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Preface

This text is a support for different courses of the master of Mechanics of the University
Paris-Saclay.

The content of this text is an introduction, for graduate students, to modern tensor
algebra and analysis, specially intended for applications in continuum mechanics.

Far from being exhaustive, the text focuses on some subjects, with the intention of provid-
ing the reader with the main algebraic tools necessary for a modern course in continuum
mechanics.

Versailles, July 25, 2021
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Chapter 1

Points and vectors

1.1 Points and vectors

We consider in the following a point space £, whose elements are points p!. On & we
admit the existence of an operation, the difference of any of its two elements:

q—p, p,geé.

We associate to £ a vector space V whose dimension is dim) = 3 and whose elements are
vectors v representing translations over &:

Vp,qe &, A veV| g—p=v.

Any element v € V is hence a transformation over £ that can be written, using the
previous definition, as :

VWweV, viE—=Elq=v(p) - q=p+V.

To remark that the result of the application of the translation v depends upon the argu-
ment p:

q=p+v#p +v=¢,

whose geometric meaning is depicted in Fig. 1.1. Unlike difference, the sum of two points
is not defined and is meaningless.

P 7

Figure 1.1: Same translation over two different points.

1€ is to be identified with the Euclidean three-dimensional space in which the events of classical
mechanics are intended to be set.



We define the sum of two vectors u and v as the vector w such that

(u+v)(p) =u(v(p)) =w(p)
This means that, if
g=v(p)=p+v,
then
r=u(q) =q+u=w(p),

see Fig. 1.2, which shows that the above definition actually coincides with the parallelo-
gram rule and that
u-+v=v-++u,

as obvious, for the sum over a vector space commutes. It is evident that the sum of more
than two vectors can be defined iteratively, summing up a vector at time to the sum of
the previous vectors.

The null vector o is defined as the difference of two coincident points:
o=p—p Vpe¢,

o is unique and the only vector such that
v+o=v VYvel.

In fact:

Vpeé, v+o=v+p—p = p+v+o=p+Vv < Vv+o=V.

A linear combination of n vectors v; is defined as the vector?
w=~kv;, keR i=1..n.

The n + 1 vectors w, v;, ¢ = 1,...,n, are said to be linear independent if it does not
exist a set of n scalars k; such that the above equation is satisfied, linear dependent in the
opposite case.

2We adopt here and in the following the FEinstein notation for summations: all the times that an
index is repeated in a monomial, then summation with respect to that index, called the dummy indez, is
understood. If a repeated index is underlined, then it is not a dummy index, i.e. there is no summation.

Figure 1.2: Sum of two vectors: the parallelogram rule.



1.2 Scalar product, distance, orthogonality

A scalar product on a vector space is a positive definite, symmetric, bilinear form. A form

w 1s a function
w:VYxV =R,

i.e., w operates on a couple of vectors to give a real number, a scalar. We will indicate
the scalar product of two vectors u and v as

w(ua,v) =u-v.
The properties of bilinearity prescribe that, Vu,v € V and Vo, § € R,

u-(av+pw)=au-v+pfu-w,

(cu+ pv)-w=au-w+ fv-w,
while symmetry implies that
u-v=v-u vVu,vey.
Finally, the positive definiteness means that

v-v>0 VeV, v.-v=0 < v=o.

Any two vectors are said to be orthogonal <=
u-v=0_0.

Thanks to the properties of the scalar product, we can define the Fuclidean norm of a
vector v as the nonnegative scalar, denoted equivalently by v or |v|,

v=|v|=Vv-Vv
The norm of a vector has the following properties:

lu+ v| <wu+v (Minkowski’s triangular inequality);
lu-v| <uwv (Schwarz's inequality);
|kv] = |k|v, keR.

We define distance between two any points p and ¢ € £ the scalar
d(p,q) = lp—aql = la—pl.

Similarly, the distance between two any vectors u and v € V is defined as
dlu,v)=|u—v|=|v—ul.

Two points or two vectors are coincident if and only if their distance is null.

The unit sphere S of V is defined as the set of all the vectors whose norm is one:

S={veV|iv=1}

3



1.3 Basis of V, expression of the scalar product

Generally speaking, a basis B of a vector space is any set of n linearly independent vectors,
where n is equal to the dimension of the vector space. In the case of V, n = 3, so that a
basis B of V is any set

B = {ei, e, e3},

of three linearly independent vectors e;. The concept of basis of V is useful for representing
vectors: once a basis chosen, any vector v € V can be represented as a linear combination
of the vectors of the basis, where the coefficients v; of the linear combination are the
components of v:

V = v;€; = V1€1 + U2€9 + U3es.

Though the choice of the elements of a basis is completely arbitrary, the only condition
being their linear independency, we will use in the following only orthonormal bases, that
are bases composed by mutually orthogonal vectors of S, i.e. satisfying

€e; ej = 52‘3‘,

where the symbol d;; is the so-called Kronecker’s delta:

1if i =4,
0ii = noe -,
0if © # j.
The use of orthonormal bases has great advantages; for instance, it allows to give a very
simple rule for the calculation of the scalar product:

u-v =1ue;- vje; = uivjéij = U;V; = UIV] + UV + U3V3.

In particular, it is
V-€, = V€L - €; :vkéik = U, 1= 1,2,3.

So, the Cartesian components of a vector are the projection of the vector on the three
vectors of the basis B; such quantities are the director cosines of v in the basis B. In fact,
if # is the angle formed by two vectors u and v, then

u-v=uv cosb.

This relation is used to define the angle between two vectors,

u-v
0 = arccos ,
uv

which can be proved easily: given two vectors u and v, we look for ¢ € R such that the
vector u — cv be orthogonal to v:
u-v u-v

u-— v=0 <<= ¢c=—-=
(u—cv)-v c=—— 2

Now, if u is inclined of § on v, its projection u, on the direction of v is
Uy = U COS 0,

4



u-cv

u
0
Uy v

Figure 1.3: Angle between two vectors.

and, by construction (see Fig. 1.3), it is also
Uy = C .

So
U U v u-v
c=—cos — —cosl = s = cosf = )
v v v U v

To remark that, while the scalar product, being an intrinsic operation, does not change
for a change of basis, the components v; of a vector are not intrinsic quantities, but they
are basis-dependent: a change of the basis makes the components change. The way this
change is done will be introduced in Sect. 2.11.

A frame R for £ is composed by a point o € £, the origin, and a basis B of V:
R ={o,B} ={o0;e1,ey,e3}.

The use of a frame for £ is useful for determining the position of a point p, which can be
done through its Cartesian coordinates x;, defined as the components, in B, of the vector

p — o
rv,=(p—o0)-e, i=1,23.

Of course, the coordinates depend upon both the choices of o and of B.

1.4 Exercices

Prove that the null vector is unique.
Prove that the norm of the null vector is zero.
Prove the inequality of Minkowski.

Prove the inequality of Schwarz.

AR R

Prove that
u-v=0 < |ju—v|=|u+v| Yuve.

6. Prove the linear forms representation theorem: be v : ¥V — R a linear function.
Then, 3! u € V such that
Y(v)=u-v Yve.






Chapter 2

Second rank tensors

2.1 Second-rank tensors

A second-rank tensor L is any linear application from V to V:

L:V—>YV | L(O./Z‘lli) =o;Lu; Vo, e R, u; €V, i=1,...,n.

Though here V indicates the vector space of translations over £, the definition of tensor!
is more general and in particular VV can be any vector space.

Defining the sum of two tensors as
(L + Lo)u =Liju+ Lou YueV, (2.1)
the product of a scalar by a tensor as
(aL)u = a(Lu) Ya e RiueV
and the null tensor O as the unique tensor such that
Ou=o0oVYueV,

then the set of all the tensors L that operate on V forms a vector space, denoted by
Lin(V). We define the identity tensor I as the unique tensor such that

ITu=u VueV.

Different possible operations can be defined for second-rank tensors. We consider all of
them in the following Sections.

'We consider for the while only second-rank tensors, but we will see in the following how to introduce
tensors of higher ranks.



2.2 Dyads, tensor components
For any couple of vectors u and v, the dyad® u ® v is the tensor defined by
(u@v)w=v-wu VYw e V.

The application defined above is actually a tensor because of the bi-linearity of the scalar
product. The introduction of dyads allows for expressing any tensor as a linear combina-
tion of dyads. In fact, it can be proved that if B = {e, e, e3} is a basis of V, then the
set of 9 dyads

B*={e;®ej, i,j=1,2,3},
is a basis of Lin(V), i.e. dim(Lin(V)) = 9. This implies that any tensor L € Lin(V) can
be expressed as

L= Lij ei®ej, ’L,j = 1,2,37
where the L;;s are the nine Cartesian components of L with respect to B2 The L;;s can
be calculated easily:

e; Lej = €; - Lhkeh X eg €; = Lhkei c€p €€ = Lhkéihéjk = L”

The above expression is sometimes called the canonical decomposition of a tensor. The
components of a dyad can be computed easily:

(u®vVv);j=e€-(Uu®V)e;=u-€ v-e =u; vj. (2.2)

The components of a vector v result of the application of a tensor L on a vector u can
now be easily calculated:

Depending upon two indices, any second-rank tensor L. can be represented by a matrix,
whose entries are the Cartesian components of L in the basis B:

Ly Lip Ly
L= Loy Loy Log | ;
L31 Lsp Lss

because any u € V, depending upon only one index, can be represented by a column
vector, eq. (2.3) represents actually the classical operation of the multiplication of a 3 x 3
matrix by a 3 x 1 vector.

2.3 Tensor product
The tensor product of Ly and Ly € Lin(V) is defined as

(Lng)V = Ll(LQV) Vv e V.

2In some texts, the dyad is also called tensor product; we prefer to use the term dyad because tensor
product can be ambiguous, as used to denote the product of two tensors, see Sect. 2.3.



By linearity and eq. (2.1) we get

[L(Ll + LQ)]V = L[(Ll + LQ)V] = L(le + LQV) =
LL1V + LLQV = (LLl + LLQ)V — L(L1 -+ Lg) = LL1 + LL2

To remark that the tensor product is not symmetric:
LiLy # LoLy;
however, by the same definition of the identity tensor and of tensor product,
IL=LI=LVL € Lin(V).

The Cartesian components of a tensor L = AB can be easily calculated using eq.
(2.3):

Lij =€ - (AB)GJ =€;- A(Be]) =€;- A(Bhk(e])k Eh) = Bhk(sj'kei . Aeh
= Buidjrei - (Apg(en)q €p) = ApgBrrdjrdqndip = AinBh;-

The above result simply corresponds to the rule of the multiplication of rows by lines of
two matrices. Using it, the following two identities can be readily shown:

(a®b)(c®d)=b-cla®d) Va,b,c,d eV,

A(a®@b)=(Aa)®b Va,beV, A c Lin(V). (2.4)

Finally, the symbol L? is normally used to denote in short the product LL, VL €
Lin(V).

2.4 Transpose, symmetric and skew tensors

For any tensor L € Lin(V), it exists just one tensor L', called the transpose of L, such
that
u-Lv=v-L'u Yu,vev.

The transpose of the transpose of L is L:
u-Lv=v-L'u=u-L")'v = (L") =L

The Cartesian components of LT are obtained swapping the indexes of the components
of L:
L;; =€; - LTej = ej . (LT)TGZ‘ = ej . Lei = sz

It is immediate to show that
(A+B) =AT +B" VA Bc Lin(V),

while

u-(AB)v=Bv-A'u=v-B'A"u = (AB)' =B'A".

Moreover,

u-(a®b)v=a-ub-v=v-(b®aju = (a®b) =b®a. (2.5)

9



A tensor L is symmetric <=
L=L".

In such a case
T
Lij = Lz’j = Lji <~ Lij = sz

A symmetric tensor is hence represented, in a given basis, by a symmetric matrix and has
just six independent Cartesian components. Applying eq. (2.4) to I, it is immediately
recognized that the identity tensor is symmetric: I =1T.

A tensor L is antisymmetric or skew <=
L=-L".
In such a case (no summation on the index i, see footnote 2, Chap. 1)
Lij=-L;=-Lj < Lj=-L; = Ly=0Vi=1,23.

A skew tensor is hence represented, in a given basis, by an antisymmetric matrix whose
components on the diagonal are identically null, in any basis; finally, a skew tensor just
depends upon three independent Cartesian components.

If we denote by Sym(V) the set of all the symmetric tensors and by Skw(V) that of all
the skew tensors, then it is evident that, Va, 8, A\, u € R,

Sym(V) N Skw(V) = O,
aA + B € Sym(V) VA, B € Sym(V),
AL + M € Skw(V) VL,M € Skw(V),
so Sym(V) and Skw(V) are vector subspaces of Lin()) with dim(Sym(V)) = 6, while
dim(Skw(V)) = 3.

Any tensor L can be decomposed into the sum of a symmetric, ¥, and an antisymmetric,
L, tensor:

L=L°+1L"
with .
L+ L
L° = +2 € Sym(V)
and -
L-L
L = 5 € Skw(V),

so that, finally,
Lin(V) = Sym(V) @ Skw(V).

2.5 Trace, scalar product of tensors
It exists one and only one linear form
tr: Lin(V) — R,

10



called the trace, such that
tra®@b)=a-b Va,beV.

For its same definition, that has been given without making use of any basis of V), the
trace of a tensor is a tensor invariant, i.e. a quantity, extracted from a tensor, that does
not depend upon the basis.

Linearity implies that
tr(aA + B) = atrA + gtrB Va,8 € R, A;B € Lin(V).
It is just the linearity to give the rule for calculating the trace of a tensor L:
trL = tr(L;je; ® ej) = L;jtr(e; @ ej) = L;; €; - €; = L;;j0;; = Ly;.
A tensor is hence an operator whose sum of the components on the diagonal,
trL = Ly + Loy + Las,

is constant, regardless of the basis.

Following the same procedure above, it is readily seen that
trL" = trL,
which implies, by linearity, that
trL =0 VL € Skw(V).

The scalar product of tensors A and B is the positive definite, symmetric bilinear form
defined by
A -B=tr(A'B).

This definition implies that, YL, M, N € Lin(V), «, € R,

L-(aM+ 8N)=aL-M+ LN,
(L + M) -N=aL -N+M-N,
L-M=M-L,
L-L>0 VLeLin(V), L-L=0 < L=0.
Such properties give the rule for computing the scalar product of two tensors A and
B:
A-B=A4,(e;®e;) Buyley®ey) = A;jBui(e; ®e;) - (e, @ey)
= Ay B tr[(e; @ €;) T (e, ® €y)] = Ay B tr[(e; @ ;) (e), @ ey)]
= A;;jBpy, trle; - en(e; ® e;)] = A;jBni € - e, € - e
= AijBnkdindjr = AijBij.
Like in the case of vectors, the scalar product of two tensors is equal to the sum of the

products of the corresponding components. In the same manner, it is easily shown that,
Va,b,c,d € V,
(a®b) . (C®d) :a-cb-d:aibjcidj,

11



while by the same definition of tensor scalar product,
trL=1-L VL € Lin(V).

