw(V) are orthogonal, i.e. prove that

A-B=0 YA e Sym(V), B € Skw(V).

For any L € Lin(V), prove that, if A € Sym(V), then
A-L=—A-L°

while if B € Skw(V), then
B-L=B-L“

. Express by components the second principal invariant I5 of a tensor L.

. Prove that, if a = (ay, as,as3), b = (b1, b, b3),c = (c1, 2, c3), then

ay as ag
axb-c=det b1 bQ b3
€1 C2 C3

Prove the uniqueness of the inverse tensor.
Show, using the Cartesian components, that all the dyads are singular.

Prove that if L is invertible and o € R — {0} then
(L)™' =a'L7L
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13.

14.

15.

16.

17.

18.

19.

Prove that any form defined by a tensor L can be written as a scalar product of
tensors:
v-Lw=L-vew Vv,weV Le LinV).

Prove that, if W is the axial tensor of w, then

1
WW = —§|W|2(I —WQRW).

Prove that for any two axial couples w1, W1 and wy, Wa, it is:

1
Wi+ Wy = §W1 'Wg.

Let L € Sym(V) and positive definite and R € Orth(V)*; then prove that RLR' €
Sym(V) and that it is positive definite.

Let A,B,C,D € Lin(V); prove that

A (BCD)=(B"A)-(CD)=(AD")-(BC).

Prove that the spectrum of L**" is composed by only
1
NP — —trLL,
3

and that any u € S is an eigenvector.

Prove that the eigenvalues A% of LV are given by
)\dev =\ — )\sph’

where A is an eigenvalue of L.
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Chapter 3

Fourth rank tensors

3.1 Fourth-rank tensors
A fourth-rank tensor IL is any linear application from Lin(V) to Lin(V):
L: Lin(V) — Lin(V)|L(o;A;) = LA, Vo, € R, A; € Lin(V), i =1,...,n.

Defining the sum of two fourth-rank tensors as

(L + Ly)A =LA + LA VA € Lin(V),
the product of a scalar by a fourth-rank tensor as

(aL)A = a(LA) Va € R, A € Lin(V)
and the null fourth-rank tensor QO as the unique tensor such that
OA =0 VYA € Lin(V),

then the set of all the tensors L. that operate on Lin(V) forms a vector space, denoted by
Lin(V). We define the fourth-rank identity tensor I as the unique tensor such that

IA = A VA € Lin(V).

It is apparent that the algebra of fourth-rank tensors is similar to that of second-rank
tensors and in fact the operations with fourth-rank tensors can be introduced in almost
the same way, in some sense shifting from V to Lin(V) the operations. However, the
algebra of fourth-rank tensors is richer than that of the second-rank ones and some care
must be paid.

In the following sections, we consider some of the operations that can be done with
fourth-rank tensors.

39



3.2 Dyads, tensor components

For any couple of tensors A and B € Lin(V), the (tensor) dyad A ® B is the fourth-rank
tensor defined by
(A®B)L:=B-L A VL € Lin(V).

The application defined above is actually a fourth-rank tensor because of the bi-linearity
of the scalar product of second-rank tensors. Applying this rule to the nine dyads of
the basis B> = {e; ® e;, i,j = 1,2,3} of Lin(V) let us introduce the 81 fourth-rank
tensors

eRe;Re,Re = (e;Re;) (e ®e)

that form a basis B! = {e;® e; ® e, ®ey, i,j = 1,2,3} for Lin(V). We remark hence that
dim(Lin(V)) = 81. A useful result is that
(e;Re; Rey@e)(e,Re) = (e, @e) - (e, Re,)(e; ®ej) =l (e, ®e;).  (3.1)

Any fourth-rank tensor can be expressed as the linear combination (the canonical decom-
position)
L=Ljne®e e, ®e, i,j=1,23,

where the L;js are the 81 Cartesian components of I with respect to B*. The Lijps are
defined by the operation:

(e;@e;) -Lier®@e)) = (e €)) (Lpyrsep e, D e, Qes)(e, e
= (ei ® €)) - (LygrsOrrdsiey @ €qg)
= LygrsOreBuBindiq = Lijur
The components of a tensor dyad can be computed without any difficulty:
A®B = (A e ®e;)® (Bue,®e) = AjjBue, @e;Qe, e =
(A ®B);ju = Ai; B,
so that in particular
(a®@b)® (c®@d))iju = aibjcrd.
Concerning the identity of Lin(V),
Lijw=(ei®e) lle,@e) =(e;®e;) (e ®e) =¢€;-ere;-e = 0ixdy —
I=0p0(e; ® e ®e;®e).

The components of A € Lin(V) result of the application of L € Lin(V) on B € Lin(V)
can now be easily calculated:

A=1LB=Lule e e, Re)(Bye,De,)
= L;jiiBpyOrpoiq(€i @ €;) (3.2)
= LijuBri(e; ® ej) — Ajj = LijuBu.
Moreover,
LA®B)C=L((A®B)C)=L(B-CA)=B-CLA=((LA)®B)C =
L(A®B)=(LA)®B.
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Using this result and eq. (3.1), we can determine the components of a product of fourth-
rank tensors:

AB = Ajjr(e; ® e; @ e @ €)) Bpgrs(e, e, ® €, @ e)
= AjjuBpyrs(ei®e; e, Re)(e,®e,) ® (e @ e,)
= AjjuiBpgrs[(€i ® € @ ex ® &) (e, @ )] ® (e, @ €;) (3.3)
= Aijki Bpqrs[Okpdiq (€ © €;)] ® (e, @ €;)
= AjjuBrirs(ei®e; @e, ®es) = (AB)ijrs = Aijki Brirs-
Depending upon four indices, a fourth-rank tensor I cannot be represented by a matrix;

however, we will see in Sect. 3.8 that a matrix representation of a fourth-rank tensor is
still possible, and that it is currently used in some cases, e.g. in elasticity.

3.3 Conjugation product, transpose, symmetries
For any two tensors A, B € Lin(V) we call conjugation product the the tensor AKX B €
Lin(V) defined by the operation
(AXB)L := ALB' VL € Lin(V).
As a consequence, for the vectors of B,
(e;®e)N(er®Re) =€ e, Qe Ve, (3.4)

so that

Moreover, by the uniqueness of the identity I, YA € Lin(V),
IXDA=TAT"' = A = I=IKL
The transpose of a fourth-rank tensor L is the unique tensor " such that
A (LB)=B-(L"A)VA,B < Lin(V).
By this definition, putting A = e; ® e;, B = e, ® ¢; gives
(LT )ijer = Liaij-
A consequence is that
A-LB)=B-(L"TA)=A-(L"'B = (L") =L.
Then, using

M- (A®B)'L=L-(A®B)M
=L-AM-B=M:(BA:L)
=M-(B® A)L,

M (ANB)'L=L-(AXB)M
=L-AMB'=A'L-MB'=M'"A'L-B'
=M'A'L)"-B")"=L"AM-B=AM-LB
—M-A'LB=M- - (ATXB")L,

41



so that
(AB)' =B®A,
(AXB)' =A"XB'.

A tensor L € Lin(V) is symmetric <= L =L". It is then evident that
L=L"= Liju = Lui

relations called major symmetries. These symmetries are 36 on the whole, so that a
symmetric fourth-rank tensor has 45 independent components. Moreover,

AXB=(AXB)'=A"XB" «<—= A=A"T B=B',
AB=(A®B) ' =B®A < B=)A, AcR
Let us now consider the case of a IL € Lin(V) such that
LA = (LA)" VA € Lin(V).
Then, by eq. (3.2),
Liji = Ljin,
relations called left minor symmetries: a tensor L having the left minor symmetries has

values in Sym(V). On the whole, the left minor symmetries are 27. Finally, consider the
case of a I € Lin(V) such that

LA =L(A") VA € Lin(V);
then, again by eq. (3.2), we get
Lijik = Lji,

relations called minor right-symmetries, whose total number is also 27. It is immediate
to recognize that if I has the minor right-symmetries, then

LW = O YW € Skw(V).

We say that a tensor has the minor symmetries if it has both the right and left minor
symmetries; the total number of minor symmetries is 45, because actually some of the
left and right minor symmetries are the same, so a tensor with the minor symmetries has
36 independent components.

If L € Lin(V) has the major and minor symmetries, then the independent symmetry
relations are actually 60 (some minor and major symmetries coincide), so in such a case
L depends upon 21 independent components only. This is the case of the elasticity
tensor.

Finally, the 6 Cauchy-Poisson symmetries are those of the type
Lijri = Ligjt-

A tensor having the major, minor and Cauchy-Poisson symmetries is completely symmet-
ric, i.e. swapping any couple of indices gives an identical component. In that case, the
number of independent components is of only 15.
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3.4 Trace and scalar product of fourth-rank tensors

We can introduce the scalar product between fourth-rank tensors in the same way used
for second-rank tensors. We first introduce the concept of trace for fourth-rank tensors
once again using the dyad (here, the tensor dyad):

try A B :=A-B.

The easy proof that try : Lin(V) — R is a linear form is based upon the properties of
scalar product of second-rank tensors and it is left to the reader. An immediate result is
that

trsA ® B = A;; Bj,
Then, using the canonical decomposition, we have that
trall = try(Liju(e; ® €)) ® (e ® €)) = Liju(e; ® €;) - (ex @ €;) = Lijidindj = Lijij
and that
tr LT = try(Lyij(e;®e;) ®(ey®e))) = Liij(e;®e;) - (ex®e;) = Lyyj0idj = Liji; = trall.
Then, we define the scalar product of fourth-rank tensors as
A-B:=tr(A'B).

By the properties of try, the scalar product is a positive definite symmetric bilinear
form:

ad - B = try(aA' BB) = aftry(A'B) = aBA - B,
AB=try(A'B) =try(A'B)" =try(B'A) =B - A,
A-A=trg(ATA) = (ATA)iji; = ApijAmij > 0VA € Lin(V),A-A =0 <= A=0.

By components

A-B= tr4((Aklijei X €; Ker el)(qursep & €4 K e es))
= tr4(Apiij BpgrsOrplig(€i @ €)) @ (e, @ €;))
= Akliijqrs(Skp(Slq(ei ® ej) ' (eT & es) = Akliijqrsékpélq(sir(sjs = AklijBklij'

The rule for computing the scalar product is hence always the same already seen for
vectors and second-rank tensors: all the indexes are to be saturated.

In complete analogy with vectors and second-rank tensors, we say that A is orthogonal to
B <
A-B=0

and we define the norm of L as

IL| := VL-L = vtryLTL = \/Liji Liju.
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3.5 Projectors, identities

For the spherical part of any A € Sym()) we can write
sph 1 1 1 sph
AT = StrAT= ST AL = (I8 DA = S7"A,

where

1
SR Y |
Jle

is the spherical projector, i.e. the fourth-rank tensor that extracts from any A € Lin(V)
its spherical part. Moreover,

A*Y = A — A" = TA — S7"A = DA,

where
]D)dev — T — Ssph

is the deviatoric projector, i.e. the fourth-rank tensor that extracts from any A € Lin(V)
its deviatoric part. It is worth noting that

1= Ssph 4 ]D)dev.

Moreover, about the components of S*",
sph 1 1
Siw = (e; @ €;) - §(I @I)(e,@e) = g(ei ®e;) Ile,®e)-1
1 1 1
= gtr(ei ®e;)tr(er @ e) = §5ij5kl — S = §5z’j5kl(ei Re; e, ®e).

To remark that
Ssph — (Ssph)—l—‘

We introduce now the tensor I*; restriction of I to A € Sym(V). It can be introduced as
follows: VA € Sym(V)

1
A= 5(A +A"),

and
1 1
A=1A= §<]IA + HAT) = §(IijklAkl + IijklAlk)(ei & €; XK e X el);

because A = AT there is insensitivity to the swap of indexes & and [, so

1 1
A= §(IijklAkl + LjAw)(e; R e Qe @e) = 5(5ik5jl + 640,1) Ari(e; ® e; R e, ® ).

Then, if we admit the interchangeability of indexes k and [, i.e. if we postulate the
existence of the minor right-symmetries for I, then I = I*, with

1
I* = 5(5z‘k5jl +0udji)(ei @ e; ®ep @ e).
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It is apparent that
Iisjkl = ]Iilz'ﬁ
i.e. I¢ = (I*) 7, but also that
S 1 S
I = 5(5il5jk + dindji) = L5t

i.e., I’ has also the minor left-symmetries; in other words, I°* has the major and minor
symmetries, like an elasticity tensor, while this is not the case for I. In fact

Lijie = L = 001 7 00k = Ljing = Lijug-
Because S*P" and D operate on Sym(}), it is immediate to recognize that it is also
Dlev — s _ §Ph s ¢ — §Ph 4 Tydev
It is worth noting that
(D) T = (I* — ST = ()T — (S%")T = I* — Sk = Dev,
We can now determine the components of D9:
Ddev — s gsPh 1(5. S+ 6ub) — 15,,5 _
ijkl ijkl ijkl 2 tkOjl Y5k 37 Kl

1 1
Ddev — 5(51165]1 + 5i15jk) — gdijdkl (ei Ke; Ve, el).

To remark that the result (2.6) implies that S*** and D%V are orthogonal projectors, i.e.
they project the same A € Sym(V) into two orthogonal subspaces of V, Sph(V) and
Dev(V).

The tensor T"? € Lin()) defined by the operation
TUPA = AT,
is the transposition projector, whose components are
Th = (e;®e;) T (e, ®e)) = (e; @ e)) - (€ @ ex) = Gl
The following operation defines the symmetry projector S*¥™ € Lin(V):
1

SHMA = §(A +AT) VA € Lin(V),

while the antisymmetry projector W*** € Lin(V) is defined by
skw 1 T .

WA = §(A— A') VA € Lin(V).

Also S*¥™ and W*** are orthogonal projectors, because they project the same A € Lin(V)

into two orthogonal subspaces of Lin(V): Sym(V) and Skw(V), see exercice 6 of Chap.
2.
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We prove now two properties of the projectors: VA € Lin(V),

1 1
(S + WA= S(A+AT) + S(A-AT) =A=TA = S W =1 (3.5)
Then,

1 1
(SV"—WH)A = (A+AT)—(A-AT) = AT =T"A = §W"—W =T". (3.6)
3.6 Orthogonal conjugator
For any U € Orth(V) we define its orthogonal conjugator U € Lin(V) as

U=UKU.

Theorem 16. (orthogonality of U): the orthogonal conjugator is an orthogonal tensor of
Lin(V), i.e. it preserves the scalar product between tensors:

UA-UB=A-B VA Bc Lin(V).
Proof. By the assertion in exercice 17 of Chap. 2, and because U € Orth(V), we have

UA-UB=(UXU)A.-(UXU)B=UAU'-UBU'
—U'UAU"-BU'=AU" .BU'=AU'U-B=A - B.

O
Just as for tensors of Orth(V), it is also
UU'=U"U=L
In fact, see the assertion of exercice 3,
UU" = (UNKU)(U'RUT) =UU'XUU' =IKI =1 (3.7)

The orthogonal conjugators have also some properties in relation with projectors:

Theorem 17. : S**" is unaffected by any orthogonal conjugator, while D’ commutes
with any orthogonal conjugator.

Proof. For any L € Sym(V) and U € Orth(V),
sph 1 1 1 T
US*""L = (UK U) §I ®I)L = g(trL)(U XUI= g(trL)UIU
! (trL)I Lo 1(I ® )L = S*"L
= — T = —1 - = — = .
3 3 3
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Moreover,
1 1 1
SPhUL = (gI ® I) (UNRU)L = §(I ®I)(ULU") = g(I -ULU")I

1 1 1 1 1
= 5tr(ULUT)I = gtr(UTUL)I = g(trL)I =3I LI= g(I ® I)L = S*"L.

Thus, we have proved that
SsphU — [USsph — Ssph)

i.e. that the spherical projector S* is unaffected by any orthogonal conjugator. Further
D UL = (I* — S*")UL = I*'UL — S*"UL = UL — S*"L, = (U — S*")LL

and
UD*L = U(I* — $*")LL = UI'L — US*"L = UL — S*"L = (U — S*"")L,

so that
DdevU — U]D)dev.

3.7 Rotations and symmetries

We ponder now how to rotate a fourth-rank tensor, i.e., what are the components of
L=Ljnue ®e; e, X e

in a basis B’ = {e], €}, e}} obtained rotating the basis B = {e;, eq,e3} by the rotation
R = R;;e;®e;,R € Orth(V)". The procedure is exactly the same already seen for vectors
and second-rank tensors:

L = Lijue; ®e; ® e; @ e = LijuR )€, ® R e, ® R e, ® R,

qjq sl
_ T pT pT pT / / ! /
=R, R ;R RyLijre,®e, e, Q €,

ie.

L s = RyRURY Ry Liji-
We see clearly that the components of IL in the basis B’ are a linear combination of those
in B, the coefficients of the linear combination being fourth-powers of the director cosines,
the R;;s. The introduction of the orthogonal conjugator! of the rotation R,

R=RKXR,

allows to give a compact expression for the rotation of second- and fourth-rank tensors
(for completeness we recall also that of a vector w);

w =R'™w,
L'=R'LR=(R'T®XR")L=RTL,
L'=(RTRRTL(RXR) = RTLR.

Here the symbol R indicates the orthogonal conjugator of R, not the set of real numbers.
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The check of the above relations with the orthogonal conjugator R is left to the reader. It
is worth noting that actually these transformations are valid not only for R € Orth(V)™,
but more generally for any U € Orth(V), i.e. also for symmetries.

If by U we denote the tensor of change of basis under any orthogonal transformation, i.e.,
if we put U = R for the rotations, then the above relations become
w' = Uw,
L' =ULU' = (UK U)L = UL, (3.8)
L'=(UXNULUXU)" =ULU".

Finally, we say that L € Lin(V) or L € Lin(V) is invariant under an orthogonal transfor-
mation U if

ULU' =L, ULU' =L;
right multiplying both terms by U or by U and through eq. (3.7), we get that L or I are
invariant under U <=

UL =LU, UL =10,

ie. < L and U, or L and U commute. This relation allows, e.g., the analysis of
material symmetries in elasticity.

If a tensor is invariant under any orthogonal transformation, i.e. if the previous equations
hold true YU € Orth(V) then the tensor is said to be isotropic. A general result? is that
a fourth-rank tensor L is isotropic <= exist two scalar functions A, 1 such that

LA =2puA + MrA T VA € Sym(V).

The reader is addressed to the book of Gurtin (see references) for the proof of this result
and for a deeper insight in isotropic functions.

