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ON ZAGIER-HOFFMAN’S CONJECTURES IN POSITIVE
CHARACTERISTIC

TUAN NGO DAC

ABSTRACT. We study Todd-Thakur’s analogues of Zagier-Hoffman’s conjec-
tures in positive characteristic. These conjectures predict the dimension and
an explicit basis Ty, of the span of characteristic p multiple zeta values of fixed
weight w which were introduced by Thakur as analogues of classical multiple
zeta values of Euler.

In the present paper we first establish the algebraic part of these conjectures
which states that the span of characteristic p multiple zeta values of weight
w is generated by the set T,,. As a consequence, we obtain upper bounds
for the dimension. This is the analogue of Brown’s theorem and also those of
Deligne-Goncharov and Terasoma.

We then prove two results towards the transcendental part of these con-
jectures. First, we establish the linear independence for a large subset of Ty,
and yield lower bounds for the dimension. Second, for small weights we prove
the linear independence for the whole set T, and completely solve Zagier-
Hoffman’s conjectures in positive characteristic. Our key tool is the Anderson-
Brownawell-Papanikolas criterion for linear independence in positive charac-
teristic.

1. INTRODUCTION

1.1. Classical multiple zeta values. Multiple zeta values of Euler (MZV’s for
short) are real numbers of the form

1
C(nyy...,np) = Z s where ng > 1,n, > 2.
kTt ke
0<k1 <<k,
Here r is called the depth and w = ny; + -+ + n, is called the weight of the
presentation ((ny,...,n,) (see [5, Remark 1.28] for more details). For r = 1 we

recover the special values ((n) for n > 2 of the Riemann zeta function. These
values have been studied in different contexts, for example Witten’s zeta functions,
Vassiliev knot invariants or mixed Tate motives. We refer the reader to the excellent
survey of Zagier [31] and the recent book of Burgos Gil and Fresan [5] for more
details and more complete references.

As mentioned in [5], one can argue that the main goal of the theory of MZV’s
is to understand all Q-linear relations among MZV’s. Zagier [31] and Hoffman
[16] proposed some conjectures for the Q-vector space spanned by MZV’s. More
precisely, let Z; be the Q-vector space spanned by MZV’s of weight k. We define a
Fibonacci-like sequence of integers dj, as follows. Letting dy = 1,d; =0 and dy =1
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we define dy = dx_o + dg—3 for £ > 3. The following conjecture was stated by
Zagier [31].

Conjecture 1.1 (Zagier’s conjecture). For k € N we have
dimQ Zk = dk
Hoffman [16] went further and suggested a refinement of Zagier’s conjecture.

Conjecture 1.2 (Hoffman’s conjecture). The Q-vector space Zy is generated by
the basis consisting of MZV’s of weight k of the form {(n1,...,n,) with n;, € {2,3}.

Roughly speaking, we could break Zagier’s and Hoffman’s conjectures into two
parts of different nature.

e The algebraic part of Zagier’s conjecture concerns the upper bound for the
dimension, i.e. dimg Z; < dj. For Hoffman’s conjecture, it states that Zj, is
generated by MZV’s of weight k of the form ((nq,...,n,) with n; € {2,3}.

o The transcendental part of Zagier’s conjecture concerns the lower bound for
the dimension, i.e. dimg Zy > di. For Hoffman’s conjecture, it states that
MZV’s of weight k of the form ((nq,...,n,) with n; € {2, 3} are Q-linearly
independent.

In the last two decades the algebraic part of these conjectures was completely
solved by the seminal works of Brown [6], Deligne-Goncharov [13] and Terasoma
[21]. Although Zagier-Hoffman’s conjectures are easily stated, the proofs of Brown,
Deligne-Goncharov and Terasoma use the theory of mixed Tate motives.

Theorem 1.3 (Deligne-Goncharov, Terasoma). For k € N we have dimg Zy < dj.

Theorem 1.4 (Brown). The Q-vector space Zy, is generated by MZV’s of weight k
of the form ((ny,...,n,) with n; € {2,3}.

Consequently, every MZV can be written as a Q-linear combination of {(nq, ..., n,)
with n; € {2,3}. Unfortunately, in the words of Deligne [12], the proof of Brown
does not provide a usable algorithm to find out such a linear combination.

Despite major progress, the transcendental part of Zagier’s and Hoffman’s con-
jectures is completely out of reach. To our knowledge, we do not even know any
single k € N for which dimg Zj, is bigger than 1!