Similarly to vectors, we define Fuclidean norm of a tensor L the nonnegative scalar,
denoted either by L or |L|,

L=|L=VL- L= tr(LTL) = \/L;; L,
and the distance d(L, M) of two tensors L and M the norm of the tensor difference:

d(L,M) = |L - M| = |M - L|.

2.6 Spherical and deviatoric parts

Let L € Sym(V); the spherical part of L is defined by

L = 1mrLI,
3

and the dewviatoric part by
Ldev —L-— Lsph7

so that
L= Lsph + Ldev'

To remark that ]
trLPh = gtrLtrI =trL = trLd =0,

i.e. the deviatoric part is a traceless tensor. Let A, B € Lin()); then
1 1
A" BR = StrAL-B™ = StrA uB™ =, (2.6)

i.e. any spherical tensor is orthogonal to any deviatoric tensor.

The sets
Sph(V) = {AS”" € Lin(V)| A" = %trAI VA € Lm(V)} :
Dev(V) := {A% € Lin(V)| A™ = A — A*" VA € Lin(V)}

form two subspaces of Lin(V); the proof is left to the reader. For what proved above,
Sph(V) and Dev(V) are two mutually orthogonal subspaces of Lin(V).

2.7 Determinant, inverse of a tensor

The reader is probably familiar with the concept of determinant of a matrix. We show
here that the determinant of a second rank tensor can be defined intrinsically and that it
corresponds with the determinant of the matrix that represents it in any basis of V. To
this purpose, we need first to introduce a mapping:

w:VPxVxV-—->R

12



is a skew trilinear form if w(u,v,-),w(u,-,v) and w(-,u,v) are linear forms on V and if
wu,v,w) = —w(v,u,w) = —w(u,w,v) = —w(w,v,u) Yu,v,w € V. (2.7)

After this definition, we can state the following

Theorem 1. Three vectors are linearly independent if and only if every skew trilinear
form on them is not null.

Proof. In fact, be u = av + Sw; then, for any skew trilinear form w,
wu,v,w) = w(av + fw,v,w) = aw(v,v,w) + fw(w,v,w) =0
because of eq. (2.7), applied to the permutation of the positions of the two u and the two

w. OJ

It is evident that the set of all the skew trilinear forms is a vector space, that we denote
by €2, whose null element is the null form wq:

wo(u,v,w) =0 Vu,v,w € V.

For a given w(u,v,w) € Q any L € Lin(V) induces another form wy(u,v,w) € €,
defined as
wr(u,v,w) = w(Lu,Lv,Lw) Yu,v,w € V.

A key point? for the following developments is that dim = 1.
This means that Vw, ws # wg € 2,3\ € R such that

wa(u, v, w) = dwi(u,v,w) Vu,v,w € V.
So, VL € Lin(V), it must exist A\, € R such that
w(Lu, Lv,Lw) = wp(u,v,w) = \f w(u,v,w) YVu,v,w € V. (2.8)

The scalar? \j, is the determinant of L and in the following it will be denoted as det L.
The determinant of a tensor L is an intrinsic quantity of L, i.e. it does not depend upon
the particular form w, nor on the basis of V. In fact, we have never introduced, so far,
a basis for defining det L, hence it cannot depend upon the choice of a basis for V, i.e.
det L is a tensor invariant.

Then, if w! and w? € Q, because dim Q = 1, it exists k¥ € R, k # 0 such that
W, v,w) =k w'(u,v,w) Vu,v,w € ¥V =
w?(Lu,Lv,Lw) = k w'(Lu,Lv, Lw) —

wi(u,v,w) =k wj(u,v,w).

3The proof of this statement is rather articulated and out of our scope; the interested reader is
addressed to the classical textbook of Halmos on linear algebra, §31 (see the bibiography). The theory
of the determinants is developed in §53.

4More precisely, det L is the function that associates a scalar with each tensor (Halmos, §53). We can
however, for the sake of practice, identify det L with the scalar associated to L, without consequences for
our purposes.

13



Moreover, by eq. (2.8) we get

wH(Lu, Lv,Lw) = w; (0, v, w) = \jw'(u, v, w),

w}(Lu,Lv, Lw) = w? (u,v,w) = A w?(u,v,w),
so that

Mk w'(a,v,w) =X (n,v,w) =w(u,v,w) =

kwi(u,v,w) = Ak w'(u,v,w) < A} = A},

which proves that det L does not depend upon the skew trilinear form, but only upon
L.

The definition given for det Li let us prove some important properties. First of all,
det O = 0;
in fact, Vw € Q,
det O w(u,v,w) = w(Ou,Ov,0w) = w(0,0,0) =0
because w operates on three identical, i.e. linearly dependent, vectors. Then, if L =

I
detI w(u,v,w) = w(Iu,Iv,Iw) = w(u,v,w)

if and only if
detI = 1. (2.9)

A third property is that Va,b € V,
det(a®b) = 0. (2.10)
In fact, if L = a® b, then
detL w(u,v,w) = w(Lu,Lv,Lw) = w((b-u)a,(b-v)a,(b-w)a) =0

because the three vectors on which w € €) operates are linearly dependent; being u, v and
w arbitrary, this implies eq. (2.10).

An important result is the

Theorem 2. (Theorem of Binet): VA, B € Lin(V)
det(AB) = det A det B. (2.11)

Proof. Yw € €,

Apw(u,v,w) = w(ABu, ABv, ABw) = w(A(Bu),A(Bv),A(Bw)) =
Aaw(Bu, Bv, Bw) = M Agw(u, v, w) <= Aap = AalAp,

which proves the theorem. O

14



A tensor L is called singular if det L = 0, otherwise it is non-singular.

Considering eq. (2.8), one can easily see that, if in a basis B of V it is L = L;je; ® ey,
then

detL =) ex(t)m(@r®) L1a) Loz Lana),

TEP3
where Pj is the set of all the permutations 7 of {1, 2, 3} and the ¢, j ;s are the components
of the Ricci alternator:
1 if (i,7,k) 1is an even permutation of (1,2,3),
€ijk = 0 if (¢,7,k) is not a permutation,
—1 if (4,7,k) 1is an odd permutation of (1,2,3).

The above rule for det L coincides with that for calculating the determinant of the matrix
whose entries are the L;;s. This shows that, once chosen a basis B for V, det L coincides
with the determinant of the matrix representing it in B, and finally that

det L = L1y LogLss + LigLog L3y + LizL3a Loy

— L1 LogLsy — Log Lz Ligy — LgzLiaLo;. (212)
This result shows immediately that VL € Lin(V), and regardless of B, it is
detL" = det L. (2.13)
Using eq. (2.12), it is not difficult to show that, Va € R,
det(I+ aL) =1+ al, + o*l + oI, (2.14)
where Iy, I, and I3 are the three principal invariants of L:
I =trL, I, = M, I3 = det L. (2.15)

A tensor L € Lin(V) is said to be invertible if there is a tensor L™ € Lin(V), called the
iwverse of L, such that
LL'=L"'L=1 (2.16)

If L is invertible, then L~! is unique. By the above definition, if L is invertible, then

u,=Lu=u=L" u,.

Theorem 3. Any invertible tensor maps triples of linearly independent vectors into triples
of still linearly independent vectors.

Proof. Be L an invertible tensor and u; = Lu,v; = Lv,w; = Lw, where u,v,w are
three linearly independent vectors. Let us suppose that
u; = hvy + kwy, h, k € R.
Then, because L is invertible,
L 'u; = LY (hvy + kwy) = hL™'vy + kL7 'wy = hv + kw,
which goes against the hypothesis. By consequence, uy, vy and w; are linearly indepen-

dent. O
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This result, along with the definition of determinant, eq. (2.8), and Theorem 1, proves
the

Theorem 4. (Invertibility theorem): L € Lin(V) is invertible <= detL # 0.
Using the Theorem of Binet, 2, along with egs. (2.9) and (2.16), we get

1
detL™! = .
© det L

Equation (2.16) applied to L™!, along with the uniqueness of the inverse, gives immedi-
ately that
(L_l)_l =L,

while
B'A'=B'A'AB(AB) ' = (AB)™.

The operations of transpose and inversion commute:
L'LH!'=I=L'L=1I"=(L"'L)'=L"(LYH =
(L—l)'l' — (LT)—I = L_T.

2.8 Eigenvalues and eigenvectors of a tensor
If it exists a A € R and a v € V, except the null vector, such that
Lv = \v, (2.17)

then )\ is an eigenvalue and v an eigenvector, relatif to A, of L. It is immediate to observe
that, thanks to linearity, any eigenvector v of L is determined to within a multiplier, i.e.,
that kv is an eigenvector of L too, Vk € R. Often, the multiplier £ is fixed in such a way
that |v| = 1.

To determine the eigenvalues and eigenvectors of a tensor, we rewrite eq. (2.17) as
(L= A)v =o. (2.18)
The condition for this homogeneous system have a non null solution is
det(L — A\I) = 0;

this is the so-called characteristic or Laplace’s equation. In the case of a second rank tensor
over V, the Laplace’s equation is an algebraic equation of degree 3 with real coefficients.
The roots of the Laplace’s equation are the eigenvalues of L; because the components of L,
and hence the coefficients of the characteristic equation, are all real, then the eigenvalues
of L are all real or one real and two complex conjugate.

For any eigenvalue \;, i = 1,2,3 of L, the corresponding eigenvectors v; can be found
solving eq. (2.18), once put A = \;.

The proper space of L relatif to A is the subspace of Lin(V) composed by all the vec-
tors that satisfy eq. (2.18). The multiplicity of X is the dimension of its proper space,
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while the spectrum of L is the set composed by all of its eigenvalues, each one with its
multiplicity.

LT has the same eigenvalues of L, because the Laplace’s equation is the same in both the
cases:

det(L" — AI) = det(L" — AXI") = det(L — AI) " = det(L — AI).

However, this is not the case for the eigenvectors, that, generally speaking, are different,
as a simple example can show.

Developing the Laplace’s equation, it is easy to show that it can be written as
det(L — AXI) = —\* + [\ — LA+ I3 =0,

which is merely an application of eq. (2.14). If we denote L® = LLL, using eq. (2.15)
one can prove the

Theorem 5. (Cayley-Hamilton Theorem): YL € Lin(V),
L - L1+ LL - LI=0.

A quadratic form defined by L is any form w : V x V — R of the type
w=v-Lv;

ifw>0VveV, w=0 <= v =o0, then w and L are said to be positive definite. The
eigenvalues of a positive definite tensor are positive. In fact, if A is an eigenvalue of L,
positive definite, and v its eigenvector, then

v-Lv=v- Av=)\? >0 < \>0.

Be vy and v, two eigenvectors of a symmetric tensor L relative to the eigenvalues \; and
A9, respectively, with A\; # \o; then

AMVi-Vo=Lv; -vog=Lvg-v]i = \vy-v] <= v;-vy,=0.

Actually, symmetric tensors have a particular importance, specified by the

Theorem 6. (Spectral Theorem): the eigenvectors of a symmetric tensor form a basis of

V.

This theorem? is of the paramount importance in linear algebra: it proves that the eigen-
values of a symmetric tensor L are real valued and, remembering the definition of eigenval-
ues and eigenvectors, eq. (2.17), that it exists a basis By = {u;, ug, ug} of V composed by
eigenvectors of L, i.e. by vectors that are mutually orthogonal and that remain mutually
orthogonal once transformed by L. Such a basis is called the normal basis.

If \;;i =1,2,3, are the eigenvalues of L, then the components of L in By are

Lij =u; - Lllj =u; - )\jllj = /\jgij

5The proof of the spectral theorem is omitted here; the interested reader can find a proof of it in the
classical text of Halmos, page 155, see the bibliography.

17



so finally in By it is

L = \e; ®e,,
i.e. L is diagonal and is completely represented by its eigenvalues. In addition, it is easy
to check that

Il == )\1 + )\2 + )\3, [2 - )\1)\2 ‘|— )\2)\3 + )\3)\1, [3 - )\1)\2)\3.

A tensor with a unique eigenvalue A, of multiplicity 3, is said to be spherical; in such a
case, any basis of V is By and
L =)L

Two tensors A and B are said to be coazial if they have the same normal basis By, i.e.
if they share the same eigenvectors. Be u an eigenvector of A, relative to the eigenvalue
A4, and of B, relatif to Ag. Then,

ABu = A)gu = A\gAu = M Agu = \,Bu=B)u=BAu,

which shows, on one hand, that also Bu is an eigenvector of A, relative to the same
eigenvalue \4; in the same way, of course, Au is an eigenvector of B relative to Ag. In
other words, this shows that B leaves unchanged any proper space of A, and viceversa.
On the other hand, we see that, at least for what concerns the eigenvectors, two tensors
commute if and only if they are coaxial. Because any vector can be written as a linear
combination of the vectors of By, and for the linearity of tensors, we finally have proved
the

Theorem 7. (Commutation Theorem): two tensors commute if and only if they are
coazial.

2.9 Skew tensors and cross product

Because dim(V) = dim(Skw(V)) = 3, an isomorphism can be established between V' and
Skw(V), i.e. between vectors and skew tensors. We establish hence a way to associate in a
unique way a vector to any skew tensor and inversely. To this purpose, we first introduce
the following

Theorem 8. The spectrum of any tensor W € Skw(V) is {0} and the dimension of its
proper space 1S 1.

Proof. This theorem states that zero is the only real eigenvalue of any skew tensor and
that its multiplicity is 1. In fact, be w an eigenvector of W relative to the eigenvector \.
Then

Mw? =Ww - Ww=w-W Ww=—-w-WWw
=-—w-WOw) = -Aw- Ww = - \lw? <= \=0.
Then, if W # O its rank is necessarily 2, because det W = 0 YW € Skw(V); hence, the

equation
Ww =o0 (2.19)

has oo! solutions, i.e. the multiplicity of X is 1, which proves the theorem. O
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The last equation gives also the way the isomorphism is constructed: in fact, using eq.
(2.19) it is easy to check that if w = (a, b, ¢), then

0 —c b
w=(a,bc) <= W= | ¢ 0 —a |. (2.20)
—b a O

The proper space of W is called the azis of W and it is indicated by A(W):
A(W) = {u € V| Wu = o}.

The consequence of what shown above is that dim A(W) = 1. With regard to eq. (2.20),
one can check easily that the equation

u-u:%W-W (2.21)
is satisfied only by w and by its opposite —w. Because both these vectors belong to
A(W), choosing one of them corresponds to choose an orientation for &, see below.
We will always fix our choice according to eq. (2.20), which fixes once and for all the
isomorphism between V and Skw(V) that makes correspond any vector w with one and
only one azial tensor W and vice-versa, any skew tensor W with a unique axial vector
w.

