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Preface

This text is a support for different courses of the master of Mechanics of the University
Paris-Saclay.

The content of this text is an introduction, for graduate students, to modern tensor
algebra and analysis, specially intended for applications in continuum mechanics.

Far from being exhaustive, the text focuses on some subjects, with the intention of provid-
ing the reader with the main algebraic tools necessary for a modern course in continuum
mechanics.

Versailles, July 25, 2021
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Chapter 1

Points and vectors

1.1 Points and vectors

We consider in the following a point space E , whose elements are points p1. On E we
admit the existence of an operation, the difference of any of its two elements:

q − p, p, q ∈ E .

We associate to E a vector space V whose dimension is dimV = 3 and whose elements are
vectors v representing translations over E :

∀p, q ∈ E , ∃! v ∈ V| q − p = v.

Any element v ∈ V is hence a transformation over E that can be written, using the
previous definition, as :

∀v ∈ V , v : E → E| q = v(p) → q = p+ v.

To remark that the result of the application of the translation v depends upon the argu-
ment p:

q = p+ v 6= p′ + v = q′,

whose geometric meaning is depicted in Fig. 1.1. Unlike difference, the sum of two points
is not defined and is meaningless.
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Chapitre 1 
 

ELEMENTS D’ALGEBRE TENSORIELLE  
 
 
 
 

1.1 ESPACE EUCLIDIEN 

Les événements de la mécanique classique se placent dans l'espace euclidien à trois dimensions, 
que nous définissons ainsi: on dit que E est un espace euclidien tridimensionnel s’il existe un 
espace vectoriel V, qui lui est associé, de dimension trois, dans lequel il est défini un produit 
scalaire, et tel que: 

• les éléments v de V, qui sont des vecteurs, sont des transformations de  E en lui-même: 

 v ∈ V,   v : E → E ; 

• la somme de deux éléments de V est définie comme 

 E∈∀∈∀=+ ppp  et            ))(())(( Vv u,vuvu ; 

• ∀ p et q ∈ E , ∃!  v ∈ V :  q = v(p). 

Pour mieux comprendre tout cela, il faut d’abord introduire deux concepts assez importants. 

 

1.2 POINTS ET VECTEURS 

Nous choisissons une fois pour toutes un espace euclidien E; ses éléments sont appelés points. E 
doit être identifié avec l'espace ordinaire où nous vivons. 

L'espace vectoriel V sera appelé espace des translations de E et les éléments de V seront appelés 
translations.  

Analysons donc les propriétés énoncées ci-dessus; on commence avec la dernière. Ecrire q = v(p) 
signifie que v est une transformation de E en lui-même, c’est à dire, on part d’un point de E pour 
arriver encore en un point de E, et que cette transformation est intégralement déterminée par la 
valeur prise sur un point de E. Graphiquement: 

 

 

 

 

Figure 1.1 

Remarque: le même vecteur peut opérer différentes transformations, en fonction du point 
d’application: q = v(p), mais aussi q’=  v(p’). 

Nous utiliserons, à la place de l'écriture q = v(p), une écriture qui a un sens géométrique plus direct: 

 q= p + v.

Elle définit la somme d’un point et d’un vecteur comme un point. De la relation ci-dessus on tire 
aussi la définition d’un vecteur de V comme la différence de deux points de E: 

 p 

q 

v 

 p’

q’ 

v 

Figure 1.1: Same translation over two different points.

1E is to be identified with the Euclidean three-dimensional space in which the events of classical
mechanics are intended to be set.
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We define the sum of two vectors u and v as the vector w such that

(u + v)(p) = u(v(p)) = w(p)

This means that, if
q = v(p) = p+ v,

then
r = u(q) = q + u = w(p),

see Fig. 1.2, which shows that the above definition actually coincides with the parallelo-
gram rule and that

u + v = v + u,

as obvious, for the sum over a vector space commutes. It is evident that the sum of more
than two vectors can be defined iteratively, summing up a vector at time to the sum of
the previous vectors.

The null vector o is defined as the difference of two coincident points:

o = p− p ∀p ∈ E ;

o is unique and the only vector such that

v + o = v ∀v ∈ V .

In fact:

∀p ∈ E , v + o = v + p− p → p+ v + o = p+ v ⇐⇒ v + o = v.

A linear combination of n vectors vi is defined as the vector2

w = kivi, ki ∈ R, i = 1, ..., n.

The n + 1 vectors w, vi, i = 1, ..., n, are said to be linear independent if it does not
exist a set of n scalars ki such that the above equation is satisfied, linear dependent in the
opposite case.

2We adopt here and in the following the Einstein notation for summations: all the times that an
index is repeated in a monomial, then summation with respect to that index, called the dummy index, is
understood. If a repeated index is underlined, then it is not a dummy index, i.e. there is no summation.
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 v= q − p. 

La somme de deux points, ainsi que la différence d’un point avec un vecteur, ne sont pas définies. 

On revient maintenant à la deuxième propriété: 

 E∈∀∈∀=+ ppp  et            ))(())(( Vv u,vuvu . 

Soit q = v(p), ou q= p + v, et soit r= u(q), ou r= q + u.  Alors,  

 r= p + v + u = p + w,  

où w est le vecteur formé par la somme de u et de v. Graphiquement tout cela correspond à la 
fameuse règle du parallélogramme: 

 

 

 

 

 

Figure 1.2 

Remarque: par les propriétés générales d’un espace vectoriel, ou plus simplement 
géométriquement, à l'aide de la figure ci-dessus, on a: 

 v + u = u + v. 

En particulier, faire  u + v équivaut à faire le chemin pointillé indiqué sur la figure 1.2. 

Le vecteur nul o est défini comme la différence de deux points coïncidents. Le vecteur nul est 
unique, et il est le seul vecteur tel que 

 v + o= v     ∀ v ∈ V. 

Ces deux propriétés du vecteur nul sont très facilement démontrables avec la propriété que l’on a 
expliquée ci-dessus. 

Un vecteur w tel que 

 ,..., n,  ikk i

n

i
ii 21   ,     ,

1
=∈= ∑

=

Ruw , 

est dit être une combinaison linéaire des n vecteurs ui, où les scalaires ki sont les coefficients de la 
combinaison. Si, pour un w et pour les n ui donnés il n’existe aucun ensemble de ki tel que la 
relation ci-dessus soit satisfaite, alors les n+1 vecteurs w et ui sont dits linéairement indépendants ; 
cela signifie qu’il n’est pas possible d’exprimer w comme somme des ui, où, ce qui est la même 
chose, que la combinaison linéaire des n+1 vecteurs w et ui peut avoir comme résultat le vecteur nul 
si et seulement si tous les coefficients de la combinaison sont des zéros. Dans le cas contraire les 
n+1 vecteurs sont dits linéairement dépendants. 

La somme de vecteurs ci-dessus peut être écrite en forme abrégée comme 

 ,..., n,  ,   i kk iii 21    , =∈= Ruw ; 

cette notation est dite aussi somme d’Einstein : dans une somme d’Einstein il faut additionner par 
rapport à l’indice saturé, dit aussi indice muet, qui est l’indice répété dans l’expression. 
L’utilisation de la somme d’Einstein permet d’alléger la notation et de la rendre plus 
compréhensible. 

 r 

v 
  u 

w

v 
u 

  p 

q 

Figure 1.2: Sum of two vectors: the parallelogram rule.
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1.2 Scalar product, distance, orthogonality

A scalar product on a vector space is a positive definite, symmetric, bilinear form. A form
ω is a function

ω : V × V → R,

i.e., ω operates on a couple of vectors to give a real number, a scalar. We will indicate
the scalar product of two vectors u and v as

ω(u,v) = u · v.

The properties of bilinearity prescribe that, ∀u,v ∈ V and ∀α, β ∈ R,

u · (αv + βw) = αu · v + βu ·w,
(αu + βv) ·w = αu ·w + βv ·w,

while symmetry implies that

u · v = v · u ∀u,v ∈ V .

Finally, the positive definiteness means that

v · v > 0 ∀v ∈ V , v · v = 0 ⇐⇒ v = o.

Any two vectors are said to be orthogonal ⇐⇒

u · v = 0.

Thanks to the properties of the scalar product, we can define the Euclidean norm of a
vector v as the nonnegative scalar, denoted equivalently by v or |v|,

v = |v| =
√

v · v

The norm of a vector has the following properties:

|u + v| ≤ u+ v (Minkowski′s triangular inequality);

|u · v| ≤ u v (Schwarz′s inequality);

|kv| = |k|v, k ∈ R.

We define distance between two any points p and q ∈ E the scalar

d(p, q) = |p− q| = |q − p|.

Similarly, the distance between two any vectors u and v ∈ V is defined as

d(u,v) = |u− v| = |v − u|.

Two points or two vectors are coincident if and only if their distance is null.

The unit sphere S of V is defined as the set of all the vectors whose norm is one:

S = {v ∈ V| v = 1}.

3



1.3 Basis of V, expression of the scalar product

Generally speaking, a basis B of a vector space is any set of n linearly independent vectors,
where n is equal to the dimension of the vector space. In the case of V , n = 3, so that a
basis B of V is any set

B = {e1, e2, e3},

of three linearly independent vectors ei. The concept of basis of V is useful for representing
vectors: once a basis chosen, any vector v ∈ V can be represented as a linear combination
of the vectors of the basis, where the coefficients vi of the linear combination are the
components of v:

v = viei = v1e1 + v2e2 + v3e3.

Though the choice of the elements of a basis is completely arbitrary, the only condition
being their linear independency, we will use in the following only orthonormal bases, that
are bases composed by mutually orthogonal vectors of S, i.e. satisfying

ei · ej = δij,

where the symbol δij is the so-called Kronecker’s delta:

δij =

{
1 if i = j,

0 if i 6= j.

The use of orthonormal bases has great advantages; for instance, it allows to give a very
simple rule for the calculation of the scalar product:

u · v = uiei · vjej = uivjδij = uivi = u1v1 + u2v2 + u3v3.

In particular, it is
v · ei = vkek · ei = vkδik = vi, i = 1, 2, 3.

So, the Cartesian components of a vector are the projection of the vector on the three
vectors of the basis B; such quantities are the director cosines of v in the basis B. In fact,
if θ is the angle formed by two vectors u and v, then

u · v = u v cos θ.

This relation is used to define the angle between two vectors,

θ = arccos
u · v
u v

,

which can be proved easily: given two vectors u and v, we look for c ∈ R such that the
vector u− cv be orthogonal to v:

(u− cv) · v = 0 ⇐⇒ c =
u · v
v · v

=
u · v
v2

.

Now, if u is inclined of θ on v, its projection uv on the direction of v is

uv = u cos θ,

4



uu-cv

vuv
!

Figure 1.3: Angle between two vectors.

and, by construction (see Fig. 1.3), it is also

uv = c v.

So
c =

u

v
cos θ → u

v
cos θ =

u · v
v2

⇒ cos θ =
u · v
u v

.

To remark that, while the scalar product, being an intrinsic operation, does not change
for a change of basis, the components vi of a vector are not intrinsic quantities, but they
are basis-dependent: a change of the basis makes the components change. The way this
change is done will be introduced in Sect. 2.11.

A frame R for E is composed by a point o ∈ E , the origin, and a basis B of V :

R = {o,B} = {o; e1, e2, e3}.

The use of a frame for E is useful for determining the position of a point p, which can be
done through its Cartesian coordinates xi, defined as the components, in B, of the vector
p− o:

xi = (p− o) · ei, i = 1, 2, 3.

Of course, the coordinates depend upon both the choices of o and of B.

1.4 Exercices

1. Prove that the null vector is unique.

2. Prove that the norm of the null vector is zero.

3. Prove the inequality of Minkowski.

4. Prove the inequality of Schwarz.

5. Prove that
u · v = 0 ⇐⇒ |u− v| = |u + v| ∀u,v ∈ V .

6. Prove the linear forms representation theorem: be ψ : V → R a linear function.
Then, ∃! u ∈ V such that

ψ(v) = u · v ∀v ∈ V .
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Chapter 2

Second rank tensors

2.1 Second-rank tensors

A second-rank tensor L is any linear application from V to V :

L : V → V | L(αiui) = αiLui ∀αi ∈ R, ui ∈ V , i = 1, ..., n.

Though here V indicates the vector space of translations over E , the definition of tensor1

is more general and in particular V can be any vector space.

Defining the sum of two tensors as

(L1 + L2)u = L1u + L2u ∀u ∈ V , (2.1)

the product of a scalar by a tensor as

(αL)u = α(Lu) ∀α ∈ R,u ∈ V

and the null tensor O as the unique tensor such that

Ou = o ∀u ∈ V ,

then the set of all the tensors L that operate on V forms a vector space, denoted by
Lin(V). We define the identity tensor I as the unique tensor such that

Iu = u ∀u ∈ V .

Different possible operations can be defined for second-rank tensors. We consider all of
them in the following Sections.

1We consider for the while only second-rank tensors, but we will see in the following how to introduce
tensors of higher ranks.
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2.2 Dyads, tensor components

For any couple of vectors u and v, the dyad2 u⊗ v is the tensor defined by

(u⊗ v)w = v ·w u ∀w ∈ V .

The application defined above is actually a tensor because of the bi-linearity of the scalar
product. The introduction of dyads allows for expressing any tensor as a linear combina-
tion of dyads. In fact, it can be proved that if B = {e1, e2, e3} is a basis of V , then the
set of 9 dyads

B2 = {ei ⊗ ej, i, j = 1, 2, 3},

is a basis of Lin(V), i.e. dim(Lin(V)) = 9. This implies that any tensor L ∈ Lin(V) can
be expressed as

L = Lij ei ⊗ ej, i, j = 1, 2, 3,

where the Lijs are the nine Cartesian components of L with respect to B2. The Lijs can
be calculated easily:

ei · Lej = ei · Lhkeh ⊗ ek ej = Lhkei · eh ek · ej = Lhkδihδjk = Lij.

The above expression is sometimes called the canonical decomposition of a tensor. The
components of a dyad can be computed easily:

(u⊗ v)ij = ei · (u⊗ v) ej = u · ei v · ej = ui vj. (2.2)

The components of a vector v result of the application of a tensor L on a vector u can
now be easily calculated:

v = Lu = Lij(ei ⊗ ej)(ukek) = Lijukδjkei = Lijujei → vi = Lijuj. (2.3)

Depending upon two indices, any second-rank tensor L can be represented by a matrix,
whose entries are the Cartesian components of L in the basis B:

L =

 L11 L12 L13

L21 L22 L23

L31 L32 L33

 ;

because any u ∈ V , depending upon only one index, can be represented by a column
vector, eq. (2.3) represents actually the classical operation of the multiplication of a 3×3
matrix by a 3× 1 vector.

2.3 Tensor product

The tensor product of L1 and L2 ∈ Lin(V) is defined as

(L1L2)v = L1(L2v) ∀v ∈ V .
2In some texts, the dyad is also called tensor product; we prefer to use the term dyad because tensor

product can be ambiguous, as used to denote the product of two tensors, see Sect. 2.3.
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By linearity and eq. (2.1) we get

[L(L1 + L2)]v = L[(L1 + L2)v] = L(L1v + L2v) =

LL1v + LL2v = (LL1 + LL2)v → L(L1 + L2) = LL1 + LL2.

To remark that the tensor product is not symmetric:

L1L2 6= L2L1;

however, by the same definition of the identity tensor and of tensor product,

IL = LI = L ∀L ∈ Lin(V).

The Cartesian components of a tensor L = AB can be easily calculated using eq.
(2.3):

Lij = e1 · (AB)ej = ei ·A(Bej) = ei ·A(Bhk(ej)k eh) = Bhkδjkei ·Aeh

= Bhkδjkei · (Apq(eh)q ep) = ApqBhkδjkδqhδip = AihBhj.

The above result simply corresponds to the rule of the multiplication of rows by lines of
two matrices. Using it, the following two identities can be readily shown:

(a⊗ b)(c⊗ d) = b · c(a⊗ d) ∀a,b, c,d ∈ V ,
A(a⊗ b) = (Aa)⊗ b ∀a,b ∈ V , A ∈ Lin(V).

(2.4)

Finally, the symbol L2 is normally used to denote in short the product LL, ∀L ∈
Lin(V).

2.4 Transpose, symmetric and skew tensors

For any tensor L ∈ Lin(V), it exists just one tensor L>, called the transpose of L, such
that

u · Lv = v · L>u ∀u,v ∈ V .
The transpose of the transpose of L is L:

u · Lv = v · L>u = u · (L>)>v ⇒ (L>)> = L.

The Cartesian components of L> are obtained swapping the indexes of the components
of L:

L>ij = ei · L>ej = ej · (L>)>ei = ej · Lei = Lji.

It is immediate to show that

(A + B)> = A> + B> ∀A,B ∈ Lin(V),

while
u · (AB)v = Bv ·A>u = v ·B>A>u ⇒ (AB)> = B>A>.

Moreover,

u · (a⊗ b)v = a · u b · v = v · (b⊗ a)u ⇒ (a⊗ b)> = b⊗ a. (2.5)

9



A tensor L is symmetric ⇐⇒
L = L>.

In such a case

Lij = L>ij = Lji ⇐⇒ Lij = Lji.

A symmetric tensor is hence represented, in a given basis, by a symmetric matrix and has
just six independent Cartesian components. Applying eq. (2.4) to I, it is immediately
recognized that the identity tensor is symmetric: I = I>.

A tensor L is antisymmetric or skew ⇐⇒

L = −L>.

In such a case (no summation on the index i, see footnote 2, Chap. 1)

Lij = −L>ij = −Lji ⇐⇒ Lij = −Lji ⇒ Lii = 0 ∀i = 1, 2, 3.

A skew tensor is hence represented, in a given basis, by an antisymmetric matrix whose
components on the diagonal are identically null, in any basis; finally, a skew tensor just
depends upon three independent Cartesian components.

If we denote by Sym(V) the set of all the symmetric tensors and by Skw(V) that of all
the skew tensors, then it is evident that, ∀α, β, λ, µ ∈ R,

Sym(V) ∩ Skw(V) = O,

αA + βB ∈ Sym(V) ∀A,B ∈ Sym(V),

λL + µM ∈ Skw(V) ∀L,M ∈ Skw(V),

so Sym(V) and Skw(V) are vector subspaces of Lin(V) with dim(Sym(V)) = 6, while
dim(Skw(V)) = 3.