1.2. Characteristic p multiple zeta values. By a well-known analogy between
the arithmetic of number fields and that of function fields, conceived of in the 1930s
by Carlitz, we now switch to the function field setting.

Let A =T,4[0] be the polynomial ring in the variable 8 over a finite field F, of ¢
elements of characteristic p > 0. Let K = F,(6) be the fraction field of A equipped
with the rational place co. Let K., be the completion of K at co and C,, be the
completion of a fixed algebraic closure K of K at oo.

In [8] Carlitz introduced the Carlitz zeta values (4(n) (n € N) given by

1
Caln) ==Y — € Kx

acAy

which are analogues of classical special zeta values in the function field setting. Here
A, denotes the set of monic polynomials in A. For any tuple of positive integers
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s = (s1,...,8-) € N, Thakur [22] defined the characteristic p multiple zeta value
(MZV for short) Ca(s) or Ca(s1,...,Sr) by

1
Cals) = 27@ — € Ko
o ad

where the sum runs through the set of tuples (ai,...,a,) € A% with dega; > ... >
dega,. We call depth(s) = r the depth and w(s) = s1 + --- + s, the weight of s
and Ca(s). We extend the definition of {4(s) to the empty tuple by defining the
associated zeta value to be 1. We note that each MZV does not vanish (see [24]),
and that Carlitz zeta values are exactly depth one MZV’s.

Many works have revealed the importance of these zeta values for both their
independent interest and for their applications to a wide variety of arithmetic ap-
plications. We refer the reader to the excellent surveys of Thakur [26, 27] for more
details and more exhaustive references.

Similar to the classical setting, the main goal of this theory is to determine all
linear relations over K among MZV’s. Of particular interest we now state analogues
of Zagier-Hoffman’s conjectures in positive characteristic formulated by Thakur in
[26, §8] and by Todd in [28].

Conjecture 1.5 (Zagier’s conjecture in positive characteristic). Letting

1 if w =0,
d(w) = ¢ 2wt ifl<w<gqg-—1,
vl 1  4fw=gq,

we put d(w) = >, d(w—1i) for w > q. For any w € N, if Z,, denotes the K -span

of MZV’s of weight w, then
dimg Z,, = d(w).

We note that if we set d(w) = 0 for w < 0, then the equality d(w) = Y {_, d(w—1i)
holds for every integer w # 0, q.

Thakur [26, §8.2] formulated a refinement of the above conjecture which could
be considered as an analogue of Hoffman’s conjecture in positive characteristic.

Conjecture 1.6 (Hoffman’s conjecture in positive characteristic). A K-basis Ty,
for Zy, is given by Ca(s1,-..,S-) of weight w with s; < q for 1 <i<r, and s, < q.

1.3. Main results. In this paper we first establish the algebraic part of Conjec-
tures 1.5 and 1.6. This is the analogue of Brown’s theorem [6] and also those of
Deligne-Goncharov [13] and Terasoma [21] in positive characteristic.

Theorem A (Brown’s theorem in positive characteristic). Let w € N. Then every
MZV of weight w can be written as a K-linear combination of MZV’s in the set
Tw- In particular, dimg Z,, < d(w).

Contrary to the work of Brown [6], our proof gives an algorithm to express every
MZV of weight w as a K-linear combination of MZV’s in the set T,,.

We next prove two results towards the transcendental part of Conjectures 1.5
and 1.6. First, we obtain the linear independence over K for a large subset of T,
which is also conjectured by Thakur [26, §8.2].

Theorem B. Letw € N. We define T, to be the subset of Ty, given by (a(s1,- .., 5,)
of weight w with s; < q for 1 <i <r. Then MZV’s in TO, are all linearly indepen-
dent over K. In particular, dimg Z,, > do(w) := |T0|.
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We observe that if w < ¢, then T9 and T, are the same. As an immediate
consequence of Theorem B we deduce

Corollary C. Let w € N with w < q. Then T, is a K-basis for Z,,. In particular,
dimg Z,, = d(w).

Corollary C is purely a transcendental result since the algebraic part (i.e. The-
orem A) is trivial when w < q.

Finally, we improve Corollary C and completely solve Zagier-Hoffman’s conjec-
tures in positive characteristic for w < 2q — 2.