It is worth noting that the above isomorphism between the vector spaces V and Skw(V)
implies that to any linear combination of vectors a and b corresponds an equal linear
combination of the corresponding axial tensors W, and W, and vice-versa, i.e. Va,b € R

w=caa+ b < W =aW, + fW,, (2.22)

where W is the axial tensor of w. Such a property is immediately checked using eq.
(2.20).

It is useful, for further developments, to calculate the powers of W:
W2 =WW=-W'(-W') = (WW)'= (W7 (2.23)
i.e. W2 is symmetric. Moreover:

Wu=WWu=wXx (WXU)=wW-uw —w-wu

2.24
= (I-wawu = W=-I-waw) (2.24)
So, applying recursively the previous results,
W =WW?= -WI-wew)=-W+ (Ww) @ w=-W
W!=WW’= —W?
(2.25)

W5 = WWi= —W?

ete.

An important property of any couple axial tensor W - axial vector w is
1
WW = —§|W|2(I —WRW),
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while eq. (2.21) can be generalized to any two axial couples wq, W1 and wq, Wy :

1
Wi Wo = §W1'W2.

The proof of these two last properties is rather easy and left to the reader.

We define cross product of two vectors a and b the vector
axb=W,b,

where W,, is the axial tensor of a. If a = (ay,as,a3) and b = (by, by, b3), then by eq.
(2.20) we get
a X b = (agbs — agby, asby — aibs, a1by — asby).

The cross product is bilinear: Va,b,u €V, a, 8 € R,

(eca+ fb) x u=aa xu+ b x u,
u x (ea+ fb) =au x a+ fu x b.

In fact, the first equation above is a consequence of eq. (2.22), while the second one is a
simple application to axial tensors of the same definition of tensor.

Three important results concerning the cross product are stated by the following theo-
rems:

Theorem 9. (Condition of parallelism): two vectors a and b are parallel, i.e. b =
ka, keR, <—
axb=o.

Proof. This property is actually a consequence of the fact that any eigenvalue of a tensor
is determined to within a multiplier:

axb=Wb=0 < b==ka, keR,

for Theorem 8. [l

Theorem 10. (Orthogonality property):
axb-a=axb-b=0. (2.26)
Proof.

axb-a=W,b-a=b-W/a=-b-W,a=-b-0=0,
axb-b=W,b-b=b-W/b=-b-W,b <= axb-b=0.

Theorem 11. a X b is the azial vector of the tensor (b ® a—a® b).
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Proof. First of all, by eq. (2.5) we see that
(b®a—a®b) e Skew(V).

Then,
(b®a—a®b)laxb)=a-axbb—-b-axba=0

for Theorem 10. O

Theorem 11 allows for showing that, unlike the scalar product, the cross product is anti-
symmetric:
axb=-bxa. (2.27)

In fact, if W; = (b® a —a® b) is the axial tensor of a X b, Wy = (—a®b +b®a) is
that of —b x a. But, evidently, W; = W which implies eq. (2.27) for the isomorphism
between V and Lin()). This property and again Theorem 11 let us show the formula for
the double cross product:

UX (VXW)=—(VXW)Xu=—(WRV—-VRWuU=Uu-wWvV—-u-vw. (2.28)
Another interesting result concerns the mized product:
uxv-w=Wyw-w=-v- Ww=—-v-uXw=wXxu-v, (2.29)
and similarly
UXV-W=VXW-U
Using this last result, we can obtain a formula for the norm of a cross product; if a = a e,
and b = b e, with e,,e, € S, are two vectors forming the angle 6, then
(axb)-(axb)=axb-(axb)=(axb)xa-b=-ax(axb)-b=
(—ra-ba+a’b)-b=b-(a’I-a®ab=ad’b-(I-e,Qe,)b=
a’b? e, - (I — e, ® e,)e, = a’b?(1 — cos? 0) = a?b*sin® § — |a x b| = absin 6.
So, the norm of a cross product can be interpreted, geometrically, as the area of the
parallelogram spanned by the two vectors. As a consequence, the absolute value of the

mixed product (2.29) measures the volume of the prism delimited by three non coplanar
vectors.

Because the cross product is antisymmetric and the scalar one is symmetric, it is easy to
check that the form
flu,v,w) =uxv-w

is a skew trilinear form. Then, eq. (2.8), we get
LuxLv-Lw=detLuxv-w. (2.30)

Following the interpretation given above for the absolute value of the mixed product,
we can conclude that |det L| can be interpreted as a coefficient of volume dilation. A
geometrical interpretation can then be given to the case of a non invertible tensor, i.e.
of detL = 0: it crushes a prism into a flat region (the three original vectors become
coplanar, i.e. linearly dependent).
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The adjugate of L is the tensor
L* := (det L)L~ ".
From eq. (2.30) we get hence

detLuxv-w=LuxLv-Lw=L"(LuxLv) - w VYw=
Lu x Lv =L*(u x v).

2.10 Orientation of a basis

It is immediate to observe that a basis B = {ej, e3,e3} can be oriented in two opposite
ways®: e.g., once two unit mutually orthogonal vectors e; and e, chosen, there are two
opposite unit vectors perpendicular to both e; and e; that can be chosen to form B.

We say that B is positively oriented or right-handed if
e Xey-e3=1,
while B is negatively oriented or left-handed if
e X ey -e3=—1.

Schematically, a right-handed basis is represented in Fig. 2.1, where a left-handed basis
is represented too, with a dashed es.

€3

/i\ei

€ !
|
|
v
Figure 2.1: Right- and left-handed bases.

With a right-handed basis, by definition the axial tensors of the three vectors of the basis
are

Welzeg®e2—e2®eg,
W, =e; ®e; —es ey,
W, =ea®e; —e Qe

6Tt is evident that this is true also for one- and two-dimensional vector spaces.
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2.11 Rotations

In the previous Chapter we have seen that the elements of V represent translations over
E. A rotation, i.e. a rigid rotation of the space, is an operation that transforms any two
vectors u and v into two other vectors u’ and v’ in such a way that

u=1u, v=2, u-v=u-v/, (2.31)

i.e. it preserves norms and angles. Because a rotation is a transformation from V to V,
rotations are tensors, i.e. we can write

with R the rotation tensor or simply the rotation.

Conditions (2.31) impose some restrictions on R:
v-vV=Ru-Rv=u-R'Rv=u-v & R'R=I=RR".

A tensor that preserves angles belongs to Orth(V), the subspace of orthogonal tensors (we
leave to the reader the proof that actually Orth(V) is a subspace of Lin(}V). Replacing in
the above equation v with u shows immediately that an orthogonal tensor preserves also
the norms. By the uniqueness of the inverse, we see that

R € Orth(V) «< R'=R".

The above condition is not sufficient to characterize a rotation; in fact, a rotation must
transform a right-handed basis into another right-handed basis, i.e. it must preserve the
orientation of the space. This means that it must be

e} x e, -e; =Re; x Rey- Res = e X e; - e3.
By eq. (2.30) we get hence the condition”
detR(e; xey-e3) =€) X ey-e3 < detR=1.

The tensors of Orth(V) that have a determinant equal to 1 form the subspace of proper
rotations or simply rotations, indicated by Orth(V)* or also by SO(3). Only tensors of
Orth(V)™T represent rigid rotations of 8.

Theorem 12. : each tensor R € Orth(V) has the eigenvalue £1, with +1 for rotations.

Proof. Be u an eigenvector of R € Orth(V) corresponding to the eigenvalue \. Because
R preserves the norm, it is

Ru-Ru=)\u’=u®> - =1

"From the condition RTR = I and through eq.(2.13) and the Theorem of Binet, we recognize imme-
diately that det R = £1 VR € Orth(V).

8A tensor S € Orth(V) such that det S = —1 represents a transformation that changes the orientation
of the space, like mirror symmetries do, see Sect. 2.12.
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We now must prove that it exists at least one real eigenvector \. To this end, we consider
the characteristic equation

FO) =X+ kA + ko) + by = 0,

whose coefficients k; are real-valued, because R has real-valued components. It is imme-
diate to recognize that
lim f(\) = %o0.

A—+too

So, because f(\) is a real-valued continuous function, actually a polynomial of A, it exists
at least one \; € R such that

f() = 0.

In addition, we already know that YR € Orth(V),det R = +1 and that, if \;;i = 1,2,3
are the eigenvalues of R, then det R = A\;\;A3. Hence, two are the possible cases:

i. A1 € R and Ay, A3 € C, with A3 = Xy, the complex conjugate of \;
i, ERVi=1,2,3.

Let us consider the case of R € Orth(V)™, i.e. a (proper) rotation — det R = 1. Then,
in the first case above,

det R = A dodo = M [RZ2(2) + 3%(\2)].

But
R*(A2) + S (X)) =1

because it is the square of the modulus of the complex eigenvalue Ay. So in this case
detR=1 «<— X\ = 1.

In the second case, \; € R Vi = 1,2,3, either A\; > 0,3, A3 < 0, or all of them are
positive. Because the modulus of each eigenvalue must be equal to 1, either \y = 1 or
Ai =1Vi=1,2,3 (in this case R =1I).

Following the same steps, one arrives easily to show that VS € Orth(V) with detS = —1,
it exists at least one real eigenvalue \; = —1. O]

Generally speaking, a rotation tensor rotates the basis B = {e;,es, e3} into the basis
B = {e}, €, e}

Rei:e; VZ:1,2,3 = Rij:ei-Rej :e,;'e;. (232)
This result actually means that the j-th column of R is composed by the components in

the base B of the vector €, of B'. Because the two bases are orthonormal, such components
are the director cosines of the axes of B’ with respect to B.

Geometrically speaking, any rotation is characterized by an azis of rotation w,|w| = 1
and by an amplitude ¢, i.e. the angle through which the space is rotated about w. By
definition, w is the (only) vector that is left unchanged by R, i.e.

Rw = w,
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or, in other words, it is the eigenvector corresponding to the eigenvalue +1.

The question is then: how a rotation tensor R can be expressed by means of its geometrical
parameters, w and ¢? To this end we have a fundamental theorem:

Theorem 13. (Euler’s rotation representation theorem): VR € Orth(V)",
R =1+ sinoW + (1 — cos p)W? (2.33)
with o the rotation’s amplitude and W' the axial tensor of the rotation axis w.

Proof. We observe preliminarily that

Rw =Iw +sin pWw + (1 — cos p) WWw = Iw = w (2.34)
i.e. that eq. (2.33) actually defines a transformation that leaves unchanged the axis w,
like a rotation about w must do, and that +1 is an eigenvalue of R.

We need now to prove that eq. (2.33) actually represents a rotation tensor, i.e. we must
prove that
RR' =1 detR=1.

Through eq. (2.25) we get
RR" = (I +sin oW + (1 — cos o) W?)(I + sin oW + (1 — cos p)W?) "
= (I +sin oW + (1 — cos @) W?)(I — sin W + (1 — cos ) W?)
=14 2(1 — cos p)W? —sin? pW? + (1 — cos ¢)*W*
=T+2(1 —cosp)W? —sin® 9W? — (1 — cos p)*W?= L.
Then, through eq. (2.24) we obtain
R =TI+ singeW + (1 — cos p)W?
=I1+sinpW — (1 —cosp)(I—wew) (2.35)
= cos @l + sin W + (1 — cos p)w @ w.

To go on, we need to express W and w @ w; if w = (wy, wy, w3), then by eq. (2.20) we

have
0 —ws3 Wo
W = W3 0 — w1
— W2 w1 0

and by eq. (2.2)
2
wy W1W2 W1W3
wWRW= | wwy, wi wows |,
wiws wywz Wi

that injected into eq. (2.35) gives

cos ¢ + (1 — cos p)w? —wssin p + wiwy(l — cosp)  wesinp + wiws(1l — cos )
R=| w;ssinp+ wws(l— cosy) cos p + (1 — cos p)w3 —w; sin ¢ + waws(1 — cos p)
—wy sin @ + wiws(1 — cosp)  wysinp + wows(1 — cos ) cos p + (1 — cos p)w3
(2.36)
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This formula gives R as function exclusively of w and ¢, the geometrical elements of the
rotation. Then
det R = (w? + (1 — w?) cos p)(cos? p 4 w? sin? )

and because w = 1,det R = 1, which proves that eq. (2.33) actually represents a rotation.

We eventually need to prove that eq. (2.33) represents the rotation about w of amplitude
¢. To this end, we choose an orthonormal basis B = {e;, es,e3} of V such that w = e3,
i.e. we analyze the particular case of a rotation of amplitude ¢ about es. This is always
possible, thanks to the arbitrariness of the basis of V. In such a case, eq. (2.32) gives

cosp —sing 0

R=| sing cosp 0. (2.37)
0 0 1
Moreover,
0 -1 0 000
W=|1 0 0, wow=1]0 0 0|,
0 0 O 0 01
-1 0 0
Wi=_—I-wew)=| 0 -1 0
0O 0 O
Hence
100 0 -1 0
I+singW + (1 —cosp)W?= 10 1 0 | +sinp| 1 0 0|+
0 0 1 0 0 O
(2.38)
-1 0 0 cosep —singp 0
+(1—cosp)| 0O =10 smgo cosgp 0| =R.
0 0 0 1
O

Equation (2.33) gives another result: to obtain the inverse of R it is sufficient to change
the sign of ¢. In fact, because W € Skw(V) and through eq. (2.23)
R'=R" = (I+sineW + (1 —cosp)W?)T =T +sinoW ' + (1 — cos ¢)(W?)"
=1 —sineW + (1 — cos p)W? = I+ sin(—p)W + (1 — cos(—p))W?2.

The knowledge of the inverse of a rotation allows also to perform the operation of change of
basis, i.e. to determine the components of a vector or of a tensor in a basis B’ = {€/, €}, €5}
rotated with respect to an original basis B = {e;, €3, e3} by a rotation R (in the following
equation, a prime indicates a quantity specified in the basis B'). Considering that

_ -1,/ _ T . _ DT / ! /I pT !
=R e, =R e = Ry, (e, ®e,)e; = Ry.0€),

we get, for a vector u,
u = u;e; = UZR];FZG;C
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ie.
uj, = Rju; — v =R"u
We remark that, because RT = R}, the operation of change of basis is just the opposite

one of the rotation of the space (and actually, we have seen that it is sufficient to take
the opposite of ¢ in eq. (2.33) to get R71).

For a second-rank tensor L we get

L= Ll-jel- (%9 €, = LinT-e’ & RT e' = Rr—;zR;zr]Llje;n X e;,

mi - m nj-n

i.e.

L,=RyR)L;j - L'=R'LR.