3.8 The Kelvin formalism

As already mentioned, though fourth-rank tensors cannot be organized in and represented
by a matrix, a matrix formalism for these operators exists. Such formalism is due to
Kelvin® and it is strictly related to the theory of elasticity, i.e. it concerns the Cauchy’s
stress tensor o, the strain tensor € and the elasticity tensor [E. The relation between o
and € is given by the celebrated (generalized) Hooke’s law:

o = Ee.

Both a,e € Sym(V) while E = ET and it has also the minor symmetries, so E has just
21 independent components*. In the Kelvin formalism, the six independent components

2 Actually, this is a quite famous result in classical elasticity, the Lamé’s equation, defining an isotropic
elastic material.

3W. Thomson (Lord Kelvin): Elements of a mathematical theory of elasticity. Philos. Trans. R. Soc.,
146, 481-498, 1856. Later, Voigt (W. Voigt: Lehrbuch der Kristallphysik. B. G. Taubner, Leipzig, 1910)
gave another, similar matrix formalism for tensors, more widely known than the Kelvin one, but less
effective.

4Actually, the Kelvin formalism can be extended without major difficulties also to tensors that do not
possess all the symmetries.
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of o and e are organized into column vectors and renumbered as follows

( _ ) ( _ )
01 =011 €1 =€n
09 = 022 €2 = €22
03 = 033 €3 = €33

{o} = {e} =

oy =200 [’
o5 = V203 5 = V23
\0'6:\/5012) \56:\/5512,

The elasticity tensor E is reduced to a 6 x 6 matrix [E], consequence of the minor symme-
tries induced by the symmetry of & and &; this matrix is symmetric because E = E:

&4 = \/5823

Ey = Eun E = Ei12: Ei3=Fus  Eu=+V2Ei3 FEis=v2Eus Eis=V2Enmns
E3 = Ei2 Eay = Eyo Ess = Eayss Eoy = V2Es3 Eos = V2Ea31 Ess = V2Eos
E3 = B33 Ea3 = FEaa33 Esy = Es333 B3 = V2E3303 Fss = V2E3331 Ess = V2Es310
Eiy=V2E1193 FEay=+\2F3 F3y=2E3303 FEu=2Fs33  Egs=2F03  Eis = 2E319
Eis =V2E131 Fos = 2E931 FEss =V2Fs331  Fys =2F3  Ess =2E331 Esg = 2E311
| L = V2Ei112 FEos = V2Esms Ess = V2Es12  FEis=2Fs12  Ese =2E3115 Fes = 2E1910 |
In this way, the matrix product
{o} = [El{e} (3.9)

is equivalent to the tensor form of the Hooke’s law and all the operations can be done
by the aid of classical matrix algebra®, e.g. the computation of the inverse of E, the
compliance tensor.

An important operation is the expression of tensor U in eq. (3.8) in the Kelvin formalism;
some tedious but straightforward passages give the result:

[ U3 U% UL V2U12U13 V2U13U1 V2U11U12 i
U3 Uz, U3, V2U22Us3 V2Us3Us V2Us21Usz
U] = U3y Uss Uss V2Us35Us3 V2Us3Us1 V2Us1Usy
V2U1Us1 V2UxUsy 2Us3Uss  UssUsg + UsaUss  UssUsy + UsiUss  UsiUsg + UsaUsy
V2U31U1 V2UsUis V2Us3Ups UsoUis + UssUps UsiUss + UssUyy UsiUsa + UseUpy
| V2ULUsr V2U12Uss V2U13Uss UraUsg + UrsUss Uy Usz + UpsUsy Uiy Usg + UpaUsy |
With some work, it can be checked that
T T
[ujuy =[] U] =[1],

is the matrix that in the Kelvin formalism represents the tensor R = U". The change of
basis for o and € are hence done through the relations

{o'} = UKo}, {e'} = [UKe},

5Mehrabadi and Cowin have shown that the Kelvin formalism transforms second- and fourth-rank
tensors on R? into vectors and second-rank tensors on R® (M. M. Mehrabadi, S. C. Cowin: FEigentensors
of linear anisotropic elastic materials. Q. J. Mech. Appl. Math., 43, 15-41, 1990).
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which applied to eq. (3.9) give

{o} =[El{e} — [U]'{o'} = [E|lU]'{'} — {0} = [VIE]U] {"}

i.e. in the basis B’

{0’} = [E'{'},

where

(£ = [U][E)lU]" = [R]" [E][R]

is the matrix representing E in B’ in the Kelvin formalism. Though it is possible to give
the expression of the components of [E’], they are so long that they are omitted here.

3.9 Exercices

1.
2.

10.

11.

Prove eq. (3.4).

Prove that
A®BL=A®L'B.
. Prove that
(AXB)(CXD)=ACKXBD.
Prove eq. (3.3) using the result of the previous exercice.

. Prove that
(A®B)(CKD)=A®((C'XD"B).
. Prove that
(AXB)(C®D)=((AXB)C)®D.
Let p € § and P = p ® p; then prove that

PXP=P®P.
. Prove that, VA € Lin(V),
TA = Al = A.
Show that
(A®B)- (Ce®D)=A-CB-D.
Show that I I
sph __
= Q —.
I 1
Show that

dim(Sph(V)) =1, dim(Dev(V)) = 5.
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12. Show the following properties of S and D:
SsPhgsPh — §sph.
devydev — Tydev

§sphyder — Tydevgsph —

13. Prove the results in egs. (3.5) and (3.6) using the components.
14. Show that

Ssph . Ssph — ].7
]Ddev . ]D)dev — 57
Ssph . ]D)dev =0.

15. Explicit the orthogonal conjugator Sg of the tensor Sg in eq. (2.43).
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Chapter 4

Tensor analysis: curves

4.1 Curves of points, vectors and tensors

The scalar products in V, Lin(V) and Lin(V) allow us to define a norm, the Euclidean
norm, so they automatically endow these spaces with a metric, i.e. we are able to measure
and calculate a distance between two elements of such a space and in €. This allows us
to generalise the concepts of continuity and differentiability already known in R, whose
definition intrinsically makes use of a distance between real quantities.

Let m, = {p, € €,n € N} a sequence of points in £. We say that m, converges top € €
if

lim d(p, —p) = 0.

n—oo

A similar definition can be given for sequences of vectors or tensors of any rank. Through
this definition of convergence we can now precise the concepts of continuity and of
curve.

Let [a, b] an interval of R; the function
p=p(t):ab] =€

is continuous at t € [a, b] if for each sequence {t,, € [a,b],n € N} that converges to t the
sequence 7, defined by p, = p(t,) Vn € N converges to p(t) € £. The function p = p(t)
is a curve in £ <= it is continuous V¢ € [a,b]. In the same way we can define a curve
of vectors and of tensors:
v=v(t):[a,b] =V,
t) : [a,b] = Lin(V),

L=L(t):
L =1L(¢) : [a,b] — Lin(V).

Mathematically, a curve is a function that lets correspond to a real value t (the parameter)
in an interval an element of a space, £,V, Lin(V) or L(V).
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4.2 Differention of curves

Let v = v(t) : [a,b] — V a curve of vectors and g = ¢(t) : [a,b] — R a scalar function.
We say that v is of the order o with respect to g in ty <=

vl _

t=to [g(t)]

Y

and we write
v(t) = o(g(t)) for t — to.

A similar definition can be given for a curve of tensors of any rank. We then say that the
curve v is differentiable in ty €|a, bl <= 3Iv' € V such that

v(t) — v(ty) = (t — to)v' + ot — to).

d
We call v’ the derivative of v!, also indicated by d_‘t/ Applying the definition of derivative

to v/ we define the second derivative v" of v and recursively all the derivatives of higher
orders. We say that v is of class C" if it is continuous with its derivatives up to the
order n; if n > 1, v is said to be smooth. A curve v(t) of class C" is said to be reqular if
v/ # o Vt. Similar definitions can be given for curves in &, Lin()) and Lin(V), so defining
derivatives of points and tensors. We remark that the derivative of a curve in £, defined
as a difference of points, is a curve in V (we say, in short, that the derivative of a point
is a vector). For what concerns tensors, the derivative of a tensor of rank r is a tensor of
the same rank.

Let u, v curves in V, L, M curves in Lin(V), L, M curves in Lin(V) and « a scalar func-
tion, all of them defined and at least of class C! on [a, b]. The same definition of derivative
of a curve gives the following results, whose proof is let to the reader:

(u+v)=u+Vv,
(av) =d'v+av,
(u-v)=u-v4+u-v,
(uxv)=uxv+uxv,
(uev)=uev+ux Vv,
(L+M) =L"+M,

(aL) = 'L + oL/,

(Lv) =L'v+ Lv/,
(LM) =L'M + LM/,

(L-M)Y=L-M+L-M,

IThe symbol "is also used, but it is usually reserved, in physics, to the case where t is the time.
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LoM)=LeM+LoM,
LRM) =L'KM+LXM,
(L+M) =L"+M,
(al) = 'L + ol
(LL) = 'L + LL,
(LM)' = L'M + LM/,
(L-M) =L'-M+L-M.

To remark that the derivative of any kind of product is made according to the usual rule
of the derivative of a product of functions.

Be R = {o;B} a reference frame of the euclidean space £, composed by an origin o
and a basis B = {e,ez,e3} of V,e;-e; = 0;;Vi,j = 1,2,3 and let us consider a point
p(t) = (p1(t), p2(t), p3(t)). If the three coordinates p;(t) are three continuous functions over
the interval [t1, t3] € R, then, by the definition given above, the mapping p(t) : [t1,t2] — €
is a curve in £ and the equation

P1=mn (t)
p(t) = (p1(t), pa(t), p3(t)) — P2 =palt)
p3 = p3(t)

is the parametric point equation of the curve: to each value of t € [t1,t5] it corresponds a
point of the curve in &, see Fig. 4.1.

PO=(p1(0), p2(0), p3(1))

4 t f R

Figure 4.1: Mapping of a curve of points.

The vector function r(t) = p(t) —o is the position vector of point p in R; the equation

T = Tl(t)
I'(t) = 7"1'<t>ei =" (t)el + TQ(t)eg + Tg(t)eg — To = T‘QEt%
s = T3 t

is the parametric vector equation of the curve: to each value of t € [t1,t5] it corresponds
a vector of V that determines a point of the curve in £ through the operation p(t) =

o+ r(t).
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Similarly, if the components L;;(t) are continuous functions of a parameter ¢, the mapping
L(t) : [t1,t2] — Lin(V) defined by

L(t) = sz(t)ez & €;, Z,] = 17 2, 3,
is a curve of tensors. In the same way we can give a curve of fourth-rank tensors L(t) :

[tl, tg] — LIH(V) by

L(t) = kal(t>el (%9 €; R e X e, i,j, k‘,l = 1, 2, 3.

To be noticed that the choice of the parameter is not unique: the equation p = p[7(t)]
still represents the same curve p = p(t), through the change of parameter T = 7(t).

The definition given above for the derivative of a curve of points p = p(t) in t = tg is
equivalent to the following one (probably more familiar to the reader)
dp(t)

dt :ll—r:% €

p(to +¢) — p(to)

)

dp(t)
dt

represented in Fig. 4.2, it is apparent that r/(t) = is a vector.

e; A

p(t()) r’(to)
p(tste)

r(z,),

r(t,+¢)

€
€

Figure 4.2: Derivative of a curve.

An important case is that of a vector v(¢) whose norm v(¢) is constant V¢:
() =wv-v)=v-v+v-vV=2vV.v=0: (4.1)

the derivative of such a vector is orthogonal to it V¢. The contrary is also true, as
immediately apparent.

Finally, using the above rules and assuming that the reference frame R is independent
from t, we get easily that

(4.2)
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i.e. that the derivative of a curve of points, vectors or tensors is simply calculated differ-
entiating the coordinates or the components.

More involved is to prove that

(LT)/ — L/T
(LT)/ — L’T,
(det LY = detL tr('L ) =detLLT - L' =detL L/ - L,

the reader is addressed to the book of Gurtin for the proof.

4.3 Integral of a curve of vectors, length of a curve

We define integral of a curve of vectors r(t) between a and b € [tq,1s] the curve that is
obtained integrating each component of the curve:

/abr(t) dt = /ab ri(t) dt e;.

If the curve is regular, we can generalize the second fundamental theorem of the integral
calculus

Because

we get also

t * *
e 4 j r'(¢")dt
a

pla
p@®

€

Figure 4.3: Integral of a vector curve.
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Be r(t) : [a,b] — &€ a regular curve, o a partition of the type a = tg < t; < ... < t, = b,
and
Omar = Max |t; —t;_q|.
i=1,...,n

=1,...,

The length ¢, of the polygonal line whose vertices are the points r(¢;) is hence:
o= |r(t;) —x(timy)].
i=1

We define length of the curve r(t) the (positive) number
{:=sup/,.

Theorem 18. Be r(t) : [a,b] = & a regular curve; then

(= /ab (1)t

Proof. By the fundamental theorem of calculus,
t; t;
/ r'(t)dt\ < [ W
ti1 ti1

(< /b (1) dt. (4.3)

Because r'(t) is continuous on [a, b], Ve > 0 39 > 0 such that [t—t| < § = |[¢/(¢t)—1/(t)] < e.
Be t € [ti—1,t;] and 04,4, < J, which is always possible by the choice of the partition o;
by the triangular inequality,

r(t) — v(t;y) = /t LYt > el — r(t)] =

whence

(O] < /() —x' ()] + [X'(t:)] < e+ [r'(t)],

whence

ti ti ti
/ ]r’(t)]dt</ \r’(ti)\dtJrg(ti—til):/ r’(ti)dt‘+s(ti—ti1)
ti—1 ti—1

ti—1

t;
/ r’(t)dt‘ +
ti—1

S |I'(tl) — I'(ti_l)| + 25(tz — ti—l)-

i—

<

/ti (r'(t;) — r'(t))dt‘ Felti —tia)

ti—1

Summing up over all the intervals [t;_1,t;] we get
b
/ I (£)]dt < €, + 26(b— a) < £+ 25(b — a),

and because ¢ is arbitrary,

b
/ I (8)|dt < ¢,

which by eq. (4.3) implies the thesis. O

58



Theorem 19. The length of a curve does not depend upon its parameterization.

Proof. Be r(t) : [a,b] — & a regular curve and t = (1) : [¢,d] — [a,b] a change of

parameter; then
6—/|r V|t = /|r DE(r |d7—/ ' (7)|dr-

]

A simple way to determine a point p(¢) on a curve is to fix a point py on the curve and to
measure the length s(¢) of the arc of curve between py = p(t = 0) and p(¢). This length
s(t) is called curvilinear abscissa*:

/ (£ [d* = / (p(t) — o) |dt". (4.4)

E - ‘I‘/(t)‘ > 07

From eq. (4.4) we get

so that s(t) is an increasing function of ¢ and the length of an infinitesimal arc is

ds = \/de + dr3 + dr3.

For a plane curve y = f(z), we can always put ¢ = x, which gives the parametric
equation

p(t) = (¢, f(1)),
or in vector form
r(t) =t e + f(t) e,

from which we obtain

S = W= 0] = VIE ), (15)

that gives the length of a plane curve between t = xy and ¢ = x as a function of the

abscissa x:
:/ I+ 2@,
zo

2The curvilinear abscissa is also called arc-length or natural parameter.
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4.4 The Frenet-Serret basis
We define the tangent vector T(t) to a regular curve p = p(t) the vector
_ ()

' (2)]

By the definition of derivative, this unit vector is always oriented as the increasing values
of t; the straight line tangent to the curve in py = p(to) has hence equation

q(t) = p(to) + 1t T(to).

If the curvilinear abscissa s is chosen as parameter for the curve, through the change of
parameter s = s(t) we get

(b = pP) _ pls@)] 1 dp(s)ds(t) _ dp(s)
'@ Ps@] - st ds  dt ds

()

— 7(s) = p'(s).

So, if the parameter of the curve is s, the derivative of the curve is 7, i.e. it is automatically
a unit vector. The above equation, in addition, shows that the change of parameter
does not change the direction of the tangent, because just a scalar, the derivative of the
parameter’s change, multiplies the vector. Nevertheless, generally speaking, a change of
parameter can change the orientation of the curve.

Because the norm of 7 is constant, its derivative is a vector orthogonal to 7, see eq. (4.1).
That is why we call principal normal vector to a curve the unit vector

u(t) = =)

G

v is defined only on the points of the curve where 7/ # o which implies that v is not
defined on the points of a straight line. This simply means that there is not, among the
infinite unit normal vectors to a straight line, a normal with special properties, a principal
one, uniquely linked to 7.

(4.6)

Unlike 7, whose orientation changes with the choice of the parameter, v is an intrinsic
local characteristic of the curve: it is not affected by the choice of the parameter. In
fact, by its same definition, v does not depend upon the reference frame; then, because
the direction of 7 is also independent upon the parameter’s choice, the only factor that
could affect v is the orientation of the curve, that depends upon the parameter. But a
change of the orientation affects, in (4.6), both 7 and the sign of the increment dt, so
that 7/(t) = d7/dt does not change, neither v, which is hence an intrinsic property of the
curve.

The vector

B(t) = 7(t) x v(t)
is called the binormal vector; by construction, it is orthogonal to 7 and v and it is a unit
vector. In addition, it is evident that

TXVv-B=1,
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so the set {7,v, 3} forms a positively oriented othonormal basis that can be defined at
any regular point of a curve with 7/ # o. Such a basis is called the Frenet-Serret local
basis, local in the sense that it changes with the position along the curve. The plane
T — v is the osculating plane, the plane v — 3 the normal plane and the plane B8 — T
the rectifying plane, see Fig. 4.4. The osculating plane is particularly important: if we

lane

Figure 4.4: The Frenet-Serret basis.

consider a plane passing through three not aligned points of the curve, when these points
become closer and closer, still remaining on the curve, the plane tends to the osculating
plane: the osculating plane at a point of a curve is the plane that better approaches the
curve near the point. A plane curve is entirely contained in the osculating plane, which
is fixed.