Theorem D. Let w € N with w < 2q — 2. Then Ty, is a K-basis for Z,,. In
particular, dimg Z,, = d(w).

Note that when ¢ = 2, Corollary C and Theorem D are the same. When ¢q >
2, contrary to Corollary C, Theorem D needs both the algebraic part and the
transcendental part. These are the first known dimensions for MZV’s of fixed
weight w in positive characteristic with w > ¢ > 2.

We present below the list of all known cases where one can determine completely
dimensions for characteristic p MZV’s of fixed weight. We are grateful to one of
the referees for pointing out the last case.

e w = 1: we have d(w) = 1, and this case follows from the fact that {4(1) # 0.

e w=2and ¢ = 2: we have d(w) = 1, and this case is known by Thakur
[22, Theorem 5.10.13] and follows from the fact that 4(2) # 0 and the
fundamental relation R; given below (see also (2.8)).

e w=2and g > 2: we have d(w) = 2, and this case was proved by Mishiba
[19, Corollary 1.5].

e w =3 and ¢ = 2: we have d(w) = 2, and this case is already known. The
inequality d(w) < 2 (i.e. Theorem A in this case) can be easily proved.
Further, we have d(w) > 2 by [22, Theorem 5.10.2].

The first three cases are covered by Corollary C. However, the last one when
w = 3 and ¢ = 2 is not covered by Theorem D.

1.4. Ingredients of the proofs. To prove Theorem A we use the previous works
of Thakur and Todd on linear relations among MZV’s (see §2). Roughly speaking,
all linear relations among MZV’s are expected to be generated by two operations
B* and € and one fundamental relation called R, given by

Calq) + DiCa(1,q—1) =0, with D; =09 —-0¢c K*.

More precisely, starting with (a(s1,...,s,) satisfying s; > ¢ we find a way to
express (4(s1,...,s,) as a K-linear combination of (4 (¢y,...,tx) with ¢; < ¢. Once
we have s; < ¢, we continue to lower the second entry ss until so < ¢q. Repeating
this process plus a little extra work we obtain a proof of Theorem A (see §3).

The proofs of Theorems B and D are completely of different flavor. They are
based on two key ingredients: the theory of Anderson ¢-motives introduced by
Anderson [1] and developed further in [2, 15], and a very powerful transcendental
tool called the Anderson-Brownawell-Papanikolas criterion devised in [2] (see §4
for details). This criterion has turned out to be very fruitful in function field
arithmetic, see for example [2, 9, 10, 20]. In particular, the proof of Theorems B
is inspired by [10] (see §5). We first construct t-motives which lift linear relations
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among MZV’s. Next we apply the Anderson-Brownawell-Papanikolas criterion to
deduce rationality results which allow us to conclude.

To prove Theorem D we construct another set of MZV’s T/ having the same
cardinality as T,, and succeed in extending Theorem B to this set. Thus we obtain
a lower bound dimg Z,, > d(w). Combining this lower bound with the upper bound
of Theorem A yields dimg Z,, = d(w), and Theorem D follows (see §6).

Acknowledgments. The author would like to express his gratitude to Federico
Pellarin for many helpful discussions and continuous support and encouragement.

The author was partially supported by the ANR Grant COLOSS ANR-19-CE40-
0015-02 and the Labex MILYON ANR-10-LABX-0070.

2. ALGEBRAIC TOOLS

In this section we investigate linear relations for MZV’s. Our approach is based
on techniques dealing with power sums studied by Thakur [25] and crucial opera-
tions introduced by Todd [28].

We continue with the notation in the introduction. Let I, be a finite field
having ¢ elements of characterisitic p > 0. Recall that A = F,[f], Ay denotes the
set of monic polynomials in A, K = Fy(#) equipped with the rational place oo,
K, denotes the completion of K at oo, and C., denotes the completion of a fixed
algebraic closure K of K at co. We denote by v, the discrete valuation on K.
corresponding to the place oo normalized such that v (f) = —1 and || = ¢~
the associated absolute value on K. The unique valuation of C,, which extends v,
will still be denoted by v.

In what follows, we use upper-case letters or Fraktur characters (e.g. W,V s, 1)
for tuples of positive integers and normal characters (e.g. s1,t1) for scalars.