Any tensor L can be decomposed into the sum of a symmetric, Ls, and an antisymmetric,
La, tensor:

L = Ls + La,

with

Ls =
L + L>

2
∈ Sym(V)

and

La =
L− L>

2
∈ Skw(V),

so that, finally,

Lin(V) = Sym(V)⊕ Skw(V).

2.5 Trace, scalar product of tensors

It exists one and only one linear form

tr : Lin(V)→ R,

10



called the trace, such that

tr(a⊗ b) = a · b ∀a,b ∈ V .

For its same definition, that has been given without making use of any basis of V , the
trace of a tensor is a tensor invariant, i.e. a quantity, extracted from a tensor, that does
not depend upon the basis.

Linearity implies that

tr(αA + βB) = αtrA + βtrB ∀α, β ∈ R, A,B ∈ Lin(V).

It is just the linearity to give the rule for calculating the trace of a tensor L:

trL = tr(Lijei ⊗ ej) = Lijtr(ei ⊗ ej) = Lij ei · ej = Lijδij = Lii.

A tensor is hence an operator whose sum of the components on the diagonal,

trL = L11 + L22 + L33,

is constant, regardless of the basis.

Following the same procedure above, it is readily seen that

trL> = trL,

which implies, by linearity, that

trL = 0 ∀L ∈ Skw(V).

The scalar product of tensors A and B is the positive definite, symmetric bilinear form
defined by

A ·B = tr(A>B).

This definition implies that, ∀L,M,N ∈ Lin(V), α, β ∈ R,

L · (αM + βN) = αL ·M + βL ·N,

(αL + βM) ·N = αL ·N + βM ·N,

L ·M = M · L,
L · L > 0 ∀L ∈ Lin(V), L · L = 0 ⇐⇒ L = O.

Such properties give the rule for computing the scalar product of two tensors A and
B:

A ·B = Aij(ei ⊗ ej) ·Bhk(eh ⊗ ek) = AijBhk(ei ⊗ ej) · (eh ⊗ ek)

= AijBhk tr[(ei ⊗ ej)
>(eh ⊗ ek)] = AijBhk tr[(ej ⊗ ei)(eh ⊗ ek)]

= AijBhk tr[ei · eh(ej ⊗ ek)] = AijBhk ei · eh ej · ek
= AijBhkδihδjk = AijBij.

Like in the case of vectors, the scalar product of two tensors is equal to the sum of the
products of the corresponding components. In the same manner, it is easily shown that,
∀a,b, c,d ∈ V ,

(a⊗ b) · (c⊗ d) = a · c b · d = aibjcidj,

11



while by the same definition of tensor scalar product,

trL = I · L ∀L ∈ Lin(V).

Similarly to vectors, we define Euclidean norm of a tensor L the nonnegative scalar,
denoted either by L or |L|,

L = |L| =
√

L · L =
√

tr(L>L) =
√
LijLij,

and the distance d(L,M) of two tensors L and M the norm of the tensor difference:

d(L,M) = |L−M| = |M− L|.

2.6 Spherical and deviatoric parts

Let L ∈ Sym(V); the spherical part of L is defined by

Lsph =
1

3
trLI,

and the deviatoric part by
Ldev = L− Lsph,

so that
L = Lsph + Ldev.

To remark that

trLsph =
1

3
trLtrI = trL ⇒ trLdev = 0,

i.e. the deviatoric part is a traceless tensor. Let A,B ∈ Lin(V); then

Asph ·Bdev =
1

3
trAI ·Bdev =

1

3
trA trBdev = 0, (2.6)

i.e. any spherical tensor is orthogonal to any deviatoric tensor.

The sets

Sph(V) :=

{
Asph ∈ Lin(V)| Asph =

1

3
trAI ∀A ∈ Lin(V)

}
,

Dev(V) :=
{
Adev ∈ Lin(V)| Adev = A−Asph ∀A ∈ Lin(V)

}
form two subspaces of Lin(V); the proof is left to the reader. For what proved above,
Sph(V) and Dev(V) are two mutually orthogonal subspaces of Lin(V).

2.7 Determinant, inverse of a tensor

The reader is probably familiar with the concept of determinant of a matrix. We show
here that the determinant of a second rank tensor can be defined intrinsically and that it
corresponds with the determinant of the matrix that represents it in any basis of V . To
this purpose, we need first to introduce a mapping:

ω : V × V × V → R

12



is a skew trilinear form if ω(u,v, ·), ω(u, ·,v) and ω(·,u,v) are linear forms on V and if

ω(u,v,w) = −ω(v,u,w) = −ω(u,w,v) = −ω(w,v,u) ∀u,v,w ∈ V . (2.7)

After this definition, we can state the following

Theorem 1. Three vectors are linearly independent if and only if every skew trilinear
form on them is not null.

Proof. In fact, be u = αv + βw; then, for any skew trilinear form ω,

ω(u,v,w) = ω(αv + βw,v,w) = αω(v,v,w) + βω(w,v,w) = 0

because of eq. (2.7), applied to the permutation of the positions of the two u and the two
w.

It is evident that the set of all the skew trilinear forms is a vector space, that we denote
by Ω, whose null element is the null form ω0:

ω0(u,v,w) = 0 ∀u,v,w ∈ V .

For a given ω(u,v,w) ∈ Ω, any L ∈ Lin(V) induces another form ωL(u,v,w) ∈ Ω,
defined as

ωL(u,v,w) = ω(Lu,Lv,Lw) ∀u,v,w ∈ V .
A key point3 for the following developments is that dim Ω = 1.

This means that ∀ω1, ω2 6= ω0 ∈ Ω,∃λ ∈ R such that

ω2(u,v,w) = λω1(u,v,w) ∀u,v,w ∈ V .

So, ∀L ∈ Lin(V), it must exist λL ∈ R such that

ω(Lu,Lv,Lw) = ωL(u,v,w) = λL ω(u,v,w) ∀u,v,w ∈ V . (2.8)

The scalar4 λL is the determinant of L and in the following it will be denoted as det L.
The determinant of a tensor L is an intrinsic quantity of L, i.e. it does not depend upon
the particular form ω, nor on the basis of V . In fact, we have never introduced, so far,
a basis for defining det L, hence it cannot depend upon the choice of a basis for V , i.e.
det L is a tensor invariant.

Then, if ω1 and ω2 ∈ Ω, because dim Ω = 1, it exists k ∈ R, k 6= 0 such that

ω2(u,v,w) = k ω1(u,v,w) ∀u,v,w ∈ V ⇒
ω2(Lu,Lv,Lw) = k ω1(Lu,Lv,Lw)→
ω2
L(u,v,w) = k ω1

L(u,v,w).

3The proof of this statement is rather articulated and out of our scope; the interested reader is
addressed to the classical textbook of Halmos on linear algebra, §31 (see the bibiography). The theory
of the determinants is developed in §53.

4More precisely, detL is the function that associates a scalar with each tensor (Halmos, §53). We can
however, for the sake of practice, identify detL with the scalar associated to L, without consequences for
our purposes.
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Moreover, by eq. (2.8) we get

ω1(Lu,Lv,Lw) = ω1
L(u,v,w) = λ1

Lω
1(u,v,w),

ω2(Lu,Lv,Lw) = ω2
L(u,v,w) = λ2

Lω
2(u,v,w),

so that

λ2
Lk ω

1(u,v,w) = λ2
Lω

2(u,v,w) = ω2
L(u,v,w) =

k ω1
L(u,v,w) = λ1

Lk ω
1(u,v,w) ⇐⇒ λ1

L = λ2
L,

which proves that det L does not depend upon the skew trilinear form, but only upon
L.

The definition given for det L let us prove some important properties. First of all,

det O = 0;

in fact, ∀ω ∈ Ω,

det O ω(u,v,w) = ω(Ou,Ov,Ow) = ω(o,o,o) = 0

because ω operates on three identical, i.e. linearly dependent, vectors. Then, if L =
I,

det I ω(u,v,w) = ω(Iu, Iv, Iw) = ω(u,v,w)

if and only if
det I = 1. (2.9)

A third property is that ∀a,b ∈ V ,

det(a⊗ b) = 0. (2.10)

In fact, if L = a⊗ b, then

det L ω(u,v,w) = ω(Lu,Lv,Lw) = ω((b · u)a, (b · v)a, (b ·w)a) = 0

because the three vectors on which ω ∈ Ω operates are linearly dependent; being u,v and
w arbitrary, this implies eq. (2.10).

An important result is the

Theorem 2. (Theorem of Binet): ∀A,B ∈ Lin(V)

det(AB) = det A det B. (2.11)

Proof. ∀ω ∈ Ω,

λABω(u,v,w) = ω(ABu,ABv,ABw) = ω(A(Bu),A(Bv),A(Bw)) =

λAω(Bu,Bv,Bw) = λAλBω(u,v,w) ⇐⇒ λAB = λAλB,

which proves the theorem.
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A tensor L is called singular if det L = 0, otherwise it is non-singular.

Considering eq. (2.8), one can easily see that, if in a basis B of V it is L = Lijei ⊗ ej,
then

det L =
∑
π∈P3

επ(1),π(2),π(3)L1,π(1)L2,π(2)L3,π(3),

where P3 is the set of all the permutations π of {1, 2, 3} and the εi,j,ks are the components
of the Ricci alternator:

εi,j,k =


1 if (i, j, k) is an even permutation of (1, 2, 3),
0 if (i, j, k) is not a permutation,
−1 if (i, j, k) is an odd permutation of (1, 2, 3).

The above rule for det L coincides with that for calculating the determinant of the matrix
whose entries are the Lijs. This shows that, once chosen a basis B for V , det L coincides
with the determinant of the matrix representing it in B, and finally that

det L = L11L22L33 + L12L23L31 + L13L32L21

− L11L23L32 − L22L13L31 − L33L12L21.
(2.12)

This result shows immediately that ∀L ∈ Lin(V), and regardless of B, it is

det L> = det L. (2.13)

Using eq. (2.12), it is not difficult to show that, ∀α ∈ R,

det(I + αL) = 1 + αI1 + α2I2 + α3I3, (2.14)

where I1, I2 and I3 are the three principal invariants of L:

I1 = trL, I2 =
tr2L− trL2

2
, I3 = det L. (2.15)

A tensor L ∈ Lin(V) is said to be invertible if there is a tensor L−1 ∈ Lin(V), called the
inverse of L, such that

LL−1 = L−1L = I. (2.16)

If L is invertible, then L−1 is unique. By the above definition, if L is invertible, then

u1 = Lu⇒ u = L−1u1.

Theorem 3. Any invertible tensor maps triples of linearly independent vectors into triples
of still linearly independent vectors.

Proof. Be L an invertible tensor and u1 = Lu,v1 = Lv,w1 = Lw, where u,v,w are
three linearly independent vectors. Let us suppose that

u1 = hv1 + kw1, h, k ∈ R.

Then, because L is invertible,

L−1u1 = L−1(hv1 + kw1) = hL−1v1 + kL−1w1 = hv + kw,

which goes against the hypothesis. By consequence, u1,v1 and w1 are linearly indepen-
dent.
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This result, along with the definition of determinant, eq. (2.8), and Theorem 1, proves
the

Theorem 4. (Invertibility theorem): L ∈ Lin(V) is invertible ⇐⇒ det L 6= 0.

Using the Theorem of Binet, 2, along with eqs. (2.9) and (2.16), we get

det L−1 =
1

det L
.

Equation (2.16) applied to L−1, along with the uniqueness of the inverse, gives immedi-
ately that

(L−1)−1 = L,

while
B−1A−1 = B−1A−1AB(AB)−1 = (AB)−1.

The operations of transpose and inversion commute:

L>(L>)−1 = I = L−1L = I> = (L−1L)> = L>(L−1)> ⇒

(L−1)> = (L>)−1 := L−>.

2.8 Eigenvalues and eigenvectors of a tensor

If it exists a λ ∈ R and a v ∈ V , except the null vector, such that

Lv = λv, (2.17)

then λ is an eigenvalue and v an eigenvector, relatif to λ, of L. It is immediate to observe
that, thanks to linearity, any eigenvector v of L is determined to within a multiplier, i.e.,
that kv is an eigenvector of L too, ∀k ∈ R. Often, the multiplier k is fixed in such a way
that |v| = 1.

To determine the eigenvalues and eigenvectors of a tensor, we rewrite eq. (2.17) as

(L− λI)v = o. (2.18)

The condition for this homogeneous system have a non null solution is

det(L− λI) = 0;

this is the so-called characteristic or Laplace’s equation. In the case of a second rank tensor
over V , the Laplace’s equation is an algebraic equation of degree 3 with real coefficients.
The roots of the Laplace’s equation are the eigenvalues of L; because the components of L,
and hence the coefficients of the characteristic equation, are all real, then the eigenvalues
of L are all real or one real and two complex conjugate.

For any eigenvalue λi, i = 1, 2, 3 of L, the corresponding eigenvectors vi can be found
solving eq. (2.18), once put λ = λi.

The proper space of L relatif to λ is the subspace of Lin(V) composed by all the vec-
tors that satisfy eq. (2.18). The multiplicity of λ is the dimension of its proper space,

16



while the spectrum of L is the set composed by all of its eigenvalues, each one with its
multiplicity.

L> has the same eigenvalues of L, because the Laplace’s equation is the same in both the
cases:

det(L> − λI) = det(L> − λI>) = det(L− λI)> = det(L− λI).

However, this is not the case for the eigenvectors, that, generally speaking, are different,
as a simple example can show.

Developing the Laplace’s equation, it is easy to show that it can be written as

det(L− λI) = −λ3 + I1λ
2 − I2λ+ I3 = 0,

which is merely an application of eq. (2.14). If we denote L3 = LLL, using eq. (2.15)
one can prove the

Theorem 5. (Cayley-Hamilton Theorem): ∀L ∈ Lin(V),

L3 − I1L
2 + I2L− I3I = O.

A quadratic form defined by L is any form ω : V × V → R of the type

ω = v · Lv;

if ω > 0 ∀v ∈ V , ω = 0 ⇐⇒ v = o, then ω and L are said to be positive definite. The
eigenvalues of a positive definite tensor are positive. In fact, if λ is an eigenvalue of L,
positive definite, and v its eigenvector, then

v · Lv = v · λv = λv2 > 0 ⇐⇒ λ > 0.

Be v1 and v2 two eigenvectors of a symmetric tensor L relative to the eigenvalues λ1 and
λ2, respectively, with λ1 6= λ2; then

λ1v1 · v2 = Lv1 · v2 = Lv2 · v1 = λ2v2 · v1 ⇐⇒ v1 · v2 = 0.

Actually, symmetric tensors have a particular importance, specified by the

Theorem 6. (Spectral Theorem): the eigenvectors of a symmetric tensor form a basis of
V.

This theorem5 is of the paramount importance in linear algebra: it proves that the eigen-
values of a symmetric tensor L are real valued and, remembering the definition of eigenval-
ues and eigenvectors, eq. (2.17), that it exists a basis BN = {u1,u2,u3} of V composed by
eigenvectors of L, i.e. by vectors that are mutually orthogonal and that remain mutually
orthogonal once transformed by L. Such a basis is called the normal basis.

If λi, i = 1, 2, 3, are the eigenvalues of L, then the components of L in BN are

Lij = ui · Luj = ui · λjuj = λjδij

5The proof of the spectral theorem is omitted here; the interested reader can find a proof of it in the
classical text of Halmos, page 155, see the bibliography.
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so finally in BN it is
L = λiei ⊗ ei,

i.e. L is diagonal and is completely represented by its eigenvalues. In addition, it is easy
to check that

I1 = λ1 + λ2 + λ3, I2 = λ1λ2 + λ2λ3 + λ3λ1, I3 = λ1λ2λ3.

A tensor with a unique eigenvalue λ, of multiplicity 3, is said to be spherical; in such a
case, any basis of V is BN and

L = λI.

Two tensors A and B are said to be coaxial if they have the same normal basis BN , i.e.
if they share the same eigenvectors. Be u an eigenvector of A, relative to the eigenvalue
λA, and of B, relatif to λB. Then,

ABu = AλBu = λBAu = λAλBu = λABu = BλAu = BAu,

which shows, on one hand, that also Bu is an eigenvector of A, relative to the same
eigenvalue λA; in the same way, of course, Au is an eigenvector of B relative to λB. In
other words, this shows that B leaves unchanged any proper space of A, and viceversa.
On the other hand, we see that, at least for what concerns the eigenvectors, two tensors
commute if and only if they are coaxial. Because any vector can be written as a linear
combination of the vectors of BN , and for the linearity of tensors, we finally have proved
the

Theorem 7. (Commutation Theorem): two tensors commute if and only if they are
coaxial.

2.9 Skew tensors and cross product

Because dim(V) = dim(Skw(V)) = 3, an isomorphism can be established between V and
Skw(V), i.e. between vectors and skew tensors. We establish hence a way to associate in a
unique way a vector to any skew tensor and inversely. To this purpose, we first introduce
the following

Theorem 8. The spectrum of any tensor W ∈ Skw(V) is {0} and the dimension of its
proper space is 1.

Proof. This theorem states that zero is the only real eigenvalue of any skew tensor and
that its multiplicity is 1. In fact, be w an eigenvector of W relative to the eigenvector λ.
Then

λ2w2 = Ww ·Ww = w ·W>Ww = −w ·WWw

= −w ·W(λw) = −λw ·Ww = −λ2w2 ⇐⇒ λ = 0.

Then, if W 6= O its rank is necessarily 2, because det W = 0 ∀W ∈ Skw(V); hence, the
equation

Ww = o (2.19)

has ∞1 solutions, i.e. the multiplicity of λ is 1, which proves the theorem.
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The last equation gives also the way the isomorphism is constructed: in fact, using eq.
(2.19) it is easy to check that if w = (a, b, c), then

w = (a, b, c) ⇐⇒ W =

 0 −c b
c 0 −a
−b a 0

 . (2.20)

The proper space of W is called the axis of W and it is indicated by A(W):

A(W) = {u ∈ V|Wu = o}.

The consequence of what shown above is that dimA(W) = 1. With regard to eq. (2.20),
one can check easily that the equation

u · u =
1

2
W ·W (2.21)

is satisfied only by w and by its opposite −w. Because both these vectors belong to
A(W), choosing one of them corresponds to choose an orientation for E , see below.
We will always fix our choice according to eq. (2.20), which fixes once and for all the
isomorphism between V and Skw(V) that makes correspond any vector w with one and
only one axial tensor W and vice-versa, any skew tensor W with a unique axial vector
w.