The principal normal v is always oriented towards the part of the space, with respect
to the rectifying plane, where the curve is; in particular, for a plane curve, v is always
directed towards the concavity of the curve. To show it, it is sufficient to prove that the
vector p(t + ¢) — p(t) forms with v an angle ¢ < 7/2, i.e. that (p(t +¢) —p(t)) - v > 0.
In fact,

plt+ <) = plt) =€ H() + 5 (1) + 0(e?) —

(p(t +2) — p(1)) - v = 5 (1) v+ 0(&?),

but
p(t)-v = (W +7lpl) - v = (7l + 7lp]) - v = [P,
so that, to within infinitesimal quantities of order o(¢?), we obtain

(p(t+2) — p(t)) - v = %gQ\T'pr >0,

4.5 Curvature of a curve

It is important, in several situations, to evaluate how much a curve moves away from a
straight line, in the neighborhood of a point. To do that, we calculate the angle formed
by the tangents at two close points, determined by the curvilinear abscissae s and s + ¢,
and we measure the angle x(s,¢) that they form, see Fig. 4.5.
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2518 g(s+e)

1(s) &/ V(ste)

Figure 4.5: Curvature of a curve.

We then define curvature of the curve in p = p(s) the limit

X(s:€) |

o) = ln

The curvature is hence a non-negative scalar that measures the rapidity of variation of
the direction of the curve per unit length of the curve (that is why ¢(s) is defined as a
function of the curvilinear abscissa); by its same definition, the curvature is an intrinsic
property of the curve, i.e. independent from the parameter’s choice. For a straight line,
the curvature is identically null everywhere.

The curvature is linked to the second derivative of the curve:

i 2
c(s) =lim X(s:¢) = lim sin x(s,€) = lim |- sin X(s:¢) =
e—0 £ e—0 g e—0 1| ¢
: V(S, 5) 1 T(‘S + 5) B T(S) _ / R/
tim | V)] — iy | TEED 2T ) = ),

Another formula for the calculation of ¢(s) can be obtained if we consider that

dr[s(t)] drds dr, , dr 1 dr
= TS0 » = e
dt ds dt  ds ds |p/(t)| dt
so that (0
1 dr T'(t
c(s) = |7'(s)| = —| = . 4.7
&) =1 = o0 a | = o) 47
A better formula can be obtained as follows:
p// . p/
AP
dr_ L 1 ayw PP
ds |p't)] dt  |p@)|dtlp'(t)] o] p'|?
-7y T p’
—— =I-7T®717)—.
' ( )\p’P
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By consequence,
1

c(s) = = WI(I—T@@TW’\-

Now, we use the following general formula expressing a skew tensor W:

dr(s)
ds

1
WW = —§|W|2(I —WRW);

if we use this formula for 7, so that W is the axial tensor of 7, we get

WWwW
because if 7 = (71, 72, 73), then
0 —T3 T2 0 —T3 T2
|W|2 =W - W = T3 0 —T1 : T3 0 —T1 =
—T2 T 0 —T2 1 0

27+ 75 +12) =2
So, recalling that for any skew tensor W,
Wu=wxu Yue),

with w the axial vector of W, we get

(X &) =~ WW| = |~ Wir x /)| = | 7 x (r )] =
p/xp//
|T><<T><p//)|:|7><p”|: | | |’

so that finally
(4.8)

Applying this last formula to a plane curve p(t) = (x(t),y(t)), we get

_ |I/y// _ .T”y/|

(22 + y/z)%

and if the curve is given in the form y = y(z), so that the parameter ¢ = z, then we
obtain ,
_

c=——.

(1+y2)>

This last formula shows that if || < 1, like in the infinitesimal theory of strain, then
//| )

¢~y
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4.6 The Frenet-Serret formulae

From egs. (4.6) for t = s and (4.7) we get

dr

— =cv 4.9

s (4.9)
which is the first Frenet-Serret Formula, giving the variation of 7 per unit length of the
curve. Such a variation is a vector whose norm is the curvature and that has as direction
that of v.

Let us now consider the variation of 8 per unit length of the curve; because 3 is a unit
vector, we have

as
2 .8=0
dS /6 Y
e dB-7) d
T T
Through eq. (4.9) and because 3 - v = 0 we get
%-T:—C,B-I/:O,
ds

d
so that d_,B is necessarily parallel to v. We then put
S

dg

— =Jv

ds ’
which is the second Frenet-Serret formula. The scalar 9(s) is called the torsion of the
curve in p = p(s). So, we see that the variation of B per unit length is a vector parallel

to v and proportional to the torsion of the curve.
We can now find the variation of v per unit length of the curve:

d—V:M:@XT—l—,@Xd—T:ﬁVXT—{—C,BXV,

ds ds ds ds
so finally
d
d—’; =—cT -9,

which is the third Frenet-Serret formula: the variation of v per unit length of the curve
is a vector of the rectifying plane.

The three formulae of Frenet-Serret (discovered independently by J. F. Frenet in 1847
and by J. A. Serret in 1851) can be condensed in the symbolic matrix product

T/ 0 ¢ O T
v = - 0 =9 v
Jci 0 9 0 JC;

The matrix in the equation above is called the matriz of Cartan, and it is skew.
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4.7 The torsion of a curve

We have introduced the torsion of a curve in the previous section, with the second formula
of Frenet-Serret. The torsion measures the deviation of a curve from flatness: if a curve is
planar, it belongs to the osculating plane and 3, which is perpendicular to the osculating
pane, is hence a constant vector. So, its derivative is null and by the Frenet-Serret second
formula ¢ = 0.

Conversely, if ¥ = 0 everywhere, B is a constant vector and hence the osculating plane
does not change and the curve is planar. So we have that a curve is planar if and only if
the torsion is null ¥p(s).

Using the Frenet-Serret formulae in the expression of p”(s) we get a formula for the
torsion:

dpd
p’(t):\p’\T:d—];d—jzs’T = |p=5 —
/1 _n [ A /) /2dT . 12
p't)=s"T+sT =5"T+s Rk T+csv —
S
p”/(t> :SIIIT+S//T/+(C S/2>1V+CS/2V/:

dr dv
SI”T + S//SI_ _|_ c 5/2 IV + c SI3_ —
ds ( ) ds

"t +8"s'ev + (c v —c P (er +98) =

(8" — AT+ (s"s'c + 5? +2¢ 5's" )W — ¢ 08,
so that, through eq. (4.8), we get

p/ x p// .p/// :SIT % (S//T +c SI2V) . [(SI” . 028/3)T+
(s"s'c+ s +2¢ 85"\ — ¢ 98] =
p/ % p//’2

. 028,619 — _02|p/|619 _ _‘ | /|6 |p/|619’
p

so that, finally,
p/ > p// . p///
|p/ X p//‘Q :
To remark that while the curvature is linked to the second derivative of the curve, the
torsion is a function also of the third derivative.

9 =

Unlike curvature, which is intrinsically positive, the torsion can be negative. In fact, still
using the Frenet-Serret formulae,

1 1
p(s +e) = pls) = p' + 5" + =" + o(e”) =

2 6
1 1
ET + 55201/ + 683(01/)/ +0(e?) =
1 1
eT + 55201/ + 653(0'1/ — AT —c9B)+o(e*) —

(p(s+2) —p(s))- B = —ég% 9+ o(c?).
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The above dot product determines if the point p(s + ¢) is located, with respect to the
osculating plane, on the side of 3 or on the opposite one, see Fig. 4.6: if following the
curve for increasing values of s, € > 0, the point passes into the semi-space of 3 from the
opposite one, because 1/6 ¢ 2 > 0, it will be ¥ < 0, while in the opposite case it will be
v > 0.

cos a>0: cos <0 :
p(s+e) #<0 >0
AP

osculatin
plane

Figure 4.6: Torsion of a curve.

This result is intrinsic, i.e. it does not depend upon the choice of the parameter, hence of
the positive orientation of the curve; in fact, v is intrinsic, but changing the orientation
of the curve, 7, and hence 3, change of orientation.

4.8 Osculating sphere and circle

The osculating sphere® to a curve at a point p is a sphere to which the curve tends to
adhere in the neighborhood of p. Mathematically speaking, if g5 is the center of the sphere
relative to point p(s), then

Ip(s +€) — qs* = Ip(s) — qs|* + o(?).

Using this definition, discarding the terms of order o(e3) and using the Frenet-Serret
formulae, we get:

2.1 1 3. ./

1
(s +¢) — ¢s|* =|p(s) — qs +ep’ + =P + =" + o(®)* =

2 6
1 1 .
Ip(s) — qs + T + 5820 v+ 653(01/)’ +o(e?)]? =

() = @+ 25(6(5) — ) 7+ <+ elp(s) — ) v+
32(005) — 42 (¢ — 7 — ¢ U8) + of),

which gives

(p(s) —gs) v = S,
D) —a) B= 5=

3The word osculating comes from the latin word osculo that means to kiss; an osculating sphere or
circle or plane is a geometric object that is very close to the curve, as close as two lovers are in a kiss.
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and finally

/

w=p+ov-58, (4.10)

so the center of the sphere belongs to the normal plane; the sphere is not defined for a
plane curve. p is the radius of curvature of the curve, defined as

1
p=-.
C

The radius of the osculating sphere is

2
0
— — — 2 L .
ps = |P — sl p+<19)

The intersection between the osculating sphere and the osculating plane at a same point
p is the osculating circle. This circle has the property to share the same tangent in p with
the curve and its radius is the radius of curvature, p. From eq. (4.10) we get the position
of the osculating circle center g:

q=p+pv. (4.11)

An example can be seen in Fig. 4.7, where the osculating plane, circle and sphere are
shown for a point p of a conical helix.

osculating shpere

ps/’qs
osculating circle

Figure 4.7: Osculating plane, circle and sphere for a point p of a conical helix.

The osculating circle is a diametral circle of the osculating sphere only when ¢ = ¢4, so if
and only if

/ /

P c
_°
s 2 ’

i.e. when the curvature is constant.
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4.9 Evolute, involute and envelops of plane curves

For any plane curve «(s), the center of the osculating circle ¢ describes a curve (o) that
is called the evolute of 4(s) (s and o are curvilinear abscissae). A point g of the evolute
is then given by eq. (4.11). We call involute of a curve a(s) a curve 3(o) whose evolute
is a(s). We call envelop of a family of plane curves (s, k), k € R being a parameter, a
curve that is tangent, in each of its points, to the curve of (s, k) passing through that
point.

Let us consider the evolute §(o) of a curve v(s); the tangent to (o) is the vector, cf. eq.
(4.11),

dg dqgds
Ty = — = ——.
0 do dsdo
But, cf. again eq. (4.11) and the Frenet-Serret formulae,
dqg dp  dp dv dp _dp
ds  ds dsy+pd5 =Tt dsy peT= dsy’
SO
dqg dpds
T = — = ——U.
T do  dsdo
Because y
q
then o d J p
pas _ ap _ a9
dsdo —  ds  ds
and

Ts = V.
The evolute, §(0), of v(s) is hence the envelop of its principal normals v(s).

This result helps us in finding the equation of the involute B(c) of a curve ~(s); let
p = p(s) be a point of «(s); then, if b € B(o) it must be

(b—p)-v=0
where v is the principal normal to (s) in p, because ~(s) is the evolute of 3(¢), which

implies for the last result, that 7 = vy, with 7 the tangent to (s) in p and vz the
principal normal to B(o) in b, see Fig. 4.8.

Therefore,

b(s) — p(s) = f(s)7T(s) — b(s) =p(s)+ f(s)T(s),
with f = f(s) a scalar function of s; to remark that b = b(s), i.e. the arc-length s of v(s)
is the parameter also for 3, but in general o # s. Upon differentiation we get

b'(s) = (1= f'(s))7(s) + f(s)c(s)v(s).

Then, because b'(s) = |b/(s)|Tp is orthogonal to vs = T, it is parallel to v so it must
be
1—f'(s)=0 = f(s)=a—s, acR.
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Finally, the equation of the involute 3(s) to ~(s) is

b(s) = p(s) + (a = s)7(s),

and we remark that the involute is not unique.

Figure 4.8: Evolute, §, and involutes for a = 0,3, and a = 1, dashed, of a catenary ~.

4.10 The theorem of Bonnet

The curvature, ¢(s), and the torsion, ¥(s), are the only differential parameters that com-
pletely describe a curve. In other words: given two functions ¢(s) and 9(s), then a curve
exists with such a curvature and torsion (to remark that there are no conditions bounding
these parameters). This is proved by the

Theorem 20. (Bonnet’s theorem): given two scalar functions c(s) € C* and ¥(s) €, it
always exists and is unique a curve v € C* whose curvilinear abscissa is s, curvature c(s)
and torsion V(s).

Proof. Let
-
e=| v
B
the column vector whose elements are the vectors of the Frenet-Serret basis. Then
d‘;f) — C(s)e(s) (4.12)
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with

0 ¢(s) 0
C(s)=1| —c(s) 0 —d(s)
0 d(s) 0
the matrix of Cartan. Adding the initial condition
€1
e(0)=1 e
€3

we have a Cauchy problem for the basis €(0). As known, such a problem admits a unique
solution, i.e. we can associate to ¢(s) and ¥(s) a family of bases e(s) (that are orthonormal,
because if one of them were not so, the Cartan’s matrix should not be skew). Call 7(s)
the first vector of the basis e(s) and define the function

b=+ [ Cr(s)ds"

p(s) is the curve looked for (it depends upon an arbitrary point py, i.e. upon an inessential
rigid displacement). In fact, because |7| = 1, then s is the curvilinear abscissa of the curve.
Then, it is sufficient to write the Frenet-Serret equations identifying them with the system
(4.12). O

4.11 Canonic equations of a curve

We call canonic equations of a curve at a point py the equations of the curve referred to
the Frenet-Serret basis in pg. To this purpose, we expand the curve in a Taylor series of
initial point py:
1 1
p(s) =po+ 5 p'(0) + 55°0"(0) + 575°p"(0) + o(s?).
In the Frenet-Serret basis,

p'(0) =7(0), p"(0) =c(0)r(0), p"(0) el = (0)v(0)—c*(0)7(0) —c(0)1(0)B(0),
p(s) =po+s 7(0) + %s%(O)u(O) + é53(—c2(0)7'(0) 4+ (0)v(0) — ¢(0)9(0)B3(0)) + o(s®).
The coordinates of a point p(s) close to p, in the basis (7(0),(0), 3(0)), are hence
pi(s) =s— éc2(0)33 + o(s%),
1 2 1 / 3 3
pa(s) = 50(0)5 + ¢ (0)s” + o(s”),

ps3(s) = —éc(())ﬂ(O)s3 + o(s?).

The projections of the curve onto the planes of the Frenet-Serret basis have hence, close
to po (i.e. retaining the first non null term in the expressions above), the following
equations:
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e on the osculating plane

or, eliminating s,
1
p2 = 50(0)10%7
which is the equation of a parabola;

on the rectifying plane
P (S) =S,
ps(s) = —c(0)0(0)s?,
or, eliminating s,
1

which is the equation of a cubic parabola;

on the normal plane

or, eliminating s,
200
3 9 C(O) 25
which is the equation of a semicubic parabola, with a cusp at the origin, hence a
singular point, though the curve p(s) is regular.

In Fig. 4.9 the example of the projected curves for a circular helix.

4.12 Exercices

1.
2.

Using the same definition of derivative of a curve, prove the relations in Sect. (4.2).

Prove the relations in eq. (4.2).

. The curve whose polar equation is

r=a6, a€eR,

is an Archimede’s spiral. Find its curvature, its length for 8 € [0,27) and prove
that any straight line passing by the origin is divided by the spiral in segments of
constant length 27 a (that is why it is used to record disks).

The curve whose polar equation is
r=ac¢”, abeR,

is the logarithmic spiral. Prove that the origin is an asymptotic point of the curve,
find its curvature and the length of the segment in which a straight line by the
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Figure 4.9: The projected curves of a circular helix.

origin is divided by two consecutive intersections with the spiral. Then prove that

the curve is plane and its equiangular property: the angle a between p(f) — o and
7(0) is constant.

. The curve whose parametric equation is
p(0) = a(cos@ + Osinh)e; + a(sinh — 0 cos 0)e;

with the parameter 0 the angle formed by p(6) — o with the x;—axis is the involute
of the circle. Find its curvature and length for 8 € [0,27) and prove that the
geometrical set of the points p(f) + p(0)v(0) is exactly the circle of center o and
radius a (that is why the involute of the circle is used to profile engrenages).

. The curve whose parametric equation is
p(0) = acoswbe; + asinwlhes + bwles

is a circular helix, i.e. a heliz that winds on a circular cylinder of radius a. Show
that the angle formed by the helix and any generatrix of the cylinder is constant
(a property that defines a helix in the general case). Then, find its length for
6 € [0, 27), curvature, torsion and pitch (the distance, on a same generatrix, between
two successive intersections with the helix). Prove then the Bertrand’s theorem: a
curve is a cylindrical helix if and only if the ratio ¢/¢ = const. Finally, prove that
for the above circular helix there are two constants A and B such that

p' x p’ = Au(f) + Bes,
with

u = sinwfe; — cos whes;
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10.

11.

find then A and B.

Find the equation of the cycloid, i.e. of the curve that is the trace of a point of a
circle of radius r rolling without slipping on a horizontal axis. Calculate the length
of the cycloid for a complete round of the circle, determine its curvature and show
that the evolute of the cycloid is the cycloid itself (Huygens, 1659).

. The planar curve whose parametric equation is

p(t) = tey + coshte,

is the catenary (Jc. Bernoulli, 1690; Jn. Bernoulli, Leibniz, Huygens, 1691). It is
the equilibrium curve of a heavy perfectly flexible and inextensible cable. Calculate
the curvature of the catenary and the equation of its evolute and of its involutes.

. The planar curve whose parametric equation is

t
p(t) = (cost + Intan 5) e; +sintey

is a tractriz (Perrault, 1670; Newton, 1676; Huygens, 1693). This is the curve along
which an object moves, under the influence of friction, when pulled on a horizontal
plane by a line segment attached to a tractor that moves at a right angle to the
initial line between the object and the puller at an infinitesimal speed. Show that
the length of the tangent to the tractrix between the points on the tractrix itself
and the axis x is constant V¢, calculate the length of the curve between ¢; and
ty, calculate the curvature of the tractrix and finally show that its evolute is the
catenary.

For the curve whose cylindrical equation is

r=1,
z =sinf

find the highest curvature and determine whether or not it is planar.

Be p = p(t) the path of a moving particle of masse m, ¢ being the time. Define the
velocity and the acceleration of p as, respectively, the first and second derivative
of p with respect to t. Decompose these two vectors in the Frenet-Serret basis
and interpret physically the result. Recalling the second Newton’s Principle of
mechanics, what about the forces on p?
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Chapter 5

Tensor analysis: fields,
deformations

5.1 Introduction

In this chapter, we introduce the concepts of fields and deformations and the differential
operators linked to these ones. Some fundamental theorems on field analysis are also
recalled.