Let N be the set of positive integers. Letting s = (s1,...,8,) € N” we set s; =0
for i > depth(s) = r. For any tuple s = (s1,...,s,) € N", recall that

1
Ca(s) =Cals1,...,8:) = E e © Ko
lay

where the sum is over (ai,...,a,) € A’ with dega; > ... > dega,; depth(s) :=r
is called the depth, and w(s) := s1 + ... + s, the weight of s and (4(s). We have
extended the definition of (4(s) to the empty tuple by defining the associated zeta
value to be 1. Note that each MZV does not vanish (see [24]).

2.1. Power sums. Let s = (s1,...,s,) and t = (¢1,...,tx) be tuples of positive
integers. We say that s < t if the following assertions hold:

e For all i € N we have s; +---+s; <ty + ---+t; where we recall s; =0
(resp. t; = 0) for ¢ bigger than the depth of s (resp. t).
e 5 and t have the same weight.

Letting s = (s1,82,...,8,) € N” we set s_ := (s2,...,8,). For i € N we define
T;(s) to be the tuple (s; + -+ + s;, Si+1,-.-,5-). Note that T7(s) = s. Further, for
tuples of positive integers s,t and for ¢ € N, if T;(s) < T;(t), then Ty (s) < Ty (t) for
all k > 1.

For d € Z we introduce

1
Sd(ﬁ) :ZW GKOO
1 .- Qp
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where the sum runs through the set of tuples (ai,...,a,) € A, with d = dega; >
. > dega,. Further, we define

1
S<d(5) :ZW eKoo
1 -e-Qp

where the sum is over (ay,...,a,) € A7, with d > dega; > ... > dega,. Thus
d—1
S<d(5) = Z Si(s), Sd(s) = Sd(31)5<d(5—) = Sd(31)5<d(82, ey ST).
i=0

Here by convention we define empty sums to be 0 and empty products to be 1. In
particular, S.4 of the empty tuple is equal to 1.

We briefly recall some results of Thakur concerning power sums in [25] (see also
[26, §5.2]). Thakur first proved (see [25, Theorems 1 and 2]) that for all a,b € N,
there exist Afm,b €I, for 0 <4 < a+ b such that for all d € Z,

(2.1) Sa(a)Sa(b) = Sa(a+b)+ > Al ,Sa(a+b—1i,i).
0<i<a+b

Shortly after, Chen [11] gave explicit formulas for the coefficients Ag’b and proved

a—1
a,b —

o JED D) H (-0 if(g—1) |iand 0<i<a+b,
0 otherwise.

Using this product for the product of two power sums of depth 1, one can define
the product of two power sums of arbitrary depth as follows. For two tuples of
positive integers a = (aq,...,a,) and b = (by,...,by), we recall a_ = (ag,...,a,)
and b_ = (ba,...,bx). Then we use the following formulas

(2.2) Sa(a)Sa(b) :=(Sa(a1)Sa(b1)) (S<a(a-)S<a(b-))
=Sa(a1 + b1)(S<a(a-)S<a(b-))

D AL, Salar by —i)(S<a(i)(S<a(a-)S<a(b-))),

0<i<ai+by
and
(2.3) Su (u)S<d(b) = 5.4(0)S4(a) := Sq(a1)(S<ala_)S<q(b)),
(24)  Sca(@)S<a(b) =" Si(a1)(S<i(a=)S<i(b)) + Y Si(br)(S<i(a)S<i(b_))
i<d 1<d
+) " Si(a@)Si(b
i<d

From the above formulas we deduce (see [25, Theorem 3])

Proposition 2.1 (Thakur). Let a = (a1,...,a,) and b = (by,...,bx) be two tuples
of positive integers.

1) There exist constants f; € Fy, and tuples of positive integers ¢; with ¢; < a-+b
and depth(c;) < depth(a) + depth(b) for all i, such that for all d € Z,

(2.5) Sal@) Sa(6) = 3 fiu(ci).



ON ZAGIER-HOFFMAN’S CONJECTURES IN POSITIVE CHARACTERISTIC 7

2) There exist constants f] € F,, and tuples of positive integers ¢ with ¢; < a+b
and depth(c;) < depth(a) + depth(b) for all i, such that for alld € Z,

(2.6) S<a(a)S<a(b Zfs<d

Proof. We write down a complete proof for the convenience of the reader.

The proof is by induction on depth(a) + depth(b). We start with depth(a) +
depth(b) = 2. Thus depth(a) = depth(b) = 1. Then Proposition 2.1 follows from
the explicit formulas (2.1) and (2.4).