We remark something that is typical of tensors: the components of a r-rank tensor in a
rotated basis B’ depend upon the r-th powers of the directors cosines of the axes of B/,
i.e. on the r-th powers of the components R;; of R.

If a rotation tensor is known through its Cartesian components in a given basis B, it is
easy to calculate its geometrical elements: the rotation axis w is the eigenvector of R
corresponding to the eigenvalue 1, so it is found solving the equation

Rw=w

and then normalizing it, while the rotation amplitude ¢ can be found still using (2.33):
because the trace of a tensor is an invariant, we get

trR—1

trR =3+ (1 —cosp)tr(—I+w-w)=1+2cosp — ¢ = arccos 5

It is interesting to consider the geometrical meaning of eq. (2.33). To this purpose we
apply eq. (2.33) to a vector u, see Fig. 2.2

Ru = (I +sinpW + (1 — cos o) W?)u
=u+singew X u+ (1 — cosp)w X (w x u)
The rotated vector Ru is the sum of three vectors; in particular, sin pWu is always

A

w| (1-cosp) W2u (1-cosg) W2u

rotation axis

Figure 2.2: Rotation of a vector.

orthogonal to u, w and (1 — cos ¢)W?u. If u-w = 0, see the sketch on the right in Fig.
2.2, then (1 — cos )W?u is also parallel to u.
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Let us consider now a composition of rotations. In particular, let us imagine that a vector
u is rotated first by Ry, around wy through ¢, then by Ry, around wo through ¢s. So,
first the vector u becomes the vector

u; = Rlu
Then, the vector u; is rotated about wy through ¢ to become
Ui = R2u1 = RgRlu.

Let us now suppose to change the order of the rotations: Ry first and then R;. The final
result will be the vector
Ug1 = R1R2u. (239)

Because the tensor product is not symmetric (i.e., it has not the commutativity property),
generally speaking”

Uy # Ui
In other words, the order of the rotations matters: changing the order of the rotations
leads to a different final result. An example is shown in Fig. 2.3.

rotation of 90°
about the axis y
rotation of 90°
about the axis z |:>
1]
Cx =
rotation of 90° o o
rotation of 90°

about the axis y about the axis z

Figure 2.3: Non-commutativity of the rotations.

This is a fundamental difference between rotations and displacements, that commute, see
Fig. 1.2, because the composition of displacements is ruled by the sum of vectors:

w=u+v=v+u (2.40)

This difference, which is a major point in physics, comes from the difference of the oper-
ators: vectors for the displacements, tensors for the rotations.

Any rotation can be specified by the knowledge of three parameters. This can be eas-
ily seen from eq. (2.33): the parameters are the three components of w, that are not

independent because
w=|w|=1/w+ws+wi=1

and by the amplitude angle ¢. The choice of the parameters by which to express a rotation
is not unique. Besides the use of the Cartesian components of w and ¢, other choices are
possible, let us see three of them:

9We have seen, Theorem 7, that two tensors commute <= they are coaxial, i.e. if they have the
same eigenvectors. Because the rotation axis is always a real eigenvector of a rotation tensor, if two
tensors operate a rotation about different axes they are not coaxial. Hence, the rotation tensors about
different axes never commute.
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1.

11.

physical angles: the rotation axis w is given through its spherical coordinates v, the
longitude, 0 < 1 < 27, and 6, the colatitude, 0 < 6 < 7, see Fig. 2.4, the third
parameter being the rotation amplitude ¢. Then

e; A

e
v

€

Figure 2.4: Physical angles.

w
w = (sinf cos 1, sinfsin), cosf)) — 6 = arccosws, 1 = arctan —2,
wq

and, eq. (2.36),

cp?s0? + cp(ch? + s1p?s0?)  shcepsh*(1 — cp) — chsp  cpsfcd(1 — cp) + sihsOsp
shest? (1 — cp) + clsp 51?802 + cp(ch? + cp?s6?)  spsOch(1 — cp) — cbshsp
cpscl(1 — cp) — shslsp  ssOch(1 — cp) + chshsp  ch? + cp(c?sh? + sip?s0?)

where ci) = cos, s = siny,c = cosf,s0 = sinf,cp = cosp,sp = sinp. We
remark that all the components of R so expressed depend upon the first powers of
the circular functions of ¢. Hence, for what said above, with this representation of
the rotations, the components of a rotated r-rank tensor depend upon the r-th power
of the circular functions of ¢, i.e. of the physical rotation, but not on v nor on 6.

Euler’s angles: in this case the three parameters are the amplitude of three particular
rotations into which the rotation is decomposed. Such parameters are the angles v,
the precession, 6, the nutation, and ¢, the proper rotation, see Fig. 2.5 These three

Figure 2.5: Euler’s angles.

rotations are represented in Fig. 2.6. The first one, of amplitude ¢, is made about z
to carry the axis x onto the knots line xx, the line perpendicular to both the axes z
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and 2/, and y onto 7; by eq. (2.32), in the frame {z,y, z} it is

costy —siny 0
Ry, = | sinyy cosy 0
0 0 1

The second one, of amplitude #, is made about zy to carry z onto 2’; in the frame
{zNn,7, 2} it is
1 0 0
Ry=1] 0 cosf —sinf |,
0 sinf cosé

while in the frame {x,y, 2z}

R; = (R;")"RsR;" = RyR4R,.

<l

Figure 2.6: Euler’s rotations, as seen from the respective axes of rotation.

The last rotation, of amplitude ¢, is made about 2’ to carry xx onto 2’ and 7 onto
y'; in the frame {zy,7,2'} it is

cosp —sing 0
R,= | sinp cosp O [,
0 0 1

while in {z,y, z}
RS = (R;")(R;)"R,R; 'R, = R,RR, R/ R,
Any vector u is transformed, by the global rotation, into the vector

u’ = Ru.

But we can write also
r o=
u =Rlu,

where T is the vector transformed by rotation R,

u = Ry,

30



1il.

and u is the vector transformed by rotation R,
u= R¢u.

Finally,
u =Ru= RIRJRyu — R =RIRJR,,

i.e. the global rotation tensor is obtained composing, in the opposite order of execu-
tion of the rotations, the three tensors all expressed in the original basis. However,

R = R’R{R, = RyRyR,R;R R ,RsR R, = RyRyR,,

i.e., the global rotation tensor is also equal to the composition of the three rotations,
in the order of execution, if the three rotations are expressed in their own particular
bases. This result is general, not bounded to the Euler’s rotations nor to three
rotations.

Performing the tensor multiplications we get
cos 1 cos p — sinysin pcosf — cossinp — siny cospcosh  sinysinf
R = | sinycosy + cosysinpcosf —sinysing + cos cospcosf — cospsinf
sin ¢ sin ¢ cos psin 6 cos 6
The components of a vector u in the basis B’ are then given by
uv=R'u=R)R/;R/u,
and those of a second-rank tensor
T TRTRT
L'=R LR = R,RyR,LR,RyR,.

coordinate angles: in this case, the rotation R is decomposed into three successive
rotations «, (3,7, respectively about the axes x, y and z of each rotation, i.e.

R = R.,RsR,

with

1 0 0 cosf 0 —sinfg cosy —siny 0
R,=1|0 cosa —sina | ,Rg= 0 1 0 ,R,= | siny cosy O

0 sina cosa sinfg 0 cospf 0 0 1
so finally

cos (3 cos 7y — cos [sinvy —sin

R = | cosasiny —sinasin fcosy cosacosy + sinasinfsiny —sina cos

sinasinvy + cosasin fcosy sinacosy — cosasinBsiny cosacos 3

Let us now consider the case of small rotations, i.e. |¢| — 0. In such a case,

sing ~ @, 1—cosp~0
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and
R~1+ oW,

i.e. in the small rotations approximation, any vector u is transformed as
Ru~ I+ ¢W)u=u-+ pw X u, (2.41)

i.e. by a skew tensor, not by a rotation tensor. The term (1 — cos ¢)W?u has disappeared
(i.e., it is a higher order infinitesimal quantity) and the term ¢w x u is orthogonal to u.
Because ¢ — 0, the arc is approximated by its tangent, the vector ¢ow x u, see Fig. 2.7.
Applying to eq. (2.41) the procedure already seen for the composition of finite amplitude

g

@ WxUu

Ru

i

rotation axis

Figure 2.7: Small rotations.

rotations, we get

u; = Rlll = (I -+ 901W1)11 =u-+ 1w X U,
ug; = Rouy = (I4+ o Wo)u; = u; + powy X wy
=Uu+ P;W1 X U+ @awy X u

—+ P1PaWo X (W1 X Ll).

If the order of the rotations is changed, the last term becomes p;pow; X (Wy X u), which
is, in general, different from p1pows X (W1 X u): strictly speaking, also small rotations do
not commute!®. However, for small rotations, (¢, is negligible with respect to ¢; and
9 in this approximation, small rotations commute. To remark that the approximation
(2.41) gives, for the displacements, a law which is quite similar to that of the velocities of
the points of a rigid body:

v=vyp+wx(p—o)

This is quite natural, because

dy

dt’

i.,e. a small amplitude rotation can be seen as the rotation made with finite angular
velocity w in a small time interval dt.

w =

10This can happen for some vectors, all the times that w; - u = wy - u, like for the case of a vector u
orthogonal to both w; and ws; however, this is no more than a curiosity, it has no importance in practice.
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2.12 Symmetries

Let us consider now tensors S € Orth(V) that are not a rotation, i.e. such that det S = —1.
Let us call S an improper rotation. A particular improper rotation, whose all eigenvalues
are equal to -1, is the inversion or reflexion tensor

S;=-L

The effect of Sy is to transform any basis B into the basis —B, i.e. with all the basis vectors
changed of orientation (or, which is the same, to change the sign of all the components
of a vector). In other words, S; changes the orientation of the space. This is also the
effect of any other improper rotation S, that can be decomposed into a proper rotation

R followed by the reflexion S;':
S = SR. (2.42)

Ben € S, then
Sk=I-2n®n (2.43)

is the tensor that operates the transformation of symmetry with respect to a plane or-
thogonal to n. In fact

Sgn=-n, Spm=mVvVme)Y: m-n=0.
Sr is an improper rotation; in fact, eqs. (2.4), (2.14) and exercice 11,

I-2n@n)I-2n®n)' =(I-2n®n)(I-2n®n)

=I-2n®n—-2n®n+4(n®n)(n®@n) =1,

tr’(n®n) — tr(n ®n)(n ® n)
2

detI—-2n®n)=1-2tr(n®n) +4 —8det(n®n) = —1.

Be S = S;R an improper rotation; then

(Su) x (Sv) = (S;Ru) x (S;Rv) = det(S,;R) [(SIR)_l}T (uxv)
=detS;det R(R'S;H) (uxv) = —(—R'I)"(uxv) =R(uxv).

The transformation by S of any vector u gives
Su = S;Ru = —Ru,

i.e. it changes the orientation of the rotated vector; this is not the case when the same
improper rotations transforms the vectors of a cross product: the rotated vector result of
the cross product does not change of orientation, i.e. the cross product is insensitive to
a reflexion. That is why, strictly speaking, the result of a cross product is not a vector,
but a pseudo-vector: it behaves like vectors apart for the reflexions. For the same reason
a scalar result of a mixed product (scalar plus cross product of three vectors) is called a
pseudo-scalar, because in this case the scalar result of the mixed product changes of sign
under a reflexion, as it is easy to be seen.

The application of the Binet’s Theorem shows immediately that detS = —1, while S;R(S;R)" =
S/RR'S] = —I(-I)" = I: the decomposition in eq. (2.42) actually gives an improper rotation.
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2.13 Polar decomposition

Theorem 14. (Square root theorem): be L € Sym(V) and positive definite; then is exists
a unique tensor U € Sym(V) and positive definite such that
L = U2
Proof. Existence: be L, U,V € Sym(V) positive definite and
L =we; ®e;

a spectral decomposition of L, w; > 0 Vi. Define U as

U = Jwie; ®e;
then, by eq. (2.4); we get
U’ =L.
Uniqueness: suppose that also
VZ=L

and be e an eigenvector of L corresponding to the (positive) eigenvalue w. Then, if

A=,
O = (U? — \)e = (U — \I)(U — Ae,

and put
v = (U — Al)e,
we get

Uv=-) v = v=0 = Ue=)e

because U is positive definite and —\ cannot be an eigenvalue of U, because A > 0. In
the same way
Ve =) e = Ue= Ve

for every eigenvector e of L. Because, spectral theorem, it exists a basis of eigenvectors

of L, U=V. 0

We symbolically write that

U =VL.

For any F € Lin(V), both FF" and F'F clearly € Sym(V). If in addition det F > 0,
then
u-F'Fu = (Fu) - (Fu) >0

and the zero value is obtained <= Fu = o and because F is invertible, <= u = o.
As a consequence, F'F is positive definite. In the same way it can be proved that FFT
is also positive definite.

An important tensor decomposition is given by the
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Theorem 15. (Polar decomposition theorem): VF € Lin(V)|detF > 0 exist and are
uniquely determined two positive definite tensors U,V € Sym(V) and a rotation R such
that

F =RU = VR.

Proof. Uniqueness: Be F = RU a right polar decomposition of F; because R € Orth(V)*
and U € Sym(V),
F'F=UR'RU=U?—-U=VF'F.

By the Square-root Theorem, tensor U is unique, and because
R=FU ',
R is unique too.
Be now F = VR a left polar decomposition of F; by the same procedure, we get
FF' =V2 >V =VFFT,

so V is unique and also
R =V 'F.

Existence: be

U=VF'F

so U € Sym(V) and it is positive definite, and let
R=FU"

To prove that F = RU is a right polar decomposition, we just have to show that R €
Orth(V)*. Since detF > 0,det U > 0 (the latter because all the eigenvalues of U are
strictly positive), by the Theorem of Binet also det R > 0. Then

R'R=(FU ) (FU ") =U'F'FU'=U"'U’U"' =1= R e Orth(V)".

Let now
V =RUR';

then V € Sym(V) and is positive definite, see exercice 16, and
VR = RUR'R =RU =F,

which completes the proof. O]

2.14 Exercices

1. Prove that
Lo =0 VL € Lin(V).

2. Prove that, if a straight line r has the direction of u € S, then the tensor giving the
projection of a vector u € V on r is u ® u, while the one giving the projection on a
direction orthogonal to 7 is I —u ® u.
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10.
11.
12.

13.

14.

. For any « € R;a,b € V and A, B € Lin(V), prove that

(aA)T =aA’, (A+B)'=A"+B', (a@b)A=ax(A'b).

Prove that

trI =3, trO =0, tr(AB) =tr(BA) VA,B € Lin(V).

. Prove that, VL, M, N € Lin(V),

L' M"=L-M, LM-N=L-NM'=M-L'N.

. Prove that Sym(V) and Skw(V) are orthogonal, i.e. prove that

A-B=0 VA e Sym(V), B € Skw(V).