It is worth noting that the above isomorphism between the vector spaces V and Skw(V)
implies that to any linear combination of vectors a and b corresponds an equal linear
combination of the corresponding axial tensors Wa and Wb and vice-versa, i.e. ∀a, b ∈ R

w = αa + βb ⇐⇒ W = αWa + βWb, (2.22)

where W is the axial tensor of w. Such a property is immediately checked using eq.
(2.20).

It is useful, for further developments, to calculate the powers of W:

W2 = WW = −W>(−W>) = (WW)>= (W2)> (2.23)

i.e. W2 is symmetric. Moreover:

W2u = WWu = w × (w × u) = w · uw −w ·wu

= −(I−w ⊗w)u ⇒ W2= −(I−w ⊗w)
(2.24)

So, applying recursively the previous results,

W3 = WW2 = −W(I−w ⊗w) = −W + (Ww)⊗w= −W

W4 = WW3= −W2

W5 = WW4= −W3

etc.

(2.25)

An important property of any couple axial tensor W - axial vector w is

WW = −1

2
|W|2(I−w ⊗w),
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while eq. (2.21) can be generalized to any two axial couples w1,W1 and w2,W2 :

w1 ·w2 =
1

2
W1 ·W2.

The proof of these two last properties is rather easy and left to the reader.

We define cross product of two vectors a and b the vector

a× b = Wab,

where Wa is the axial tensor of a. If a = (a1, a2, a3) and b = (b1, b2, b3), then by eq.
(2.20) we get

a× b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

The cross product is bilinear: ∀a,b,u ∈ V , α, β ∈ R,

(αa + βb)× u = αa× u + βb× u,

u× (αa + βb) = αu× a + βu× b.

In fact, the first equation above is a consequence of eq. (2.22), while the second one is a
simple application to axial tensors of the same definition of tensor.

Three important results concerning the cross product are stated by the following theo-
rems:

Theorem 9. (Condition of parallelism): two vectors a and b are parallel, i.e. b =
ka, k ∈ R, ⇐⇒

a× b = o.

Proof. This property is actually a consequence of the fact that any eigenvalue of a tensor
is determined to within a multiplier:

a× b = Wab = o ⇐⇒ b = ka, k ∈ R,

for Theorem 8.

Theorem 10. (Orthogonality property):

a× b · a = a× b · b = 0. (2.26)

Proof.

a× b · a = Wab · a = b ·W>
a a = −b ·Waa = −b · o = 0,

a×b · b = Wab · b = b ·W>
a b = −b ·Wab ⇐⇒ a× b · b = 0.

Theorem 11. a× b is the axial vector of the tensor (b⊗ a− a⊗ b).
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Proof. First of all, by eq. (2.5) we see that

(b⊗ a− a⊗ b) ∈ Skew(V).

Then,
(b⊗ a− a⊗ b)(a× b) = a · a× b b− b · a× b a = 0

for Theorem 10.

Theorem 11 allows for showing that, unlike the scalar product, the cross product is anti-
symmetric:

a× b = −b× a. (2.27)

In fact, if W1 = (b⊗ a− a⊗ b) is the axial tensor of a× b, W2 = (−a⊗ b + b⊗ a) is
that of −b× a. But, evidently, W1 = W2 which implies eq. (2.27) for the isomorphism
between V and Lin(V). This property and again Theorem 11 let us show the formula for
the double cross product:

u× (v ×w) = −(v ×w)× u = −(w ⊗ v − v ⊗w)u = u ·w v − u · v w. (2.28)

Another interesting result concerns the mixed product:

u× v ·w = Wuv ·w = −v ·Wuw = −v · u×w = w × u · v, (2.29)

and similarly
u× v ·w = v ×w · u.

Using this last result, we can obtain a formula for the norm of a cross product; if a = a ea
and b = b eb, with ea, eb ∈ S, are two vectors forming the angle θ, then

(a× b) · (a× b) = a× b · (a× b) = (a× b)× a · b = −a× (a× b) · b =

(−a · b a + a2 b) · b = b · (a2I− a⊗ a)b = a2 b · (I− ea ⊗ ea)b =

a2b2 eb · (I− ea ⊗ ea)eb = a2b2(1− cos2 θ) = a2b2 sin2 θ → |a× b| = ab sin θ.

So, the norm of a cross product can be interpreted, geometrically, as the area of the
parallelogram spanned by the two vectors. As a consequence, the absolute value of the
mixed product (2.29) measures the volume of the prism delimited by three non coplanar
vectors.

Because the cross product is antisymmetric and the scalar one is symmetric, it is easy to
check that the form

β(u,v,w) = u× v ·w

is a skew trilinear form. Then, eq. (2.8), we get

Lu× Lv · Lw = det L u× v ·w. (2.30)

Following the interpretation given above for the absolute value of the mixed product,
we can conclude that | det L| can be interpreted as a coefficient of volume dilation. A
geometrical interpretation can then be given to the case of a non invertible tensor, i.e.
of det L = 0: it crushes a prism into a flat region (the three original vectors become
coplanar, i.e. linearly dependent).

21



The adjugate of L is the tensor

L∗ := (det L)L−>.

From eq. (2.30) we get hence

det L u× v ·w = Lu× Lv · Lw = L>(Lu× Lv) ·w ∀w⇒

Lu× Lv = L∗(u× v).

2.10 Orientation of a basis

It is immediate to observe that a basis B = {e1, e2, e3} can be oriented in two opposite
ways6: e.g., once two unit mutually orthogonal vectors e1 and e2 chosen, there are two
opposite unit vectors perpendicular to both e1 and e2 that can be chosen to form B.

We say that B is positively oriented or right-handed if

e1 × e2 · e3 = 1,

while B is negatively oriented or left-handed if

e1 × e2 · e3 = −1.

Schematically, a right-handed basis is represented in Fig. 2.1, where a left-handed basis
is represented too, with a dashed e3.

Figure 2.1: Right- and left-handed bases.

With a right-handed basis, by definition the axial tensors of the three vectors of the basis
are

We1 = e3 ⊗ e2 − e2 ⊗ e3,

We2 = e1 ⊗ e3 − e3 ⊗ e1,

We3 = e2 ⊗ e1 − e1 ⊗ e2.

6It is evident that this is true also for one- and two-dimensional vector spaces.
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2.11 Rotations

In the previous Chapter we have seen that the elements of V represent translations over
E . A rotation, i.e. a rigid rotation of the space, is an operation that transforms any two
vectors u and v into two other vectors u′ and v′ in such a way that

u = u′, v = v′, u · v = u′ · v′, (2.31)

i.e. it preserves norms and angles. Because a rotation is a transformation from V to V ,
rotations are tensors, i.e. we can write

v′ = Rv,

with R the rotation tensor or simply the rotation.

Conditions (2.31) impose some restrictions on R:

u′ · v′ = Ru ·Rv = u ·R>Rv = u · v ⇐⇒ R>R = I = RR>.

A tensor that preserves angles belongs to Orth(V), the subspace of orthogonal tensors (we
leave to the reader the proof that actually Orth(V) is a subspace of Lin(V). Replacing in
the above equation v with u shows immediately that an orthogonal tensor preserves also
the norms. By the uniqueness of the inverse, we see that

R ∈ Orth(V) ⇐⇒ R−1 = R>.

The above condition is not sufficient to characterize a rotation; in fact, a rotation must
transform a right-handed basis into another right-handed basis, i.e. it must preserve the
orientation of the space. This means that it must be

e′1 × e′2 · e′3 = Re1 ×Re2 ·Re3 = e1 × e2 · e3.

By eq. (2.30) we get hence the condition7

det R(e1 × e2 · e3) = e1 × e2 · e3 ⇐⇒ det R = 1.

The tensors of Orth(V) that have a determinant equal to 1 form the subspace of proper
rotations or simply rotations, indicated by Orth(V)+ or also by SO(3). Only tensors of
Orth(V)+ represent rigid rotations of E8.

Theorem 12. : each tensor R ∈ Orth(V) has the eigenvalue ±1, with +1 for rotations.

Proof. Be u an eigenvector of R ∈ Orth(V) corresponding to the eigenvalue λ. Because
R preserves the norm, it is

Ru ·Ru = λ2u2 = u2 → λ2 = 1.

7From the condition R>R = I and through eq.(2.13) and the Theorem of Binet, we recognize imme-
diately that detR = ±1 ∀R ∈ Orth(V).

8A tensor S ∈ Orth(V) such that detS = −1 represents a transformation that changes the orientation
of the space, like mirror symmetries do, see Sect. 2.12.
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We now must prove that it exists at least one real eigenvector λ. To this end, we consider
the characteristic equation

f(λ) = λ3 + k1λ
2 + k2λ+ k3 = 0,

whose coefficients ki are real-valued, because R has real-valued components. It is imme-
diate to recognize that

lim
λ→±∞

f(λ) = ±∞.

So, because f(λ) is a real-valued continuous function, actually a polynomial of λ, it exists
at least one λ1 ∈ R such that

f(λ1) = 0.

In addition, we already know that ∀R ∈ Orth(V), det R = ±1 and that, if λi, i = 1, 2, 3
are the eigenvalues of R, then det R = λ1λ2λ3. Hence, two are the possible cases:

i. λ1 ∈ R and λ2, λ3 ∈ C, with λ3 = λ2, the complex conjugate of λ2;

ii. λi ∈ R ∀i = 1, 2, 3.

Let us consider the case of R ∈ Orth(V)+, i.e. a (proper) rotation → det R = 1. Then,
in the first case above,

det R = λ1λ2λ2 = λ1[<2(λ2) + =2(λ2)].

But
<2(λ2) + =2(λ2) = 1

because it is the square of the modulus of the complex eigenvalue λ2. So in this case

det R = 1 ⇐⇒ λ1 = 1.

In the second case, λi ∈ R ∀i = 1, 2, 3, either λ1 > 0, λ2, λ3 < 0, or all of them are
positive. Because the modulus of each eigenvalue must be equal to 1, either λ1 = 1 or
λi = 1 ∀i = 1, 2, 3 (in this case R = I).

Following the same steps, one arrives easily to show that ∀S ∈ Orth(V) with det S = −1,
it exists at least one real eigenvalue λ1 = −1.

Generally speaking, a rotation tensor rotates the basis B = {e1, e2, e3} into the basis
B′ = {e′1, e′2, e′3}:

Rei = e′i ∀i = 1, 2, 3 ⇒ Rij = ei ·Rej = ei · e′j. (2.32)

This result actually means that the j-th column of R is composed by the components in
the base B of the vector e′j of B′. Because the two bases are orthonormal, such components
are the director cosines of the axes of B′ with respect to B.

Geometrically speaking, any rotation is characterized by an axis of rotation w, |w| = 1
and by an amplitude ϕ, i.e. the angle through which the space is rotated about w. By
definition, w is the (only) vector that is left unchanged by R, i.e.

Rw = w,
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or, in other words, it is the eigenvector corresponding to the eigenvalue +1.

The question is then: how a rotation tensor R can be expressed by means of its geometrical
parameters, w and ϕ? To this end we have a fundamental theorem:

Theorem 13. (Euler’s rotation representation theorem): ∀R ∈ Orth(V)+,

R = I + sinϕW + (1− cosϕ)W2 (2.33)

with ϕ the rotation’s amplitude and W the axial tensor of the rotation axis w.

Proof. We observe preliminarily that

Rw = Iw + sinϕWw + (1− cosϕ)WWw = Iw = w (2.34)

i.e. that eq. (2.33) actually defines a transformation that leaves unchanged the axis w,
like a rotation about w must do, and that +1 is an eigenvalue of R.

We need now to prove that eq. (2.33) actually represents a rotation tensor, i.e. we must
prove that

RR> = I, det R = 1.

Through eq. (2.25) we get

RR> = (I + sinϕW + (1− cosϕ)W2)(I + sinϕW + (1− cosϕ)W2)>

= (I + sinϕW + (1− cosϕ)W2)(I− sinϕW + (1− cosϕ)W2)

= I + 2(1− cosϕ)W2 − sin2 ϕW2 + (1− cosϕ)2W4

= I + 2(1− cosϕ)W2 − sin2 ϕW2 − (1− cosϕ)2W2= I.

Then, through eq. (2.24) we obtain

R = I + sinϕW + (1− cosϕ)W2

= I + sinϕW − (1− cosϕ)(I−w ⊗w)

= cosϕI + sinϕW + (1− cosϕ)w ⊗w.

(2.35)

To go on, we need to express W and w ⊗w; if w = (w1, w2, w3), then by eq. (2.20) we
have

W =

 0 −w3 w2

w3 0 −w1

−w2 w1 0


and by eq. (2.2)

w ⊗w =

 w2
1 w1w2 w1w3

w1w2 w2
2 w2w3

w1w3 w2w3 w2
3

 ,
that injected into eq. (2.35) gives

R =

 cosϕ+ (1− cosϕ)w2
1 −w3 sinϕ+ w1w2(1− cosϕ) w2 sinϕ+ w1w3(1− cosϕ)

w3 sinϕ+ w1w2(1− cosϕ) cosϕ+ (1− cosϕ)w2
2 −w1 sinϕ+ w2w3(1− cosϕ)

−w2 sinϕ+ w1w3(1− cosϕ) w1 sinϕ+ w2w3(1− cosϕ) cosϕ+ (1− cosϕ)w2
3

 .
(2.36)
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This formula gives R as function exclusively of w and ϕ, the geometrical elements of the
rotation. Then

det R = (w2 + (1− w2) cosϕ)(cos2 ϕ+ w2 sin2 ϕ)

and because w = 1, det R = 1, which proves that eq. (2.33) actually represents a rotation.

We eventually need to prove that eq. (2.33) represents the rotation about w of amplitude
ϕ. To this end, we choose an orthonormal basis B = {e1, e2, e3} of V such that w = e3,
i.e. we analyze the particular case of a rotation of amplitude ϕ about e3. This is always
possible, thanks to the arbitrariness of the basis of V . In such a case, eq. (2.32) gives

R =

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 . (2.37)

Moreover,

W =

 0 −1 0
1 0 0
0 0 0

 , w ⊗w =

 0 0 0
0 0 0
0 0 1

,
W2 = −(I−w ⊗w) =

 −1 0 0
0 −1 0
0 0 0

.
Hence

I + sinϕW + (1− cosϕ)W2 =

 1 0 0
0 1 0
0 0 1

+ sinϕ

 0 −1 0
1 0 0
0 0 0

+

+ (1− cosϕ)

 −1 0 0
0 −1 0
0 0 0

 =

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

= R.

(2.38)

Equation (2.33) gives another result: to obtain the inverse of R it is sufficient to change
the sign of ϕ. In fact, because W ∈ Skw(V) and through eq. (2.23)

R−1 = R> = (I + sinϕW + (1− cosϕ)W2)> = I + sinϕW> + (1− cosϕ)(W2)>

= I− sinϕW + (1− cosϕ)W2 = I + sin(−ϕ)W + (1− cos(−ϕ))W2.

The knowledge of the inverse of a rotation allows also to perform the operation of change of
basis, i.e. to determine the components of a vector or of a tensor in a basis B′ = {e′1, e′2, e′3}
rotated with respect to an original basis B = {e1, e2, e3} by a rotation R (in the following
equation, a prime indicates a quantity specified in the basis B′). Considering that

ei = R−1e′i = R>e′i = R>hk(e
′
h ⊗ e′k)e

′
i = R>hkδkie

′
h

we get, for a vector u,
u = uiei = uiR

>
kie
′
k
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i.e.
u′k = R>kiui → u′ = R>u.

We remark that, because R> = R−1, the operation of change of basis is just the opposite
one of the rotation of the space (and actually, we have seen that it is sufficient to take
the opposite of ϕ in eq. (2.33) to get R−1).

For a second-rank tensor L we get

L = Lijei ⊗ ej = LijR
>
mie

′
m ⊗R>nje′n = R>miR

>
njLije

′
m ⊗ e′n,

i.e.
L′mn = R>miR

>
njLij → L′ = R>LR.

We remark something that is typical of tensors: the components of a r-rank tensor in a
rotated basis B′ depend upon the r-th powers of the directors cosines of the axes of B′,
i.e. on the r-th powers of the components Rij of R.

If a rotation tensor is known through its Cartesian components in a given basis B, it is
easy to calculate its geometrical elements: the rotation axis w is the eigenvector of R
corresponding to the eigenvalue 1, so it is found solving the equation

Rw = w

and then normalizing it, while the rotation amplitude ϕ can be found still using (2.33):
because the trace of a tensor is an invariant, we get

trR = 3 + (1− cosϕ)tr(−I + w ·w) = 1 + 2 cosϕ → ϕ = arccos
trR− 1

2
.

It is interesting to consider the geometrical meaning of eq. (2.33). To this purpose we
apply eq. (2.33) to a vector u, see Fig. 2.2

Ru = (I + sinϕW + (1− cosϕ)W2)u

= u + sinϕw × u + (1− cosϕ)w × (w × u)

The rotated vector Ru is the sum of three vectors; in particular, sinϕWu is always

Figure 2.2: Rotation of a vector.

orthogonal to u, w and (1− cosϕ)W2u. If u ·w = 0, see the sketch on the right in Fig.
2.2, then (1− cosϕ)W2u is also parallel to u.
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Let us consider now a composition of rotations. In particular, let us imagine that a vector
u is rotated first by R1, around w1 through ϕ1, then by R2, around w2 through ϕ2. So,
first the vector u becomes the vector

u1 = R1u.

Then, the vector u1 is rotated about w2 through ϕ2 to become

u12 = R2u1 = R2R1u.

Let us now suppose to change the order of the rotations: R2 first and then R1. The final
result will be the vector

u21 = R1R2u. (2.39)

Because the tensor product is not symmetric (i.e., it has not the commutativity property),
generally speaking9

u12 6= u21.

In other words, the order of the rotations matters: changing the order of the rotations
leads to a different final result. An example is shown in Fig. 2.3.

Figure 2.3: Non-commutativity of the rotations.

This is a fundamental difference between rotations and displacements, that commute, see
Fig. 1.2, because the composition of displacements is ruled by the sum of vectors:

w = u + v = v + u (2.40)

This difference, which is a major point in physics, comes from the difference of the oper-
ators: vectors for the displacements, tensors for the rotations.