Suppose that Proposition 2.1 holds for tuples a, b such that depth(a)+depth(b) <
d where d € N and d > 3. We claim that Proposition 2.1 holds for tuples a, b such
that depth(a) 4+ depth(b) = d.

We first prove Part 1 by using the formula (2.2). By the induction hypothesis
there exist constants f}, g;; € F,, and

e tuples ¢ with ¢; < a_ +b_ and depth(c}) < depth(a_) + depth(b_),
e tuples D with D’ < (i)4+a- +b_ and depth(d;;) < 1+ depth(a_) +

depth(b_),
such that for all d € Z and all 0 < i < a1 + by,
S<a(a_)S<a(b Zf Sca(c}),  S<a(i)(S<a(a_)S<a(b Zg”s<d i)

Note that depth(a_) = depth(a) — 1 and depth(b_) = depth(b) —
The formula (2.2) gives

Sa(a)Sa(b) =Sa(ar + b1)(S<a(a-)S<a(b-))
+ Z ALy Salar + b1 —i)(S<a(i)(S<a(a-)S<a(b-)))

0<i<ai+by
=" fiSalar +b))S<a(S) + > ALy Salar+bi—i) Y gi;S<a(d;)
7 0<i<ai—+by J
=> fiSalar + by, )+ D ALy, Zgljsd ay + by —i,0}).
7 0<i<ai+by

We see that
(a1 +b1,¢}) < (a1 +bi,a_ +b_) =a+b,
depth(ay + by, ¢}) < 1+ depth(a_) 4 depth(b_) < depth(a) + depth(b),
and for all 0 < 7 < a1 + by,
(a1 +b1 —4,0};) < (a1 +b1 —4,(i)) +a_ +b_) <a+b,
depth(ay + by —7,0};) < 2+ depth(a_) + depth(b_) = depth(a) + depth(b).

The proof of Part 1 is complete.
We now prove Part 2 by using the formula (2.4). By the induction hypothesis
there exist constants f}, g;; € F), and
e tuples ¢/ with ¢/ <a_ + b and depth(c}) < depth(a_) + depth(b),
e tuples 97 with 9 < a+b_ and depth(d) < depth(a) + depth(b_),
such that for all d € Z,

Sca(a-)S<a(b Z 'Sl H’ Sca(a)S<a(b Zg_]s<d
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By Part 1 there exist constants f; € F, and tuples of positive integers ¢; with
¢; < a+ b and depth(c;) < depth(a) + depth(b) for all j, such that for all d € Z,

b) = ijsd(cj)-
J
Putting all together into (2.4) yields
Sca(@)S<a(b) =Y Si(ar)(S<i(a-)S<i(6)) + Y Si(b1)(S<i(a)S<i(b-)) + > _ Si(a)

i<d i<d i<d
=Y f{'Scalar, )+ g7 S<aldr, ) + > fiS<alc;).
i i i

Moreover,
(CLl,C;/> < (al,a + b) <a+b,
depth(ay, ) < 14 depth(a_) + depth(b) = depth(a) + depth(b).

Similarly, (b1,2}) < a + b and depth(b,0;) < depth(a) + depth(b). Thus we get
Part 2. O

As a direct consequence, we deduce the following result for the product Sy(a)S<4(b).
In fact, by Proposition 2.1, Part 2, there exist constants f] € IF,, and tuples of pos-
itive integers ¢, with ¢, < a_ 4+ b and depth(c;) < depth(a_) + depth(b) for all 4,
such that for all d € Z, we have Sc4(a_)S<q(b) = Z f1S<a(c;). Thus

(2.7) Sa(a)S<a(b) = Sa(a1)(S<a(a-)S<a(b Zf Sa(a,c

For the rest of this paper, when we wish to express S’d(a)Sd( ) (resp. S<d(a)5<d( ),
Sa(a)S<q(b)) as an F,,-linear combination of power sums Sy(c) (resp. S<q(c), Sq(c)),
the product (2.5) (resp. (2.6), (2.7)) will be used.

Remark 2.2. 1) We do not know whether the expression of Sg(a)S4(b) (resp.
S<a(a)S<q(b)) as an Fp-linear combination of Sy(c;) (resp. S<q(c;)) as in Proposi-
tion 2.1 is unique. Note that it follows immediately from a conjecture of Thakur:
the multiple zeta values (4(s) are linearly independent over F,, (see [26, §6.3]).