For any L € Lin(V), prove that, if A € Sym(V), then
A-L=A-L

while if B € Skw(V), then
B-L=B:.L"

. Express by components the second principal invariant I of a tensor L.

. Prove that, if a = (ay, a2, a3),b = (b, ba, b3),c = (c1, ¢, c3), then

ay as das
axb-c=det bl bg b3
G C2 C3

Prove the uniqueness of the inverse tensor.
Prove that all the dyads are singular.
Prove that if L is invertible and e € R — {0} then

(L)™' =a'L7L

Prove that any quadratic form defined by a tensor L can be written as a scalar
product of tensors:

u-Lu=L-u®u Yue VL e Lin(V).
Prove that, if W is the axial tensor of w, then
1 2
WW = —§|W| I-wow).
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15.

16.

17.

18.

19.

Prove that for any two axial couples w1, W1 and wy, Wy, it is:

1
Wi+ Wy = §W1 'WQ.

Let L € Sym(V) and positive definite and R € Orth(V)*; then prove that RLR' €
Sym(V) and that it is positive definite.

Let A,B,C,D € Lin(V); prove that

A-BCD=B'A-CD=AD'.BC.

Prove that the spectrum of L**" is composed by only
1
MNP = 4L,
3

and that any u € S is an eigenvector.

Prove that the eigenvalues A% of L4’ are given by
)\dev =\ — )\sph’

where A is an eigenvalue of L.
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Chapter 3

Fourth rank tensors

3.1 Fourth-rank tensors

A fourth-rank tensor L is any linear application from Lin(V) to Lin(V):
L: Lin(V) — Lin(V)|L(,A;) = LA, Vo, € R, A; € Lin(V), i =1,...,n.

Defining the sum of two fourth-rank tensors as

(Ly + Ly)A =LA + LA VA € Lin(V),
the product of a scalar by a fourth-rank tensor as

(aL)A = o(LA) VYa e R, A € Lin(V)
and the null fourth-rank tensor O as the unique tensor such that
OA = O VYA € Lin(V),

then the set of all the tensors L that operate on Lin()) forms a vector space, denoted by
Lin(V). We define the fourth-rank identity tensor I as the unique tensor such that

IA = A VA € Lin(V).

It is apparent that the algebra of fourth-rank tensors is similar to that of second-rank
tensors and in fact the operations with fourth-rank tensors can be introduced in almost
the same way, in some sense shifting from V to Lin(V) the operations. However, the
algebra of fourth-rank tensors is richer than that of the second-rank ones and some care
must be paid.

In the following sections, we consider some of the operations that can be done with
fourth-rank tensors.
3.2 Dyads, tensor components

For any couple of tensors A and B € Lin(V), the (tensor) dyad A @ B is the fourth-rank
tensor defined by
(A®B)L:=B-L A VL € Lin(V).
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The application defined above is actually a fourth-rank tensor because of the bi-linearity
of the scalar product of second-rank tensors. Applying this rule to the nine dyads of
the basis B> = {e; ® e;, i,j = 1,2,3} of Lin(V) let us introduce the 81 fourth-rank
tensors
eRe e, Re = (e ®e;) R (e ®e)
that form a basis B* = {e; @ e; ® e, ®ey, i,j = 1,2,3} for Lin(V). We remark hence that
dim(Lin(V)) = 81. A useful result is that
(e;Re; Re,@e)(e,Re) = (e, Re) - (e, Re))(e; ®ej) =yl le; ®e;).  (3.1)
Any fourth-rank tensor can be expressed as the linear combination (the canonical decom-
position)
L=Ljne®e Qe,®e, i,j=123,
where the L;;s are the 81 Cartesian components of I with respect to B*. The Lijis are
defined by the operation:
(e;®@e;) - Lier ®er) = (e - €;) (Lpgrsep ®eq® e, @ e;)(e @ e)
= (i ® €;) - (LpgrsOridsiep ® €)
= qursérk(ssl(sipéjq = L'L’jkl-
The components of a tensor dyad can be computed without any difficulty:
A®B=(Aje;®e;) ® (Buer®e) = AjjBue;®e; Qe e =
(A ® B)ijr = Aij B,
so that in particular
((a X b) X (C X d))ijkl = aibjckdl.
Concerning the identity of Lin(V),

Lijw=(ei®e) lle,@e) =(e;®e)) (e ®e) =e;-eye;-e =6y —
I=0p05(e; ®e ®e,®e).
The components of A € Lin(V) result of the application of I € Lin(V) on B € Lin(V)
can now be easily calculated:
A=1LB=Lule e @e,Re)(Bye, e,
= L;jjiBpyOrpoiq(€i @ €;) (3.2)
= LijuBr(e;®e;) — Aijj = LijiuBu.
Moreover,
LA®B)C=L((A®B)C)=L(B-CA)=B-CLA=((LA)®B)C =
L(A®B)=(LA)®B.
Using this result and eq. (3.1), we can determine the components of a product of fourth-
rank tensors:
AB = A (e, ®ej@e,p @ e)Bpys(e, e, ®e, R e;)
= Aijui Bpgrs(€i ® € @ e ® e))(e, ® e,) ® (e, ® e;)
= Aijii Bpars[(e: @ € @ e @ e))(e, ® e))] @ (e, @ ey) (3:3)
= Aijki Bpgrs[Orpdig (€ @ €5)] @ (e, ©@ €)
= AjjuBrirs(ei®@e;@e, ®e;) = (AB)ijrs = AijkiBrirs-
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Depending upon four indices, a fourth-rank tensor I cannot be represented by a matrix;
however, we will see in Sect. 3.8 that a matrix representation of a fourth-rank tensor is
still possible, and that it is currently used in some cases, e.g. in elasticity.

3.3 Conjugation product, transpose, symmetries

For any two tensors A, B € Lin(V) we call conjugation product the the tensor AKX B €
Lin(V) defined by the operation

(AXB)L := ALB' VL € Lin(V).
As a consequence, for the vectors of B,
(e,®e)N(er®Re) =€ e, Qe Ve, (3.4)

so that

Moreover, by the uniqueness of the identity I, VA € Lin(V),
INDA=TIAI" = A = [=IKI.
The transpose of a fourth-rank tensor L is the unique tensor L." such that
A - (LB)=B-(L"A)VA,B < Lin(V).
By this definition, putting A = e; ® e;, B = e, ® ¢; gives
(LT)iji = Liij-
A consequence is that
A-LB)=B-(L'"A)=A-(L")'B = (L") =L.
Then, using

M- (A®B)'L=L-(A®B)M
=L-AM-B=M-(BA L)
=M. (B® A)L,

M (ANB)'L=L.-(AXB)M
=L-AMB'=A'L-MB'=M'A'L-B'
=M'A'L)"-B")"=L"AM-B=AM-LB
—M-ATLB=M- - (ATXB")L,

so that

(AB)' =B®A,
(ARB)' =A"XB'.
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A tensor L € Lin(V) is symmetric <= L =L". It is then evident that
L=L"= Liju= Luij

relations called major symmetries. These symmetries are 36 on the whole, so that a
symmetric fourth-rank tensor has 45 independent components. Moreover,

AXB=(AXB)'=A"XB" «<— A=A"T B=B',
AB=(A®B) ' =B®A < B=)A, AcR

Let us now consider the case of a L € Lin(V) such that
LA = (LA)" VA € Lin(V).
Then, by eq. (3.2),
Lijiw = Ly,

relations called left minor symmetries: a tensor L having the left minor symmetries has
values in Sym(V). On the whole, the left minor symmetries are 27. Finally, consider the
case of a I € Lin(V) such that

LA =L(A") VA € Lin(V);
then, again by eq. (3.2), we get
Lijie = Lji,

relations called minor right-symmetries, whose total number is also 27. It is immediate
to recognize that if I has the minor right-symmetries, then

LW = O VYW € Skw(V).

We say that a tensor has the minor symmetries if it has both the right and left minor
symmetries; the total number of minor symmetries is 45, because actually some of the
left and right minor symmetries are the same, so a tensor with the minor symmetries has
36 independent components.

If L € Lin(V) as the major and minor symmetries, then the independent symmetry
relations are actually 60 (some minor and major symmetries coincide), so in such a case
L depends upon 21 independent components only. This is the case of the elasticity
tensor.

Finally, the 6 Cauchy-Poisson symmetries are those of the type

Lijri = Ligji-
A tensor having the major, minor and Cauchy-Poisson symmetries is completely symmet-
ric, i.e. swapping any couple of indices gives an identical component. In that case, the

number of independent components is of only 15.
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3.4 Trace and scalar product of fourth-rank tensors

We can introduce the scalar product between fourth-rank tensors in the same way used
for second-rank tensors. We first introduce the concept of trace for fourth-rank tensors
once again using the dyad (here, the tensor dyad):

tryA® B := A -B.

The easy proof that try : Lin()) — R is a linear form is based upon the properties of
scalar product of second-rank tensors and it is left to the reader. An immediate result is
that

tryA ® B = A;;Bij,
Then, using the canonical decomposition, we have that
tryl = try(Lijr(e; ® €;) ® (e ® €;)) = Lijui(e; ® €;) - (ex ® €;) = Lijii0irdji = Lijij
and that
tryL T = try (L (ei®e;) @ (er®e;)) = Lyj(ei®e;) - (e, ®e;) = Lyijdindj = Liji; = trall.
Then, we define the scalar product of fourth-rank tensors as
A-B:=try(ATB).

By the properties of try, the scalar product is a positive definite symmetric bilinear
form:

ad - B = try(aA’ BB) = aftry(A'B) = aBA - B,
A B=try(A'B) =try(A'B)" =try(B'A) =B - A,
A-A=try(ATA) = (ATA)jji; = AwijAmi; > 0 VA € Lin(V),A-A=0 < A=0.

By components

A-B=try((Arijei @ e; @ e @ €)(Bpyrs€p R e, €, @ e,))
= tr4(Aijri BpgrsOrpdig(€; ® €;) ® (€, ® €5))
= Aijlepqrsékpélq(ei X ej) . (er X es) - Aijlepqrsékpélqdiréjs = AklijBklij~

The rule for computing the scalar product is hence always the same already seen for
vectors and second-rank tensors: all the indexes are to be saturated.

In complete analogy with vectors and second-rank tensors, we say that A is orthogonal to
B «<—

A-B=0

and we define the norm of L as

IL| ::m:m:m'
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3.5 Projectors, identities

For the spherical part of any A € Sym()) we can write
sph 1 1 1 sph
A= SrAL= o1 AL= S(I9 DA = S7A,

where 1
S = 211
3 &

is the spherical projector, i.e. the fourth-rank tensor that extracts from any A € Lin()V)
its spherical part. Moreover,

A®Y = A — A" = TA — ST"A = DA,

where
]D)dev =T — Ssph

is the deviatoric projector, i.e. the fourth-rank tensor that extracts from any A € Lin()V)
its deviatoric part. It is worth noting that

I= Ssph + ]Ddev'

Moreover, about the components of S*",

. 1 1
Sit = (e @ e) - sIeDEe®e)=(ei®e)) Iler@e)-I

1 1 1
= gtr(ei ® ej)tr(ek @ el) = §5ij5kl — SSph = géijékl(ei & €; Xep X el).
To remark that
Ssph —_ (Ssph>T.

We introduce now the tensor I*, restriction of I to A € Sym(V). It can be introduced as

follows: VA € Sym(V)
A= %(A +A"),

and
1 1
A = ]IA = §(HA + HAT) = §(IijklAk:l + ]ijklAlk)(ei X ej X €L (%9} el);
because A = AT there is insensitivity to the swap of indexes k and [, so

1 1
A= §(IijklAkl + LijAig)(e; ®e; Qe Qe) = 5(5ik5jl + 0udik) Ari(e; ® e @ e ® €).

Then, if we admit the interchangeability of indexes k and [, i.e. if we postulate the
existence of the minor right-symmetries for I, then I = I*, with

1
I¥ = 5(51145][ + 6il(5jk)<ei ¥e;er® el>'

It is apparent that
Iigjkl =1 lf:lij?
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i.e. I* = (I*) 7, but also that
S 1 S
Iz‘jkl = 5(5il5jk + 5ik5jl) = Ijikl?

i.e., I has also the minor left-symmetries; in other words, I* has the major and minor
symmetries, like an elasticity tensor, while this is not the case for I. In fact

Lijie = Lji, = 0ik0ji 7 0adji = Lty = Lijik-
Because S*P" and D% operate on Sym(}), it is immediate to recognize that it is also
Dlev — s _ S s 5 — §ph g Tydev
It is worth noting that
(]Ddev>T — (Hs o Sspsh)T — (HS)T o (Ssph)T — T — Ssph — Ddev.

We can now determine the components of D9V:

. 1 1
D = Iy = Sy = 50 + 0abyn) — 300u —

1 1
e = 5((5ik5jl + 0adjr) — §5ij5kl (e ®ej®e,®e).
To remark that the result (2.6) implies that S*** and D% are orthogonal projectors, i.e.

they project the same A € Sym(V) into two orthogonal subspaces of V, Sph(V) and
Dev(V).

The tensor T? € Lin(V) defined by the operation
TPA = AT,
is the transposition projector, whose components are
Th = (e;®e;) - T (e, @ e)) = (e; @ €)) - (€ @ er) = Gl

The following operation defines the symmetry projector S*¥™ € Lin(V):

SWmA = %(A +AT) VA € Lin(V),

while the antisymmetry projector W*** € Lin(V) is defined by
1
Wekv A = 5 (A - AT) VA € Lin(V).

Also S*¥™ and W*** are orthogonal projectors, because they project the same A € Lin(V)
into two orthogonal subspaces of Lin(V): Sym(V) and Skw(V), see exercice 6 of Chap.
2.

We prove now two properties of the projectors: VA € Lin(V),

1 1
(S + WA = S(A+ A+ S(A-AT) = A=TA = SV + W™ =1 (35)
Then,
1 1
(S¥m W) A = §(A+AT)—§(A—AT) = AT =TUPA = SV = TP (3.6)
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3.6 Orthogonal conjugator

For any U € Orth(V) we define its orthogonal conjugator U € Lin(V) as
U:=UKXU.

Theorem 16. (orthogonality of U): the orthogonal conjugator is an orthogonal tensor of
Lin(V), i.e. it preserves the scalar product between tensors:

UA-UB=A-B VA Be€ Lin(V).
Proof. By the assertion in exercice 17 of Chap. 2, and because U € Orth(V), we have

UA - UB=(UXU)A - (UKU)B=UAU'.-UBU'
= U'UAU'-BU' =AU'-BU'=AU'U-B=A"B.