Any rotation can be specified by the knowledge of three parameters. This can be eas-
ily seen from eq. (2.33): the parameters are the three components of w, that are not
independent because

w = |w| =
√
w2

1 + w2
2 + w2

3 = 1

and by the amplitude angle ϕ. The choice of the parameters by which to express a rotation
is not unique. Besides the use of the Cartesian components of w and ϕ, other choices are
possible, let us see three of them:

9We have seen, Theorem 7, that two tensors commute ⇐⇒ they are coaxial, i.e. if they have the
same eigenvectors. Because the rotation axis is always a real eigenvector of a rotation tensor, if two
tensors operate a rotation about different axes they are not coaxial. Hence, the rotation tensors about
different axes never commute.
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i. physical angles: the rotation axis w is given through its spherical coordinates ψ, the
longitude, 0 ≤ ψ < 2π, and θ, the colatitude, 0 ≤ θ ≤ π, see Fig. 2.4, the third
parameter being the rotation amplitude ϕ. Then

Figure 2.4: Physical angles.

w = (sin θ cosψ, sin θ sinψ, cos θ) → θ = arccosw3, ψ = arctan
w2

w1

,

and, eq. (2.36),

R =

 cψ2sθ2 + cϕ(cθ2 + sψ2sθ2) sψcψsθ2(1− cϕ)− cθsϕ cψsθcθ(1− cϕ) + sψsθsϕ
sψcψsθ2(1− cϕ) + cθsϕ sψ2sθ2 + cϕ(cθ2 + cψ2sθ2) sψsθcθ(1− cϕ)− cψsθsϕ
cψsθcθ(1− cϕ)− sψsθsϕ sψsθcθ(1− cϕ) + cψsθsϕ cθ2 + cϕ(cψ2sθ2 + sψ2sθ2)

 ,
where cψ = cosψ, sψ = sinψ, cθ = cos θ, sθ = sin θ, cϕ = cosϕ, sϕ = sinϕ. We
remark that all the components of R so expressed depend upon the first powers of
the circular functions of ϕ. Hence, for what said above, with this representation of
the rotations, the components of a rotated r-rank tensor depend upon the r-th power
of the circular functions of ϕ, i.e. of the physical rotation, but not on ψ nor on θ.

ii. Euler’s angles: in this case the three parameters are the amplitude of three particular
rotations into which the rotation is decomposed. Such parameters are the angles ψ,
the precession, θ, the nutation, and ϕ, the proper rotation, see Fig. 2.5 These three

Figure 2.5: Euler’s angles.

rotations are represented in Fig. 2.6. The first one, of amplitude ψ, is made about z
to carry the axis x onto the knots line xN , the line perpendicular to both the axes z

29



and z′, and y onto y; by eq. (2.32), in the frame {x, y, z} it is

Rψ =

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 .
The second one, of amplitude θ, is made about xN to carry z onto z′; in the frame
{xN , y, z} it is

Rθ =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 ,
while in the frame {x, y, z}

Ro
θ = (R−1

ψ )>RθR
−1
ψ = RψRθR

>
ψ .

Figure 2.6: Euler’s rotations, as seen from the respective axes of rotation.

The last rotation, of amplitude ϕ, is made about z′ to carry xN onto x′ and y onto
y′; in the frame {xN , y, z′} it is

Rϕ =

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 ,
while in {x, y, z}

Ro
ϕ = (R−1

ψ )>(R−1
θ )>RϕR

−1
θ R−1

ψ = RψRθRϕR
>
θ R>ψ .

Any vector u is transformed, by the global rotation, into the vector

u′ = Ru.

But we can write also
u′ = Ro

ϕu,

where u is the vector transformed by rotation Ro
θ,

u = Ro
θu,
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and u is the vector transformed by rotation Rψ,

u = Rψu.

Finally,
u′ = Ru = Ro

ϕR
o
θRψu → R = Ro

ϕR
o
θRψ,

i.e. the global rotation tensor is obtained composing, in the opposite order of execu-
tion of the rotations, the three tensors all expressed in the original basis. However,

R = Ro
ϕR

o
θRψ = RψRθRϕR

>
θ R>ψRψRθR

>
ψRψ = RψRθRϕ,

i.e., the global rotation tensor is also equal to the composition of the three rotations,
in the order of execution, if the three rotations are expressed in their own particular
bases. This result is general, not bounded to the Euler’s rotations nor to three
rotations.

Performing the tensor multiplications we get

R =

 cosψ cosϕ− sinψ sinϕ cos θ − cosψ sinϕ− sinψ cosϕ cos θ sinψ sin θ
sinψ cosϕ+ cosψ sinϕ cos θ − sinψ sinϕ+ cosψ cosϕ cos θ − cosψ sin θ

sinϕ sin θ cosϕ sin θ cos θ

 .
The components of a vector u in the basis B′ are then given by

u′ = R>u = R>ϕR>θ R>ψu,

and those of a second-rank tensor

L′ = R>LR = R>ϕR>θ R>ψLRψRθRϕ.

iii. coordinate angles: in this case, the rotation R is decomposed into three successive
rotations α, β, γ, respectively about the axes x, y and z of each rotation, i.e.

R = RαRβRγ

with

Rα =

 1 0 0
0 cosα − sinα
0 sinα cosα

 ,Rβ =

 cos β 0 − sin β
0 1 0

sin β 0 cos β

 ,Rγ =

 cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 ,
so finally

R =

 cos β cos γ − cos β sin γ − sin β
cosα sin γ − sinα sin β cos γ cosα cos γ + sinα sin β sin γ − sinα cos β
sinα sin γ + cosα sin β cos γ sinα cos γ − cosα sin β sin γ cosα cos β

 .
Let us now consider the case of small rotations, i.e. |ϕ| → 0. In such a case,

sinϕ ' ϕ, 1− cosϕ ' 0
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and

R ' I + ϕW,

i.e. in the small rotations approximation, any vector u is transformed as

Ru ' (I + ϕW)u = u + ϕw × u, (2.41)

i.e. by a skew tensor, not by a rotation tensor. The term (1−cosϕ)W2u has disappeared
(i.e., it is a higher order infinitesimal quantity) and the term ϕw × u is orthogonal to u.
Because ϕ→ 0, the arc is approximated by its tangent, the vector ϕw × u, see Fig. 2.7.
Applying to eq. (2.41) the procedure already seen for the composition of finite amplitude

Figure 2.7: Small rotations.

rotations, we get

u1 = R1u = (I + ϕ1W1)u = u + ϕ1w1 × u,

u21 = R2u1 = (I + ϕ2W2)u1 = u1 + ϕ2w2 × u1

= u + ϕ1w1 × u + ϕ2w2 × u

+ ϕ1ϕ2w2 × (w1 × u).

If the order of the rotations is changed, the last term becomes ϕ1ϕ2w1× (w2×u), which
is, in general, different from ϕ1ϕ2w2× (w1×u): strictly speaking, also small rotations do
not commute10. However, for small rotations, ϕ1ϕ2 is negligible with respect to ϕ1 and
ϕ2: in this approximation, small rotations commute. To remark that the approximation
(2.41) gives, for the displacements, a law which is quite similar to that of the velocities of
the points of a rigid body:

v = v0 + ω × (p− o)

This is quite natural, because

ω =
dϕ

dt
,

i.e. a small amplitude rotation can be seen as the rotation made with finite angular
velocity ω in a small time interval dt.

10This can happen for some vectors, all the times that w1 · u = w2 · u, like for the case of a vector u
orthogonal to both w1 and w2; however, this is no more than a curiosity, it has no importance in practice.
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2.12 Symmetries

Let us consider now tensors S ∈ Orth(V) that are not a rotation, i.e. such that det S = −1.
Let us call S an improper rotation. A particular improper rotation, whose all eigenvalues
are equal to -1, is the inversion or reflexion tensor

SI = −I.

The effect of SI is to transform any basis B into the basis −B, i.e. with all the basis vectors
changed of orientation (or, which is the same, to change the sign of all the components
of a vector). In other words, SI changes the orientation of the space. This is also the
effect of any other improper rotation S, that can be decomposed into a proper rotation
R followed by the reflexion SI

11:

S = SIR. (2.42)

Be n ∈ S, then

SR = I− 2n⊗ n (2.43)

is the tensor that operates the transformation of symmetry with respect to a plane or-
thogonal to n. In fact

SRn = −n, SRm = m ∀m ∈ V : m · n = 0.

SR is an improper rotation; in fact, eqs. (2.4), (2.14) and exercice 11,

(I− 2n⊗ n)(I− 2n⊗ n)> = (I− 2n⊗ n)(I− 2n⊗ n)

= I− 2n⊗ n− 2n⊗ n + 4(n⊗ n)(n⊗ n) = I,

det(I− 2n⊗ n) = 1− 2tr(n⊗ n) + 4
tr2(n⊗ n)− tr(n⊗ n)(n⊗ n)

2
− 8 det(n⊗ n) = −1.

Be S = SIR an improper rotation; then

(Su)× (Sv) = (SIRu)× (SIRv) = det(SIR)
[
(SIR)−1

]>
(u× v)

= det SI det R(R−1S−1
I )>(u× v) = −(−R−1I)>(u× v) = R(u× v).

The transformation by S of any vector u gives

Su = SIRu = −Ru,

i.e. it changes the orientation of the rotated vector; this is not the case when the same
improper rotations transforms the vectors of a cross product: the rotated vector result of
the cross product does not change of orientation, i.e. the cross product is insensitive to
a reflexion. That is why, strictly speaking, the result of a cross product is not a vector,
but a pseudo-vector: it behaves like vectors apart for the reflexions. For the same reason
a scalar result of a mixed product (scalar plus cross product of three vectors) is called a
pseudo-scalar, because in this case the scalar result of the mixed product changes of sign
under a reflexion, as it is easy to be seen.

11The application of the Binet’s Theorem shows immediately that detS = −1, while SIR(SIR)> =
SIRR>S>

I = −I(−I)> = I: the decomposition in eq. (2.42) actually gives an improper rotation.
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2.13 Polar decomposition

Theorem 14. (Square root theorem): be L ∈ Sym(V) and positive definite; then is exists
a unique tensor U ∈ Sym(V) and positive definite such that

L = U2.

Proof. Existence: be L,U,V ∈ Sym(V) positive definite and

L = ωiei ⊗ ei

a spectral decomposition of L, ωi > 0 ∀i. Define U as

U =
√
ωiei ⊗ ei;

then, by eq. (2.4)1 we get

U2 = L.

Uniqueness: suppose that also

V2 = L

and be e an eigenvector of L corresponding to the (positive) eigenvalue ω. Then, if
λ =
√
ω,

O = (U2 − λI)e = (U− λI)(U− λI)e,

and put

v = (U− λI)e,

we get

Uv = −λv ⇒ v = o ⇒ Ue = λe

because U is positive definite and −λ cannot be an eigenvalue of U, because λ > 0. In
the same way

Ve = λe ⇒ Ue = Ve

for every eigenvector e of L. Because, spectral theorem, it exists a basis of eigenvectors
of L, U = V.

We symbolically write that

U =
√

L.

For any F ∈ Lin(V), both FF> and F>F clearly ∈ Sym(V). If in addition det F > 0,
then

u · F>Fu = (Fu) · (Fu) ≥ 0

and the zero value is obtained ⇐⇒ Fu = o and because F is invertible, ⇐⇒ u = o.
As a consequence, F>F is positive definite. In the same way it can be proved that FF>

is also positive definite.

An important tensor decomposition is given by the
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Theorem 15. (Polar decomposition theorem): ∀F ∈ Lin(V)| det F > 0 exist and are
uniquely determined two positive definite tensors U,V ∈ Sym(V) and a rotation R such
that

F = RU = VR.

Proof. Uniqueness: Be F = RU a right polar decomposition of F; because R ∈ Orth(V)+

and U ∈ Sym(V),

F>F = UR>RU = U2 → U =
√

F>F.

By the Square-root Theorem, tensor U is unique, and because

R = FU−1,

R is unique too.

Be now F = VR a left polar decomposition of F; by the same procedure, we get

FF> = V2 → V =
√

FF>,

so V is unique and also
R = V−1F.

Existence: be
U =

√
F>F

so U ∈ Sym(V) and it is positive definite, and let

R = FU−1.

To prove that F = RU is a right polar decomposition, we just have to show that R ∈
Orth(V)+. Since det F > 0, det U > 0 (the latter because all the eigenvalues of U are
strictly positive), by the Theorem of Binet also det R > 0. Then

R>R = (FU−1)>(FU−1) = U−1F>FU−1 = U−1U2U−1 = I⇒ R ∈ Orth(V)+.

Let now
V = RUR>;

then V ∈ Sym(V) and is positive definite, see exercice 16, and

VR = RUR>R = RU = F,

which completes the proof.

2.14 Exercices

1. Prove that
Lo = o ∀L ∈ Lin(V).

2. Prove that, if a straight line r has the direction of u ∈ S, then the tensor giving the
projection of a vector u ∈ V on r is u⊗ u, while the one giving the projection on a
direction orthogonal to r is I− u⊗ u.
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3. For any α ∈ R, a,b ∈ V and A,B ∈ Lin(V), prove that

(αA)> = αA>, (A + B)> = A> + B>, (a⊗ b)A = a⊗ (A>b).

4. Prove that

trI = 3, trO = 0, tr(AB) = tr(BA) ∀A,B ∈ Lin(V).

5. Prove that, ∀L,M,N ∈ Lin(V),

L> ·M> = L ·M, LM ·N = L ·NM> = M · L>N.

6. Prove that Sym(V) and Skw(V) are orthogonal, i.e. prove that

A ·B = 0 ∀A ∈ Sym(V), B ∈ Skw(V).

7. For any L ∈ Lin(V), prove that, if A ∈ Sym(V), then

A · L = A · Ls,

while if B ∈ Skw(V), then

B · L = B · La.

8. Express by components the second principal invariant I2 of a tensor L.

9. Prove that, if a = (a1, a2, a3),b = (b1, b2, b3), c = (c1, c2, c3), then

a× b · c = det

 a1 a2 a3

b1 b2 b3

c1 c2 c3

 .
10. Prove the uniqueness of the inverse tensor.

11. Prove that all the dyads are singular.

12. Prove that if L is invertible and α ∈ R− {0} then

(αL)−1 = α−1L−1.

13. Prove that any quadratic form defined by a tensor L can be written as a scalar
product of tensors:

u · Lu = L · u⊗ u ∀u ∈ V ,L ∈ Lin(V).

14. Prove that, if W is the axial tensor of w, then

WW = −1

2
|W|2(I−w ⊗w).
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15. Prove that for any two axial couples w1,W1 and w2,W2, it is:

w1 ·w2 =
1

2
W1 ·W2.

16. Let L ∈ Sym(V) and positive definite and R ∈ Orth(V)+; then prove that RLR> ∈
Sym(V) and that it is positive definite.

17. Let A,B,C,D ∈ Lin(V); prove that

A ·BCD = B>A ·CD = AD> ·BC.

18. Prove that the spectrum of Lsph is composed by only

λsph =
1

3
trL,

and that any u ∈ S is an eigenvector.

19. Prove that the eigenvalues λdev of Ldev are given by

λdev = λ− λsph,

where λ is an eigenvalue of L.
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Chapter 3

Fourth rank tensors

3.1 Fourth-rank tensors

A fourth-rank tensor L is any linear application from Lin(V) to Lin(V):

L : Lin(V)→ Lin(V)|L(αiAi) = αiLAi ∀αi ∈ R, Ai ∈ Lin(V), i = 1, ..., n.

Defining the sum of two fourth-rank tensors as

(L1 + L2)A = L1A + L2A ∀A ∈ Lin(V),

the product of a scalar by a fourth-rank tensor as

(αL)A = α(LA) ∀α ∈ R,A ∈ Lin(V)

and the null fourth-rank tensor O as the unique tensor such that

OA = O ∀A ∈ Lin(V),

then the set of all the tensors L that operate on Lin(V) forms a vector space, denoted by
Lin(V). We define the fourth-rank identity tensor I as the unique tensor such that

IA = A ∀A ∈ Lin(V).

It is apparent that the algebra of fourth-rank tensors is similar to that of second-rank
tensors and in fact the operations with fourth-rank tensors can be introduced in almost
the same way, in some sense shifting from V to Lin(V) the operations. However, the
algebra of fourth-rank tensors is richer than that of the second-rank ones and some care
must be paid.

In the following sections, we consider some of the operations that can be done with
fourth-rank tensors.

3.2 Dyads, tensor components

For any couple of tensors A and B ∈ Lin(V), the (tensor) dyad A⊗B is the fourth-rank
tensor defined by

(A⊗B)L := B · L A ∀L ∈ Lin(V).
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The application defined above is actually a fourth-rank tensor because of the bi-linearity
of the scalar product of second-rank tensors. Applying this rule to the nine dyads of
the basis B2 = {ei ⊗ ej, i, j = 1, 2, 3} of Lin(V) let us introduce the 81 fourth-rank
tensors

ei ⊗ ej ⊗ ek ⊗ el := (ei ⊗ ej)⊗ (ek ⊗ el)

that form a basis B4 = {ei⊗ej⊗ek⊗el, i, j = 1, 2, 3} for Lin(V). We remark hence that
dim(Lin(V)) = 81. A useful result is that

(ei ⊗ ej ⊗ ek ⊗ el)(ep ⊗ eq) = (ek ⊗ el) · (ep ⊗ eq)(ei ⊗ ej) = δkpδlq(ei ⊗ ej). (3.1)

Any fourth-rank tensor can be expressed as the linear combination (the canonical decom-
position)

L = Lijkl ei ⊗ ej ⊗ ek ⊗ el, i, j = 1, 2, 3,

where the Lijkls are the 81 Cartesian components of L with respect to B4. The Lijkls are
defined by the operation:

(ei ⊗ ej) · L(ek ⊗ el) = (ei · ej) · (Lpqrsep ⊗ eq ⊗ er ⊗ es)(ek ⊗ el)

= (ei ⊗ ej) · (Lpqrsδrkδslep ⊗ eq)

= Lpqrsδrkδslδipδjq = Lijkl.

The components of a tensor dyad can be computed without any difficulty:

A⊗B = (Aijei ⊗ ej)⊗ (Bklek ⊗ el) = AijBklei ⊗ ej ⊗ ek ⊗ el ⇒
(A⊗B)ijkl = AijBkl,

so that in particular
((a⊗ b)⊗ (c⊗ d))ijkl = aibjckdl.