2) We also mention the elementary fact which is useful in the sequel: for a,b € N
with @ + b < ¢ we have S4(a)S4(b) = Sq(a +b) for all d € Z. This equality follows
immediately from (2.1). In fact, it was known from explicit formulas for power
sums Sy(a) with a < ¢ and d € Z (see for example [28, Equation (3.3)]).

2.2. Binary relations and Todd’s operations.

Definition 2.3. 1) A binary relation R of weight w is given by a collection of
elements a;, b; of K such that for all d € Z,

Z a;Sa(s;) + Z biSay1(ti) =

where the sum runs through tuples s; and t; of weight w. We denote the above
equality by R(d).
2) A binary relation is called a fized relation if b, = 0 for all 1.

We denote by B9, the set of binary relations of weight w. An important
example is the fundamental relation called Ry (see [23, §3.4.6]) and given by

(2.8) Sa(q) + D1Sari(l,g—1) =0, with Dy =690 ¢ K*.
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Remark 2.4. Note that binary relations give rise to linear relations among MZV’s
by taking the sum over d € Z:

D aialsi) + Y biCa(ts) =0.
In what follows we fix a binary relation R of weight w given by

R(d) : ZaiSd(si) + Zbi5d+1(ti) =0, a;b; €K.

Then Todd [28] defined the B* maps and the € maps between the previous sets of
binary relations as follows.

We first introduce the map B} : BR,, — BR, 4. attached to a singleton tuple
(v). We express S4(v) >_, 4 R(d) as

0= S4(v) Z Z a;S;(s;) + Z Z biSjt1(t)

j<d i j<d i
= S4(v) (Z aiS<a(si) + Y bi(S<alti) + Sd(ti))>

=Y aiSa(v,5) + > _biSa(v,t) + > _bi Y fijSalciy)-
i i i j
Here the last equality holds since by (2.5) we have Sq(v)Sa(t:) = >_; fijSa(ci;) for
some f;; € F, and some tuples ¢;; of weight w + v.

Proposition 2.5. The map B} sends R to the fized relation
> aiSa(v,s:i) + Y biSa(v,t) + > biSa(v)Sa(t:) = 0.
We point out two particular cases that will be used later (see [28, Theorems 3.22
and 3.24]).
Corollary 2.6. Suppose that b; =0 for all i. Then B (R) equals

Z aiSd(v,si) =0.

Proof. This corollary is an immediate consequence of Proposition 2.5. (]

Corollary 2.7. Suppose that for all i we have v + t;1 < q where t; = (t;1,4-).
Then B%(R) equals

Z al'Sd("U,ﬁi) -+ Z biSd(U, tz) + Z biSd(’U + til, tz_) =0.

Proof. By Proposition 2.5 the map B} sends R to the fixed relation
Z aiSd(Uasi) =+ Z biSd(U, {“L) + Z b7Sd('U)Sd(t1) =0.
For all 7 we have

Sa(v)Sa(ti) = (Sa(v)Sa(tin)) S<a(ti—) = Sa(v + ti1)S<a(ti—) = Sa(v + ti1, ti).

Here the first equality follows from (2.2), and the second equality holds by Remark
2.2, Part 2 and the fact that v + ¢t;; < ¢. Hence the corollary follows. [
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Let W = (w1, ...,w,) be a tuple of positive integers. We define Bj;, : BR,, —
BRyww) by By := B, o--- 0B, . Next we define Cy : BR, — BRypww)
as follows. We express Scq+1(W)R(d) as

0= S<a1(W) <Z aiSa(s;) + Z bi5d+1(fz‘)>
= Z aiSd(si)(S<d( + Sd + Z b; Sd+1 S<d+1(W)
= ZalSd EZ S<d + ZalSd 51 Sd + Zb Sd+1 S<d+1(W)

By (2.5) and (2.7) we then deduce

0= Scar1(W) (Z a;Sq(si) + ZbiSd+1(ti)> =Y fiSa(e;) + Y geSar1(v)
i i I ¢

for some f;, g, € F,, and some tuples ¢;, 9, of weight w + w(W).

Proposition 2.8. The map Cy sends R to the binary relation

Zazsd )Sca(W +Zazsd +Zb Sar1(t)Scqg (W) = 0.

The following lemma is a particular case of Proposition 2.8.