5.2 Scalar, vector and tensor fields

Let Q C £ and f : Q — V. We say that f is continuous at p € 2 <= V sequence
T = {pn € Q,n € N} that converges to p € &, the sequence {v,, = f(p,),n € N}
converges to f(p) in V. The function f(p) : 2 — V is a vector field on Q2 if it is continuous
at each p € Q. In the same way we can define a scalar field p(p) : © — R and a tensor
field, L(p) : Q@ — Lin(V) or L(p) : Q — Lin(V).

A deformation is any continuous and bijective function f(p) : Q@ — &, i.e. any transfor-
mation of a region 2 C £ into another region of £; bijectivity imposes that to any point
p € ) corresponds one and only point in the transformed region, and vice-versa. This is
a constraint imposed to a function from £ to £ ti represent a physical deformation of a
body.

Finally, the basic difference between fields/deformations and curves, is that a field or a
deformation is defined over a subset of £, not of R. In practice, this implies that the
components of the field/deformation are functions of three variables, the coordinates x;
of a point p € Q2.
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5.3 Differentiation of fields, differential operators

Let f(p) : Q — V; we say that f is differentiable in py € Q <= 3 gradf € Lin(V) such
that

f(po +u) = f(po) + gradf(py) u+ o(u)

when u — o. If f is differentiable Vp € ), gradf defines a tensor field on €2 called the
gradient of f. Tt is also possible to define higher order differential operators, using higher
order tensors, but this will not be done here. If f is continuous with gradf Vp € €0, then
f is of class C! (smooth).

Let f a vector field of class C! on 2. Then the divergence of f is the scalar field defined
by
divf := tr(gradf),

while the curl of f is the unique vector field curlf that satisfies the relation
(gradf — gradf " )u = (curlf) x u Yu € V.
The divergence of a tensor field L is the unique vector field divL that satisfies
(divL) -u = div(L"u) Yue V.

Let p(p) : © — R a scalar field over 2. Similarly to what done for vector fields, we say
that ¢ is differentiable at py € ) <= 3 gradp € V such that

¢(po + 1) = @(po) + gradp(po) - u + o(u)

when u — o. If ¢ is differentiable Vp € €2, grady defines a vector field on € called the
gradient of . If grady is differentiable, its gradient is the tensor grad’/¢ called second
gradient or Hessian. It is immediate to show that under continuity assumption,

grad’’p = (grad'’ o).
A level set of a scalar field ¢(p) is the set Sy, such that
o(p) = const. Vp € Sr.

By the same definition of differentiability of ¢(p), we can prove that grady(p) is a vector
that is orthogonal to Sy, at p. The curves of £ that are tangent to grade(p) Vp € Q are the
streamlines of ; they have the property to be orthogonal to any &y of ¢ Vp € (L.

gradyp allows to calculate the directional derivative of ¢ along any direction n € § as

d
. grady - n.
dn

The highest variation of ¢ is hence in the direction of grady, and |grady| is the value of
this variation; we remark also that grady is a vector directed as the increasing values of

®.
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Similarly, for a vector field f the directional derivative along any direction n € S is defined

as

f
;l—n = gradf n.

Let ¢ a scalar of vector field of class C? at least. Then, the laplacian A of 1 is defined
by

At := div(grady)).
By the linearity of the trace, and hence of the divergence, we see easily that the laplacian of

a vector field is the vector field whose components are the laplacian of each corresponding

component of the field. A field is said to be harmonic on € if its laplacian is null Vp €
Q.

The definitions given above for differentiable field, gradient and class C! can be repeated
verbatim for a deformation f(p): Q — &.

Let o, 1 two scalar fields, u, v, w vector fields, L a tensor field and W the axial tensor of
w. Then, the following properties hold:

grad(py) = pgrady + ygradyp,
grad(¢v) = pgradv + v ® grady,

(gradv)v = (curlv) x v + %grava,
grad(v - w) = (gradw) v + (gradv)'w = (gradw)v + (gradv)w + v x curlw + w x curlv,
grad(u-v w) = (u- v)gradw + (w ® u)gradv + (w ® v)gradu,
gradv - gradv' = div((gradv)v — (divv)v) + (divv)?,
div(ev) = edivv + v - grady,
div(v ® w) = vdivw + (gradv)w,
div(LTv) = L - gradv + v - divL,
div(¢L) = ¢divL + Lgradp,
div(gradv ') = grad(divv),
div((gradv)v) = gradv - gradv' + v - grad(divv),
div(v x w) = w - curlv — v - curlw,
div(pLv) = oL - gradv + ¢v - divL" + Lv - grade,
div(curlv) = 0,
curl(¢v) = pecurlv + grady X v,
curl(curlv) = grad(divv) — Av,
curl(grady) = o,
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curl(v x w) = (gradv)w — (gradw)v + vdivw — wdivv,

curlw = —divWw,

Alpy) = 2grady - grady) + Ay + Y Ap,
A(v-w) = 2gradv - gradw + v - Aw + w - Av.

The proof of these properties is a good exercice for the reader (see also the book of
Gurtin).

5.4 Theorems on fields

We recall here, without proof, some classical theorems on fields and operators.

Theorem 21. (on harmonic fields): if v(p) is a vector field of class > C? such that
divv =0, curlv = o,

then v is harmonic: Av = o.

Theorem 22. (Potential theorem): let v(p) a vector field of class > C' on a simply
connected domain ) C &E; then

curlv =0 < v = grady

with p(p) a scalar field of class > C?, the potential.

In what follows, €2 is a sufficiently regular region of £, whose boundary is 02 and the
external normal n € §.

Theorem 23. (Divergence lemma): let v(p) a vector field of class > C' on Q; then

/ v®nds:/gradvdv.
o9 Q

Theorem 24. (Divergence or Gauss theorem): let ¢, v, L respectively a scalar, vector
and tensor field on Q of class > C*. Then

/ pn ds = / gradep dv,

o0 Q

/ V~nds:/divv dv,
a0 Q

/ Ln ds = / divL dv.
a0 Q
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Theorem 25. (Curl theorem): let v(p) a vector field of class > C' on Q); then

/ nxvds:/curlvdv.
a0 Q

Theorem 26. (Stokes theorem): let v(p) a vector field of class > C' on Q and be ¥ an
open surface whose support is the closed line v and n € § the normal, see Fig. 5.1. Then

%v~d€:/curlv-nds.
0 P

The parametric equation of v must be chosen in such a way that

p/(tl) X p,<t2) -n>0 vtg > 1.

Figure 5.1: Scheme for the Stokes theorem.

Theorem 27. (Green’s formula): let p(p), ¥ (p) two scalar fields on ) of class > C?; then

dp  dy B
/BQ <"¢% B @%) ds = /Q(w Ap — o AY)dv.

Theorem 28. (Fluzx theorem): let v(p) a vector field of class > C' on an open subset R
of £. Then

divy =0 <— v-nds=0 VS CR.
a0
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5.5 Differential operators in Cartesian coordinates

In what follows, f,v,L are respectively a scalar, vector and tensor field. The Cartesian
components! of the differential operators are?

(gradf); = fi,
(gradv);; = v;;,
divv = v, ;,

(divL); = L;;,

Af = f,m

(Av); = Av; = v; 45,

curlv = (Ua,2 — V2,3,V13 — U31,V21 — 01,2)'

The so-called operator nabla V:
0- 0- 0-

V= —e;, = —eq + ey + —.63

ox; 0y 3_:B2 0x3

is often used to indicate the differential operators:

gradf =V,
divwv =V - v,
curlv =V x v,
Af = V3f.

5.6 Differential operators in cylindrical coordinates

The cylindrical coordinates p, 6, z of a point p, whose Cartesian coordinates in the (fixed)
frame {o; e, e, e3} are p = (x1, 29, 23), are shown in Fig. 5.2. They are related together

by
p = 2t + a3,

T2
0 = arctan —,
T

Z = T3,

or conversely

x1 = pcosb,
xT9 = psind,

T3 = 2.

To notice that p > 0 and that the anomaly 0 is bounded by 0 < 6 < 27.

Tn the following formulae, the Einstein summation rule holds.
ofi
ﬁxj '

2The comma indicates partial derivative, e.g. fij =
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Figure 5.2: Cylindrical coordinates.

In the (local) frame {p;e,, ey, €.}, the differential operators are

vy = (f %f,e,f,z) ,

1 1
Af = ;(Pf,p),p + ?f,ee + £z,

_ 1 _
Vpp —(Upo — o) Vp:
1
Vv=| v, —(ve+v,) vo:. |,
p
1
Vz.p —Vz,0 Vz,z
L P i

) 1
divv = v, , + ;(Ue,e +vp) + U2z,

1 1
curlv = (;vz,g — V9,2, Vp 2 — Vs ps ;((pvg)ﬁ - v,%g)) ,

1
;((pLPP),P + Lyoo — Loo) + Lz 2

1
divL = | Lg,, + ;(Loe,e + Lo+ Lgp) + Lo |,

1
;((psz>,p + Lz@,@) + Lzz,z

1 1
(pUP,P),p + 5 Up,00 + Vp,zz — _Z(Up + 21}979)
Av, P
Av

DI =

1
(PV6.p) p + —5V0.00 + Vo.z: — —5 (Ve — 20,0)

Av, 1 1
;(pvz,p),p + ?Uzﬁe + Vz,22

81



5.7 Differential operators in spherical coordinates

The spherical coordinates r, ¢, 6 of a point p, whose Cartesian coordinates in the (fixed)
frame {o; e, ez, e3} are p = (x1, 22, 23), are shown in Fig. 5.3. They are related together
by

_ 2 2 2
r=\/r{+ 25+ 23,
x? + 22
p = arctan ———
T3

T2
0 = arctan —,
x

or conversely

x1 = rcosfsin p,
Xy = rsinfsin g,

T3 = T COS .

To notice that » > 0 and that the anomaly 6 is bounded by 0 < 6 < 27 while the colatitude
by 0 <p <.

Figure 5.3: Spherical coordinates.

In the (local) frame {p;e,,e,, €y}, the differential operators are

S L

1 1 .
Af = r_2<r2f’r>’r 4 m(ﬁge + (fosing) o),

_ 1 1 -
Urr (Ur,go - ngo) ( . Uro — U9>

7\ sinp

I3

(Vg o + Ur) Vg — Ug Ot cp) ,

1

T smgp
1 1
Vg -V -
0, r 0,0 r

Vg9 + Uy + v, COL go)

sin ¢



1
divv = = (r*v,), +

2 —(UQOAP sin 0 + 09,9),

rsin @

1 1 1 1
lv = infg — o Urg T ry r — Ur )
curlv (TSingO(Ue#j Sin Vp0), TSinch 0 r(m’@), ” ((rvg) e — v ,<p>>

1 1 1 Ly, + Lgg cotp
(2 - - _ e
r2 (’I" er),r + TLrgo,cp + rsin 0 r6,0 + Lrnp

r
1 1 1 cot

divL = —(r’Ly,) , + -L —FL -L, —(L,, — L ,

v (r © ) + e + I sin o 00,0 T e + ( 0 00)

2

1 1 1 1 cot
— (Lo, )r + ~ Loy + ———Loog + —Lyg +
r r 7 sin ¢ r

L L+ Lay)

(e +

2000 Upoo — 20 Upo — 20 1 Uy 2v,
oy ey - pp 4 T L < ,90_21)0,0)_ .

r r2tan r2sinp \ sin @

2v v + 2v Vo — Uy COL 1 V.00 )
Av — Vs + or oy Yoo ; e P - ® — .00 _ Quggcotp | — _s;

T r r2tan r%sin \ sin r

21)9 r Vo 2v 0 1 1 Vo.00 Vo
) 7@@ (p7 )

Vg, rr + + B + Vo, + — 3 + 5 5 + 21},.’9 YN
r r sinp /) retanep  résing \sine r?sin” @

5.8 Exercices

1. Consider a rigid body B, and a point pg € B. From the kinematics of rigid bodies,
we now that the velocity of another point p € B is given by

v(p) = v(po) + w X (p — po),

with w the angular velocity. Prove that

= —curlv.
w 2CU.I'V

Prove the relations at the end of Sect. 5.3.
Prove the three forms of the Gauss Theorem using the Divergence lemma.

Make use of the tensor form of the Gauss Theorem to prove the Curl Theorem.

ARl

Prove the following identities using the Gauss theorem:

/ v-Ln ds:/(v-diVL—l—L-Vv)dv,

o0 Q

/ (Ln) @ v ds — /((divL) & v+ L(VVT))dv,
00

Q

/aQ(W ‘n)v ds = /Q(vdivw + (Vv)w)dv.
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Chapter 6

Curvilinear coordinates

6.1 Introduction

All the developments done in the previous Chapters are intended for the case where alge-
braic and differential operators are expressed in a Cartesian frame, i.e. with rectangular
coordinates. The points of £ are thus referred to a system of coordinates taken along
straight lines that are mutually orthogonal and with the same unit along each one of the
directions of the frame. Though this is a very important and common case, it is not the
only possibility and in many cases non rectangular coordinate frames are used or arise
in the mathematical developments (a typical example is that of the geometry of surfaces,
see Chapter 7). A non rectangular coordinate frame is a frame where coordinates can be
taken along non orthogonal directions, or along some lines that intersect at right angles
but that are not straight lines or even when both of these situations occur. This situation
is often denoted in the literature as that of curvilinear coordinates; the transformations
to be done to algebraic and differential operators in the case of curvilinear coordinates is
the topic of this Chapter.

6.2 Curvilinear coordinates, metric tensor

Let us consider an arbitrary origin o of £ and an orthonormal basis e = {e, e, e3} of V; we
will indicate the coordinates of a point p € £ with respect to the frame R = {o0;e1, €2, e3}
by x : p = (x1,22,23). Then, we consider also another set of coordinate lines for &,
where the position of a point p € £ with respect to the same arbitrary origin o of £ is now
determined by a set of three numbers 27 : p = {z',2?%, 2%}. Nothing is a-priori asked to
coordinates 2/, namely they do not need to be a set of Cartesian coordinates, i.e. referring
to an orthonormal basis of V. In principle, the coordinates 2z’ can be taken along non
straight lines, that do not need to be mutually orthogonal at o and also with different
units along each line. That is why we call the 2/s curvilinear coordinates, see Fig. 6.1.
Any point p € £ can be identified by either set of coordinates; mathematically, this means
that there must be an isomorphism between the x;s and the 27s, i.e. invertible relations
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Z3
X3

X2
(o) Z>

X1
Z1

Figure 6.1: Cartesian and curvilinear coordinates.

of the kind
2 = zj(xl,azg,:cg) = zj(a:k), T = xk(zl,zQ, 23) =ax(2) V5, k=1,2,3 (6.1)

exist between the two sets of coordinates. The distance between two points p,q € &
is

8:\/(p—Q)-(p—Q)=\/(wi—xi)(xﬁ—xi)

but this is no longer true for curvilinear coordinates:

sV = (@ — ).

However, if p — ¢, we can define

_ P q Jj — P VK.
doy =z, —xp, d2? =277 =277,

so using eq. (6.1)s

. 8[Ek j

The (infinitesimal) distance between p and ¢ will then be

ds = \/dxpdz), = \/%%dzjdzl =1/ gudzidz,
27 Oz

8a7k a’Ek
9= 9= G5 gt

where

(6.3)

are the covariant' components of the metric tensor g. To notice that, as g defines a
positive quadratic form (the length of a vector), it is a positive definite symmetric tensor,
SO

detg > 0. (6.4)
Coming back to the vector notation, from eq. (6.2) we get
dr = dx;e; = 9k dz"e;;

IThe notion of co- and contra-variant components will be detailed later.
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—_— —__ Z'=const
- e -

- ™

Figure 6.2: Tangent vectors to the curvilinear coordinates lines.

introducing the vector gy,

(%i
gL = @eu (6-5)
we can write
dr = dFg,.

We see hence that a vector dr can be expressed as a linear combination of the vectors
gi; these ones form therefore a basis, called the local basis. Generally speaking, g, ¢ S
and it is clearly tangent to the lines 2/ = const. This can be seen in Fig. 6.2 for a
two-dimensional case:

wi(2h, 2% + AZ? 23) — my(21, 22, 23) ox;

o o 2, _ 7.2 2
dr = Al)l(rilo Ax = Al)lcrg() A2 Az"e; 9.2 e;dz godz”.
Then
c%m 8xj 8371 &cj
Bk 81 = 5k 9% T Gk 9l O = G (6.6)

i.e. the components of the metric tensor g are the scalar products of the tangent vectors
grs. If the curvilinear coordinates are orthogonal, i.e. if g, - g =0Vh,k=1,2,3,h # k,
then g is diagonal. If, in addition, g € S Vk = 1,2,3, then g = I: it is the case of
Cartesian coordinates. As an example, let us consider the case of polar coordinates,

1. 2 2
x1 =71 cosf, 2T =T =4/ X1+ Xy,
. 2 T2
Ty =1 sinf, 2° = = arctan —.
T
Hence, Fig. 6.3,
8351 81’2 .
g1 = 5 €1+ 5 ;€ = Cos fe; + sin ey, = e,,
0z 0z
8:101 (9:152 .
g2 = 5,€1+ 5,6 =—rsin fe; + rcos ey = rey.
0z 0z

To remark that |g;| = 1 but |gs| # 1 and it is variable with the position.
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S
ey a3
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& D
Y o
<& 0
>
€4

Figure 6.3: Tangent vectors to the polar coordinates lines.

6.3 Co- and contra-variant components

The notion of co- and contra-variant components is important in the geometry of surfaces.
A geometrical way to introduce the concept of covariant and contravariant components is
to consider how to represent a vector v in the z—system. There are basically two ways,
cf. Fig. 6.4, referred, for the sake of simplicity, to a planar case:
i. contravariant components: v is projected parallel to z! and 2?; they are indicated by
superscripts: v = (v!, v?, v?);
ii. covariant components: v is projected perpendicularly to z' and 22; they are indicated

by subscripts: v = (vy, vg, v3);

A

X2

V¥

Figure 6.4: Contravariant, left, and covariant, right, components of a vector in a plane.