Concerning the identity of Lin(V),

Iijkl := (ei ⊗ el) · I(ek ⊗ el) = (ei ⊗ ej) · (ek ⊗ el) = ei · ekej · el = δikδjl →
I = δikδjl(ei ⊗ el ⊗ ek ⊗ el).

The components of A ∈ Lin(V) result of the application of L ∈ Lin(V) on B ∈ Lin(V)
can now be easily calculated:

A = LB = Lijkl(ei ⊗ ej ⊗ ek ⊗ el)(Bpqep ⊗ eq)

= LijklBpqδkpδlq(ei ⊗ ej)

= LijklBkl(ei ⊗ ej) → Aij = LijklBkl.

(3.2)

Moreover,

L(A⊗B)C = L((A⊗B)C) = L(B ·CA) = B ·C LA = ((LA)⊗B)C ⇒
L(A⊗B) = (LA)⊗B.

Using this result and eq. (3.1), we can determine the components of a product of fourth-
rank tensors:

AB = Aijkl(ei ⊗ ej ⊗ ek ⊗ el)Bpqrs(ep ⊗ eq ⊗ er ⊗ es)

= AijklBpqrs(ei ⊗ ej ⊗ ek ⊗ el)(ep ⊗ eq)⊗ (er ⊗ es)

= AijklBpqrs[(ei ⊗ ej ⊗ ek ⊗ el)(ep ⊗ eq)]⊗ (er ⊗ es)

= AijklBpqrs[δkpδlq(ei ⊗ ej)]⊗ (er ⊗ es)

= AijklBklrs(ei ⊗ ej ⊗ er ⊗ es) ⇒ (AB)ijrs = AijklBklrs.

(3.3)
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Depending upon four indices, a fourth-rank tensor L cannot be represented by a matrix;
however, we will see in Sect. 3.8 that a matrix representation of a fourth-rank tensor is
still possible, and that it is currently used in some cases, e.g. in elasticity.

3.3 Conjugation product, transpose, symmetries

For any two tensors A,B ∈ Lin(V) we call conjugation product the the tensor A � B ∈
Lin(V) defined by the operation

(A � B)L := ALB> ∀L ∈ Lin(V).

As a consequence, for the vectors of B,

(ei ⊗ ej) � (ek ⊗ el) = ei ⊗ ek ⊗ ej ⊗ el, (3.4)

so that

(A � B)ijkl = AikBjl.

Moreover, by the uniqueness of the identity I, ∀A ∈ Lin(V),

(I � I)A = IAI> = A ⇒ I = I � I.

The transpose of a fourth-rank tensor L is the unique tensor L> such that

A · (LB) = B · (L>A) ∀A,B ∈ Lin(V).

By this definition, putting A = ei ⊗ ej,B = ek ⊗ el gives

(L>)ijkl = Lklij.

A consequence is that

A · (LB) = B · (L>A) = A · (L>)>B ⇒ (L>)> = L.

Then, using

M · (A⊗B)>L = L · (A⊗B)M

= L ·AM ·B = M · (BA · L)

= M · (B⊗A)L,

M · (A � B)>L = L · (A � B)M

= L ·AMB> = A>L ·MB> = M>A>L ·B>

= (M>A>L)> · (B>)> = L>AM ·B = AM · LB

= M ·A>LB = M · (A> � B>)L,

so that

(A⊗B)> = B⊗A,

(A � B)> = A> � B>.
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A tensor L ∈ Lin(V) is symmetric ⇐⇒ L = L>. It is then evident that

L = L> ⇒ Lijkl = Lklij,

relations called major symmetries. These symmetries are 36 on the whole, so that a
symmetric fourth-rank tensor has 45 independent components. Moreover,

A � B = (A � B)> = A> � B> ⇐⇒ A = A>,B = B>,

A⊗B = (A⊗B)> = B⊗A ⇐⇒ B = λA, λ ∈ R.

Let us now consider the case of a L ∈ Lin(V) such that

LA = (LA)> ∀A ∈ Lin(V).

Then, by eq. (3.2),

Lijkl = Ljikl,

relations called left minor symmetries: a tensor L having the left minor symmetries has
values in Sym(V). On the whole, the left minor symmetries are 27. Finally, consider the
case of a L ∈ Lin(V) such that

LA = L(A>) ∀A ∈ Lin(V);

then, again by eq. (3.2), we get

Lijlk = Ljilk,

relations called minor right-symmetries, whose total number is also 27. It is immediate
to recognize that if L has the minor right-symmetries, then

LW = O ∀W ∈ Skw(V).

We say that a tensor has the minor symmetries if it has both the right and left minor
symmetries; the total number of minor symmetries is 45, because actually some of the
left and right minor symmetries are the same, so a tensor with the minor symmetries has
36 independent components.

If L ∈ Lin(V) as the major and minor symmetries, then the independent symmetry
relations are actually 60 (some minor and major symmetries coincide), so in such a case
L depends upon 21 independent components only. This is the case of the elasticity
tensor.

Finally, the 6 Cauchy-Poisson symmetries are those of the type

Lijkl = Likjl.

A tensor having the major, minor and Cauchy-Poisson symmetries is completely symmet-
ric, i.e. swapping any couple of indices gives an identical component. In that case, the
number of independent components is of only 15.
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3.4 Trace and scalar product of fourth-rank tensors

We can introduce the scalar product between fourth-rank tensors in the same way used
for second-rank tensors. We first introduce the concept of trace for fourth-rank tensors
once again using the dyad (here, the tensor dyad):

tr4A⊗B := A ·B.

The easy proof that tr4 : Lin(V) → R is a linear form is based upon the properties of
scalar product of second-rank tensors and it is left to the reader. An immediate result is
that

tr4A⊗B = AijBij,

Then, using the canonical decomposition, we have that

tr4L = tr4(Lijkl(ei ⊗ ej)⊗ (ek ⊗ el)) = Lijkl(ei ⊗ ej) · (ek ⊗ el) = Lijklδikδjl = Lijij

and that

tr4L> = tr4(Lklij(ei⊗ej)⊗(ek⊗el)) = Lklij(ei⊗ej) ·(ek⊗el) = Lklijδikδjl = Lijij = tr4L.

Then, we define the scalar product of fourth-rank tensors as

A · B := tr4(A>B).

By the properties of tr4, the scalar product is a positive definite symmetric bilinear
form:

αA · βB = tr4(αA>βB) = αβtr4(A>B) = αβA · B,
A · B = tr4(A>B) = tr4(A>B)> = tr4(B>A) = B · A,
A · A = tr4(A>A) = (A>A)ijij = AklijAklij > 0 ∀A ∈ Lin(V),A · A = 0 ⇐⇒ A = O.

By components

A · B = tr4((Aklijei ⊗ ej ⊗ ek ⊗ el)(Bpqrsep ⊗ eq ⊗ er ⊗ es))

= tr4(AijklBpqrsδkpδlq(ei ⊗ ej)⊗ (er ⊗ es))

= AijklBpqrsδkpδlq(ei ⊗ ej) · (er ⊗ es) = AijklBpqrsδkpδlqδirδjs = AklijBklij.

The rule for computing the scalar product is hence always the same already seen for
vectors and second-rank tensors: all the indexes are to be saturated.

In complete analogy with vectors and second-rank tensors, we say that A is orthogonal to
B ⇐⇒

A · B = 0

and we define the norm of L as

|L| :=
√
L · L =

√
tr4L>L =

√
LijklLijkl.
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3.5 Projectors, identities

For the spherical part of any A ∈ Sym(V) we can write

Asph :=
1

3
trAI =

1

3
I ·AI =

1

3
(I⊗ I)A = SsphA,

where

Ssph :=
1

3
I⊗ I

is the spherical projector, i.e. the fourth-rank tensor that extracts from any A ∈ Lin(V)
its spherical part. Moreover,

Adev := A−Asph = IA− SsphA = DdevA,

where
Ddev := I− Ssph

is the deviatoric projector, i.e. the fourth-rank tensor that extracts from any A ∈ Lin(V)
its deviatoric part. It is worth noting that

I = Ssph + Ddev.

Moreover, about the components of Ssph,

Ssphijkl = (ei ⊗ ej) ·
1

3
(I⊗ I)(ek ⊗ el) =

1

3
(ei ⊗ ej) · I(ek ⊗ el) · I

=
1

3
tr(ei ⊗ ej)tr(ek ⊗ el) =

1

3
δijδkl → Ssph =

1

3
δijδkl(ei ⊗ ej ⊗ ek ⊗ el).

To remark that
Ssph = (Ssph)>.

We introduce now the tensor Is, restriction of I to A ∈ Sym(V). It can be introduced as
follows: ∀A ∈ Sym(V)

A =
1

2
(A + A>),

and

A = IA =
1

2
(IA + IA>) =

1

2
(IijklAkl + IijklAlk)(ei ⊗ ej ⊗ ek ⊗ el);

because A = A> there is insensitivity to the swap of indexes k and l, so

A =
1

2
(IijklAkl + IijlkAlk)(ei ⊗ ej ⊗ ek ⊗ el) =

1

2
(δikδjl + δilδjk)Akl(ei ⊗ ej ⊗ ek ⊗ el).

Then, if we admit the interchangeability of indexes k and l, i.e. if we postulate the
existence of the minor right-symmetries for I, then I = Is, with

Is =
1

2
(δikδjl + δilδjk)(ei ⊗ ej ⊗ ek ⊗ el).

It is apparent that
Isijkl = Isklij,
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i.e. Is = (Is)>, but also that

Isijkl =
1

2
(δilδjk + δikδjl) = Isjikl,

i.e., Is has also the minor left-symmetries; in other words, Is has the major and minor
symmetries, like an elasticity tensor, while this is not the case for I. In fact

Iijkl = Ijilk = δikδjl 6= δilδjk = Ijikl = Iijlk.

Because Ssph and Ddev operate on Sym(V), it is immediate to recognize that it is also

Ddev = Is − Ssph ⇒ Is = Ssph + Ddev.

It is worth noting that

(Ddev)> = (Is − Sspsh)> = (Is)> − (Ssph)> = Is − Ssph = Ddev.

We can now determine the components of Ddev:

Ddev
ijkl = Isijkl − S

sph
ijkl =

1

2
(δikδjl + δilδjk)−

1

3
δijδkl →

Ddev =

[
1

2
(δikδjl + δilδjk)−

1

3
δijδkl

]
(ei ⊗ ej ⊗ ek ⊗ el).

To remark that the result (2.6) implies that Ssph and Ddev are orthogonal projectors, i.e.
they project the same A ∈ Sym(V) into two orthogonal subspaces of V , Sph(V) and
Dev(V).

The tensor Ttrp ∈ Lin(V) defined by the operation

TtrpA := A>,

is the transposition projector, whose components are

T trpijkl = (ei ⊗ ej) · Ttrp(ek ⊗ el) = (ei ⊗ ej) · (el ⊗ ek) = δilδjk.

The following operation defines the symmetry projector Ssym ∈ Lin(V):

SsymA =
1

2
(A + A>) ∀A ∈ Lin(V),

while the antisymmetry projector Wskw ∈ Lin(V) is defined by

WskwA =
1

2
(A−A>) ∀A ∈ Lin(V).

Also Ssym and Wskw are orthogonal projectors, because they project the same A ∈ Lin(V)
into two orthogonal subspaces of Lin(V): Sym(V) and Skw(V), see exercice 6 of Chap.
2.

We prove now two properties of the projectors: ∀A ∈ Lin(V),

(Ssym + Wdev)A =
1

2
(A + A>) +

1

2
(A−A>) = A = IA ⇒ Ssym + Wskw = I. (3.5)

Then,

(Ssym−Wdev)A =
1

2
(A+A>)− 1

2
(A−A>) = A> = TtrpA ⇒ Ssym−Wskw = Ttrp. (3.6)
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3.6 Orthogonal conjugator

For any U ∈ Orth(V) we define its orthogonal conjugator U ∈ Lin(V) as

U := U � U.

Theorem 16. (orthogonality of U): the orthogonal conjugator is an orthogonal tensor of
Lin(V), i.e. it preserves the scalar product between tensors:

UA · UB = A ·B ∀A,B ∈ Lin(V).

Proof. By the assertion in exercice 17 of Chap. 2, and because U ∈ Orth(V), we have

UA · UB = (U � U)A · (U � U)B = UAU> ·UBU>

= U>UAU> ·BU> = AU> ·BU> = AU>U ·B = A ·B.

Just as for tensors of Orth(V), it is also

UU> = U>U = I.

In fact, see the assertion of exercice 3,

UU> = (U � U)(U> � U>) = UU> � UU> = I � I = I. (3.7)

The orthogonal conjugators have also some properties in relation with projectors:

Theorem 17. : Ssph is unaffected by any orthogonal conjugator, while Ddev commutes
with any orthogonal conjugator.

Proof. For any L ∈ Sym(V) and U ∈ Orth(V),

USsphL = (U � U)

(
1

3
I⊗ I

)
L =

1

3
(trL)(U � U)I =

1

3
(trL)UIU>

=
1

3
(trL)I =

1

3
I · LI =

1

3
(I⊗ I)L = SsphL.

Moreover,

SsphUL =

(
1

3
I⊗ I

)
(U � U)L =

1

3
(I⊗ I)(ULU>) =

1

3
(I ·ULU>)I

=
1

3
tr(ULU>)I =

1

3
tr(U>UL)I =

1

3
(trL)I =

1

3
I · LI =

1

3
(I⊗ I)L = SsphL.

Thus, we have proved that
SsphU = USsph = Ssph,

i.e. that the spherical projector Ssph is unaffected by any orthogonal conjugator. Further

DdevUL = (Is − Ssph)UL = IsUL− SsphUL = UL− SsphL = (U− Ssph)L
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and

UDdevL = U(Is − Ssph)L = UIsL− USsphL = UL− SsphL = (U− Ssph)L,

so that
DdevU = UDdev.

3.7 Rotations and symmetries

We ponder now how to rotate a fourth-rank tensor, i.e., what are the components of

L = Lijklei ⊗ ej ⊗ ek ⊗ el

in a basis B′ = {e′1, e′2, e′3} obtained rotating the basis B = {e1, e2, e3} by the rotation
R = Rijei⊗ej,R ∈ Orth(V)+. The procedure is exactly the same already seen for vectors
and second-rank tensors:

L = Lijklei ⊗ ej ⊗ ek ⊗ el = LijklR
>
pie
′
p ⊗R>qje′q ⊗R>rke′r ⊗R>sle′s

= R>piR
>
qjR

>
rkR

>
slLijkle

′
p ⊗ e′q ⊗ e′r ⊗ e′s,

i.e.
L′pqrs = R>piR

>
qjR

>
rkR

>
slLijkl.

We see clearly that the components of L in the basis B′ are a linear combination of those
in B, the coefficients of the linear combination being fourth-powers of the director cosines,
the Rijs. The introduction of the orthogonal conjugator1 of the rotation R,

R = R � R,

allows to give a compact expression for the rotation of second- and fourth-rank tensors
(for completeness we recall also that of a vector w);

w′ = R>w,

L′ = R>LR = (R> � R>)L = R>L,

L′ = (R> � R>)L(R � R) = R>LR.

The check of the above relations with the orthogonal conjugator R is left to the reader. It
is worth noting that actually these transformations are valid not only for R ∈ Orth(V)+,
but more generally for any U ∈ Orth(V), i.e. also for symmetries.

If by U we denote the tensor of change of basis under any orthogonal transformation, i.e.,
if we put U = R> for the rotations, then the above relations become

w′ = Uw,

L′ = ULU> = (U � U)L = UL,

L′ = (U � U)L(U � U)> = ULU>.

(3.8)

1Here the symbol R indicates the orthogonal conjugator of R, not the set of real numbers.
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Finally, we say that L ∈ Lin(V) or L ∈ Lin(V) is invariant under an orthogonal transfor-
mation U if

ULU> = L, ULU> = L;

right multiplying both terms by U or by U and through eq. (3.7), we get that L or L are
invariant under U ⇐⇒

UL = LU, UL = LU,

i.e. ⇐⇒ L and U, or L and U commute. This relation allows, e.g., the analysis of
material symmetries in elasticity.

If a tensor is invariant under any orthogonal transformation, i.e. if the previous equations
hold true ∀U ∈ Orth(V) then the tensor is said to be isotropic. A general result2 is that
a fourth-rank tensor L is isotropic ⇐⇒ exist two scalar functions λ, µ such that

LA = 2µA + λtrA I ∀A ∈ Sym(V).

The reader is addressed to the book of Gurtin (see references) for the proof of this result
and for a deeper insight in isotropic functions.

3.8 The Kelvin formalism

As already mentioned, though fourth-rank tensors cannot be organized in and represented
by a matrix, a matrix formalism for these operators exists. Such formalism is due to
Kelvin3 and it is strictly related to the theory of elasticity, i.e. it concerns the Cauchy’s
stress tensor σ, the strain tensor ε and the elasticity tensor E. The relation between σ
and ε is given by the celebrated (generalized) Hooke’s law:

σ = Eε.

Both σ, ε ∈ Sym(V) while E = E> and it has also the minor symmetries, so E has just
21 independent components4. In the Kelvin formalism, the six independent components
of σ and ε are organized into column vectors and renumbered as follows

{σ} =



σ1 = σ11

σ2 = σ22

σ3 = σ33

σ4 =
√

2σ23

σ5 =
√

2σ31

σ6 =
√

2σ12


, {ε} =



ε1 = ε11

ε2 = ε22

ε3 = ε33

ε4 =
√

2ε23

ε5 =
√

2ε31

ε6 =
√

2ε12


.

2Actually, this is a quite famous result in classical elasticity, the Lamé’s equation, defining an isotropic
elastic material.

3W. Thomson (Lord Kelvin): Elements of a mathematical theory of elasticity. Philos. Trans. R. Soc.,
146, 481-498, 1856. Later, Voigt (W. Voigt: Lehrbuch der Kristallphysik. B. G. Taubner, Leipzig, 1910)
gave another, similar matrix formalism for tensors, more widely known than the Kelvin one, but less
effective.