Lemma 2.9. Let W = (wy,...,w,) = (w1, W_) be a tuple of positive integers.
Recall that Ry is defined as in (2.8). Then Cw (R1) can be written as

Sa(g+wi, W)+ aiSa(s:) + > biSar1(1,6) =0

for some a;,b; € K and some tuples of positive integers s;,t; satisfying

o foralli, s; < (q)+ W and s;1 < q+ wy,
o foralli, t; <(¢g—1)+W.

Proof. By Proposition 2.8 Cy (R;) equals
Sa(q; W) + Sa(q)Sa(W) + D1Sa41(1) (S<ar1(q — 1)S<arr(W)) = 0.
By (2.2), (2.6) and Proposition 2.1 we have

Sa(g, W) + Sa(q)Sa(W) = Sa(q + w1, W_) + Y aiSa(s;),
D1S<avi(q—1)S<ar1(W Zb Scari(ti

for some a;,b; € K and some tuples s;, t; satisfying

o forall 4, s; < (q) + W and s;; < q + wy,
o foralli, t; <(¢g—1)+W.

Thus Cw (R1) equals
Sa(q +wi, W_) + Zaisd(5i) + Zbisd+1(1ati) =0

with the desired properties. ([
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To end this section we introduce a new operation BC, : BR,, = BR,4q. By
Proposition 2.5, By (R) is the following fixed relation

Z a;Sa(q,s;) + Z biSa(q, t;) + Z biSa(q)Sa(t;) =

By Proposition 2.8 the binary relation Cy, (R;) with Ry as in (2.8) equals
Sa(a,t) + Sa(q)Sa(t:) + D1Sar1(1) (S<av1(q — 1)S<ata(t:)) = 0.
It follows that the combination BC,(R) := B7(R) — >, b;Cy, (1) equals

> aiSa(q,:) Z biD1Sat1(1) (S<a+1(g — 1)S<ar1(ti)) = 0.

Note that by (2.6) we can write
- Z biD1Say1(1) (S<ay1(qg — 1)S<ar1(ti Z bijSa+1(1, t;5)

i,j
for some b;; € K and some tuples t;; with t;; < (¢ — 1) + ;. In particular, the
binary relation BC,(R) equals

Zazsd q751 +Zb7,j5d+1 1 tlj)

i.J
Proposition 2.10. The relation BCy(R) := B (R) — >_; biCy, (R1) equals

> aiSa(a,5i) = Y biD1Sas1(1) (S<ari(a — 1)S<ara (k) = 0.

2.3. Relations generated by the fundamental relation. We mention that the
relation conjecture formulated by Todd (see [28, §5]) states that a spanning set for
linear relations of weight w + ¢ with w > 0 is given by

UBioev(Ry)

where the union runs through the set of tuples of positive integers U and V' (possibly
empty) such that (U, V) is a tuple of positive integers of weight w.

Definition 2.11. 1) Let s = (s1,..., S;) be a tuple of positive integers. We denote
by 0 < i < r the biggest integer such that s; < ¢ for all 1 < j <4 and define the
initial tuple Init(s) of s to be the tuple

Init(s) := (s1,..., ;).
In particular, if s; > ¢, then ¢ = 0 and Init(s) is the empty tuple.

2) For two different tuples s and t, we consider the lexicographical order for
initial tuples and write Init(t) < Init(s) (resp. Init(t) < Init(s), Init(t) = Init(s)
and Init(t) > Init(s)).

Proposition 2.12. Let s = (s1,...,8,) € N" with s1,...,8k-1 < q and s; > q for
some 1 < k <r. Recall that Init(s) = (s1,...,Sk—1) as defined in Definition 2.11.

Then Ca(s) is equal to a K-linear combination of MZV’s which can be decomposed
into three types

(2.9) Cals) =D aiCals] +Zb§A )+ eidau),

A

type 1 type 2 type 3
with a;, b;, c; € K such that the following properties hold:
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o For all tuples t appearing on the right-hand side,
T, (t) < Ti(s), and depth(t) > depth(s).

e For tuples s of type 1 with respect to s,
— either Init(s") > Init(s),
— or Init(s") = Init(s) and s}, < s.
o For tuples t' of type 2 with respect to s, for all ¢ such that k < ¢ < depth(s),
we have

bty < sy e+ s
o For tuples u of type 3 with respect to s, we have Init(u) > Init(s).