O
Just as for tensors of Orth(V), it is also
UU'=U0'U=1L
In fact, see the assertion of exercice 3,
UU" = (UNKU)(U'RU") =UU'XUU' =IKI =1 (3.7)

The orthogonal conjugators have also some properties in relation with projectors:

Theorem 17. : S*" is unaffected by any orthogonal conjugator, while D’ commutes
with any orthogonal conjugator.

Proof. For any L € Sym(V) and U € Orth(V),

1 1 1
US*""L = (UK U) <§I ® I) L= 5(u«L)(U XU = §(trL)UIUT

1 1 1
= (trl)I=-1-LI= ~(I® DL = S*”"L.
3(tr ) 3 3( ® I) S
Moreover,
sph 1 1 T 1 T
S*PMUL = §I®I (U&U)L=§(I®I)(ULU ):§(I-ULU )1

1 1 1 1 1
= 5tr(ULUT)I = 5tr(UTUL)I = g(trL)I =3I L= g(I ® )L = S*"L.

Thus, we have proved that
SsphU — USSph — Ssph’

i.e. that the spherical projector S*”* is unaffected by any orthogonal conjugator. Further

D UL = (I* — S*")UL = I*'UL — S*"UL = UL — S*"L, = (U — S*")LL
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and
UD™1L = U(I° — $*")L = UL — US*"L = UL — §*"L = (U - §"")L,

so that
DdevU — UDdev.

3.7 Rotations and symmetries
We ponder now how to rotate a fourth-rank tensor, i.e., what are the components of
L=Lijue ®e; e, e

in a basis B’ = {e], e}, e;} obtained rotating the basis B = {e;, es, e3} by the rotation
R = R;;e;®ej,R € Orth(V)". The procedure is exactly the same already seen for vectors
and second-rank tensors:

T4/ T/ T ./ T4/
L=Lijue ®e;@e,@e = LjuR,e, R e R, e QR e
_ pTpT pT pT / / / /
=R, R,;R RyLijne, ®e, Qe Qe
ie.

Ll = Ry RERY R Lij.

pars

We see clearly that the components of IL in the basis B’ are a linear combination of those
in B, the coefficients of the linear combination being fourth-powers of the director cosines,
the R;;s. The introduction of the orthogonal conjugator! of the rotation R,

R=RXR,

allows to give a compact expression for the rotation of second- and fourth-rank tensors
(for completeness we recall also that of a vector w);

w =R'w,
L'=R'LR=(R"T®KR")L=R'L,
L'=R"XR"LRXR)=R'LR.
The check of the above relations with the orthogonal conjugator R is left to the reader. It

is worth noting that actually these transformations are valid not only for R € Orth(V)™,
but more generally for any U € Orth(V), i.e. also for symmetries.

If by U we denote the tensor of change of basis under any orthogonal transformation, i.e.,
if we put U = R for the rotations, then the above relations become

w’ = Uw,
L'=ULU" = (UK U)L = UL, (3.8)
L' = (URUL(URU)T = ULU".

!Here the symbol R indicates the orthogonal conjugator of R, not the set of real numbers.
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Finally, we say that L € Lin(V) or L € Lin(V) is invariant under an orthogonal transfor-
mation U if

ULU' =L, ULU'=L;

right multiplying both terms by U or by U and through eq. (3.7), we get that L or IL are
invariant under U <=

UL =LU, UL=LU,

ie. <= L and U, or L and U commute. This relation allows, e.g., the analysis of
material symmetries in elasticity.

If a tensor is invariant under any orthogonal transformation, i.e. if the previous equations
hold true VU € Orth(V) then the tensor is said to be isotropic. A general result? is that
a fourth-rank tensor L is isotropic <= exist two scalar functions A, ;1 such that

LA = 2uA + MrA T VA € Sym(V).

The reader is addressed to the book of Gurtin (see references) for the proof of this result
and for a deeper insight in isotropic functions.

3.8 The Kelvin formalism

As already mentioned, though fourth-rank tensors cannot be organized in and represented
by a matrix, a matrix formalism for these operators exists. Such formalism is due to
Kelvin® and it is strictly related to the theory of elasticity, i.e. it concerns the Cauchy’s
stress tensor o, the strain tensor € and the elasticity tensor [E. The relation between o
and € is given by the celebrated (generalized) Hooke’s law:

o = Ee.

Both o,e € Sym(V) while E = E" and it has also the minor symmetries, so E has just
21 independent components*. In the Kelvin formalism, the six independent components
of o and e are organized into column vectors and renumbered as follows
( o1=o0n ) ( e1=en )
09 = 0992 €2 = €22
03 = 033 €3 = ¢33

oy = , g = X
{o} o1 = 2093 e} e4=12ex3
o5 = V203, es = V2e3
L 06 = V2015 [ &6 = V2¢e12

2 Actually, this is a quite famous result in classical elasticity, the Lamé’s equation, defining an isotropic
elastic material.

3W. Thomson (Lord Kelvin): Elements of a mathematical theory of elasticity. Philos. Trans. R. Soc.,
146, 481-498, 1856. Later, Voigt (W. Voigt: Lehrbuch der Kristallphysik. B. G. Taubner, Leipzig, 1910)
gave another, similar matrix formalism for tensors, more widely known than the Kelvin one, but less
effective.

4Actually, the Kelvin formalism can be extended without major difficulties also to tensors that do not
possess all the symmetries.
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The elasticity tensor E is reduced to a 6 x 6 matrix [E], consequence of the minor symme-
tries induced by the symmetry of o and e; this matrix is symmetric because E = E':

In this way, the matrix product
{o} = [E{e} (3.9)
is equivalent to the tensor form of the Hooke’s law and all the operations can be done

by the aid of classical matrix algebra®, e.g. the computation of the inverse of E, the
compliance tensor.

An important operation is the expression of tensor U in eq. (3.8) in the Kelvin formalism;
some tedious but straightforward passages give the result:

[ U U%, UL V2U12Un3 V2U13U11 V2U11Unz
U3, U%, Uz V2U22Uss V2Us3Usy V2Us1Usg
_ U3 U3, Uz, V2Us32Us33 V2Us33U31 V2U31Usy

V2U1Us1 V2UxUsy 2Us3Uss UssUsg + UsaUss  UsgUsy + UsiUsz  UsiUsg + UsaUsy
V2U31U1 V2UseUia V2UssUps  UspUis + UssUpa UsiUss + UssUpy UsiUsa + UseUny
L V2U11U21 V2U19Usy  V2U13Uss  UroUag + UisUsy  UrUsg + UrUsr UriUag + UraUsy |

With some work, it can be checked that

is the matrix that in the Kelvin formalism represents the tensor R = U'. The change of
basis for o and € are hence done through the relations

{o'} =[UHo}, {'}=[UNe},
which applied to eq. (3.9) give
{o} = [E}{e} — [U]'{o'} = [E)U]'{'} — {o'} = [VI[ENU]"{<'}
i.e. in the basis B’
{0} = [E'|{'},
where
[£'] = [U][E][U]" = [R]'[E][R]

is the matrix representing £ in B’ in the Kelvin formalism. Though it is possible to give
the expression of the components of [E’], they are so long that they are omitted here.

5Mehrabadi and Cowin have shown that the Kelvin formalism transforms second- and fourth-rank
tensors on R? into vectors and second-rank tensors on R® (M. M. Mehrabadi, S. C. Cowin: FEigentensors
of linear anisotropic elastic materials. Q. J. Mech. Appl. Math., 43, 15-41, 1990).
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Ey = Eun Ei = Ei12: Ei3=Euss  Fu=+V2FEns Eis=V2Eusn Eis=V2Enm

FEi3 = Ei2 Eoy = Eaa99 Ey3 = Eag33  Foy = V2FEn3 Eos = V2Es31 Eag = V2FEa1»

Ei3 = B33 Eo3 = Eao33 Eyy = Fs335 B3 = V2E3303 Fss = V2E3331 Ess = V2Es319
Eiy=2E1253 Fay=2E993 FEsqs=+\2Fs33 Fu=2Fa3  Ei5=2Ew33  Eis = 2B
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| L = V2Ei112 Fos = V2Es Ess = V2Es312 FEis=2Fs12  Ese =2FE3115 Fes = 21910




3.9 Exercices

1. Prove eq. (3.4).
2. Prove that
A®BL=A®L'B.

3. Prove that
(AXB)(CXD)=ACKXBD.
4. Prove eq. (3.3) using the result of the previous exercice.
5. Prove that
(A®B)(CKD)=A® ((C'"XD")B).

6. Prove that
(AXB)(C®D)=((AXB)C)®D.

7. Let p € S and P = p ® p; then prove that

PXP=P®P.

8. Prove that, VA € Lin(V),
[A = Al = A.

9. Show that
(A®B)- (Ce®D)=A-CB-D.

10. Show that

sph:l®l

1
11. Show that
dim(Sph(V)) =1, dim(Dev(V)) = 5.
12. Show the following properties of S and D:
§sphssph — §oph
Ddevyder — Ddeu7 ’
Ssphdev — devgsrh — ().

13. Prove the results in egs. (3.5) and (3.6) using the components.
14. Show that

Ssph . Ssph — ].7
]Ddev . Ddev — 57
Ssph 3 ]D)dev =0.

15. Explicit the orthogonal conjugator Sg of the tensor Sy in eq. (2.43).
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Chapter 4

Tensor analysis, curves, fields

4.1 Introduction

We generalize to the spaces £,V, Lin(V) and Lin(V) some concepts already known for
functions in R, like continuity, differentiation and integration. Curves, fields, deformations
are also introduced along with the differential operators used in continuum mechanics, also
with their expression in cylindrical and spherical coordinates. Finally, we will introduce
some concepts of differential geometry of curves with the aid of tensor algebra.

4.2 Curves of points, vectors and tensors

The scalar products in V, Lin(V) and Lin(V) allow us to define a norm, the Euclidean
norm, so they automatically endow these spaces with a metric, i.e. we are able to measure
and calculate a distance between two elements of such a space and in €. This allows us
to generalize the concepts of continuity and differentiability already known in R, whose
definition intrinsically makes use of a distance between real quantities.

Let m, = {p, € €,n € N} a sequence of points in £. We say that m, converges top € €
if

lim d(p, — p) = 0.

n—o0

A similar definition can be given for sequences of vectors or tensors of any rank. Through
this definition of convergence we can now precise the concepts of continuity and of
curve.

Let [a,b] an interval of R; the function
p=p(t):[a,b] =&
is continuous at t € [a, b] if for each sequence {t,, € [a,b],n € N} that converges to ¢ the

sequence 7, defined by p, = p(t,) Vn € N converges to p(t) € £. The function p = p(¢)
is a curve in £ <= it is continuous V¢ € [a,b]. In the same way we can define a curve
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of vectors and of tensors:
v =v(t):[a,b] =V,
L =1L(t) : [a,b] — Lin(V),
L =1L(¢) : [a,b] — Lin(V).
Mathematically, a curve is a function that lets correspond to a real value t (the parameter)
in an interval an element of a space, £, V, Lin(V) or L(V).

4.3 Differention of curves

Let v = v(t) : [a,b] — V a curve of vectors and g = g(t) : [a,b] — R a scalar function.
We say that v is of the order o with respect to g in ty, <=

V@I _

t=to [g(1)]

?

and we write

v(t) = o(g(t)) for t — to.

A similar definition can be given for a curve of tensors of any rank. We then say that the
curve v is differentiable in ty €|a, bl <= 3Iv' € V such that

v(t) —v(te) = (t — to)v' + ot — to).

d
We call v/ the derivative of v1, also indicated by d_‘t/ Applying the definition of derivative

to v/ we define the second derivative v" of v and recursively all the derivatives of higher
orders. We say that v is of class C™ if it is continuous with its derivatives up to the order
n;if n > 1, v is said to be smooth. Similar definitions can be given for curves in £, Lin(V)
and Lin()), so defining derivatives of points and tensors. We remark that the derivative
of a curve in &, defined as a difference of points, is a curve in ¥V (we say, in short, that the
derivative of a point is a vector). For what concerns tensors, the derivative of a tensor of
rank r is a tensor of the same rank.

Let u, v curves in V, L, M curves in Lin(}V), L, M curves in Lin(V) and « a scalar function,
all of them defined and at least of class C! on [a,b]. The same definition of derivative of
a curve gives the following results, whose proof is let to the reader:

IThe symbol "is also used, but it is usually reserved, in physics, to the case where ¢ is the time.
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(u+v) =u+Vv,

(av) =d'v+av,
(u-v)=u-v4+u-v,
(uxv)=uxv+uxv,
(uev)=uev+ux v,
(L+M) =L"+M,

(aL) = 'L + oL/,
(Lv) =L'v+ Lv/,
(LM) = L'M + LM/, (4.1)
(L-M)=L-M+L-M,
(LeoM)=LeoM+LeoM,
(LKM) =L'®M + LK M,
(L+M) =L"+M,
(al) = /L + ol
(LL) = L'L + LL,
(LM)' = L'M + LM,
(L-MY =L -M+L-M.

To remark that the derivative of any kind of product is made according to the usual rule
of the derivative of a product of functions.

Be R = {o;B} a reference frame of the euclidean space £, composed by an origin o
and a basis B = {ej, ez, e3} of V,e;-e; = 0;;Vi,j = 1,2,3 and let us consider a point
p(t) = (p1(t), p2(t), ps(t)). If the three coordinates p;(t) are three continuous functions over
the interval [t1, t5] € R, then, by the definition given above, the mapping p(t) : [t1,t2] — €
is a curve in £ and the equation

p1 = pi(t)
p(t) = (pi(t), p2(t), ps(t)) — p2 = pa(t)
p3 = p3(t)

is the parametric point equation of the curve: to each value of t € [t1, 5] it corresponds a
point of the curve in &, see Fig. 4.1.

The vector function r(¢) = p(t)—o is the position vector of point p in R; the equation

ry = 11(t)
I'(t) = ri(t)ei =1 (t)e1 + T’Q(t)eg + Tg(t)eg — To = T2Et§
rs =173 t

is the parametric vector equation of the curve: to each value of t € [t1,t5] it corresponds
a vector of V that determines a point of the curve in £ through the operation p(t) =
o+ r(t).
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PO=(p1(0), p2(0), p3(1))

5 t t R

Figure 4.1: Mapping of a curve of points.

Similarly, if the components L;;(t) are continuous functions of a parameter ¢, the mapping

L(t) : [t1,t2] — Lin(V) defined by
L(t) = Li(t)e; @ e;, 0,5 =1,2,3,

is a curve of tensors. In the same way we can give a curve of fourth-rank tensors L(¢) :
[tl, tg] — LIH(V) by

L(t) = Liju(t)es®e; @e, ®e, 4,7,k 1=1,2,3.

To be noticed that the choice of the parameter is not unique: the equation p = p[7(t)]
still represents the same curve p = p(t), through the change of parameter T = 7(t).