Still referring to the planar case in Fig. 6.4, if the Cartesian components®? of v are
v = (vf,v3), we get
v! = h(v¥ sin ay — v cos a), v; = vf cos g + v5 sinay,
’U2 _ h(_vxsina + T — T T o3 (67)
= 1 1+ vd cosay), vy = V] cos aig + V3 sin g,
and conversely

v¥ = vl cosay + v? cos ay, vy = h(vy sinag — vy sinay), (6.8)
v¥ = vlsina; + v?sinay, ’

2In the following, we use the superscript z to indicate a Cartesian component.
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with
1

sin(ag — ay)’

h =

It is apparent that the Cartesian coordinates are at the same time co- and contra-variant.
Still on a planar scheme, we can see how to pass from a system of coordinates to another
one, cf. Fig. 6.5 For a point p the Cartesian coordinates (x1,z2) are related to the

F 3
X2

Xe| ) P

»
L

X1 X

—_

Figure 6.5: Relation between Cartesian and contravariant components.

contravariant ones by

T, = 2t cos oy + 2% cos Qs

To = z'sin oy + 22 sin Qo,
and conversely

! = h(wysinay — 29 cos ay),

z
2 .
2% = h(—zysinag + x9 cosay).

So, differentiating we get

Oy cos Oy cos
—— =CoSQp, — = COSQ
azl 17 @zQ 27
01y i 0z i
— =sina;, — =sina
821 1) 82’2 27
and
o0zt 0zt
—— = hsinay, — = —hcos axo,
8x1 2 8%2 2
022 022
—— = —hsinay, — = hcos ;.
85131 ! 8332 !
Injecting these expressions into eqs. (6.7) and (6.8) gives
. m@xl 4 Iam
V1 = Vg 021 (% aZl’ b %Uw (6 9)
.01 0o B, '
2T g T R
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and

ol — Zazl oz 0zt
T ' 9m, | % 0xy .07
' = L. 6.10
g ”’ca—ZQ—I— 022 - axk”’“ (6.10)
U T e, T 29,

If now we calculate .

iV = Ghi 5V,

9h 9h Dy *
from eq. (6.3) and by the chain rule® we get
. Ox;0x; 02"

W= v
Ik 0z 02 Oy *
_ Ox;0r; . Ox;

920 0, Uk = gan Okl = otk =

= Up,

i.e. we obtain the rule of lowering of the indices for passing from contravariant to covariant
components:

i
Uh = GniV

Introducing the inverse to gy, as

h 5.
pi 02" 0z

= — 6.11
8xk &rk’ ( )
we get, still using the chain rule,
i wiO0Te o 02" 021 Oy,
v; = —Vp = )
I T oai Oxj Ox; 0 k
92" Oz o 8zh6 Lo
= KU = —Up =V
8% (9.70] 0z; IR Oy ’

which is the rule of raising of the indices for passing from covariant to contravariant
components:

B ghiy,.
Still applying the chain rule, by eq. (6.9) we get

O_Zi._é?z&vkz_(?ka gy
ozl Vi ozl 0z ozl * KECk
1.e. 5y
X ZZ
Uk = @Ui, (612)

3The reader can easily see that, in practice, the chain rule allows to handle the derivatives as fractions.
4To prove that the contravariant components gP¢ are the inverse of the covariant ones, g, is direct:
g 9zP 029 Oz =1,
Pa = Oz Ox), OzP D21 JRE
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which is the converse of eq. (6.9). In the same way we get the converse of eq. (6.10):

(9xk ;
-~ 1
5517 (6.13)

Let us now calculate the norm v of a vector v; starting from the Cartesian components
and using the last two results,

vy =

0zt 027 0z" 027 —
v=1/Vv-v=/vfv} = \/a—via—vj = \/@%vﬂg =/ gvv;,

xk " Oxk

or also

v=1/v-v=/vfv] = \/82’" vlgvﬂ =\ 52 5.7 vivd = 4/ g;jvivd

and even

0zt Oz . 0z Oxy, . ; . ;
V=1V V= U = | —1v;=——0] = — ;07 = 4 /0" 007 = /U0t
\/ kR \/8xk "0z Oxy 027 " A ‘

Through eq. (6.13) and by the definition of the tangent vectors to the lines of curvilinear
coordinates, eq. (6.5), for a vector v we get

8%
v=ye = Ve = vkgk.

0zk

We see hence that the contravariant components are actually the components of v in
the basis composed by the gs, the tangents to the lines of curvilinear coordinates. In a
similar manner, if we introduce the dual basis whose vectors g¥ are defined as

g = _——e, (6.14)

proceeding in the same way we obtain that

0zF

[

T k
V =v;€; = Vg €; = ULg ,

i.e. the covariant components are actually the components of v in the dual basis. Finally,
for a vector we have, alternatively,

v =v'e; = vhg, = ug”. (6.15)

Just as for the g;s, we have

h k h a.k h a.k
gh-gk:<aiei)-(az )_82 (‘325'_82 0z _

ailfl' 8_:cjej N 8£CZ 8l'j W 8.%'1 8£CZ - '

moreover

h . h 9o b 9. h
gh-gk:(éz )(% .)_8z 81‘]6 02" Ox; _ 0z gt

a_xiei azke] " Ox; 02k Y - Ox; 0zF 02k
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and by the symmetry of the scalar product
0 =gn-g" =g g =0
The last equations defines the orthogonality conditions for the g-vectors. Using these
results and eq. (6.15) we have also
b = 5khvh =g" - vtgn =g v=2g"ug" = g"u,
vk = 00 = &k - vng" = 8k - V = &k - V"8 = grnt",
so founding again the rules of raising and lowering of the indices.

What done for a vector, can be transposed, using a similar approach, to tensors. In
particular, for a second-rank tensor L we get

02" 04
O O M 6.16
. al’h &m x ( ‘ )

YU 9zt i R

for the contravariant and covariant components, respectively, while we can also introduce
the mized components

ij

L

i 97" dxy,
L mom 617)
LJ = %% @ .
L 92 Oy
Conversely,
z al’ha’l)k ij
M 02 020
. 0207
hk — a. Hij
8:ch 8$k
 omas (6.18)
he ™ 921 Oy,
I :%% J
he ™ 9y 029

Also for L, the rule of lowering or raising the indices is valid:
L9 = g"¢ Ly, Lij = gingjr L™

From eq. (6.18) and by the same definitions of g¢;;, eq.(6.3), and ¢, eq. (6.11), we
get

L= ijez X e; = azha—ZZLhkei & e; = Lhkgh X gk
and 9k 9o
M0z

L= Lje ®e; = %%Lhkei ®e; = Lug"®g".
i Oj
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In the same manner, the tensor mixed components are also found:

k

L = ijel X ej = %%Lhkei X ej = Lhkgh X gk
and
02k Ox;
dx; 02"
We see hence that a second-rank tensor can be given with four different combinations
of coordinates; even more complex is the case of higher order tensors, that will not be
treated here.

L=1Lje ®e; = Lhkei ®e; = Lhkgh ® 8-

Still by eqs.(6.3) and (6.11) and applying the chain rule to ¢} = 5. e get
2
o 8$k 8xk . th al‘k
997 021 02— 0z 021
02404 020 0
Y= = Ohk
8l‘k 8$k 8xh aZL'k

07 oy (6.19)
"5 Dar 02

53— 9102 .

! 0z Oxy,

So, applying eq. (6.18) to the identity tensor we get
O % Thk

T=0gei®e; = 5550

e, ®e; = I"g, ®gy,
but, by egs. (6.16) and (6.19),

hk _ oz" 82’“5 hie

81’1‘ 8ZL‘j

so finally
I=g"g,® gy
Proceeding in the same manner, we get also

I=gug'"®g"=d"g g =6"e"@g.

We see hence that the gp;s represent I in covariant coordinates, the g"*s in the contravari-
ant ones and the §,"s and " s in mixed coordinates.

6.4 Spatial derivatives of fields in curvilinear coordi-
nates

Let ¢ a spatial® scalar field, ¢ : £ — R. Generally speaking,
¥ = QO(Z](.CEZ)),

5The term spatial here refers to differentiation with respect to spatial coordinates, that can be Carte-
sian or curvilinear.
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or also

p = p(a;(2")),
where the z;s, 2"s are respectively Cartesian and curvilinear coordinates, related as in eq.
(6.1). By the chain rule

k

Op Op 02F
— 2
Ox;  0zFO0x; (6:20)
and inversely
Op _ Op Oz,
dzF  Ow; 0zF

We remark that the last quantity transforms like the components of a covariant vector,
cf. eq.(6.9).

The gradient of ¢ is the vector that in the Cartesian basis is defined by

dp
VQD = 8—%ej,

so, by egs. (6.14) and (6.20) we get that in the dual basis

Oy oz* Oy 3

Vi = 0zF Oz €= 0zk

We see hence that in curvilinear coordinates the nabla operator is defined by

0 -

V() = 558" (6.21)

The contravariant components of the gradient can be obtained by the covariant ones
upon multiplication by the components of the inverse (contravariant) metric tensor, eq.
(6.11):

we 09 _ 02" 02% Oy Ox; 'y Op 02" _ dp 02"
T zk Ox; Oz; Ox; 028 "V 0x; Ox; Oz Oxj

0o 02"
— Vp= a—%a—%gh-

Let us now consider a vector field v : £ — V; we want to calculate the spatial derivative
of its Cartesian components. By the chain rule and eq. (6.13) we get

ovf O oZF 928 9 [(Ox; ,\ 02" [Ow;ov"  OPx;p
Or;  9280x;  Ox; 02F <(‘9th > - Oxy (8zh P 82"’8le>
02K Oy (OO 02" 0Pxy,
~ Ox; 020 (82’“ O, 8zk8zlv) ’

whence
02" dz; vy o 9 Pz, |

Ox; 02% Ox; — O2F + 0T 90"

(6.22)
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Comparing this result with eq. (6.17); we see that the first member actually corresponds
to the components of a mixed tensor field which is the gradient of the vector field v, that
we write as

where the
p 02" 9Pxy,
M 0, 02802

are the Christoffel symbols. We immediately see that I'j; = I';. The quantity v", is

(6.24)

the covariant derivative of the contravariant components v". It can be proved that the
Christoffel symbols can be written also as

1 OGmi ~ OGmi Ogrl
| - — . 2
W= 99 ( 02! + 0zF  0zm (6:25)

Proceeding in the same way for the covariant components of v, but now using eqs. (6.12)
and (6.17)1, we get
8vh 1
Unsk = ﬁ — v,
which is the covariant derivative of the covariant components vy,.
Using eqs. (6.22) and (6.23), we conclude that

X
o} h

divv := =",

€T

Then, applying the operator divergence so defined to the gradient of the scalar field ¢ we
obtain, in arbitrary coordinates z, the Laplacian Ay as

Op 0 0y 1 0p
Ao = [P 9 (w8 rh gk 9P
7 (g 8zk>;h Ozh (g 8zk) g9 0z

Using the definition of the nabla operator in curvilinear coordinates, eq. (6.21), jointly
to the fact that, cf. Sect. 5.5,
divVf =V .V/f,

we get the the following representation of the Laplace operator in curvilinear coordi-

nates:
20 =990 = (o (08 ) ) - = ke o+ 225
2()

dg"  ,I()
o ne , 98 _x00)
N 8zk82h9 + 0zk & ozh"

Let us now calculate the spatial derivatives of the components of a 2"¥-rank tensor L: by
egs. (6.18); and (6.24) we get

8[1; - azh 0 (0@ al’jan> . 8zh 6% 8xj <8LTLP

— = Fn LT'P Fp Lnr
Orp  Oxy 0zh \ 02" 0zP Oxp 02" 020 \ Ozh Ll AL, );
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which implies that

oL™ Oxy, 02" 0zP OLY;
Ly L™+ 1% L™ = Y 6.26
FEO Tt = 5 O, 0w, Oa, (6.26)
So, eq. (6.16), we can conclude that the expression
n oL"
L"), = S+ Th L7 4+ T}, L (6.27)

represents the covariant derivative of the contravariant components of the second-rank
tensor L. In a similar manner, this time by eq. (6.18)s, we obtain the covariant derivatives
of the covariant components of L:

0Ly, Oxy, Ox; Ox; OLY;
Ly — T Ly = L 9% 22y
32" nh=rp ph 0z 0zm 0z Oxy,’

ie.
0L,
an;’l 9z h Fthmﬂ Fthpr (628)
The same procedure with eqgs. (6.18)3,4 gives the covariant derivatives of the mixed
components of L:

TL

LTS VA

Sh
8‘9L . (6.29)
Lpn;h azh - FThL + F;LLTLPT.

Equations (6.27), (6.28) and (6.29) represents the different forms of the components of a
third-rank tensor VL, the gradient of L.

If in egs. (6.26) and (6.27) we put p = h, we get

oL Oxy, 02" 02" OLY; oz" OLy; 02" 0Ly
oz 0zh Ox; Oz Oxy M ox; Ory  Ox; dx;’

Lniéh — + FZTLrh + FZTLTLT‘ —

which are the components of the contravariant vector field divL, the divergence of L.

6.5 Exercices

1. Write g and ds for cylindrical coordinates.
2. Write g and ds for spherical coordinates.

3. Find the length of a cylindrical helix on a cylinder of radius R between the angles
0 and 6 + 2.

4. A curve is traced in a quarter of circle of radius R, see Fig. 6.6; when the quarter of
circle is rolled into a cone, the curve appears as indicated in the figure, after having
described, in the plane, a complete circle. Determine the length ¢ of the curve, first
using the polar coordinates in the plane of the quarter of circle, then the cylindrical
ones for case of the curve on the cone.
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10.

11.

12.
13.

14.

15.
16.

X24

A 4

X1 R

Figure 6.6: Curve in a plane and on a cone.

. Calculate g for a planar system of coordinates composed by two axes z' and 22

inclined respectively of a; and as on the axis z;.
Calculate the g;s for a system of spherical coordinates.

In the plane, elliptical coordinates are defined by the relations

w1 = ¢ coshz'cosz?, xy =c sinhz'sinz? 2! € (0,00), 2% € [0,27);

show that the lines z! = const., 2% = const. are confocal ellipses and hyperbolae,

determine the axes of the ellipses in terms of the parameter ¢, discuss the limit
case of ellipses that degenerate into a crack and determine its length. Finally, find

g, 81, 82.

Determine the co- and contra-variant components of a tensor L in cylindrical coor-
dinates.

. Determine the co- and contra-variant components of a tensor L in spherical coordi-

nates.

For the case of exercise 5, calculate the vectors g, and g¥, design these vectors and
check the orthogonality conditions g" - g;, = §"..

Show that

trL = L7, = ¢ Lij = g;L" = L', = L.

Prove eq. (6.25).
Prove the Lemme of Ricci:

agjlc

9.k Fé‘hgik: + FZhgji-

Using eq. (6.25) find the Christoffel symbols for the cylindrical, spherical and ellip-
tical (in the plane) coordinates.

Write the Laplace operator in cylindrical and spherical coordinates.

Prove that
gnfh = Ynpsh = 0.
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Chapter 7

Surfaces in &

7.1 Surfaces in &£, coordinate lines, tangent planes

A function f(u,v) : Q C R* — £ of class >C" and such that its Jacobian

_%%_
ou Ov
| 0% oh
ou Ov
o5 0fs
L Ou  Ov |

has maximum rank (rank[J]=2) defines a surface in £, see Fig. 7.1. We say also that f is
an immersion of ) into £ and that the subset > C £ image of f is the support or trace of
the surface f.

Vo

[
\

uo u

v
x
2

Figure 7.1: General scheme of a surface and of the tangent space at a point p.

o . . . of
We will also indicate derivatives with respect to the variables u,v by, e.g., — = £, etc.

ou
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The condition on the rank of J is equivalent to impose that
f.(u,v) xf,(u,v) #0 Y(u,v) €. (7.1)
The normal to the surface f is the vector N € S defined as

f f
N := R

=% 2
F, % £ (7:2)

A regular point of ¥ is a point where N is defined; if N is defined Vp € ¥ then the surface
is said to be reqular.

A function ~(t) : G C R — Q whose parametric equation is y(t) = (u(t),v(t)) describes
a curve in €} whose image, through f, is a curve

() = f(u(t),v(t)) : GCR =X CE.

As a special case of curve in €, let us consider the curves of the type v = vy or u = uy,
with ug, vy some constants. Then, their image through f are two curves f(u,vg), f(ug, v)
on X called coordinate lines, see Fig. 7.1. The tangent vectors to the coordinate lines
are respectively the vectors f,(u,vo) and f,(ug,v), while the tangent to a curve 4(t) =
f(u(t),v(t)) is the vector

du o dv
ar T ar
i.e. the tangent vector to any curve on ¥ is a linear combination of the tangent vectors
to the coordinate lines. To remark that the tangent vectors f,(u,vy) and f,(ug,v) are
necessarily non null and linear independent as consequence of the assumption on the rank
of J, and hence of the existence of N, i.e. of the regularity of >. They determine a plane
that contains the tangents to all the curves on ¥ passing by p = f(ug, vg) and form a basis
on this plane, called the natural basis. Such a plane is the tangent plane to ¥ in p and is
indicated by 7,%; this plane is actually the space spanned by f,(u,vy) and f,(ug,v) and
is also called the tangent vector space.

() = £ (7.3)

Let us consider two open subsets €21, Qs C R?: a diffeomorphism! of class C¥ between Q4
and 5 is a bijective map ¥ : € — € of class C* with also its inverse of class C¥; the
diffeomorphism is smooth if k = oo.

Let Q1,5 be two open subsets of R?, f : Qs — & a surface and 9 : Q; — €y a smooth
diffeomorphism. Then the surface F = f o4 : )y — £ is a change of parameterization for
f. In practice, the function defining the surface changes, but not ¥, its trace in £. Let
(U, V) be the coordinates in ©; and (u,v) in €; then, by the chain rule,

ou ov

F = f’u_ fv_7
v =tugy Tlegn
ou ov

F = fu_ fv_7
v =Lugy thegy

!The definition of diffeomorphism, of course, can be given for subsets of R™,n > 1; here, we bound
the definition to the case of interest.
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or, denoting by Jy the Jacobian of ¥,

whence
F7U X F,V = det[Jﬂ] f,u X fﬂ,.

This result shows that the regularity of the surface, condition (7.1), the tangent plane
and the tangent space vector do not depend upon the parameterization of 3. From the
last equation, we get also

N(U,V) = sgn(det|Jy]) N(u,v);

we say that the change of parameterization preserves the orientation if det[.Jy] > 0, and
that it inverses the parameterization in the opposite case.