4Actually, the Kelvin formalism can be extended without major difficulties also to tensors that do not
possess all the symmetries.
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The elasticity tensor E is reduced to a 6×6 matrix [E], consequence of the minor symme-
tries induced by the symmetry of σ and ε; this matrix is symmetric because E = E>:

[E] =



E11 = E1111 E12 = E1122 E13 = E1133 E14 =
√

2E1123 E15 =
√

2E1131 E16 =
√

2E1112

E12 = E1122 E22 = E2222 E23 = E2233 E24 =
√

2E2223 E25 =
√

2E2231 E26 =
√

2E2212

E13 = E1133 E23 = E2233 E33 = E3333 E34 =
√

2E3323 E35 =
√

2E3331 E36 =
√

2E3312

E14 =
√

2E1123 E24 =
√

2E2223 E34 =
√

2E3323 E44 = 2E2323 E45 = 2E2331 E46 = 2E2312

E15 =
√

2E1131 E25 =
√

2E2231 E35 =
√

2E3331 E45 = 2E2331 E55 = 2E3131 E56 = 2E3112

E16 =
√

2E1112 E26 =
√

2E2212 E36 =
√

2E3312 E46 = 2E2312 E56 = 2E3112 E66 = 2E1212


.

In this way, the matrix product
{σ} = [E]{ε} (3.9)

is equivalent to the tensor form of the Hooke’s law and all the operations can be done
by the aid of classical matrix algebra5, e.g. the computation of the inverse of E, the
compliance tensor.

An important operation is the expression of tensor U in eq. (3.8) in the Kelvin formalism;
some tedious but straightforward passages give the result:

[U ] =


U2

11 U2
12 U2

13

√
2U12U13

√
2U13U11

√
2U11U12

U2
21 U2

22 U2
23

√
2U22U23

√
2U23U21

√
2U21U22

U2
31 U2

32 U2
33

√
2U32U33

√
2U33U31

√
2U31U32√

2U21U31

√
2U22U32

√
2U23U33 U23U32 + U22U33 U33U21 + U31U23 U31U22 + U32U21√

2U31U11

√
2U32U12

√
2U33U13 U32U13 + U33U12 U31U13 + U33U11 U31U12 + U32U11√

2U11U21

√
2U12U22

√
2U13U23 U12U23 + U13U22 U11U23 + U13U21 U11U22 + U12U21


With some work, it can be checked that

[U ][U ]> = [U ]>[U ] = [I],

i.e. that [U ] is an orthogonal matrix in R6. Of course,

[R] = [U ]>

is the matrix that in the Kelvin formalism represents the tensor R = U>. The change of
basis for σ and ε are hence done through the relations

{σ′} = [U ]{σ}, {ε′} = [U ]{ε},

which applied to eq. (3.9) give

{σ} = [E]{ε} → [U ]>{σ′} = [E][U ]>{ε′} → {σ′} = [U ][E][U ]>{ε′}

i.e. in the basis B′
{σ′} = [E ′]{ε′},

where
[E ′] = [U ][E][U ]> = [R]>[E][R]

is the matrix representing E in B′ in the Kelvin formalism. Though it is possible to give
the expression of the components of [E ′], they are so long that they are omitted here.

5Mehrabadi and Cowin have shown that the Kelvin formalism transforms second- and fourth-rank
tensors on R3 into vectors and second-rank tensors on R6 (M. M. Mehrabadi, S. C. Cowin: Eigentensors
of linear anisotropic elastic materials. Q. J. Mech. Appl. Math., 43, 15-41, 1990).
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3.9 Exercices

1. Prove eq. (3.4).

2. Prove that
A⊗BL = A⊗ L>B.

3. Prove that
(A � B)(C � D) = AC � BD.

4. Prove eq. (3.3) using the result of the previous exercice.

5. Prove that
(A⊗B)(C � D) = A⊗ ((C> � D>)B).

6. Prove that
(A � B)(C⊗D) = ((A � B)C)⊗D.

7. Let p ∈ S and P = p⊗ p; then prove that

P � P = P⊗P.

8. Prove that, ∀A ∈ Lin(V),
IA = AI = A.

9. Show that
(A⊗B) · (C⊗D) = A ·C B ·D.

10. Show that

Ssph =
I

|I|
⊗ I

|I|
.

11. Show that
dim(Sph(V)) = 1, dim(Dev(V)) = 5.

12. Show the following properties of Ssph and Ddev:

SsphSsph = Ssph,

DdevDdev = Ddev,

SsphDdev = DdevSsph = O.

13. Prove the results in eqs. (3.5) and (3.6) using the components.

14. Show that
Ssph · Ssph = 1,

Ddev · Ddev = 5,

Ssph · Ddev = 0.

15. Explicit the orthogonal conjugator SR of the tensor SR in eq. (2.43).
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Chapter 4

Tensor analysis, curves, fields

4.1 Introduction

We generalize to the spaces E ,V , Lin(V) and Lin(V) some concepts already known for
functions in R, like continuity, differentiation and integration. Curves, fields, deformations
are also introduced along with the differential operators used in continuum mechanics, also
with their expression in cylindrical and spherical coordinates. Finally, we will introduce
some concepts of differential geometry of curves with the aid of tensor algebra.

4.2 Curves of points, vectors and tensors

The scalar products in V , Lin(V) and Lin(V) allow us to define a norm, the Euclidean
norm, so they automatically endow these spaces with a metric, i.e. we are able to measure
and calculate a distance between two elements of such a space and in E . This allows us
to generalize the concepts of continuity and differentiability already known in R, whose
definition intrinsically makes use of a distance between real quantities.

Let πn = {pn ∈ E , n ∈ N} a sequence of points in E . We say that πn converges to p ∈ E
if

lim
n→∞

d(pn − p) = 0.

A similar definition can be given for sequences of vectors or tensors of any rank. Through
this definition of convergence we can now precise the concepts of continuity and of
curve.

Let [a, b] an interval of R; the function

p = p(t) : [a, b]→ E

is continuous at t ∈ [a, b] if for each sequence {tn ∈ [a, b], n ∈ N} that converges to t the
sequence πn defined by pn = p(tn) ∀n ∈ N converges to p(t) ∈ E . The function p = p(t)
is a curve in E ⇐⇒ it is continuous ∀t ∈ [a, b]. In the same way we can define a curve
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of vectors and of tensors:

v = v(t) : [a, b]→ V ,

L = L(t) : [a, b]→ Lin(V),

L = L(t) : [a, b]→ Lin(V).

Mathematically, a curve is a function that lets correspond to a real value t (the parameter)
in an interval an element of a space, E ,V , Lin(V) or L(V).

4.3 Differention of curves

Let v = v(t) : [a, b] → V a curve of vectors and g = g(t) : [a, b] → R a scalar function.
We say that v is of the order o with respect to g in t0 ⇐⇒

lim
t→t0

|v(t)|
|g(t)|

= 0,

and we write

v(t) = o(g(t)) for t→ t0.

A similar definition can be given for a curve of tensors of any rank. We then say that the
curve v is differentiable in t0 ∈]a, b[⇐⇒ ∃v′ ∈ V such that

v(t)− v(t0) = (t− t0)v′ + o(t− t0).

We call v′ the derivative of v1, also indicated by
dv

dt
. Applying the definition of derivative

to v′ we define the second derivative v′′ of v and recursively all the derivatives of higher
orders. We say that v is of class Cn if it is continuous with its derivatives up to the order
n; if n ≥ 1, v is said to be smooth. Similar definitions can be given for curves in E , Lin(V)
and Lin(V), so defining derivatives of points and tensors. We remark that the derivative
of a curve in E , defined as a difference of points, is a curve in V (we say, in short, that the
derivative of a point is a vector). For what concerns tensors, the derivative of a tensor of
rank r is a tensor of the same rank.

Let u,v curves in V , L,M curves in Lin(V), L,M curves in Lin(V) and α a scalar function,
all of them defined and at least of class C1 on [a, b]. The same definition of derivative of
a curve gives the following results, whose proof is let to the reader:

1The symbol ˙ is also used, but it is usually reserved, in physics, to the case where t is the time.
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(u + v)′ = u′ + v′,

(αv)′ = α′v + αv′,

(u · v)′ = u′ · v + u · v′,

(u× v)′ = u′ × v + u× v′,

(u⊗ v)′ = u′ ⊗ v + u⊗ v′,

(L + M)′ = L′ + M′,

(αL)′ = α′L + αL′,

(Lv)′ = L′v + Lv′,

(LM)′ = L′M + LM′,

(L ·M)′ = L′ ·M + L ·M′,

(L⊗M)′ = L′ ⊗M + L⊗M′,

(L � M)′ = L′ � M + L � M′,

(L + M)′ = L′ + M′,

(αL)′ = α′L + αL′,

(LL)′ = L′L + LL′,

(LM)′ = L′M + LM′,

(L ·M)′ = L′ ·M + L ·M′.

(4.1)

To remark that the derivative of any kind of product is made according to the usual rule
of the derivative of a product of functions.

Be R = {o;B} a reference frame of the euclidean space E , composed by an origin o
and a basis B = {e1, e2, e3} of V , ei · ej = δij∀i, j = 1, 2, 3 and let us consider a point
p(t) = (p1(t), p2(t), p3(t)). If the three coordinates pi(t) are three continuous functions over
the interval [t1, t2] ∈ R, then, by the definition given above, the mapping p(t) : [t1, t2]→ E
is a curve in E and the equation

p(t) = (p1(t), p2(t), p3(t)) →


p1 = p1(t)
p2 = p2(t)
p3 = p3(t)

is the parametric point equation of the curve: to each value of t ∈ [t1, t2] it corresponds a
point of the curve in E , see Fig. 4.1.

The vector function r(t) = p(t)−o is the position vector of point p inR; the equation

r(t) = ri(t)ei = r1(t)e1 + r2(t)e2 + r3(t)e3 →


r1 = r1(t)
r2 = r2(t)
r3 = r3(t)

is the parametric vector equation of the curve: to each value of t ∈ [t1, t2] it corresponds
a vector of V that determines a point of the curve in E through the operation p(t) =
o+ r(t).
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Figure 1.7 

 L(t)= Lij(t) ei�ej,    i, j= 1, 2, 3, 

est une courbe tensorielle. Souvent, en mécanique, le paramètre t est le temps de déroulement d’un 
certain événement; nous verrons dans les chapitres suivants plusieurs exemples de courbes de 
points, vecteurs et tenseurs dont le paramètre est le temps, et leur signification mécanique. 

Il faut aussi remarquer qu’une courbe peut avoir plusieurs représentations paramétriques : en fait, si 
t est le paramètre choisi pour représenter une courbe, par exemple une courbe de points, l’équation 

 > @)()( tptp W  

décrit la même courbe, étant W lié à t par le changement de paramètre 

 )(tWW  . 

 

1.22 DERIVEE D’UNE COURBE  

Considérons une courbe de points p= p(t); on définit dérivée en t= to de la courbe p(t) par rapport au 
paramètre t la limite 

 
H
H

H

)()(
lim)(

0
oo

tt

tptp
dt

tdp

o

��
 

o 

; 

la dérivée d’une courbe de points, étant définie comme différence de points, est un vecteur, voir la 
figure 1.8. 

D’une façon analogue on peut définir la dérivée d’une courbe vectorielle, 

 
H
H

H

)()(
lim)(

0
oo

tt

tt
dt

td

o

rrr ��
 

o 

, 

et tensorielle 

 
H
H

H

)()(
lim)(

0
oo

tt

tt
dt

td

o

LLL ��
 

o 

. 

Encore, étant définies comme différences respectivement de vecteurs et de tenseurs, la dérivée d’un 
vecteur est un vecteur, voir encore la figure 1.8, et celle d’un tenseur un tenseur. Souvent, on 
indique les dérivées comme  

 LLrr c c c 
dt
d

dt
dp

dt
dp   ,  ,   

et si le paramètre t est le temps, comme 

 p(t) 

o 

e1 

e2 

e3 

r(t) 

t1 t2 t R 

 p(t)=(p1(t), p2(t), p3(t)) 

Figure 4.1: Mapping of a curve of points.

Similarly, if the components Lij(t) are continuous functions of a parameter t, the mapping
L(t) : [t1, t2]→ Lin(V) defined by

L(t) = Lij(t)ei ⊗ ej, i, j = 1, 2, 3,

is a curve of tensors. In the same way we can give a curve of fourth-rank tensors L(t) :
[t1, t2]→ Lin(V) by

L(t) = Lijkl(t)ei ⊗ ej ⊗ ek ⊗ el, i, j, k, l = 1, 2, 3.

To be noticed that the choice of the parameter is not unique: the equation p = p[τ(t)]
still represents the same curve p = p(t), through the change of parameter τ = τ(t).

The definition given above for the derivative of a curve of points p = p(t) in t = t0 is
equivalent to the following one (probably more familiar to the reader)

dp(t)

dt
= lim

ε→0

p(t0 + ε)− p(t0)

ε
;

represented in Fig. 4.2, it is apparent that r′(t) =
dp(t)

dt
is a vector.
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Figure 1.8 

Si on applique les opérations de limite aux composantes, on reconnaît immédiatement que  

 j )(  , )(  , )( eeLere �c c c iijiiii tL
dt
dtr

dt
dtp

dt
dp , 

c’est-à-dire que la dérivée d’une courbe a comme composantes les dérivées des composantes de la 
courbe donnée. Sur la base de cette considération, c’est facile de comprendre les formules 
suivantes, qui généralisent aux courbes les règles de dérivation d’une fonction d’une variable réelle:  
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Un cas particulier, et important dans les applications, est celui d’un vecteur variable mais constant 
en module ; dans ce cas la dérivée est toujours orthogonale au vecteur donné. En fait, soit v= v(t), 
avec R� v)(tv . Cherchons la dérivée de la norme au carré, qui est sans doute nulle parce que la 
norme est constante par hypothèse : 

 02)()( 2  �c c���c c� c vvvvvvvvv , 

donc les deux vecteurs sont orthogonaux ; on constate immédiatement que le contraire est vrai 
aussi. 

Pour terminer, on peut introduire la dérivée seconde d’une courbe tout simplement en considérant 
que celle-ci n’est que la dérivée première de la courbe “ dérivée première ” de la courbe donnée, et 
ainsi de suite pour les dérivées d’ordre supérieur. 

 

1.23 INTEGRATION D’UNE COURBE, ABSCISSE CURVILIGNE 

L’intégrale d’une courbe de vecteurs est définie comme le vecteur qui a par composantes les 

 p(to) 

o 

e1 

e2 

e3 

r(to) 
 p(to+H) 

r(to+H) 

r’(to) 

Figure 4.2: Derivative of a curve.

An important case is that of a vector v(t) whose norm v(t) is constant ∀t:

(v2)′ = (v · v)′ = v′ · v + v · v′ = 2v′ · v = 0 : (4.2)
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the derivative of such a vector is orthogonal to it ∀t. The contrary is also true, as
immediately apparent.

Finally, using the above rules and assuming that the reference frame R is independent
from t, we get easily that

p′(t) = p′i(t) ei,

v′(t) = v′i(t) ei,

L′(t) = L′ij(t) ei ⊗ ej,

L′(t) = L′ijkl(t) ei ⊗ ej ⊗ ek ⊗ el,

i.e. that the derivative of a curve of points, vectors or tensors is simply calculated differ-
entiating the coordinates or the components.

More involved is to prove that

(L>)′ = L′>,

(L>)′ = L′>,

(det L)′ = det L tr(L′L−1) = det L L>
′ · L−1 = det L L′ · L−>,

the reader is addressed to the book of Gurtin for the proof.

4.4 Integral of a curve of vectors

We define integral of a curve of vectors r(t) between a and b ∈ [t1, t2] the curve that is
obtained integrating each component of the curve:∫ b

a

r(t) dt =

∫ b

a

ri(t) dt ei.

If the curve is regular, we can generalize the second fundamental theorem of the integral
calculus

r(t) = r(a) +

∫ t

a

r′(t∗) dt∗.

Because
r(t) = p(t)− o, r′(t) = (p(t)− o)′ = p′(t),

we get also

p(t) = p(a) +

∫ t

a

p′(t∗) dt∗.

The integral of a vector function is the generalization of the vector sum, see Fig. 4.3.

A simple way to determine a point p(t) on a curve is to fix a point p0 on the curve and to
measure the length s(t) of the arc of curve between p0 = p(t = 0) and p(t). This length
s(t) is called a curvilinear abscissa and it can be shown that

s(t) =

∫ t

t0

|(p(t∗)− o)′|dt∗ =

∫ t

t0

|r′(t∗)|dt∗, (4.3)
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intégrales de chaque composante du vecteur donné : 
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Si la courbe r(t) est régulière, on peut généraliser le deuxième théorème fondamental du calcul 
intégral : 
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l’équation ci-dessus peut être réécrite comme 
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a
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L’intégrale d’une fonction vectorielle est, d’une certaine façon, la généralisation de la somme 
vectorielle, voir la figure 1.9. 

 

 

 

 

 

 

 

 

Figure 1.9 

Une façon simple d’établir la position d’un point p(t) sur une courbe donnée, est celle de fixer un 
point quelconque po sur la courbe, et de mesurer la longueur de l’arc de courbe compris entre 
po=p(to) et p(t) ; cette longueur est appelée abscisse curviligne s(t), et on peut démontrer que 

 ³³ c c� 
t

t

t

t oo
dttdtotpts **** )())(()( r . 

La longueur totale d’une courbe r= r(t), avec t�[a, b], sera 
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et donc s(t) est une fonction croissante avec t ; de la formule précédente on tire la longueur d’un arc 

 p(t) 

 p(a) 

o 

e1 

e2 

e3 

r(a) 
r(t) 

³ c
t

a
dtt **)(r

Figure 4.3: Integral of a vector curve.

so that the total length ` of a curve is

` =

∫ b

a

|r′(t)|dt.

From eq. (4.3) we get

ds

dt
= |r′(t)| =

√(
dr1

dt

)2

+

(
dr2

dt

)2

+

(
dr3

dt

)2

> 0

so that s(t) is an increasing function of t and the length of an infinitesimal arc is

ds =
√
dr2

1 + dr2
2 + dr2

3 =
√
dx2 + dy2 + dz2.

For a plane curve y = f(x), we can always put t = x, which gives the parametric
equation

p(t) = (t, f(t)),

or in vector form
r(t) = t e1 + f(t) e2,

from which we obtain

ds

dt
= |r′(t)| = |p′(t)| =

√
1 + f ′2(t), (4.4)

that gives the length of a plane curve between t = x0 and t = x as a function of the
abscissa x:

s(x) =

∫ x

x0

√
1 + f ′2(t)dt.