The definition given above for the derivative of a curve of points p = p(t) in t = t; is
equivalent to the following one (probably more familiar to the reader)

dp(t t —p(t
p(t) _ . Plote) —p( o);
dt e—0 £
N . s dp(t) .
represented in Fig. 4.2, it is apparent that r/(t) = — s a vector.

e; A

p(tﬂ) r’(tn)
p(ts+e)

r(t,)

r(t,+¢)

o >
€

€]

Figure 4.2: Derivative of a curve.

An important case is that of a vector v(¢) whose norm v(t) is constant Vt:
W) =wv-v)=v-v+v-vV=2vV.v=0: (4.2)
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the derivative of such a vector is orthogonal to it V¢. The contrary is also true, as
immediately apparent.

Finally, using the above rules and assuming that the reference frame R is independent
from t, we get easily that

;jkl(t) € We; ¥e,®e,

i.e. that the derivative of a curve of points, vectors or tensors is simply calculated differ-
entiating the coordinates or the components.

More involved is to prove that
(LT)/ — L/T
(LT)/ — L/T
(detL) = detL tr(L ') =detLLT L' =det L L/ - L,

the reader is addressed to the book of Gurtin for the proof.

4.4 Integral of a curve of vectors

We define integral of a curve of vectors r(t) between a and b € [tq,1s] the curve that is
obtained integrating each component of the curve:

/abr(t) dt = /abn-(t) dt e;.

If the curve is regular, we can generalize the second fundamental theorem of the integral
calculus

r(t) =r(a) —i—/ r'(t*) dt*.

Because

we get also

mww@+/QWMﬁ

The integral of a vector function is the generalization of the vector sum, see Fig. 4.3.

A simple way to determine a point p(f) on a curve is to fix a point py on the curve and to
measure the length s(¢) of the arc of curve between py = p(t = 0) and p(t). This length
s(t) is called a curvilinear abscissa and it can be shown that

s®=[KWﬂﬂMW=[h%WW, (43)
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t * *
e 4 j r'(¢")dt
a

pla
p@®

r(a)
r(7)

€
€

Figure 4.3: Integral of a vector curve.

so that the total length ¢ of a curve is

= /ab It/ (1) dt.

From eq. (4.3) we get

ds , drq 2 dry 2 drs 2
=Z (D) = - = -2
= F \/(dt)+<dt)+ i) !

so that s(t) is an increasing function of ¢ and the length of an infinitesimal arc is

ds = \/dr% +dri+dri = \/dx2 + dy? + dz2.

For a plane curve y = f(z), we can always put ¢ = x, which gives the parametric

equation
p(t) = (&, f(1)),

or in vector form
r(t) =t e + f(t) e,

from which we obtain

S < W= 0] = VIE ), (44)

that gives the length of a plane curve between t = xy and ¢ = x as a function of the

abscissa x: N
s(z) :/ V 1+ f2(t)dt.

4.5 The Frenet-Serret basis
We define the tangent vector T(t) to a regular curve p = p(t) the vector

P(t)

40N
56

7 (1)




By the definition of derivative, this unit vector is always oriented as the increasing values
of t; the straight line tangent to the curve in py = p(to) has hence equation

q(t) = p(to) +t 7(to).

If the curvilinear abscissa s is chosen as parameter for the curve, through the change of
parameter s = s(t) we get

_ p'(t) _ P [s(t)] _ 1 dp(s) ds(t) _ dp(s)
@ @]l s'(t) ds dt ds

() — 7(s) = p'(s).

So, if the parameter of the curve is s, the derivative of the curve is 7, i.e. it is automatically
a unit vector. The above equation, in addition, shows that the change of parameter
does not change the direction of the tangent, because just a scalar, the derivative of the
parameter’s change, multiplies the vector. Nevertheless, generally speaking, a change of
parameter can change the orientation of the curve.

Because the norm of 7 is constant, its derivative is a vector orthogonal to T, see eq. (4.2).
That is why we call principal normal vector to a curve the unit vector

u(t) = . (4.5)

v is defined only on the points of the curve where 7/ # o which implies that v is not
defined on the points of a straight line. This simply means that there is not, among the
infinite unit normal vectors to a straight line, a normal with special properties, a principal
one, uniquely linked to 7.

Unlike 7, whose orientation changes with the choice of the parameter, v is an intrinsic
local characteristic of the curve: it is not affected by the choice of the parameter. In
fact, by its same definition, v does not depend upon the reference frame; then, because
the direction of 7 is also independent upon the parameter’s choice, the only factor that
could affect v is the orientation of the curve, that depends upon the parameter. But a
change of the orientation affects, in (4.5), both 7 and the sign of the increment dt, so
that 7/(t) = d7/dt does not change, neither v, which is hence an intrinsic property of the
curve.

The vector

B(t) =7(t) x v(t)
is called the binormal vector; by construction, it is orthogonal to 7 and v and it is a unit
vector. In addition, it is evident that

TXV-B=1,

so the set {7,v, 3} forms a positively oriented othonormal basis that can be defined at
any regular point of a curve with 7/ # o. Such a basis is called the Frenet-Serret local
basis, local in the sense that it changes with the position along the curve. The plane
T — v is the osculating plane, the plane v — 3 the normal plane and the plane B8 — T
the rectifying plane, see Fig. 4.4. The osculating plane is particularly important: if we
consider a plane passing through three not aligned points of the curve, when these points
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lane

rectifying p

Figure 4.4: The Frenet-Serret basis.

become closer and closer, still remaining on the curve, the plane tends to the osculating
plane: the osculating plane at a point of a curve is the plane that better approaches the
curve near the point. A plane curve is entirely contained in the osculating plane, which

is fixed.

The principal normal v is always oriented towards the part of the space, with respect
to the rectifying plane, where the curve is; in particular, for a plane curve, v is always
directed towards the concavity of the curve. To show it, it is sufficient to prove that the
vector p(t + ¢) — p(t) forms with v an angle ¢» < 7/2, i.e. that (p(t +¢) —p(t)) -v > 0.
In fact,

plt+ ) = plt) =€ H() + 5 (1) + 0(?) —

(p(t +2) — p(1)) - v = 5 (1) v+ 0(&?),

but
p(t)-v = (T + 7)) - v = (Tl + 7lp]) - v = [P,
so that, to within infinitesimal quantities of order o(¢?), we obtain

(plt-+2) = p(t) v = 5271 I] 2 0.

4.6 Curvature of a curve

It is important, in several situations, to evaluate how much a curve moves away from a
straight line, in the neighborhood of a point. To do that, we calculate the angle formed
by the tangents at two close points, determined by the curvilinear abscissae s and s + ¢,
and we measure the angle (s, e) that they form, see Fig. 4.5.

We then define curvature of the curve in p = p(s) the limit

X(s:€) |

pumy 1'
c(s) = lim .

The curvature is hence a non-negative scalar that measures the rapidity of variation of
the direction of the curve per unit length of the curve (that is why ¢(s) is defined as a
function of the curvilinear abscissa); by its same definition, the curvature is an intrinsic
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2518 g(s+e)

T(s) &/ V(ste)

Figure 4.5: Curvature of a curve.

property of the curve, i.e. independent from the parameter’s choice. For a straight line,

the curvature is identically null everywhere.

The curvature is linked to the second derivative of the curve:

I 2
e—=0 € e—0 I e—0|¢e 2
tim | Yy [T ZTE ) = ).
e—0 g e—0

Another formula for the calculation of ¢(s) can be obtained if we consider that

dris(t)] drds dr _, dr 1 dr
=T Ty = T
dt ds dt  ds ds  |p/(t)| dt
so that ) p ()
ols) = |r(s) = —— || = 1T . 4.6
=TI ) [ | = o o)
A better formula can be obtained as follows:
p// .p/
AP
e a1 a1 PV
ds |p't) dt  |p@)|dtlp'(t)] o] p'|?
p// T p// T p//
—— =I-7T®717)—.
| ( )\p’P

By consequence,
dr(s) 1

e S I I _ /! .

C(S) dS |p/|2|( T®T)p |

Now, we use the following general formula expressing a skew tensor W:
1
WW = —§\W|2(I —WQRW);

if we use this formula for 7, so that W is the axial tensor of 7, we get

WWwW
I—T@T:—QW:—WW,

39



because if 7 = (71, T2, 73), then

0 —T3 T2 0 —T3 T2
|VV|2 =W - -W = 73 0 —T1 . T3 0 —T1 =
—Ta 1 0 —T9 1 0

272+ 472 =2.
So, recalling that for any skew tensor W,
Wu=wxu Yuey,

with w the axial vector of W, we get

(I—T@7)p"| =] - WWp'| =| = W(r xp’)| =| =7 x (7 xp")| =
/>< //
7 (r x| = [ gt = XL
4
so that finally
p/ Xp//
e %. (4.7)

Applying this last formula to a plane curve p(t) = (x(t),y(t)), we get
_ |$/y// . w”y’|
(2 + y’2)%
and if the curve is given in the form y = y(z), so that the parameter ¢ = z, then we
obtain

/l|

_
c=——7.
(1+y72)>
This last formula shows that if || < 1, like in the infinitesimal theory of strain, then
//| )

¢~y

4.7 The Frenet-Serret formulae

From egs. (4.5) for t = s and (4.6) we get
dr
i 4.8
i (4.8)
which is the first Frenet-Serret Formula, giving the variation of 7 per unit length of the

curve. Such a variation is a vector whose norm is the curvature and that has as direction
that of v.

Let us now consider the variation of 8 per unit length of the curve; because 3 is a unit
vector, we have
as

=0
ds ’
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and

_ dB-1) _dB T _
B-T=0 = e T+ 8 dsio'

Through eq. (4.8) and because 3 - v = 0 we get

d
d—'f~7‘z—cﬁ-1/=0,
g . .
so that Ts is necessarily parallel to v. We then put
s

as
oy
ds Y

which is the second Frenet-Serret formula. The scalar ¥(s) is called the torsion of the
curve in p = p(s). So, we see that the variation of B per unit length is a vector parallel
to v and proportional to the torsion of the curve.

We can now find the variation of v per unit length of the curve:

d_V_—d(BXT>:@xr+6xd—7-:19v><7'+cﬁxy,

ds ds ds ds
so finally
dv B 93
7= cT ,

which is the third Frenet-Serret formula: the variation of v per unit length of the curve
is a vector of the rectifying plane.

The three formulae of Frenet-Serret (discovered independently by J. F. Frenet in 1847
and by J. A. Serret in 1851) can be condensed in the symbolic matrix product

T/ 0 ¢ O T
v =| - 0 =0 v
i 0 9 0 B

4.8 The torsion of a curve

We have introduced the torsion of a curve in the previous section, with the second formula
of Frenet-Serret. The torsion measures the deviation of a curve from flatness: if a curve is
planar, it belongs to the osculating plane and 3, which is perpendicular to the osculating
pane, is hence a constant vector. So, its derivative is null and by the Frenet-Serret second
formula v = 0.

Conversely, if 19 = 0 everywhere, B is a constant vector and hence the osculating plane
does not change and the curve is planar. So we have that a curve is planar if and only if
the torsion is null ¥p(s).
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Using the Frenet-Serret formulae in the expression of p”'(s) we get a formula for the
torsion:

dp ds
)=l = 227 ¢ = =g
) =lpr=—-=s7 = [p|=s
1 o I /2dT_ " 2
p't)=s"T+ s =5"T+s d—-s‘r+csu—>
S

p///(t) — 8///7_ + S//Tl _|_ (C 5/2)/’/ + c 5/21// —

dr v
S///T + S//S/d_ 4 (C 5/2)/1/ +c 8/3_ —
S

ds
"t +8"s'cv + (c v —c P (er +98) =

(5" — AT 4 (s"s'c + 5? +2¢ 5's" )W — ¢ 08,
so that, through eq. (4.7), we get

p/ % p// .p/// :S/T % (S//T +c SI2V) . [(SI” . 028/3)T+
(s"s'c+ 8?4+ 2¢ §'s")Ww —c 98] =

/ X 2
— 2669 — _02|P/|619 _ _|p |p/|2; | |p/|679’

so that, finally,
! !
g pxp "
| p/ X p//‘Q
To remark that while the curvature is linked to the second derivative of the curve, the
torsion is a function also of the third derivative.

Unlike curvature, which is intrinsically positive, the torsion can be negative. In fact, still
using the Frenet-Serret formulae,

2.1 13///

1
p(s+e)—p(s) =ep + =" + =" + o(c*) =

2 6
1 1
eT + 5&?201/ + 683(01/)’ +0(e?) =
1 1
eT + 55201/ + 653(0’1/ — AT —c9B) +o(e?) —

(p(s+¢)—p(s))-B= —ég% 9+ o(e%).

The above dot product determines if the point p(s + ¢) is located, with respect to the
osculating plane, on the side of B or on the opposite one, see Fig. 4.6: if following the
curve for increasing values of s, € > 0, the point passes into the semi-space of 3 from the
opposite one, because 1/6 ¢ €2 > 0, it will be ¥ < 0, while in the opposite case it will be
v > 0.

This result is intrinsic, i.e. it does not depend upon the choice of the parameter, hence of
the positive orientation of the curve; in fact, v is intrinsic, but changing the orientation
of the curve, 7, and hence 3, change of orientation.
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osculatin
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Figure 4.6: Torsion of a curve.

4.9 Osculating sphere and circle

The osculating sphere? to a curve at a point p is a sphere to which the curve tends to
adhere in the neighborhood of p. Mathematically speaking, if ¢, is the center of the sphere
relative to point p(s), then

Ip(s +€) — qs* = Ip(s) — qs|* + o(?).

Using this definition, discarding the terms of order o(e%) and using the Frenet-Serret
formulae, we get:

1 1
2 =|p(s) — qs +ep’ + 56210” + ée?’p’” +o(e”)? =

1 1
Ip(s) — qs + e+ 5520 v+ 653(01/)’ +o(e3)]? =

’p<8 + 5) — (s

Ip(s) — qsI” + 2e(p(s) — qs) - T+ % + %c(p(s) — qs) - v+

3°00s) — 00) - (v = T = 0 08) +0le?)

which gives

1
(p(s) —qs) - v=—==—p,
_oyg_<< _r
(p(s) QS) IB 0219 197
and finally
qs=p+pv—%6, (4.9)

so the center of the sphere belongs to the normal plane; the sphere is not defined for a
plane curve. p is the radius of curvature of the curve, defined as

1
p=-.
C

2The word osculating comes from the latin word osculo that means to kiss; an osculating sphere or
circle or plane is a geometric object that is very close to the curve, as close as two lovers are in a kiss.
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The radius of the osculating sphere is

2
0
— — — 2 L .
ps = |P — sl p+<ﬁ)

The intersection between the osculating sphere and the osculating plane at a same point
p is the osculating circle. This circle has the property to share the same tangent in p with
the curve and its radius is the radius of curvature, p. From eq. (4.9) we get the position
of the osculating circle center ¢:

g=p+pv.