7.2 Surfaces of revolution

A surface of revolution is a surface whose trace is obtained letting rotate a plane curve,
say -7, around an axis, say x3. To be more specific, and without loss of generality, let
~ : G C R — R? be a regular curve of the plane x5 = 0, whose parametric equation is

¥(u) : { i; i ZZEZ;’, o(u) >0Vu e G. (7.4)

Then, the subset X, C & defined by
8, = {(@1,22,23) € €l + 25 = ¢*(u), 23 = Y(u),u € G}

is the trace of a surface of revolution of the curve «(u) around the axis z3. A general
parameterization of such a surface is

1 = p(u) cosv,

f(u,v) : G x (—m, 7] = €&| x9 = p(u)sinwv, (7.5)
xg = Y(u).
It is readily checked that this parameterization actually defines a regular surface:
¢'(u) cos v —p(u)sinw —p(u)y(u) cos v
f.=1¢ ¢(u)sinv », f,= o(u) cosv — f,xf,=¢ —p(u)y (u)sinv
' (u) 0 p(u)g (u)

so that
(£ % £u] = 0% () (0% (u) + ¢ (u)) # 0 Vu € G
for being «(u) a regular curve, i.e. with 4/(u) # o Yu € G. A meridian is a curve in &

intersection of the trace of f, ¥, with a plane containing the axis x3; the equation of a
meridian is obtained fixing the value of v, say v = vy:

x1 = @(u) cos vy,
zo = p(u) sin vy,

13 = Y(u).
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A parallel is a curve in &€ intersection of ¥, with a plane orthogonal to x3; the equation
of a parallel, which is a circle with center on the axis x3, is obtained fixing the value of u,
say u = ug:

1 = p(uo) cos v,

72 = plug) sin v,

T3 = ¢(U0)7
or also
{ ‘/E% + l’% = SO(UO)Za
T3 = ¢(Uo),

the radius of the circle is p(up).

A lozodrome or rhumb line is a curve on X, crossing all the meridians at the same an-
gle.

Some important examples of surfaces of revolution are:

e the sphere:

o T1 = COSUCOSV,
f(u,v) : [—— —} X (—m,m] = &| Tg = cosusin v,
T3 = sinv;

e the catenoid:

x1 = cosh u cosv,
f(u,v): [—a,a] x (—m, 7| = &| x9 = coshusinwv,
T3 = u;

e the pseudo-sphere:

r1 = sinucosv,
f(u,v):[0,a] x (—m, 7] = &| T2 = sinusinv, (7.6)

u
r3 = cosu + In <tan 5) :
e the hyperbolic hyperboloid:

T| = cosu — vsinu,
f(u,v): [—a,a] x (=7, 7] = &| Zo = sinu + v cosu,
T3 = V.

7.3 Ruled surfaces

A ruled surface (also named a scroll) is a surface with the property that through every
one of its points there is a straight line that lies on the surface. A ruled surface can be
seen as the set of points swept by a moving straight line. We say that a surface is doubly
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Figure 7.2: Surfaces of revolution. From the left: sphere, catenoid, pseudo-sphere, hyper-
bolic hyperboloid.

ruled if through every one of its points there are two distinct straight lines that lie on the
surface.

Any ruled surface can be represented by a parameterization of the form
f(u,v) = y(u) + vA(u), (7.7)

where y(u) is a regular smooth curve, the directriz, and A(u) is a smooth curve. Fixing
u = ug gives a generator line f(ug,v) of the surface; the vectors A(u) # o describe the
directions of the generators. Some important examples of ruled surfaces are:

e cones: for these surfaces, all the straight lines pass through a point, the apex of the
cone, choosing the apex as the origin, then it must be A(u) = kvy(u), k € R —

f(u, v) = vy(w);

e cylinders: a ruled surface is a cylinder <= A(u) = const. In this case, it is always
possible to choose A(u) € S and «(u) a planar curve lying in a plane orthogonal to
A(u) (it is sufficient to choose the curve v*(u) = (I — A(u) @ A(u))~y(u));

e helicoids: a surface generated by rotating and simultaneously displacing a curve,
the profile curve, along an axis is a helicoid. Any point of the profile curve is the
starting point of a circular helix. Generally speaking, we get a helicoid if

y(u) = (0,0,0(u)), A(u) = (cosu,sinu,0), @(u):R—R.

e Mobius strip: it is a ruled surface with

~(u) = (cos 2u, sin 2u,0), A(u) = (cosu cos 2u, cos u sin 2u, sin u).

7.4 First fundamental form of a surface

We call first fundamental form of a surface, denoted by I(-,-), the restriction of the scalar
product to the tangent vector space T,2. We recall that a scalar product is a positive
definite symmetric form. Let us consider two vectors wi = a1f,+0:f,,, wo = aof ,+0f, €
T,%; then

I(wy, Ws) =Wy - Wy = a1a2fi + (a1by + a2b1)f,u £, + b1b2fi
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Jvie>

Figure 7.3: Ruled surfaces. From the left: elliptical cone, elliptical cylinder, helicoid,
Mobius strip.

is the first form of f(u,v); if w; = wy = w = af , + bf,,, then
I(w) =w” = a’f? + 2abf, - £, 4 b°f7,
is a positive form Yw € T,3. We can rewrite /(-,-) in the form
I(wy,wy) = w1 - g W,

where?
. f,u ) f,u f,u : f,v
N f,v . f,u f,v : f,v

is actually the metric tensor g of X, cf. eq. (6.6). In fact, f, and f, are the tangent
vectors to the coordinate lines on Y, i.e. they coincide with the vectors gys.

Through I(-,-) we can calculate some important quantities regarding the geometry of
PIX

e metric on X: Vds € X,
ds® = ds - ds = I(ds);
so, if

ds = f,du+f,dv

then
ds® = £ du® + 2f, - £ du dv + £2,dv*; (7.8)

e length ¢ of a curve v : [t1,t2] C R — X: we know, eq. (4.4), that the length of a
curve is the integral of the tangent vector:

(= / Sl ()]t = / VA

t1

20ften, in texts on differential geometry, tensor g is indicated as

[ E F
g_FG7

where E:=f, -f,, F:=f, £, G:=1f, -f,.
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and hence, see eq. (7.3), if we call w = (u/,v’) the tangent vector to -y, expressed
by its components in the natural basis,

to to
(= / \/uaf% + 2uv'f, - £, + v 2 dt = / VW) g (u,v)dt
t1 t1
to
:/ Vv I(w)dt;
t1

e angle ¢ formed by two vectors wy, wy € T},3:

(7.9)

. I
cos 0 — Wi - Wy _ (W17W2)

willwol — Twi)/I(ws).

e area of a small surface on X: be f,du and f,dv two small vectors on X, forming
together the angle #, that are the transformed, through® f : Q — 3, of two small
orthogonal vectors du,dv € 2; then the area dA of the parallelogram determined
by them is

dA = |fudu x £,dv| = [£, x £,]du dv = /£2£2 sin® Odu dv

= 221 = cos? O)du dv = \[£2£% — 262 cos? fdu dv

- \/fgf% — (£, - £,)2du dv = /det gdu dv;

the term /det g is hence the dilatation factor of the areas; recalling eq. (6.4), we
see that the previous expression has a sense Vf(u,v), i.e. for any parameterization
of the surface.

7.5 Second fundamental form of a surface

Be f : Q — 3 a regular surface, {f,,f,} the natural basis for 7,2 and N € S the normal
to 2 defined as in (7.2). We call map of Gauss of ¥ the map ¢y : ¥ — S that associates
to each p € ¥ its N : ¢x(p) = N(p). To each subset o C ¥ the map of Gauss associates
hence a subset o5 C S, Fig. 7.4 (e.g. the Gauss map of a plane is just a point of S).

We want to study how N(p) varies at the varying of p on ¥. To this purpose, we calculate
the change of N per unit length of a curve v(s) € X, i.e., we study how N varies along
any curve of X per unit of length of the curve itself; that is why we parameterize the curve
with its arc-length s 4. Be N = N;(u,v)e;; then

dN dNi(u(s),v(s))e' B <%d_u ON; dv) ..

ds ds ou ds  Ov ds
dN
=VN,;-1e; = (¢,  VN;)T = (VN) 7 = —.

dr

3For the sake of conciseness, from now on we will indicate a surface as the function f : Q — X, with
f =f(u,v),(u,v) €QCR?and ¥ C £.

4Actually, it is possible to introduce the following concepts also more generally, for any parameteriza-
tion of the curve; anyway, for the sake of simplicity, we will just use the parameter s in the following.
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N(e)

X1 X1
Figure 7.4: The map of Gauss.
The change of N is hence related to the directional derivative of N along the tangent 7
to (s), which is a linear operator on 7,X. Moreover, as N € S, then, cf. eq. (4.1),
N-N,=N-N,=0 = N, N,eT,X.

We then call Weingarten operator Ly : T, — T, the opposite of the directional
derivative of IN:

dN
Hence,
Lw(f,)=—-N.,, Lw(f,)=-N,. (7.10)

Because Ly is linear, then it exists a tensor X on 7,3 such that
Ly(v)=Xv Vvel,>. (7.11)

For any two vectors wy,wy € 1,3, we define second fundamental form of a surface,
denoted by I1(wy,ws) the bilinear form

II(wy,wo) :=I(Ly(Wy), wa).

Theorem 29. (Symmetry of the second fundamental form): Ywy, wo € T2, I1(Wy, Wa) =
II(WQ, Wl) .

Proof. Because I and Ly, are linear, it is sufficient to prove the thesis for the natural
basis {f,,f,} of 7,2, and, by the symmetry of I, it is sufficient to prove that

I(£W<f,u)a f,v) = [(f,ua £W(f,v>)7

i.e. that
I(_N,uy f,v) = I(fﬂm _N,v)
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and in the end that

To this end, we recall that
N-f,=0=N-f,,

so, differentiating the first equation by v and the second one by u, we get

N, f,=-N-f, =N, f, (7.12)

The second fundamental form defines a quadratic, bilinear symmetric form:
II(wy,wo) = [(Ly (W), W) = (W, Ly (W) = I (w1, Xwy) = Wy - gXwy = Wy - Bwy,

where

B = gX. (7.13)
In the natural basis {f,,f,} of T,%, by eq. (7.12), it is®

Bij=11(f;£;)=ILw(f;),f;)=-N,-f; =N-f,;; (7.14)
tensor X can then be calculated by eq. (7.13):
X =g 'B. (7.15)
By eq. (7.14), because f;; = f j; or simply because II(-,-) is symmetric, we get that

B=B'.

7.6 Curvatures of a surface

Be f : Q — ¥ aregular surface and v(s) : G C R — ¥ a regular curve on ¥ parameterized
with the arc length s. We call curvature vector of v(s) the vector k(s) defined as

where v(s) is the principal normal to «(s). Then, we call normal curvature kx(s) of y(s)
the projection of k(s) onto N(s), the normal to >

kn(s) == k(s) - N(s) = ¢(s) v(s) - N(s) = 4"(s) - N(s).

5In many texts on differential geometry, the following symbols are used:

L= f,uu N = _f,u : N,ua
M = f,u’u ‘N = _f,u . N,'m
N=f,, N=—f, N,.
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Theorem 30. The normal curvature ky(s) of y(s) € ¥ depends uniquely on 7(s):
kn(s) =7(s) - Br(s) =II(7(s),T(s)). (7.16)

Proof.
s) =(u(s),v(s)) — 7(s) =7'(s) = L' + L0,

in the natural basis and

~(
’)

therefore 7 = (v/,v

K(s

) =v"(s) = f u" + £,0" + fu + 2f yu'v' + £,,0
and finally, by eqgs. (7.2) and (7.14),
v

kn(s) =~"(s) - N(s) = Bpu? + 2Bppu'v' + Byov? = 7-B7 = II(1, 7).

If now s = s(t) is a change of parameter for -, then

Y(8) = Y (@)l (),

so, by the linearity of I1(-,-) we get

(' (1), (1) = W 0P LI(r(t), 7(t) = [ (0)] s (2)

and finally

II('(1),7'(t))

I(y'(t),7'(t))

To each point p € ¥ it corresponds uniquely (in the assumption of regularity of the surface
f: 1 — ¥) a tangent plane and a tangent space vector T,X. In p, there are infinite tangent
vectors to X, all of them belonging to 7),X. We can associate a curvature to each direction
t € T,%, i.e. to each tangent direction, in the following way: let us consider the bundle
‘H of planes whose support is the straight line through p and parallel to N. Then any
plane H € H is a normal plane to X in p; each normal plane is uniquely determined by
a tangent direction t and the (planar) curve vy, := H N X is called a normal section of
3. If v and N are respectively the principal normal to 7y, and the normal to ¥ in p,
then

IiN(t) =

v==N
for each normal section. We have in this way defined a function that to each tangent
direction t € T, associates the normal curvature sy of the normal section -y ;:
I1(t,t)

Kyt SNTE = R| kn(t) = Ttt)

By the bilinearity of the second fundamental form, Ky (t) = Ky (—t).

A point p € ¥ is said to be a umbilical point if ky(t) = const. Vt, it is a planar point
if ky(t) = 0 Vt. In all the other points, ky takes a minimum and a maximum value on
distinct directions t € T,%.
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Because B = BT, by the spectral theorem it exists an orthonormal basis {u;, us} of 7,3
such that

with §; the eigenvalues of B. In such a basis, by eq. (7.13) we get

II(u;,v;)  uw;-Bu;  u; - gXu,

S (TS R TR T

Then, because {u, us} is an orthonormal basis, g = I and
/fN(llz') =u,; - Xu; = f3;,

i,e. X and B shares the same eigenvalues and eigenvectors. Moreover, cf. Sect. 2.8,
we know that the two directions u;, us are the directions whereupon the quadratic form
in the previous equation gets its maximum, k1, and minimum, ko, values, and in such a
basis

X = Kil; @ u;.

We call k1 and kg the principal curvatures of ¥ in p and uy, us the principal directions of
Y. in p, see Fig. 7.5.

X1

Figure 7.5: Principal curvatures.

We call Gaussian curvature K the product of the principal curvatures:
K = ki1ky = det X.
By eq. (7.15) and the Theorem of Binet, it is also

K detB'
detg

(7.17)
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We define mean curvature H of a surface® f : Q — ¥ at a point p € ¥ the mean of the

principal curvatures at p:

1
fi1 + h = —trX.
2 2

H =

Of course, a change of parameterization of a surface can change the orientation, cf. Sect.
7.1, which induces a change of N into its opposite one and by consequence of the sign of
the second fundamental form and hence of the normal and principal curvatures. These
last are hence defined to less the sign, and the mean curvature too, while the principal
directions, umbilicality, flatness and Gaussian curvature are intrinsic to ¥, i.e. they do
not depend on its parameterization.

7.7 'The theorem of Rodrigues

Principal directions of curvature have a property which is specified by the

Theorem 31. (Theoreom of Rodrigues): be f(u,v) a surface of class at least C* and
A= (A, \y) € T,X; then
dN(p)
dX

if and only if X is a principal direction; ky s the principal curvature relative to .

= — KA (7.18)

Proof. Let X be a principal direction of T,¥. Because [N| = 1, then

dN
— - A=0; 1
N 0; (7.19)

moreover,

0 0 07 /[ A
UNA=| 0 0 0|/ A | =N\ +NA. (7.20)
N, N, 1 0

dN
ax

Be p = (f1y, pty) the other principal direction of 7,%; then

Ap=0 — IAp)=1IApn) =0.

Moreover AN
—pu=—II(X =0
which implies, together with eq. (7.19),
dN
— = a. 21

5The concept of mean curvature of a surface was introduced for the first time by Sophie Germain, in
her celebrated work on the elasticity of plates.
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Therefore

dN
— A==II(\) = A=al
Y A A)=aX-A=al(A)
and finally
I1(X)
= ———= = —K).
I(X)
Contrarily, if we assume eq. (7.21), like before we get & = —k and to end we just need

to prove that A is a principal direction. From eqs. (7.20) and (7.21) we get
AN+ AN, = —rx(Aufy + AE,).
Projecting this equation onto f, and f, gives the two equations

L)\u + MAU - ’f)\(E)\u + F)\’U)v

7.22
MMX, + NA, = kx(EA, + GAy), (722

with the symbols E, F, G, L, M and N defined in Notes 2 and 5. Let w = (wy, w,) € 1,2
and consider the function
C(w,ky) =11(w) — kI (W);

0 0
¢ and —C take zero value for w = Ao, with A, the eigenvector
ow,, ow,

of the principal direction relative to k), which gives the system of equations

it is easy to check that ¢,

I](A0> - /{/\](Ao) =0

OI1(No) . OIT (o) _0
ow, A ow,
OI1(Xo) B OI1(Xo)
ow, o ow,

Developing the derivatives and making some standard passages, eq. (7.22) is found again,
which proves that A is necessarily the principal direction relative to k). O

This theorems states hence that the derivative of N along a given direction is a vector
parallel to such a direction only when this is a principal direction of curvature.

7.8 Classification of the points of a surface

Be f : 2 — X a regular surface and p € ¥ a non-planar point. Then, we say that

e pis an elliptic point if K(p) > 0;

e p is a hyperbolic point if K(p) < 0;

e p is a parabolic point if K(p) = 0.
To remark that, by eq. (7.17), because det g > 0, eq. (6.4), the value of det B is sufficient
to determine the type of a point on X.
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Theorem 32. If p is an elliptical point of o, then it exists a neighbourhood U € ¥ of p
such that all the points ¢ € U belong to the same half-space into which & is divided by the
tangent plane T),.

Proof. For the sake of simplicity and without loss of generality, we can always chose a
parameterization f(u,v) of the surface such that p = £(0,0). Expanding f(u,v) into
a Taylor’s series around (0,0) we get the position of a point ¢ = f(u,v) € ¥ in the
nighbourhood of p (though not indicated for the sake of shortness, all the derivatives are
intended to be calculated at (0,0)):

1
flu,v) =f,u+f,v+ §(f7uuu2 +2f ,,uv + fMUQ) + o(u2 + U2).

The distance with sign d(q) of ¢ € ¥ from the tangent plane 7,3 is the projection onto
N, ie.:

1
d(q> - §<f,uuu2 + 2f,uvuv + f,m)v2) -N + 0(U2 + U2)

1
= §(Bnu2 + 2312'&1) + BQQU2) -+ 0(u2 + UQ),
or, which is the same, once put w = uf,, + ovf,,
d(q) = I1(w,w) + o(u® + v?). (7.23)

If p is an elliptic point, the principal curvatures have the same sign because K = k1ky >
0 = the sign of II(w,w) does not depend upon w, i.e. upon the tangent vector. As a
consequence the sign of d(q) does not change with w = Vg € U, ¥ is on the same side of
the tangent plane 7,X. O]

\

Figure 7.6: Elliptic, left, hyperbolic, center, and parabolic, the two last on the right,
points.

Theorem 33. If p is a hyperbolic point of 33, then for each neighbourhood U € ¥ of p
there are points ¢ € U that are in half-spaces on the opposite sides with respect to the
tangent plane T,>.