4.5 The Frenet-Serret basis

We define the tangent vector τ (t) to a regular curve p = p(t) the vector

τ (t) =
p′(t)

|p′(t)|
.
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By the definition of derivative, this unit vector is always oriented as the increasing values
of t; the straight line tangent to the curve in p0 = p(t0) has hence equation

q(t̄) = p(t0) + t̄ τ (t0).

If the curvilinear abscissa s is chosen as parameter for the curve, through the change of
parameter s = s(t) we get

τ (t) =
p′(t)

|p′(t)|
=

p′[s(t)]

|p′[s(t)]|
=

1

s′(t)

dp(s)

ds

ds(t)

dt
=
dp(s)

ds
→ τ (s) = p′(s).

So, if the parameter of the curve is s, the derivative of the curve is τ , i.e. it is automatically
a unit vector. The above equation, in addition, shows that the change of parameter
does not change the direction of the tangent, because just a scalar, the derivative of the
parameter’s change, multiplies the vector. Nevertheless, generally speaking, a change of
parameter can change the orientation of the curve.

Because the norm of τ is constant, its derivative is a vector orthogonal to τ , see eq. (4.2).
That is why we call principal normal vector to a curve the unit vector

ν(t) =
τ ′(t)

|τ ′(t)|
. (4.5)

ν is defined only on the points of the curve where τ ′ 6= o which implies that ν is not
defined on the points of a straight line. This simply means that there is not, among the
infinite unit normal vectors to a straight line, a normal with special properties, a principal
one, uniquely linked to τ .

Unlike τ , whose orientation changes with the choice of the parameter, ν is an intrinsic
local characteristic of the curve: it is not affected by the choice of the parameter. In
fact, by its same definition, ν does not depend upon the reference frame; then, because
the direction of τ is also independent upon the parameter’s choice, the only factor that
could affect ν is the orientation of the curve, that depends upon the parameter. But a
change of the orientation affects, in (4.5), both τ and the sign of the increment dt, so
that τ ′(t) = dτ/dt does not change, neither ν, which is hence an intrinsic property of the
curve.

The vector
β(t) = τ (t)× ν(t)

is called the binormal vector; by construction, it is orthogonal to τ and ν and it is a unit
vector. In addition, it is evident that

τ × ν · β = 1,

so the set {τ ,ν,β} forms a positively oriented othonormal basis that can be defined at
any regular point of a curve with τ ′ 6= o. Such a basis is called the Frenet-Serret local
basis, local in the sense that it changes with the position along the curve. The plane
τ − ν is the osculating plane, the plane ν − β the normal plane and the plane β − τ
the rectifying plane, see Fig. 4.4. The osculating plane is particularly important: if we
consider a plane passing through three not aligned points of the curve, when these points
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Les trois vecteurs introduits ci-dessus sont évidemment orthogonaux deux à deux et de norme 
unitaire ; en outre c’est évident que  

 , 

et donc {τ, ν, β} est une base orthonormée directe, nommée trièdre de Frenet, définie en chaque 
point de la courbe, et qui change avec la position, figure 1.10 ; c’est pour cela que ce trièdre est 
appelé aussi trièdre local. Le plan τ−ν s’appelle plan osculateur, le plan ν−β plan normal et le plan  
β−τ plan rectifiant.  

 

 

 

 

 

 

 

 
 

Figure 1.10 

Le plan osculateur est particulièrement important : si on considère un plan qui passe par trois points 
quelconques, non alignés, de la courbe, ce plan tend vers le plan osculateur lorsque ces trois points 
se rapprochent l’un à l’autre tout en restant sur la courbe. En effet, on peut démontrer que le plan 
osculateur en un point donné de la courbe est le plan qui se rapproche mieux à la courbe au 
voisinage de ce point. Si la courbe est plane, le plan osculateur est le plan qui contient la courbe. 

On peut aussi démontrer que le vecteur normal ν est toujours dirigé du coté du plan rectifiant dans 
lequel se trouve la courbe, voire, pour les courbes planes, ν est toujours dirigé vers la concavité de 
la courbe. 

 

1.25 COURBURE D’UNE COURBE 

Il est important, dans plusieurs cas, de pouvoir évaluer de combien une courbe s’éloigne d’une ligne 
droite au voisinage d’un point. Pour cela, on calcule le vecteur tangent en deux points proches l’un 
de l’autre, l’un à l’abscisse curviligne s, et l’autre à s+ε, et on mesure l’angle χ(s, ε) qu’ils forment, 
voir la figure 1.11. On définit alors courbure de la courbe en s la limite 
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Figure 4.4: The Frenet-Serret basis.

become closer and closer, still remaining on the curve, the plane tends to the osculating
plane: the osculating plane at a point of a curve is the plane that better approaches the
curve near the point. A plane curve is entirely contained in the osculating plane, which
is fixed.

The principal normal ν is always oriented towards the part of the space, with respect
to the rectifying plane, where the curve is; in particular, for a plane curve, ν is always
directed towards the concavity of the curve. To show it, it is sufficient to prove that the
vector p(t + ε) − p(t) forms with ν an angle ψ ≤ π/2, i.e. that (p(t + ε) − p(t)) · ν ≥ 0.
In fact,

p(t+ ε)− p(t) = ε p′(t) +
1

2
ε2p′′(t) + o(ε2) →

(p(t+ ε)− p(t)) · ν =
1

2
ε2p′′(t) · ν + o(ε2),

but
p′′(t) · ν = (τ ′|p′|+ τ |p′|′) · ν = (|τ ′||p′|ν + τ |p′|′) · ν = |τ ′||p′|,

so that, to within infinitesimal quantities of order o(ε2), we obtain

(p(t+ ε)− p(t)) · ν =
1

2
ε2|τ ′||p′| ≥ 0.

4.6 Curvature of a curve

It is important, in several situations, to evaluate how much a curve moves away from a
straight line, in the neighborhood of a point. To do that, we calculate the angle formed
by the tangents at two close points, determined by the curvilinear abscissae s and s+ ε,
and we measure the angle χ(s, ε) that they form, see Fig. 4.5.

We then define curvature of the curve in p = p(s) the limit

c(s) = lim
ε→0

∣∣∣∣χ(s, ε)

ε

∣∣∣∣ .
The curvature is hence a non-negative scalar that measures the rapidity of variation of
the direction of the curve per unit length of the curve (that is why c(s) is defined as a
function of the curvilinear abscissa); by its same definition, the curvature is an intrinsic
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1.25 COURBURE D’UNE COURBE 

Il est important, dans plusieurs cas, de pouvoir évaluer de combien une courbe s’éloigne d’une ligne 
droite au voisinage d’un point. Pour cela, on calcule le vecteur tangent en deux points proches l’un 
de l’autre, l’un à l’abscisse curviligne s, et l’autre à s+H, et on mesure l’angle F(s, H) qu’ils forment, 
voir la figure 1.11. On définit alors courbure de la courbe en s la limite 
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Figure 1.11 

La courbure est donc un scalaire positif qui mesure la rapidité de variation de direction de la courbe 
par unité de parcours sur la courbe même ; c’est évident que pour une ligne droite la courbure est 
toujours nulle.  

Démontrons que la courbure est liée à la dérivée seconde de la courbe :  
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qui est une autre formule de calcul de la courbure. On obtient une formule encore meilleure si l’on 
considère que 
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par conséquent 
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Figure 4.5: Curvature of a curve.

property of the curve, i.e. independent from the parameter’s choice. For a straight line,
the curvature is identically null everywhere.

The curvature is linked to the second derivative of the curve:

c(s) = lim
ε→0

∣∣∣∣χ(s, ε)

ε

∣∣∣∣ = lim
ε→0

∣∣∣∣sinχ(s, ε)

ε

∣∣∣∣ = lim
ε→0

∣∣∣∣2ε sin
χ(s, ε)

2

∣∣∣∣ =

lim
ε→0

∣∣∣∣v(s, ε)

ε

∣∣∣∣ = lim
ε→0

∣∣∣∣τ (s+ ε)− τ (s)

ε

∣∣∣∣ = |τ ′(s)| = |p′′(s)|.

Another formula for the calculation of c(s) can be obtained if we consider that

dτ [s(t)]

dt
=
dτ

ds

ds

dt
=
dτ

ds
|p′(t)| → dτ

ds
=

1

|p′(t)|
dτ

dt
,

so that

c(s) = |τ ′(s)| = 1

|p′(t)|

∣∣∣∣dτdt
∣∣∣∣ =
|τ ′(t)|
|p′(t)|

. (4.6)

A better formula can be obtained as follows:

dτ

ds
=

1

|p′(t)|
dτ

dt
=

1

|p′(t)|
d

dt

p′(t)

|p′(t)|
=

1

|p′|

p′′|p′| − p′p
′′ · p′

|p′|
|p′|2

=

p′′ − τ p′′ · τ
|p′|2

= (I− τ ⊗ τ )
p′′

|p′|2
.

By consequence,

c(s) =

∣∣∣∣dτ (s)

ds

∣∣∣∣ =
1

|p′|2
|(I− τ ⊗ τ )p′′|.

Now, we use the following general formula expressing a skew tensor W:

WW = −1

2
|W|2(I−w ⊗w);

if we use this formula for τ , so that W is the axial tensor of τ , we get

I− τ ⊗ τ = −2
WW

|W|2
= −WW,
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because if τ = (τ1, τ2, τ3), then

|W|2 =W ·W =

 0 −τ3 τ2

τ3 0 −τ1

−τ2 τ1 0

 ·
 0 −τ3 τ2

τ3 0 −τ1

−τ2 τ1 0

 =

2(τ 2
1 + τ 2

2 + τ 2
3 ) = 2.

So, recalling that for any skew tensor W,

W u = w × u ∀u ∈ V ,

with w the axial vector of W, we get

|(I− τ ⊗ τ )p′′| =| −WWp′′| = | −W(τ × p′′)| = | − τ × (τ × p′′)| =

|τ × (τ × p′′)| = |τ × p′′| = |p
′ × p′′|
|p′|

,

so that finally

c =
|p′ × p′′|
|p′|3

. (4.7)

Applying this last formula to a plane curve p(t) = (x(t), y(t)), we get

c =
|x′y′′ − x′′y′|
(x′2 + y′2)

3
2

and if the curve is given in the form y = y(x), so that the parameter t = x, then we
obtain

c =
|y′′|

(1 + y′2)
3
2

.

This last formula shows that if |y′| � 1, like in the infinitesimal theory of strain, then

c ' |y′′|.

4.7 The Frenet-Serret formulae

From eqs. (4.5) for t = s and (4.6) we get

dτ

ds
= c ν (4.8)

which is the first Frenet-Serret Formula, giving the variation of τ per unit length of the
curve. Such a variation is a vector whose norm is the curvature and that has as direction
that of ν.

Let us now consider the variation of β per unit length of the curve; because β is a unit
vector, we have

dβ

ds
· β = 0,
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and

β · τ = 0 ⇒ d(β · τ )

ds
=
dβ

ds
· τ + β · dτ

ds
= 0.

Through eq. (4.8) and because β · ν = 0 we get

dβ

ds
· τ = −c β · ν = 0,

so that
dβ

ds
is necessarily parallel to ν. We then put

dβ

ds
= ϑν,

which is the second Frenet-Serret formula. The scalar ϑ(s) is called the torsion of the
curve in p = p(s). So, we see that the variation of β per unit length is a vector parallel
to ν and proportional to the torsion of the curve.

We can now find the variation of ν per unit length of the curve:

dν

ds
=
d(β × τ )

ds
=
dβ

ds
× τ + β × dτ

ds
= ϑ ν × τ + c β × ν,

so finally

dν

ds
= −c τ − ϑ β,

which is the third Frenet-Serret formula: the variation of ν per unit length of the curve
is a vector of the rectifying plane.

The three formulae of Frenet-Serret (discovered independently by J. F. Frenet in 1847
and by J. A. Serret in 1851) can be condensed in the symbolic matrix product

τ ′

ν ′

β′

 =

 0 c 0
−c 0 −ϑ
0 ϑ 0


τ
ν
β

 .

4.8 The torsion of a curve

We have introduced the torsion of a curve in the previous section, with the second formula
of Frenet-Serret. The torsion measures the deviation of a curve from flatness: if a curve is
planar, it belongs to the osculating plane and β, which is perpendicular to the osculating
pane, is hence a constant vector. So, its derivative is null and by the Frenet-Serret second
formula ϑ = 0.

Conversely, if ϑ = 0 everywhere, β is a constant vector and hence the osculating plane
does not change and the curve is planar. So we have that a curve is planar if and only if
the torsion is null ∀p(s).
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Using the Frenet-Serret formulae in the expression of p′′′(s) we get a formula for the
torsion:

p′(t) = |p′|τ =
dp

ds

ds

dt
= s′τ ⇒ |p′| = s′ →

p′′(t) = s′′τ + s′τ ′ = s′′τ + s′2
dτ

ds
= s′′τ + c s′2ν →

p′′′(t) = s′′′τ + s′′τ ′ + (c s′2)′ν + c s′2ν ′ =

s′′′τ + s′′s′
dτ

ds
+ (c s′2)′ν + c s′3

dν

ds
=

s′′′τ + s′′s′cν + (c s′2)′ν − c s′3(cτ + ϑβ) =

(s′′′ − c2s′3)τ + (s′′s′c+ c′s′2 + 2c s′s′′)ν − c s′3ϑβ,

so that, through eq. (4.7), we get

p′ × p′′ · p′′′ =s′τ × (s′′τ + c s′2ν) · [(s′′′ − c2s′3)τ+

(s′′s′c+ c′s′2 + 2c s′s′′)ν − c s′3ϑβ] =

− c2s′6ϑ = −c2|p′|6ϑ = −|p
′ × p′′|2

|p′|6
|p′|6ϑ,

so that, finally,

ϑ = −p
′ × p′′ · p′′′

|p′ × p′′|2
.

To remark that while the curvature is linked to the second derivative of the curve, the
torsion is a function also of the third derivative.

Unlike curvature, which is intrinsically positive, the torsion can be negative. In fact, still
using the Frenet-Serret formulae,

p(s+ ε)− p(s) =ε p′ +
1

2
ε2p′′ +

1

6
ε3p′′′ + o(ε3) =

ετ +
1

2
ε2cν +

1

6
ε3(cν)′ + o(ε3) =

ετ +
1

2
ε2cν +

1

6
ε3(c′ν − c2τ − c ϑβ) + o(ε3) →

(p(s+ ε)− p(s)) · β = −1

6
ε3c ϑ+ o(ε3).

The above dot product determines if the point p(s + ε) is located, with respect to the
osculating plane, on the side of β or on the opposite one, see Fig. 4.6: if following the
curve for increasing values of s, ε > 0, the point passes into the semi-space of β from the
opposite one, because 1/6 c ε3 > 0, it will be ϑ < 0, while in the opposite case it will be
ϑ > 0.

This result is intrinsic, i.e. it does not depend upon the choice of the parameter, hence of
the positive orientation of the curve; in fact, ν is intrinsic, but changing the orientation
of the curve, τ , and hence β, change of orientation.
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cos α <0 :               

ce qui prouve que le vecteur dérivé de β par rapport à s doit être parallèle à ν. On pose alors 

 , 

qui est la deuxième formule de Frenet et Serret ; elle donne la variation du vecteur binormal par 
unité de s : cette variation est un vecteur proportionnel au vecteur normal, étant  le facteur de 
proportionnalité. La fonction scalaire est nommée torsion de la courbe.  

La troisième formule de Frenet et Serret concerne la variation de ν par unité de s : 

 , 

et donc 

 , 

qui est la troisième formule de Frenet et Serret : la variation de ν par unité de parcours est un 
vecteur du plan rectifiant. 

 

1.27 PROPRIETES DE LA TORSION 

La torsion est un scalaire qui mesure la déviation d’une courbe de la planéité : si une courbe est 
plane, elle appartient au plan osculateur, et le vecteur β, qui lui est perpendiculaire, est donc 
constant. Par conséquent la dérivée de β est nulle et donc, par la deuxième formule de Frenet et 
Serret, la torsion aussi. Le contraire est évidemment vrai aussi : si la torsion d’une courbe est nulle 
en tout point, alors la courbe est plane. Donc la condition nécessaire et suffisante pour qu’une 
courbe soit plane est que sa torsion soit nulle en tout point. 

La torsion, contrairement à la courbure qui est toujours positive, peut être négative. En particulier, 
une fois établi un sens de parcours sur la courbe, c’est-à-dire une fois choisie une abscisse 
curviligne, on peut démontrer que si, en suivant ce sens, la courbe sort du plan osculateur du côté de 
β, alors la torsion est négative, elle est positive dans le cas contraire, voire figure 1.12. Ce résultat 
est invariant: on peut démontrer que le signe de la torsion est une caractéristique intrinsèque de la 
courbe, et ne dépend pas du paramétrage choisi. 

 

 

 

 

 

 

 

 

Figure 1.12 

Ainsi que pour la courbure, on a une formule de calcul de la torsion : 
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Figure 4.6: Torsion of a curve.

4.9 Osculating sphere and circle

The osculating sphere2 to a curve at a point p is a sphere to which the curve tends to
adhere in the neighborhood of p. Mathematically speaking, if qs is the center of the sphere
relative to point p(s), then

|p(s+ ε)− qs|2 = |p(s)− qs|2 + o(ε3).

Using this definition, discarding the terms of order o(ε3) and using the Frenet-Serret
formulae, we get:

|p(s+ ε)− qs|2 =|p(s)− qs + εp′ +
1

2
ε2p′′ +

1

6
ε3p′′′ + o(ε3)|2 =

|p(s)− qs + ετ +
1

2
ε2c ν +

1

6
ε3(cν)′ + o(ε3)|2 =

|p(s)− qs|2 + 2ε(p(s)− qs) · τ + ε2 + ε2c(p(s)− qs) · ν+

1

3
ε3(p(s)− qs) · (c′ν − c2τ − c ϑβ) + o(ε3),

which gives

(p(s)− qs) · τ = 0,

(p(s)− qs) · ν = −1

c
= −ρ,

(p(s)− qs) · β = − c′

c2ϑ
=
ρ′

ϑ
,

and finally

qs = p+ ρ ν − ρ′

ϑ
β, (4.9)

so the center of the sphere belongs to the normal plane; the sphere is not defined for a
plane curve. ρ is the radius of curvature of the curve, defined as

ρ =
1

c
.