An example can be seen in Fig. 4.7, where the osculating plan, circle and sphere are
shown for a point p of a conical helix.

osculating shpere

S ds

osculating circle

Figure 4.7: Osculating plan, circle and sphere for a point p of a conical helix.

The osculating circle is a diametral circle of the osculating sphere only when ¢ = ¢4, so if
and only if

;0/ J

=X R

i.e. when the curvature is constant.

4.10 Scalar, vector and tensor fields

Let Q C £ and f: Q — V. We say that f is continuous at p € 2 <= V sequence
T = {pn € Q,n € N} that converges to p € &, the sequence {v,, = f(p,),n € N}
converges to f(p) in V. The function f(p) : 2 — V is a vector field on 2 if it is continuous
at each p € Q. In the same way we can define a scalar field p(p) : © — R and a tensor
field, L(p) : Q@ — Lin(V) or L(p) : @ — Lin(V).

A deformation is any continuous and bijective function f(p) : Q@ — &, i.e. any transfor-
mation of a region ) C £ into another region of &; bijectivity imposes that to any point
p € Q corresponds one and only point in the transformed region, and vice-versa. This is

a constraint imposed to a function from &£ to &£ ti represent a physical deformation of a
body.
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Finally, the basic difference between fields/deformations and curves, is that a field or a
deformation is defined over a subset of £, not of R. In practice, this implies that the
components of the field/deformation are functions of three variables, the coordinates x;
of a point p € Q2.

4.11 Differentiation of fields, differential operators

Let f(p) : Q — V; we say that f is differentiable in py € Q <= 3 gradf € Lin(V) such
that

f(po +u) = f(po) + gradf(po) u+ o(u)

when u — o. If f is differentiable Vp € ), gradf defines a tensor field on €2 called the
gradient of f. Tt is also possible to define higher order differential operators, using higher
order tensors, but this will not be done here. If f is continuous with gradf Vp € €0, then
f is of class C' (smooth).

Let f a vector field of class C! on €. Then the divergence of f is the scalar field defined
by
divf := tr(gradf),

while the curl of f is the unique vector field curlf that satisfies the relation
(gradf — gradf " )u = (curlf) x u Yu € V.
The divergence of a tensor field L is the unique vector field divL that satisfies
(divL) -u = div(L"u) Yue V.

Let ¢(p) : © — R a scalar field over 2. Similarly to what done for vector fields, we say
that ¢ is differentiable at pg € ) <= d gradp € V such that

©(po + 1) = ¢(po) + gradp(po) - u + o(u)

when u — o. If ¢ is differentiable Vp € €2, grady defines a vector field on € called the
gradient of . If grady is differentiable, its gradient is the tensor grad’’¢ called second
gradient or Hessian. It is immediate to show that under continuity assumption,

grad’ o = (grad’’p) 7.
A level set of a scalar field ¢(p) is the set Sy, such that
o(p) = const. Vp € Sr.

By the same definition of differentiability of ¢(p), we can prove that grade(p) is a vector
that is orthogonal to S, at p. The curves of £ that are tangent to gradp(p) Vp € Q are the
streamlines of ; they have the property to be orthogonal to any S, of ¢ Vp € €.

gradyp allows to calculate the directional derivative of ¢ along any direction n € § as

d
. grady - n.
dn
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The highest variation of ¢ is hence in the direction of grady, and |grady| is the value of
this variation; we remark also that grady is a vector directed as the increasing values of

©.
Let ¢ a scalar of vector field of class C? at least. Then, the laplacian A of 1 is defined
by

Ay = div(grady).

By the linearity of the trace, and hence of the divergence, we see easily that the laplacian of
a vector field is the vector field whose components are the laplacian of each corresponding
component of the field. A field is said to be harmonic on 2 if its laplacian is null Vp €
Q.

The definitions given above for differentiable field, gradient and class C!' can be repeated
verbatim for a deformation f(p): Q — &.

Let ¢, v two scalar fields, u, v, w vector fields, L a tensor field and W the axial tensor of
w. Then, the following properties hold:

grad (i) = pgrady + grade,
grad(pv) = pgradv + v ® grady,

1
(gradv)v = (curlv) ® v + §gradvz,

grad(v - w) = (gradw) v + (gradv)"w = (gradw)v + (gradv)w + v x curlw + w x curlv,
grad(u-v w) = (u-v)gradw + (w ® u)gradv + (w ® v)gradu,
gradv - gradv' = div((gradv)v — (divv)v) + (divv)?,
div(ev) = edivv + v - grady,
div(v @ w) = vdivw + (gradv)w,
div(L'v) = L - gradv + v - divL,
div(¢L) = ¢divL + Lgradep,
div(gradv') = grad(divv),
div((gradv)v) = gradv - gradv' + v - grad(divv),
div(v x w) = w - curlv — v - curlw,
div(pLv) = L' - gradv + v - divL" + Lv - gradyp,
div(curlv) = 0,
curl(¢v) = pcurlv + grady X v,
curl(curlv) = grad(divv) — gradv,
curl(grady) = o,
curl(v ® w) = (gradv)w — (gradw)v + vdivw — wdivv,
curlw = —divW,
A(p) = 2grade - grady + A + Ay,
A(v-w) =2gradv - gradw + v - Aw +w - Av.
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The proof of these properties is a good exercice for the reader (see also the book of
Gurtin).

4.12 Theorems on fields

We recall here, without proof, some classical theorems on fields and operators.

Theorem 18. (on harmonic fields): if v(p) is a vector field of class > C? such that
divv =0, curlv = o,
then v is harmonic: Av = o.

Theorem 19. (Potential theorem): let v(p) a vector field of class > C!' on a simply
connected domain Q2 C E; then

curlv =0 <= v = grady
with p(p) a scalar field of class > C?, the potential.

In what follows, €2 is a sufficiently regular region of £, whose boundary is 02 and the
external normal n € S.

Theorem 20. (Divergence lemma): let v(p) a vector field of class > C' on Q; then

/ V®nds:/gradvdv.
o9 Q

Theorem 21. (Divergence or Gauss theorem): let ¢, v, L respectively a scalar, vector
and tensor field on Q of class > C'. Then

/ pn ds = / grady dv,

o0 Q

/V-ndSZ/diVVd’U,
o9 Q

/ Ln ds = / divL dv.
o0 Q

Theorem 22. (Curl theorem): let v(p) a vector field of class > C' on §; then

/ nxvds—/curlvdv.
a0 Q

Theorem 23. (Stokes theorem): let v(p) a vector field of class > C' on Q and be ¥ an
open surface whose support is the closed line v and n € S the normal, see Fig. 4.8. Then

%v~d€:/curlv-nds.
0 P
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The parametric equation of v must be chosen in such a way that

p/(tl) X p/(t2> ‘n>0 vtg > 1.

Figure 4.8: Scheme for the Stokes theorem.

Theorem 24. (Green’s formula): let p(p), ¥ (p) two scalar fields on ) of class > C?; then
d dip
/ Yor o ds:/w Ap — ¢ Agp)dv.
a0 dn dl'l Q

Theorem 25. (Fluz theorem): let v(p) a vector field of class > C* on an open subset R
of £. Then

divy =0 <— v-nds=0 V) CR.
o0

4.13 Differential operators in Cartesian coordinates

In what follows, f,v,L are respectively a scalar, vector and tensor field. The Cartesian
components® of the differential operators are?*

(gradf); = fi,
(gradv);; = v; ;,
divv = v, ;,
(divL); = L;; j,
Af = Ffu,
(AV); = Av; = v, 5,
curlv = (vg9 — V23,013 — V31, V21 — V12).
The so-called operator nabla V:
V= iei = i61 + ie2 + ——es
ox; oy 0o 03
is often used to indicate the differential operators:
gradf =V,
divwv =V - v,
curlv =V x v,
Af =V2f.
31n the following formulae, the Einstein summation rule holds.

Afi
6xj '

4The comma indicates partial derivative, e.g. fij =
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4.14 Differential operators in cylindrical coordinates

The cylindrical coordinates p, 0, z of a point p, whose Cartesian coordinates in the (fixed)
frame {o; e, e, e3} are p = (x1,x9,23), are shown in Fig. 4.9. They are related together

by
p =2} + 13,

Z3
0 = arctan —,
I

Z = T3,

or conversely

x1 = pcosb,
To = psind,

I3 = Z.

To notice that p > 0 and that the anomaly 0 is bounded by 0 < 6 < 27.

Figure 4.9: Cylindrical coordinates.

In the (local) frame {p;e,, ey, e}, the differential operators are

Vf = (f,pa %f,@?f,z) )

1 1
Af = ;(pf,p),p + Ef,@@ + f,zz:

_ 1 -
Vpp —(Upo — o) Vp:
1
Vv = vy, ;(UG,G +0,) vos |,
1
Vz.p —Vz,0 Vz,z
L P i

divv = Vpp + ;('UG,H + 'Up) + V22,

1 1
curlv = (;’Uz,g — Vo2, Upz — Vs ps ;((pvg)w — vp,9)> ;
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1
;((pLPP),P + Lyoo — Log) + Ly

1
divL = | Lg,, + ;(Loe,e + Lo+ Lgp) + Lo, |,

1
;((psz),p + LZG,G) + Lzz,z

1 1 1
—(PVpp) o + —SUp,00 T Upzz — _Q(Up + 2vg,9)
AN :
Av = AU@ = —(pvg,p)’p + —21}9’99 + V9,22 — —2(U9 — 2Up’9)
A, P 1 1

_<pvz, ), + —Uz.00 + Vz,22
p T p?

4.15 Differential operators in spherical coordinates

The spherical coordinates r, ¢, 6 of a point p, whose Cartesian coordinates in the (fixed)
frame {0; ey, ey, €3} are p = (z1, 29, x3), are shown in Fig. 4.10. They are related together

by
_ 2 2 2
r=\/r7+x;+ 3,
2 2
. 1 +.T2
© = arctan ———=,
xs

T2
0 = arctan —,
I

or conversely
x1 = rcosfsin g,
ZTo = rsinfsin p,
XT3 =T COS Y.

To notice that » > 0 and that the anomaly 6 is bounded by 0 < 6 < 27 while the colatitude
@by 0 <o <.

Figure 4.10: Spherical coordinates.

In the (local) frame {p;e,,e,, €y}, the differential operators are

S L

rsin @
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AF = 5000+ o + (fosing).,),

r4sin @
[ 1( ) 1 1 i
Urpr  —\Upp — U - . Urgp — U
o h? v T\ sin 0 o
1 1
Vv = v, ;(UWP +v,) . sin(pvw’g — vgcot ,
1 1 1
Vo —Vg,p — - Vg, + Uy + U, COt
i r r \ siny i

1

7 sin @

. 1 .
divv = T—Q(TQUr),T (Vg sin @ + vy ),

1 1 1 1
curlv = ( . (W,sa sin 6 — Uw,(?)’ —Urg — _(TUG),M _((TU¢>,T - Ump)) )
r T

7 SIn ¢ 7 SIn @

1 1 1 L,,+ L cot
(L) g+ =L+ ———Logg — —22—% 4 222,
r r rsin @

r
1 1 1 cot
T 2
divL = T_i(r Lyw)r+ GLWW + ranwLw(’ + {Lw + —=
Cot
ﬁ(TQLW),T + ;L&p,go + Lgg 0 + TL'I'Q + Ld

(LSDSD - L99) )

(L<p9 + LQ@)

sin ¢

21},«7« () —2v () — 2 (% 2v

, RO ©,p T, T,00 r

Uy + + + : — v | — 5
r 7’ SlIl 2 r

r? r2 tan gp sin

2or | Vpppt 20rp  Vpyp — VpcOt LA Vep,00 Y
Av = Vg rr + + 5 5 5 — 2vppcotp | — —

r r r2tan @ 7“ sm sin ¢ r

209, Vg 20,0 1 Vg,00 Vg
3 7@@ (p7 K

Vo, rr + + 5 + | vo,p + — 2 2 + 20,9 | — ECPTRCI
r r singp ) r tango r?sing \ siny r2sin® ¢

4.16 Exercices

1. Using the same definition of derivative of a curve, prove the relations in eq. (4.1).
2. Prove the relations in eq. (4.3).

3. The curve whose polar equation is
r=a6, a€eR,

is an Archimede’s spiral. Find its curvature, its length for 6 € [0,27) and prove
that any straight line passing by the origin is divided by the spiral in segments of
constant length 27 a (that is why it is used to record disks).

4. The curve whose polar equation is
r=ae”? abecR,

is the logarithmic spiral. Prove that the origin is an asymptotic point of the curve,
find its curvature and the length of the segment in which a straight line by the
origin is divided by two consecutive intersections with the spiral. Then prove that
the curve is plane and its equiangular property: (p(0) — o) - 7(0) = const.
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d.

10.
11.

The curve whose parametric equation is
p(0) = a(cos @ + Osinb)e; + a(sinh — 6 cosb)e,

with the parameter 0 the angle formed by p(6) — o with the x;—axis is the involute
of the circle. Find its curvature and length for 8 € [0,27) and prove that the
geometrical set of the points p(f) + p(0)v(0) is exactly the circle of center o and
radius a (that is why the involute of the circle is used to profile engrenages).

. The curve whose parametric equation is

p(0) = acoswle; + asinwle, + bwhe;

is a heliz that winds on a circular cylinder of radius a. Show that the angle formed
by the helix and any generatrix of the cylinder is constant (a property that defines
a helix in the general case). Then, find its length for 6 € [0, 27), curvature, torsion
and pitch (the distance, on a same generatrix, between two successive intersections
with the helix). Prove then the Bertrand’s theorem: a curve is a cylindrical helix
if and only if the ratio ¢/J = const. Finally, prove that for the above circular helix
there are two constants A and B such that

p' x p" = Au(f) + Bes,

with
u = sinwfe; — coswhe,;

find then A and B.

For the curve whose cylindrical equation is

r=1,
z=-sinf

find the highest curvature and determine whether or not it is planar.

Consider a rigid body B, and a point p, € B. From the kinematics of rigid bodies,
we now that the velocity of another point p € B is given by

v(p) = v(po) +w X (p — po),

with w the angular velocity. Prove that

w = —curlv.
2

. Prove the relations at the end of Sect. 4.11.

Prove the three forms of the Gauss Theorem using the Divergence lemma.

Make use of the tensor form of the Gauss Theorem to prove the Curl Theorem.
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12. Prove the following identities using the Gauss theorem:
/ v-Ln ds=/(v-divL+L-Vv)dv,
o9 )
/ (Ln) ® v ds = /((divL) ®@ v+ L(Vv"))dv,
o9 Q

/a wemv s - /Q (vdivw + (Vv)w)do.
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