Proof. The proof is identical to that of the previous theorem, until eq. (7.23); if now p is
a hyperbolic point, the principal curvatures have opposite sign and by consequence d(q)
changes of sign at least two times in any neighbourhood U of p = there are points ¢ € U
lying in half-spaces on the opposite sides with respect to the tangent plane T,,3. O

112



In a parabolic point, there are different possibilities: X is on one side of the space with
respect to 1,3, like for the case of a cylinder, or not, like, e.g., for the points (0, v) of the
surface, see Fig. 7.6,

z = (u® +2) cos,

y = (u®+2)sinv,

z = —u.

This is the case also for planar points: e.g., the point (0,0,0) is a planar point for both
the surfaces
=24yt z=2%— 31

but in the first case, all the surface is on one side from the tangent plane, while it is on
both sides for the second case (the so-called monkey’s saddle), see Fig.7.7.

-~ ¥

Figure 7.7: Two different planar points.

7.9 Developable surfaces
Let us now consider a ruled surface f : 0 — X like in eq. (7.7); then
fo=7 40X, f,=A f,xf,=9"xXA+oX xA, f,=X, f,,=o.

by consequence, Byy = N -f,, =0 = det B = —B},: the points of ¥ are hyperbolic or
parabolic. Namely, the parabolic points are those with

f.xf,

By =N-f,, = “" %
12 ’ £, % £,

fuo=0 <= (¥ XA+0XN xA)-XN=9"xX-XN=0,

To remark that ruled surfaces made of parabolic points have null Gaussian curvature
everywhere: K = 0.

Let us consider ruled surfaces having only parabolic points; then,

Theorem 34. For a ruled surface f(u,v) = v(u) + vA(u), the following are equivalents:
i. v, A\, X are linearly dependent;

i. N, =o.
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Proof. Condition i implies that N does not change along a straight line lying on the
ruled surface = f, x f, =4’ x A+ vA" x X does not depend on v as well. This is possible
<= ~'x Xand X x X are linearly dependent, i.e. <=

(XA XA XA =N XA A)A =N XA Ay =N XxA-v)A =0,

i.e. when A\, X" and 4/ are coplanar, which proves the thesis. O

We say that a ruled surface is developable if one of the conditions of Theorem 34 is
satisfied. A developable surface is a surface that can be flattened without distortion onto
a plane, i.e.it can be bent without stretching or shearing or vice-versa, it can be obtained
by transforming a plane. To remark that only ruled surfaces are developable (but not all
the ruled surfaces are developable).

It is immediate to check that a cylinder or a cone are developable surfaces, while the
helicoid, the hyperbolic hyperboloid or the hyperbolic paraboloid are not. Another clas-
sical example of developable surface is the ruled surface of the tangents to a curve: be
~(t) : G C R — & a regular smooth curve; then the ruled surface of the tangents to = is
the surface f(u,v) : G x R — X defined by

flu,v) = ~(u) +vv'(u).

In Fig. 7.8, the ruled surface of the tangents to a cylindrical helix.
AV =3
— e

Figure 7.8: The ruled surface of the tangents to a cylindrical helix.

7.10 Points of a surface of revolution

Let us now consider a surface of revolution f : @ — X like in eq. (7.5) and, for the sake
of simplicity, be u the natural parameter of the curve in eq. (7.4) generating the surface.
Then

P u) + 9% (w) =1, ¥ ()@ () — ¢ (u)e” (u) = c(u).

We can then calculate:

e the vectors of the natural basis:

¢'(u) cosv —(u)sinw
f,=1¢ ¢(u)sinv », f,=1 p(u)cosv ,;
W' (u) 0
e the normal to the surface
—1’(u) cosv
N =< —¢/(u)sinv p;
¥ (u)



the metric tensor (i.e. the first fundamental form):

e the second derivatives of f:
" (u) cosv —¢'(u) sinv —p(u) cosv
fuu=19 ¢"(u)sinv », f,,= Y'(u)cosv  p, f,,=<¢ —p(u)sinv
,lp/l(,u/> O

tensor B (i.e. the second fundamental form):

the Gaussian curvature K:

detB c(u)@//(u)

K =detX = =
‘ det g o(u)

Therefore, points of ¥, where ¢(u) and ’(u) have the same sign are elliptic, hyperbolic
otherwise. Parabolic points correspond to inflexion points of v(u), if ¢(u) = 0, or to

points with horizontal tangent to ~(u), if ¢'(u) = 0.

As an example, let us consider the case of the pseudo-sphere, eq. (7.6). Then,

o(u) =sinu, ¥(u) = cosu+ Intan g

Some simple calculations give

1 | tan u|

YP'(u) = —sinu + — c(u) =

"~ Jeotul’

by consequence

sinu

K — c(u)y’(u) (—sinu+ g=)|tanu|

o(u) sin u| cot u|

Finally, K = const. = —1, which is the reason for the name of this surface.

7.11 Lines of curvature, conjugated directions, asymp-

totic directions

A line of curvature is a curve on a surface with the property to be tangent, at each point,

to a principal direction.
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Theorem 35. The lines of curvature of a surface are the solutions to the differential
equation
X21U/2 + (X22 - XH)’LL/U/ - X121}I2 = 0.

Proof. A curve 4(t) : G C R — ¥ C £ is a line of curvature <=
~'(t) = f.u +£,0
is an eigenvector of X(t) Vt, i.e. <= it exists a function p(t) such that

X()y'(t) = p(t)y'(t) vt

In the natural basis of 7,3, this condition reads like (we omit the dependence upon ¢ for

the sake of simplicity)
X1 X2 u' | u
X21 X22 ’U, =M ’Ul )

which is satisfied <= the two vectors at the left and right sides are proportional, i.e. if

Xnu’ + Xlgvl u

et { Xoju' + X0 0 ] =0 = Xpu” 4 (Xop — Xp1)u'v' — X350 = 0.

]

As a corollary, if X is diagonal, then the coordinate lines are at the same time principal
directions and lines of curvature.

Theorem 36. A curve y(u) : G CR — X is a line of curvature <= the surface
f(u, v) = v(u) + vN(y(u)), (7.24)
15 developable.

Proof. From Theorem 34 f(u,v) is developable <= ~'-N x N’ = 0. Because 4’ and

N’ € T,%, which is orthogonal to N, the surface will be developable <= ~' x N’ = o.

Moreover, writing

v =fu + £,
it is
N' =N u + N v =—-Lw(®),

hence f(u,v) is developable <= Ly (¥') X ¥’ = 0, i.e. when 4/ is a principal direction.

[

The curve in eq. (7.24) is called the ruled surface of the normals.

Be p a non-planar point of a surface f : €2 — > and vy, vy two vectors of T,>.. We say that
vy and vy are conjugated if 11(vy,vy) = 0. The directions corresponding to v; and vy are
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called conjugated directions. Hence, the principal directions at a point p are conjugated;
if p is an umbilical point, any two orthogonal directions are conjugated.

The direction of a vector v € T, is said to be asymptotic if it is autoconjugated, i.e. if
I1(v,v) = 0. An asymptotic direction is hence a direction where the normal curvature is
null. In a hyperbolic point there are two asymptotic directions, in a parabolic point only
one and in an elliptic point there are not asymptotic directions. An asymptotic line is a
curve on a surface with the property of being tangent at every point to an asymptotic
direction. The asymptotic lines are the solution of the differential equation

in particular, if Bj; = By = 0 and B # O, then the coordinate lines are asymptotic lines.
Asymptotic lines exist only in the regions where K < 0.

7.12 The Dupin’s conical curves
The conical curves of Dupin are the real curves in 7,3 whose equations are
II(v,v)=+1, veS.
Be {u;, uy} the basis of the principal directions. Using polar coordinates, we can write
v = pe,, e, = cosbu; + sinbdu,.

Therefore,
I1(v,v) = p*Il(e, e,) = p*rn(e,),

and the conicals’ equations are
p? (k1 cos® 0 + kysin® @) = £1.
With the Cartesian coordinates £ = pcosf,n = psinf, we get
k12 4 Kon? = %1,

The type of conical curves depend upon the kind of point on X:

e clliptical points: the principal curvatures have the same sign — one of the conical
curves is an ellipse, the other one the null set (actually, it is not a real curve);

e hyperbolic points: the principal curves have opposite signs — the conical curves are
conjugated hyperbolae whose asymptotes coincide with the asymptotic directions;

e parabolic points: at least one of the principal curvatures is null — one of the conical
curves degenerates into a couple of parallel straight lines, corresponding to the
asymptotic direction, the other one is the null set.

The three possible cases are depicted in Fig. 7.9
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N

Figure 7.9: The conical curves of Dupin; from the left: elliptic, hyperbolic and parabolic
points.

7.13 The Gauss-Weingarten equations

Be f : Q@ — ¥ a surface; for any point p € ¥, consider the basis {f,,f,, N}, also called
the Gauss’ basis. 1t is the equivalent of the Frenet-Serret basis for the surfaces. We want
to calculate the derivatives of the vectors of this basis, i.e. we want to obtain, for the
surfaces, something equivalent to the Frenet-Serret equations.

Generally speaking, Ne Sand N-f, =N-f, =0, but f,,f, ¢ Sand f,-f, # 0. In
other words, we are in a case of non-orthogonal (curvilinear) coordinates. So, if w is the
coordinate along the normal N, let us call, for the sake of convenience,

while, for the vectors,
f,u = f,l = g1, f,v = f,2 = 82,

with g, g exactly the g-vectors of the coordinate lines on Y. Then:

Jgi  _10(gi-g) _ 109

0zi = 2 9z 202" i1
og; o O(gi-g;) O - gy 19gi

0z ™ 0z Oz = 02 20207

for the last equation we have used the identity

3gj 0g;

azl 7ji = fﬂ'] = ﬁ’

Using eq. (6.25), it can be proved that it is also’

ij=1,2.

og;
077

g =T i,j,h=12

Moreover, by eq. (7.14),

0g;i
077
"The proof is rather cumbersome and it is omitted here; in many texts on differential geometry, the

Christoffel symbols are just introduced in this way, as the projection of the derivatives of vectors g;s onto
the same vectors, i.e. as the coefficients of the Gauss equations.

N:fJJN:B” i,j:1,2,
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and, by eqs. (7.10), (7.11),

ON o
94 gi=—Lw(g) g =-Xg g =-X;, i,j=12,

while, because |N| = const. = 1, then, eq. (4.1),

ON

57 0 Vi ,

Finally, the decomposition of the derivatives of the vectors of the basis {f,,f,, N} onto
these same vectors gives the equations

0gi

5. = Lign+ BN,

IN i,j=1,2; (7.25)
o = —Xus,

0z /

these are the Gauss-Weingarten equations (the first one is due to Gauss and the second
to Weingarten).

If now we make the scalar product of the Gauss equations by g; and g, i.e.

0g;
077

gk - =g (Thgn+ ByN), i,j,k=1,2,

we get the following three systems of equations:

( 10
T1gu 4+ Thga = _L111’
2 0z (7.26)
Tl 2 - 9912 10911 )
[t g2 T g = 570 = 557
10
Tlag11 + Tlhg1 = —ngl;
20 (7.27)
Tlgis + T2gon = = 22,
( 2 021
( 0 10
Toog11 + T5a021 = e —&7
822 2 821 (728)
22912 t 122922 = 292

The determinant of each one of these systems is just det g # 0 — it is possible to express
the Christoffel symbols as functions of the g;;s and of their derivatives, i.e. as functions
of the first fundamental form (the metric tensor).

7.14 The Theorema Egregium

The following theorem is a fundamental result due to Gauss:
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Theorem 37. (Theorema Egregium): the Gaussian curvature K of a surface f(u,v) :
Q — X depends only upon the first fundamental form of f.

Proof. Let us write the identity

d’g . 9%g1
021022 922021

using the Gauss equations (7.25);:

Ihgie + g2 + BuNg + T 081 + Ty 582 + BN =
I811 + T1age + BiaN 1 + F%Zlgl + F%2,lg2 + Bi21N,
o(-
where, for the sake of shortness, we have abridged % by () ;. Then, we use again
z
eqs. (7.25) to express g11, 812,822, N1 and N o; after doing that and equating to 0 the
coefficient of gy we get

B Xss — BioXoy =TT, + 15,05, + T3, — Dlol5y — D15 — Ty 5
by eq. (7.13) we get that
B = g X1+ 912X01, Bz = guiX12 + g12Xa9,
that injected into the previous equation gives
gridet X = FhF%Q + F%1F§2 + F%lz - F%QF% - F%2F%2 - F%Q,l' (7.29)

Putting equal to zero the coefficient of g; a similar expression can be get also for g¢p».
Because g is positive definite, it is not possible that g;1 = g2 = 0. So, remembering that
K = det X and the result of the previous Section, we see that it is possible to express K
through the coefficients of the first fundamental form and of its derivatives. m

7.15 Minimal surfaces

A minimal surface is a surface f :  — ¥ having the mean curvature H = 0 Vp € 3.
Typical minimal surfaces are the catenoid and the helicoid. Other minimal surfaces are

the Enneper’s surface

3
u 2
U — — + uv’,

3
3

v 2
To =V — — + uv,

2 3,

T3 = U — v,

the Costa’s surface and the Schoen’s gyroid, Fig. 7.10.

Theorem 38. The non-planar points of a minimal surface are hyperbolic.
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Figure 7.10: From the left, the minimal surfaces of Enneper, Costa and Schoen.

Proof. This is a direct consequence of the definition of mean curvature H and of hyperbolic
points: H =0 <= kiky < 0. ]

Be f : Q — ¥ a regular surface and @) a subset of 2 with its boundary 9@ a closed regular
curve in §2; then R = f(Q) C X is a simple region of ¥. Let h: Q — R a smooth function.
Then, we call normal variation of R the map ¢ : @ X (—¢,¢) — & defined by

(11, 0,1) = £(u,0) + ¢ A, 0)N(u, 0).
For each fixed ¢, ¢(u,v,t) is a surface with
@ (u,v,t) = £, (u,v) + 1 h(u, V)N y(u,v) + 1t hy(u,v)N(u,v),
@, (u,v,t) = f,(u,v) +t h(u,v)N (v, v) +t hy(u,v)N(u,v).

If the first fundamental form of f is represented by the metric tensor g, we look for the
metric tensor g’ representing the first fundamental form of ¢(u,v,t) Vt:

G =P Pu =11 +2t h £, N, +1*(B*N? +12),
o=@ Po=g2t+th(f, N, +f, N,)+*(h°N, N, + h,h,),
952 =Py Py = G922 +2t h f,v : N,v + tQ(hQN?fu + h’,2v)7
and by eq. (7.14)
gil = J11 — 2t h B11 + t2(h2N’2u + h?u),
Gty = g12 — 2t h Bio + t2(h2N,u N, + huhy),
g32 — 922 - 2t h B22 + tz(hQN?U —|— hi}),
whence
det g’ = det g — 2th(g11 Bas — 2912812 + go2 B11) + o(t?).
Then, by eq. (7.15), we get easily that

g11Bas — 2g12B12 + 922 B11 = 2H det g,

so that
det g’ = det g(1 — 4thH) + o(t?).

We can now calculate the area A(t)of the simple region R' = ¢(u,v,t) corresponding to
the subset ):

A = / Vdet g(1 — 4thH) + o(t2)dudv;
Q
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For e < 1 A is differentiable and its derivative for ¢t = 0 is

t
% = —/ 2h H+/det gduduv.
dt t=0 Q

a

Theorem 39. A surface £ : Q — ¥ is minimal <~ [ i

] =0 VR C X and for
t=0

each normal variation.

Proof. If f is minimal, the condition is clearly satisfied (H = 0). Conversely, let us
suppose that 3p = f(u,v) € X|H(p) # 0. Be r1,r2 € R such that |H| # 0 in the circle Dy
with center p and radius ro and |H| > 1|H(p)| in the circle D; with center p and radius
r1. Then, we chose a smooth function h(u,v) such that i. h = H inside Dy, ii. hH > 0
inside Dy and iii. h = 0 outside Dy. For the normal variation defined by such h(u,v) we
have

t
_ {%} _ / ohH \/det gdu dv > / 2H?\/det gdu dv
t=0 Do Dy
2 2
2/ AW’ et gdu dv — TP A(E(Dy))
Dy

2 2
dA
dt |-
which contradicts the hypithesis. O]

The meaning of this theorem justifies the name of minimal surfaces: these are the surfaces
that have the minimal area among all the surfaces that share the same boundary.

7.16 Geodesics

Be f : Q@ — ¥ a surface and 4(t) : G C R — X a curve on ¥. A vector function
w(t) : G = TypX is called a vector field® along v(t). We call covariant derivative of w(t)
along y(t) the vector field Dyw(t) : G — V defined as’

D,w = (I— N®N)Cfi—‘;v,

i.e. the projection of the derivative of w onto T, X. It is always possible to decompose
w(t) into its components in the natural basis {f,,f,}:

w(t) = wi(O)fu(v(t)) + wa (D), (¥(1)).
Differentiating we get (a prime here denotes the derivative with respect to t)

w' = wif, +w (fu +f,,0) +wif, + wa(fuu + £,0)

8More correctly, w(t) is a curve of vectors; however, it is normally called a vector field along a curve.
9The operator that gives the projection of w onto a vector orthogonal to N € S, i.e. onto Ty, is
I-N®N, cf. ex. 2, Chap.2.
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and using the Gauss equations, eq. (7.25);, we get (summation on the dummy indexes,
uy stands for u and uy for v)

w' = fw, + (Tfjka + ByN)wuj, 0,5,k =1,2,
so that the projection onto T2, i.e. Dyw(t) is
Dyw = (w, + Thwad)f .. (7.30)

A parallel vector field w along « is a vector field having D,w = o V¢. A regular curve v
is a geodesic of X2 if the vector field 4 of the vectors tangent to « is parallel along ~.

Theorem 40. A curve 7 is a geodesic of ¥ <= v x N = o.

Proof. If 7y is a geodesic, then the derivative of its tangent 4’ has a component only along
N, ie. v xN =0 = 4 -+” = 0. The principal normal to =, v, is orthogonal to
7' = v x N = o. Vice versa, if v x N = o, then 4" is orthogonal to v = D,~v' = o, i.e.
~ is a geodesic. O]

Theorem 41. If v is a geodesic, then |¥'| = const.

(' -+')

e 0= || = const. O

Proof. In a geodesic 4/ - 4" =0 =
This result shows that in a geodesic the parameter is always a multiple of the natural
parameter s.