2The word osculating comes from the latin word osculo that means to kiss; an osculating sphere or
circle or plane is a geometric object that is very close to the curve, as close as two lovers are in a kiss.
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The radius of the osculating sphere is

ρs = |p− qs| =

√
ρ2 +

(
ρ′

ϑ

)2

.

The intersection between the osculating sphere and the osculating plane at a same point
p is the osculating circle. This circle has the property to share the same tangent in p with
the curve and its radius is the radius of curvature, ρ. From eq. (4.9) we get the position
of the osculating circle center q:

q = p+ ρ ν.

An example can be seen in Fig. 4.7, where the osculating plan, circle and sphere are
shown for a point p of a conical helix.

!
"

#

qp

$s

$
osculating plan

osculating circle
qs

osculating shpere

Figure 4.7: Osculating plan, circle and sphere for a point p of a conical helix.

The osculating circle is a diametral circle of the osculating sphere only when q = qs, so if
and only if

ρ′

ϑ
= − c′

c2ϑ
= 0,

i.e. when the curvature is constant.

4.10 Scalar, vector and tensor fields

Let Ω ⊂ E and f : Ω → V . We say that f is continuous at p ∈ Ω ⇐⇒ ∀ sequence
πn = {pn ∈ Ω, n ∈ N} that converges to p ∈ E , the sequence {vn = f(pn), n ∈ N}
converges to f(p) in V . The function f(p) : Ω→ V is a vector field on Ω if it is continuous
at each p ∈ Ω. In the same way we can define a scalar field ϕ(p) : Ω → R and a tensor
field, L(p) : Ω→ Lin(V) or L(p) : Ω→ Lin(V).

A deformation is any continuous and bijective function f(p) : Ω → E , i.e. any transfor-
mation of a region Ω ⊂ E into another region of E ; bijectivity imposes that to any point
p ∈ Ω corresponds one and only point in the transformed region, and vice-versa. This is
a constraint imposed to a function from E to E ti represent a physical deformation of a
body.
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Finally, the basic difference between fields/deformations and curves, is that a field or a
deformation is defined over a subset of E , not of R. In practice, this implies that the
components of the field/deformation are functions of three variables, the coordinates xi
of a point p ∈ Ω.

4.11 Differentiation of fields, differential operators

Let f(p) : Ω → V ; we say that f is differentiable in p0 ∈ Ω ⇐⇒ ∃ gradf ∈ Lin(V) such
that

f(p0 + u) = f(p0) + gradf(p0) u + o(u)

when u → o. If f is differentiable ∀p ∈ Ω, gradf defines a tensor field on Ω called the
gradient of f . It is also possible to define higher order differential operators, using higher
order tensors, but this will not be done here. If f is continuous with gradf ∀p ∈ Ω, then
f is of class C1 (smooth).

Let f a vector field of class C1 on Ω. Then the divergence of f is the scalar field defined
by

divf := tr(gradf),

while the curl of f is the unique vector field curlf that satisfies the relation

(gradf − gradf>)u = (curlf)× u ∀u ∈ V .

The divergence of a tensor field L is the unique vector field divL that satisfies

(divL) · u = div(L>u) ∀u ∈ V .

Let ϕ(p) : Ω → R a scalar field over Ω. Similarly to what done for vector fields, we say
that ϕ is differentiable at p0 ∈ Ω ⇐⇒ ∃ gradϕ ∈ V such that

ϕ(p0 + u) = ϕ(p0) + gradϕ(p0) · u + o(u)

when u → o. If ϕ is differentiable ∀p ∈ Ω, gradϕ defines a vector field on Ω called the
gradient of ϕ. If gradϕ is differentiable, its gradient is the tensor gradIIϕ called second
gradient or Hessian. It is immediate to show that under continuity assumption,

gradIIϕ = (gradIIϕ)>.

A level set of a scalar field ϕ(p) is the set SL such that

ϕ(p) = const. ∀p ∈ SL.

By the same definition of differentiability of ϕ(p), we can prove that gradϕ(p) is a vector
that is orthogonal to SL at p. The curves of E that are tangent to gradϕ(p) ∀p ∈ Ω are the
streamlines of ϕ; they have the property to be orthogonal to any SL of ϕ ∀p ∈ Ω.

gradϕ allows to calculate the directional derivative of ϕ along any direction n ∈ S as

dϕ

dn
:= gradϕ · n.
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The highest variation of ϕ is hence in the direction of gradϕ, and |gradϕ| is the value of
this variation; we remark also that gradϕ is a vector directed as the increasing values of
ϕ.

Let ψ a scalar of vector field of class C2 at least. Then, the laplacian ∆ψ of ψ is defined
by

∆ψ := div(gradψ).

By the linearity of the trace, and hence of the divergence, we see easily that the laplacian of
a vector field is the vector field whose components are the laplacian of each corresponding
component of the field. A field is said to be harmonic on Ω if its laplacian is null ∀p ∈
Ω.

The definitions given above for differentiable field, gradient and class C1 can be repeated
verbatim for a deformation f(p) : Ω→ E .

Let ϕ, ψ two scalar fields, u,v,w vector fields, L a tensor field and W the axial tensor of
w. Then, the following properties hold:

grad(ϕψ) = ϕgradψ + ψgradϕ,

grad(ϕv) = ϕgradv + v ⊗ gradϕ,

(gradv)v = (curlv)⊗ v +
1

2
gradv2,

grad(v ·w) = (gradw)>v + (gradv)>w = (gradw)v + (gradv)w + v × curlw + w × curlv,

grad(u · v w) = (u · v)gradw + (w ⊗ u)gradv + (w ⊗ v)gradu,

gradv · gradv> = div((gradv)v − (divv)v) + (divv)2,

div(ϕv) = ϕdivv + v · gradϕ,

div(v ⊗w) = vdivw + (gradv)w,

div(L>v) = L · gradv + v · divL,

div(ϕL) = ϕdivL + Lgradϕ,

div(gradv>) = grad(divv),

div((gradv)v) = gradv · gradv> + v · grad(divv),

div(v ×w) = w · curlv − v · curlw,

div(ϕLv) = ϕL> · gradv + ϕv · divL> + Lv · gradϕ,

div(curlv) = 0,

curl(ϕv) = ϕcurlv + gradϕ× v,

curl(curlv) = grad(divv)− gradv,

curl(gradϕ) = o,

curl(v ⊗w) = (gradv)w − (gradw)v + vdivw −wdivv,

curlw = −divW,

∆(ϕψ) = 2gradϕ · gradψ + ϕ∆ψ + ψ∆ϕ,

∆(v ·w) = 2gradv · gradw + v ·∆w + w ·∆v.
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The proof of these properties is a good exercice for the reader (see also the book of
Gurtin).

4.12 Theorems on fields

We recall here, without proof, some classical theorems on fields and operators.

Theorem 18. (on harmonic fields): if v(p) is a vector field of class ≥ C2 such that

divv = 0, curlv = o,

then v is harmonic: ∆v = o.

Theorem 19. (Potential theorem): let v(p) a vector field of class ≥ C1 on a simply
connected domain Ω ⊂ E; then

curlv = o ⇐⇒ v = gradϕ

with ϕ(p) a scalar field of class ≥ C2, the potential.

In what follows, Ω is a sufficiently regular region of E , whose boundary is ∂Ω and the
external normal n ∈ S.

Theorem 20. (Divergence lemma): let v(p) a vector field of class ≥ C1 on Ω; then∫
∂Ω

v ⊗ n ds =

∫
Ω

gradv dv.

Theorem 21. (Divergence or Gauss theorem): let ϕ,v,L respectively a scalar, vector
and tensor field on Ω of class ≥ C1. Then∫

∂Ω

ϕn ds =

∫
Ω

gradϕ dv,∫
∂Ω

v · n ds =

∫
Ω

divv dv,∫
∂Ω

Ln ds =

∫
Ω

divL dv.

Theorem 22. (Curl theorem): let v(p) a vector field of class ≥ C1 on Ω; then∫
∂Ω

n× v ds =

∫
Ω

curlv dv.

Theorem 23. (Stokes theorem): let v(p) a vector field of class ≥ C1 on Ω and be Σ an
open surface whose support is the closed line γ and n ∈ S the normal, see Fig. 4.8. Then∮

γ

v · d` =

∫
Σ

curlv · n ds.
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The parametric equation of γ must be chosen in such a way that

p′(t1)× p′(t2) · n > 0 ∀t2 > t1.

Figure 4.8: Scheme for the Stokes theorem.

Theorem 24. (Green’s formula): let ϕ(p), ψ(p) two scalar fields on Ω of class ≥ C2; then∫
∂Ω

(
ψ
dϕ

dn
− ϕdψ

dn

)
ds =

∫
Ω

(ψ ∆ϕ− ϕ ∆ψ)dv.

Theorem 25. (Flux theorem): let v(p) a vector field of class ≥ C1 on an open subset R
of E. Then

divv = 0 ⇐⇒
∫
∂Ω

v · n ds = 0 ∀Ω ⊂ R.

4.13 Differential operators in Cartesian coordinates

In what follows, f,v,L are respectively a scalar, vector and tensor field. The Cartesian
components3 of the differential operators are4

(gradf)i = fi,

(gradv)ij = vi,j,

divv = vi,i,

(divL)i = Lij,j,

∆f = f,ii,

(∆v)i = ∆vi = vi,jj,

curlv = (v3,2 − v2,3, v1,3 − v3,1, v2,1 − v1,2).

The so-called operator nabla ∇:

∇ :=
∂·
∂xi

ei =
∂·
∂x1

e1 +
∂·
∂x2

e2 +
∂·
∂x3

e3

is often used to indicate the differential operators:

gradf = ∇f,
divv = ∇ · v,
curlv = ∇× v,

∆f = ∇2f.
3In the following formulae, the Einstein summation rule holds.

4The comma indicates partial derivative, e.g. fi,j =
∂fi
∂xj

.
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4.14 Differential operators in cylindrical coordinates

The cylindrical coordinates ρ, θ, z of a point p, whose Cartesian coordinates in the (fixed)
frame {o; e1, e2, e3} are p = (x1, x2, x3), are shown in Fig. 4.9. They are related together
by

ρ =
√
x2

1 + x2
2,

θ = arctan
x2

x1

,

z = x3,

or conversely

x1 = ρ cos θ,

x2 = ρ sin θ,

x3 = z.

To notice that ρ ≥ 0 and that the anomaly θ is bounded by 0 ≤ θ < 2π.

Figure 4.9: Cylindrical coordinates.

In the (local) frame {p; eρ, eθ, ez}, the differential operators are

∇f =

(
f,ρ,

1

ρ
f,θ, f,z

)
,

∆f =
1

ρ
(ρf,ρ),ρ +

1

ρ2
f,θθ + f,zz,

∇v =


vρ,ρ

1

ρ
(vρ,θ − vθ) vρ,z

vθ,ρ
1

ρ
(vθ,θ + vρ) vθ,z

vz,ρ
1

ρ
vz,θ vz,z

 ,

divv = vρ,ρ +
1

ρ
(vθ,θ + vρ) + vz,z,

curlv =

(
1

ρ
vz,θ − vθ,z, vρ,z − vz,ρ,

1

ρ
((ρvθ),ρ − vρ,θ)

)
,
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divL =


1

ρ
((ρLρρ),ρ + Lρθ,θ − Lθθ) + Lρz,z

Lθρ,ρ +
1

ρ
(Lθθ,θ + Lρθ + Lθρ) + Lθz,z

1

ρ
((ρLzρ),ρ + Lzθ,θ) + Lzz,z

 ,

∆v =

 ∆vρ
∆vθ
∆vz

 =


1

ρ
(ρvρ,ρ),ρ +

1

ρ2
vρ,θθ + vρ,zz −

1

ρ2
(vρ + 2vθ,θ)

1

ρ
(ρvθ,ρ),ρ +

1

ρ2
vθ,θθ + vθ,zz −

1

ρ2
(vθ − 2vρ,θ)

1

ρ
(ρvz,ρ),ρ +

1

ρ2
vz,θθ + vz,zz

 .

4.15 Differential operators in spherical coordinates

The spherical coordinates r, ϕ, θ of a point p, whose Cartesian coordinates in the (fixed)
frame {o; e1, e2, e3} are p = (x1, x2, x3), are shown in Fig. 4.10. They are related together
by

r =
√
x2

1 + x2
2 + x2

3,

ϕ = arctan

√
x2

1 + x2
2

x3

,

θ = arctan
x2

x1

,

or conversely

x1 = r cos θ sinϕ,

x2 = r sin θ sinϕ,

x3 = r cosϕ.

To notice that r ≥ 0 and that the anomaly θ is bounded by 0 ≤ θ < 2π while the colatitude
ϕ by 0 ≤ ϕ ≤ π.

Figure 4.10: Spherical coordinates.

In the (local) frame {p; er, eϕ, eθ}, the differential operators are

∇f =

(
f,r,

1

r
f,ϕ,

1

r sinϕ
f,θ

)
,
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∆f =
1

r2
(r2f,r),r +

1

r2 sinϕ
(f,θθ + (f,ϕ sinϕ),ϕ),

∇v =


vr,r

1

r
(vr,ϕ − vϕ)

1

r

(
1

sinϕ
vr,θ − vθ

)
vϕ,r

1

r
(vϕ,ϕ + vr)

1

r

(
1

sinϕ
vϕ,θ − vθ cotϕ

)
vθ,r

1

r
vθ,ϕ

1

r

(
1

sinϕ
vθ,θ + vr + vϕ cotϕ

)

 ,

divv =
1

r2
(r2vr),r +

1

r sinϕ
(vϕ,ϕ sin θ + vθ,θ),

curlv =

(
1

r sinϕ
(vθ,ϕ sin θ − vϕ,θ),

1

r sinϕ
vr,θ −

1

r
(rvθ),r,

1

r
((rvϕ),r − vr,ϕ)

)
,

divL =


1

r2
(r2Lrr),r +

1

r
Lrϕ,ϕ +

1

r sinϕ
Lrθ,θ −

Lϕϕ + Lθθ
r

+
cotϕ

r
Lrϕ

1

r2
(r2Lϕr),r +

1

r
Lϕϕ,ϕ +

1

r sinϕ
Lϕθ,θ +

1

r
Lrϕ +

cotϕ

r
(Lϕϕ − Lθθ)

1

r2
(r2Lθr),r +

1

r
Lθϕ,ϕ +

1

r sinϕ
Lθθ,θ +

1

r
Lrθ +

cotϕ

r
(Lϕθ + Lθϕ)

 ,

∆v =


vr,rr +

2vr,r
r

+
vr,ϕϕ − 2vϕ,ϕ

r2
+
vr,ϕ − 2vϕ
r2 tanϕ

+
1

r2 sinϕ

(
vr,θθ
sinϕ

− 2vθ,θ

)
− 2vr

r2

vϕ,rr +
2vϕ,r
r

+
vϕ,ϕϕ + 2vr,ϕ

r2
+
vϕ,ϕ − vϕ cotϕ

r2 tanϕ
+

1

r2 sinϕ

(
vϕ,θθ
sinϕ

− 2vθ,θ cotϕ

)
− vϕ
r2

vθ,rr +
2vθ,r
r

+
vθ,ϕϕ
r2

+

(
vθ,ϕ +

2vϕ,θ
sinϕ

)
1

r2 tanϕ
+

1

r2 sinϕ

(
vθ,θθ
sinϕ

+ 2vr,θ

)
− vθ
r2 sin2 ϕ

 .

4.16 Exercices

1. Using the same definition of derivative of a curve, prove the relations in eq. (4.1).

2. Prove the relations in eq. (4.3).

3. The curve whose polar equation is

r = a θ, a ∈ R,

is an Archimede’s spiral. Find its curvature, its length for θ ∈ [0, 2π) and prove
that any straight line passing by the origin is divided by the spiral in segments of
constant length 2π a (that is why it is used to record disks).

4. The curve whose polar equation is

r = a ebθ, a, b ∈ R,

is the logarithmic spiral. Prove that the origin is an asymptotic point of the curve,
find its curvature and the length of the segment in which a straight line by the
origin is divided by two consecutive intersections with the spiral. Then prove that
the curve is plane and its equiangular property: (p(θ)− o) · τ (θ) = const.
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5. The curve whose parametric equation is

p(θ) = a(cos θ + θ sin θ)e1 + a(sin θ − θ cos θ)e2

with the parameter θ the angle formed by p(θ)− o with the x1−axis is the involute
of the circle. Find its curvature and length for θ ∈ [0, 2π) and prove that the
geometrical set of the points p(θ) + ρ(θ)ν(θ) is exactly the circle of center o and
radius a (that is why the involute of the circle is used to profile engrenages).

6. The curve whose parametric equation is

p(θ) = a cosωθe1 + a sinωθe2 + bωθe3

is a helix that winds on a circular cylinder of radius a. Show that the angle formed
by the helix and any generatrix of the cylinder is constant (a property that defines
a helix in the general case). Then, find its length for θ ∈ [0, 2π), curvature, torsion
and pitch (the distance, on a same generatrix, between two successive intersections
with the helix). Prove then the Bertrand’s theorem: a curve is a cylindrical helix
if and only if the ratio c/ϑ = const. Finally, prove that for the above circular helix
there are two constants A and B such that

p′ × p′′ = Au(θ) +Be3,

with

u = sinωθe1 − cosωθe2;

find then A and B.

7. For the curve whose cylindrical equation is{
r = 1,

z = sin θ

find the highest curvature and determine whether or not it is planar.

8. Consider a rigid body B, and a point p0 ∈ B. From the kinematics of rigid bodies,
we now that the velocity of another point p ∈ B is given by

v(p) = v(p0) + ω × (p− p0),

with ω the angular velocity. Prove that

ω =
1

2
curlv.

9. Prove the relations at the end of Sect. 4.11.

10. Prove the three forms of the Gauss Theorem using the Divergence lemma.

11. Make use of the tensor form of the Gauss Theorem to prove the Curl Theorem.
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12. Prove the following identities using the Gauss theorem:∫
∂Ω

v · Ln ds =

∫
Ω

(v · divL + L · ∇v)dv,∫
∂Ω

(Ln)⊗ v ds =

∫
Ω

((divL)⊗ v + L(∇v>))dv,∫
∂Ω

(w · n)v ds =

∫
Ω

(vdivw + (∇v)w)dv.
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