Be ~(s) a curve on X parameterized by the the arc-length s. We call geodesic curvature
of v(s) the function
kg = D,7 - (N x T),

where 7 = 4’ € S is the tangent vector to 7. Because N x 7 € S lies in T,%, the
component of 7' orthogonal to 7,3 gives a null contribution to k,, so we can write
also

kg =7 (N xT).

Theorem 42. A reqular curve y(s) is a geodesic <= kK, =0 Vs.

Proof. If ~ is a geodesic, clearly x, = 0. Vice versa, if k;, = 0, then 7,7 and N are
linearly dependent, i.e. coplanar. Because 7/ -7 = N-7=0= 7 xN = o = by
Theorem 40, v is a geodesic. O]

Let us now write eq. (7.30) in the particular case of w =~/ i.e. wy = v/, wy ="
Dow = (uf + TFEaubu!)f

1] ]

123



therefore, the geodesics are the solutions to the system of differential equations

U/I+F1 ul2+21'\1 U/U,+Fl /0/2 :O,
{ 11 12 22 (731)

v+ T3 + 2020y 4 T30 = 0.

It can be shown that Vp € ¥ and Yw(p) € T,X the geodesic is unique.

Be p a point of a regular surface f : Q@ — X, a(v) : G C R — X a smooth regular curve
on X, v being the natural parameter and such that p = «a(0). Consider the geodesic -,
passing through ¢ = a(v) and such that «,(0) = N(ea(v)) x 7(v), with 7(v) the (unit)
tangent vector to a(v). Consider the map f(u,v) : Q — ¥ defined posing f(u,v) = ~,(u);
this is a surface whose coordinates (u,v) are called semigeodesic coordinates.

Let us see the form that the first fundamental form (i.e. the metric tensor g), the
Christoffel symbols and the Gaussian curvature take in semigeodesic coordinates. Curves
f(u,v9) = ~,,(u) are geodesics and w is hence their natural parameter. Therefore,
f, € S = g1 = 1. Then, f,,(u,v) is the derivative of the tangent vector to a
geodesic f(u,vg) = 7,,(u) = fuu(u, v) has not a component along the tangent, hence, eq.
= I'l; = T%, = 0. Then, by eq. (7.26);, we get g2, = 0 = g12 does not depend upon
u = g12(u,v) = g12(0,v) Yu. Moreover, be 6 the angle between the curve e, i.e. between
the coordinate line £(0, v), whose tangent vector is f, (0, v), and the geodesic ~y,(u), whose

tangent vector at (0,v) is ) (u). Then, 6 = g, because v,(0) = N(a(v)) x 7(v). As a
consequence, ¢12(0,v) =0 = gi2(u,v) =0 V(u,v) € Q. Finally, putting gss = g,

|10
g = 0 g )
with ¢ > 0 because g is positive definite. Through systems (7.26), (7.27) and (7.28) we
obtain

Gu Ju G
F12 =0, F%2 = %7 F%Z = _77 FgZ = E?
and using eq. (7.29) we obtain
2
K =detX = — w4 Ju
29 4g?

Given two points p1, ps € X, we define the distance d(p;, p2) as the infimum of the lengths
of the curves on ¥ that rely the two points. We end with an important characterisation
of geodesics:

Theorem 43. Geodesics are the curves of minimal distance between two points of a
surface.

Proof. Be v : G C R — ¥ a geodesic on ¥, parameterized with the arc-length, and o a

smooth regular curve through p and orthogonal to 4. Through «, we set up a system of
semigeodesic coordinates in a neighbourhood U of p. With an opportune parameterization
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a(t), in such coordinates we can get p = £(0,0) and « described by the equation v = 0.
Be ¢ € U a point of v, and consider a regular curve connecting p with q. The length

U(p, q) of such curve is
q
/ u’dt’ = |ug — upl.
P

Observing that p = (uy,,0), ¢ = (u4, 0), we remark that |u, — u,| is exactly the length of
~ between p and ¢, because « is parameterized with its arc-length. O

q
q) :/ u? + g v2dt >
p

There is another, direct and beautiful way to show that geodesics are the shortest path
lines: the use of the methods of the calculus of variations!®. The length ¢(p, q) of a curve
~(t) € ¥ between two points p and ¢ is given by the functional (7.9); it depends upon the
first fundamental form, i.e. upon the metric tensor g on o. For the sake of conciseness,

be w = (w}, w?}) the tangent vector to the curve y(wy, w;) € X. Then,

- [ Vi = [

The curve ~(t) that minimizes £(p, q) is the solution to the Fuler-Lagrange equations

dor or_ . dor or
dtow, Ow dt owk  ow*

=0, k=12,

where
F(vaﬂfv ) VW Gij W tw,jt
It is more direct, and equivalent, to minimize Jz(t), i.e. to write the Euler-Lagrange
equations for .
DO(wW, Wy, t) = FQ(W,W,t,t) = gijwftwft.
Therefore:

0P -
o, = 2g,WY,

dwk — Quwk ot

d 0P dgix 0Gik ;
E%}; =2 (gjkwtt + Ww > =2 <9katt+ ow ]l lw] ’

10The reader is addressed to texts on the calculus of variations for an insight in the matter, cf. Sug-
gested texts. Here, we just recall the fundamental fact to be used in the proof concerning geodesics:

be .
= / F(x,x',t)dt

a functional to be minimized by a proper choice of the function x(¢) (in the case of the geodesics,
J = {(p,q)); then, such a minimizing function can be found as solution of the Fuler-Lagrange equations

dor oF _
dt ox'  Ox

Johk=1,2.
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The Euler-Lagrange equations are hence

99k 1 Ogn; : 4
gjkw,tt ow Jh hw] - 58_,“};“}210?15 =0,, Js h: k= 1,2,

that can be rewritten as

99jx . Ognr  Ogn; . .
g tt+ (ayjh + 8’[1)] N awé wﬁwftzoﬁ ],h,k:172_

Multiplying by ¢** we get

g Ogni Ogn; i .
Ik j J h, G _ _
q' g]kwtt + 29 (8 =+ S Dk wiwy =0, j,h k=12

and finally, because
9" gir = 0y
and by eq. (6.25), we get

wtt + Plhw]tw}ia Jyh,l=1,2.

These are the differential equations whose solution is the curve of minimal length between
two points of ¥; comparing these equations with those of a geodesic of ¥, eq. (7.31), we
see that they are the same: the geodesics of a surface are hence the curves of minimal
distance on the surface.

The Christoffel symbols of a plane are all null; as a consequence, the geodesic lines of a
plane are straight lines. In fact, only such lines have a constant derivative.

Through systems (7.26), (7.27) and (7.28) we can calculate the Christoffel symbols for a
revolution surface, eq. (7.5), which are all null excepted

F%2 = F§2 = - 90,:

S I“G\

~—~

so the system of differential equations (7.31) becomes

u’ — © QO/UQ =0,
/

v 4 2£u’v’ =0.
@

It is direct to check that the meridians (u = t,v = vy) are geodesic lines, while the parallels
(u = up,v =t) are geodesics <= ¢'(up) = 0.

7.17 The Gauss-Codazzi compatibility conditions

Let us consider a surface ¥ whose points are determined by the vector function r : Q C

R? — ¥ C &, r(a1, az) = zi(ay, an)€;, with €;,i = 1,2, 3, the vectors of the orthonormal
basis of the reference frame R = {0; €1, €3, €3} and the parameters aq, ay chosen in such
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a way that the lines oy = const., ay = const. are lines of curvature, i.e. tangent at each
point to the principal directions of curvature and hence mutually orthogonal'*. With such
a choice, cf. eq. (7.8),

ds® = A2da? + Asdaj,

- dx; dx;

A — 2 — 7 7
! ral del dOél ’
> dx; dx;
A — 2 — 7 (2
2 ra2 dO./Q dO./Q

the so-called Lamé’s parameters. We remark that along the lines of curvatures, i.e. the
lines a; = const.,1 = 1,2, that in short from now on we will call the lines «;, it is

with

dSl = AldOél,
dSQ = Agd(l/g,
and hence,
d
A= di = Asey,
;Sl (7.32)
)\2 = —2 == A2€2
dOéQ
are the vectors tangent to the lines of curvature. Be
1 1
e = A—lrm, €y = A—2r7a2, €3 =€ X 62(: N), (733)

these three vectors form the orthonormal (local) natural basis e = {ej, €2, e3}. We always
make the choice of aq, as such that es is always directed to the convex side of ¥ if the
point is elliptic or parabolic, or to the side of the centres of negative curvature, if the
point is hyperbolic.

We consider a vector v =v(p), p € %,
V = vi€] + Ug€y + Uses,

and we want to calculate how it transforms when p changes. To this end, we need to
calculate how ey, ey, e3 change with a;, as. Be ¢ € ¥ a point in the neighborhood of p on
the line «; and let us first consider the change of e3 in passing from p to q. Because p and
q belong to the same line «;, by the Theorem of Rodrigues we get (no summation on i in
the following equations)

0
8‘;3 = kA, = 1,2,

1The symbol r is here preferred to f, like a; to u and s to v, to recall that we have made the
particular choice of coordinate lines that are lines of curvature. All the developments could be done
in a more general case, but this choice is made to obtain simpler relations, that preserves anyway the
generality because the lines of curvature exist everywhere.
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i.e., by eq. (7.32),

oes A
Oq; - R, Y
with
P
K

the (principal) radius of curvature along the line «;. The sign minus in the previous
equation is due to the choice done above for orienting e3 = N, that gives always N = —v,
with v the principal normal to the line a;. This result can be obtained also directly, see
Fig. 7.11:

Figure 7.11: Variation of N = e3 along a line of curvature.

e3(q) = e3(p) + des
and in the limit of ¢ — p, des tends to be parallel to ¢ — p and

lim(q — p) = \; = Ase;.

q—p

By the similitude of the triangles, it is evident that

|des| _ g —pl.
|es] R;
moreover,
ae3
de3 = daiei.
Finally, as |es| = 1, we get again
ocs _ 4 (7.34)
80&1‘ Rz

Implicitly, in this last proof, we have used the Theorem of Rodrigues, because we have
assumed that des is parallel to \;, as it is, because line «; is a line of curvature.

We pass now to determine the changes of e; and ey; to this purpose, we remark that

or O*r O*r or 4,

8062 N 80628@1 - 80418042 N 86«1 ’
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so by eq. (7.33) we get

3(Alel) _ a(Ageg)
8042 8@1 .
e; .
Let us study now j‘; as lej| =1,7 =1,2,
oe; .
802 ;=0 Vi,j=1,2.
Because e - e = 0,
081 o, Oere) Do 0
@al > 8041 ! 8@1 ! 8@1 ‘
By eq. (7.35) we get
der _ 1 0(Ae) 104
8(1/1 B AQ 8042 AQ 8061 =
that injected in the previous equation gives, by eq. (7.36),
861 o) — — 1 8(A1e1) e 1 aAge e __é% e _i@Ale e
8&1 2 A2 8@2 ! A2 80./1 2 te A2 60[2 ! A2 80[2 ! !
Then, because e; - e3 = 0,
881 8(e1 : e;;) 8e3 8e3
- . 63 — T —e ——=
8051 8041 6051 6041
and by eq. (7.34)
Oes _ Ai,
8051 N R1 b
so finally
der . _ A
8041 T Rl ’
Again through egs. (7.35) and (7.36) we get
de | L0(he) | 10A o Ae 104
8062 T A1 8&1 A1 8062 ! 2T Al 8041 2 A1 8061 2 2
and also, by eq. (7.34)
Oer o _Oer-es) o Des o des A
8062 T 8042 ! 8&2 N 8052 RQ ! 2=

(7.35)

(7.36)



The derivatives of e; can be found in the same way and resuming, we have

oeq 1 0A, Ay
dar T A 00,7 TRV
de; 1 0A,

daz Ay oy ¥

Oes 1 0A;

don Ay Doy

oesy 1 0A, Ay
(97042 Ay 0oy ©

des Aq

don R

Oes Ay
doy R,

(7.37)

Passing now to the 2nd-order derivatives, imposing the equality of mixed derivatives, gives
some important differential relations between the Lamé’s parameters A; and the radiuses
of curvatures R;. In fact, from the identity

8263 N 6263

8@18@2 N 8026&1’

D (A )0 (e
80@ R1 v 8061 R2 2]

Al Al 8e1 . 0 Ag A2 (9e2

0
aTo@(R_l)eﬁR_laTzz%(R_Q)eﬁR_zﬂ'

Injecting now eqs. (7.37)23 into the last result and rearranging the terms gives

O (A Lo 1O (A 104
80(2 Rl RQ 8062 ! 8061 R2 Rl 8a1 20

that to be true needs that the two following conditions be identically satisfied:

0 (Al) 1 0A _0,

and eqgs. (7.37)56 we get

whence

9oz \Ri1) Ry 0
0 (A LoA_ o
8061 RQ R1 (9061 o

The above equations are known as the Codazzi conditions. Let us now consider the other
identity
8261 . 3261 .
80618@2 N 8062(9@17

130



still using eq. (7.37), with some standard passages this identity can be transformed

to
0 (10A\, 0 (1oAY Ad] [0 (A} 104]
8041 Al 80./1 80@ A2 8042 Rl R2 2 8(12 Rl RQ 6&2 P
Again, for this equation to be identically satisfied, each of the expressions in square

brackets must vanish, which gives two further differential conditions, but only the first
one is new, as the second one corresponds to eq. (7.38);. The new condition is hence

0 (1 04, 0 (1 0A\ Al A
— | —= — | —= ——=0 7.39
8041 (Al 6a1> + 6a2 (A2 8042) + R1 R2 ’ ( )
which is known as the Gauss condition. The last identity

8262 (9262

80(18062 - 80(28061

does not add any further independent condition, as it can be easily checked. The meaning
of the Gauss-Codazzi conditions, eqs. (7.38) and (7.39), is that of compatibility conditions:
only when these conditions are satisfied by functions A;, Ay, Ry and R, then such func-
tions represent the Lamé’s parameters and the principal radiuses of curvature of a surface,
i.e. only in this case they define a surface, except for its position in space.

7.18 Exercices

1. Prove that a function of the type z3 = f(x1,23), with f : 2 C R*> — R smooth,
defines a surface.

2. Show that the catenoid is the rotation surface of a catenary, then find its Gaussian
curvature.

3. Show that the pseudo-sphere is the rotation surface of a tractrice and explain why
the surface has this name (hint: look for its Gaussian curvature).

4. Prove that the regularity of a cone is satisfied at each point exception made for the
apex and for the points on straight lines tangent to «(u).

5. Prove that the hyperbolic hyperboloid is a doubly ruled surface.

6. Prove that the hyperbolic paraboloid, whose Cartesian equation is x3 = x129, is a
doubly ruled surface.

7. Consider the parameterization
f(u,v) = (1 —v)y(u) + vA(u),
with
~(u) = (cos(u — @), sin(u — ), —1), A(u) = (cos(u + a),sin(u + ), 1).

Show that:
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10.

11.

12.
13.

e for o = 0 one gets a cylinder with equation z? + 22 = 1;

™
o for o = 5 one gets a cone with equation z? + x3 = x3;

™
o for 0 <a< 5 one gets a hyperbolic hyperboloid with equation

2, .2 2
Ttz %3 1
cos2a  cot’«

Calculate the first fundamental form of a sphere of radius R, determine the metric
on it, the area of a sector of surface between the longitudes #; and 6y and the length
of the parallel at the latitude 7/4 between these two longitudes.

. Prove that the surface defined by

B, 0) : @ =R (=m7] = & f(u,0) = <coshu7 coshu’ coshu

cosv sinv sinhu )

is a sphere; then show that the image of any straight line on € is a loxodromic line
on the sphere.

Calculate the vectors of the natural basis, the first and second fundamental form
and the tensors g, X, B for the catenoid.

Make the same for the helicoid of parametric equation
E(u, v) = () + vA(w),

with
~(u) = (0,0,u), A(u)= (cosu,sinu,0).

Show that the catenoid and the helicoid are made of hyperbolic points.

Determine the geodesic lines of a circular cylinder.
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Suggested texts

There are many textbooks on tensors, differential geometry and calculus of variations. The
style, content, language of such books greatly depends upon the scientific community the
authors belong to: pure or applied mathematicians, theoretical mechanicians or engineers.
It is hence difficult to suggest some readings in the domain, in the end it is for a lot a
matter of personal taste.

This manuscript is greatly inspired by some classical methods, style and language that are
typical in the community of theoretical mechanics; the following few suggested readings
among several possible other ones belong to such a kind of scientific literature. They are
classical textbooks and though the list is far from being exhaustive, they constitute a
solid basis for the topics shortly developed in this manuscript, where the objective is to
make mathematics for mechanics.

A good introduction to tensor algebra and analysis, that greatly inspired the content of
this manuscript, are the two introductory chapters of the classical textbook

e M. E. Gurtin: An introduction to continuum mechanics. Academic Press, 1981,
or also, in the same style, the long article
e P. Podio-Guidugli: A primer in elasticity. Journal of Elasticity, v. 58: 1-104, 2000.

A short, effective introduction to tensor algebra and differential geometry of curves can
be found in the following text of exercices on analytical mechanics:

e P. Biscari, C. Poggi, E. G. Virga: Mechanics notebook. Liguori Editore, 1999.
A classical textbook on linear algebra to be recommended is
e P. R. Halmos: Finite-dimensional vector spaces. Van Nostrand Reynold, 1958.

In the previous textbooks, tensor algebra in curvilinear coordinates is not developed; an
introduction to this topic, specially intended for physicists and engineers, can be found
in

e W. H. Miiller: An expedition to continuum theory. Springer, 2014,
that has largely influenced Chapter 6.

Two modern and application oriented textbooks on differential geometry of curves and
surfaces are
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e V. A. Toponogov: Differential geometry of curves and surfaces - A concise guide.
Birkh&user, 2006,

e A. Pressley: Elementary differential geometry. Springer, 2010.

A short introduction to the differential geometry of surfaces, oriented to the mechanics
of shells, can be found in the classical book

e V. V. Novozhilov: Thin shell theory. Noordhoft LTD., 1964.

For what concerns the calculus of variations, a still valid textbook in the matter (and not
only) is

e R. Courant, D. Hilbert: Methods of mathematical physics. Interscience Publishers,
1953.

Two very good and classical textbooks with an introduction to the calculus of variations
for mechanicians are

e C. Lanczos: The variational principles of mechanics. University of Toronto Press,
1949,

e H. L. Langhaar: Energy methods in applied mechanics. Wiley, 1962.
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