Proof. We set W := (s — ¢, Sk+1,---,5-). By Lemma 2.9 the binary relation
Cw (R1) equals

(210) Sd(Sk, e ST) + Z aiSd(ﬁi) + Z biSd—H(l, ti) =0

where a;,b; € K, and for all 7, we have

o 5, < (q)+ W = (sk, Sk+1,---,5) and s;1 < Sk,
o (; < (q— 1)+W: (Sk — 1,sk+1,...,sr).
Letting so := 0 we can suppose that there exists 0 < j < k — 1 such that s; < ¢
and sj41 = -+ = s;_1 = ¢. In what follows, for m € N, ¢™} denotes the sequence

of m consecutive ¢’s, and ¢{° is just the empty tuple.
Proposition 2.10 applied k — j — 1 times to (2.10) gives

(2.11) Sa(g™ ™ sp, s+ aiSa(gt T )
+ Z bil...ik,j Sd+1(17ti1...ik,j) = O
i1k

Here we define by induction b;,. ;, = —bs, .4, ,Ci,...i, D1 Where

(212)  Scari(q = DScant(Litiyi ) = Y CiroigS<ari(tiyir)s  Cir.ip € Fpe
ig

By (2.12) and Proposition 2.1, for all £ > 2,

ty i, <(@— 1D+t i) = (@t i)
Thus

(213) til...ik,j < (q{k7j71}7 tll) < (q{k7j71}7 Sk — 17 Sk+1s-- ) 8T)~
Since s; < g, by Corollary 2.7 we apply B}, to (2.11) to get the fixed relation
Sa(sjs--s8r) + Zaisd(qu{k*jfl},ﬁi)

+ Z bil...ik,de(sj) 17ti1..4ik,j) + Z bil...ik,de(Sj + 1ati1...ik,j) =0.

i1 i1 eih
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* * . .
Next by Corollary 2.6 we apply Bg o---o st,l to the above relation to obtain

(2.14) Sa(81y.--y8r —l—ZalSd 51,...,sj,q{k_j_1},si)

+ Z bll T — dsl?"'?‘sj’]‘ﬂtilu»ik—j)

’Lk7

+ Z biy .o in_ d517'--75.]'7175.]‘+17ti1“.1}k_j):0'

i
We analyze each tuple except the first one appearing in the above expression.
Recall that s = (s1,.. .,sj,q{k_ﬂ‘l}, Sky---,8r). Thus depth(s) = r, T(s) = (s1 +
-+ Sk, Sk+1, - - -, Sr), and Init(s) = (s1,...,s;, glF=i—1h,
Type 1: tuples s’ = (sq,.. .,sj,q{k_j_l},si) in the second sum of (2.14).
By the above discussion we know that s; < (S, Sk+1,...,5-) and $;1 < sg. It
follows that s/ < s. We then deduce
o depth(s’) > depth(s), and Ty (s’
e Tnit(s') = (s1,...,s;,¢tF771})
Further, s}, = s;1 < sg.
Type 2: tuples t' = (s1,...,s;, 1’til"'i’“—j). in the third sum of (2.14).
By (2.13) we know that t;, 4, _, < (qP*=3=1} s, —1,8341,...,5,). Thus

) Ty (s),
= Init(s).

depth(t) > j + 1+ (r — j) =7+ 1 > depth(s).
Further, for all £ with k£ < £ < r, we claim that
bty <sp e+ s
In fact, for £ = k,

4t <si+-+s;+1+(k—j—1)q
<81+"'+S]'+(k—j—1)q+sk
:Sl+"'+sk-
Here the second inequality follows from the fact that s > ¢ > 1.
For k+1 < /¢ <r, we have
ottty <si+-+s;+1+k—7—1)g+ (s — 1)+ g1+ + 81
<81+"'+Sj+(k—j—1)q+8k+5k+1+"’+52
=81+ -+ 8.
Here the second inequality holds since sp > 0.

Type 3: tuples u= (s1,...,5; +1,t;, 4 _,) in the last sum of (2.14).
We stress that these terms appear only in the case where 57 > 1. As before, by
(2.13) we know that t;,.;,_, < (q{k_j_l}7 sk — 1,841, --,8). It implies that
o depth(u) > j + (r — j) = r = depth(s),
° Tk(u) < Tk(5)7
e Init(u) = (s1,...,5; + 1) > Init(s).
The proof is finished. O
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Proposition 2.13. Let s = (s1,...,5;) € N¥ with s1,...,5,_1 < q and s = q.
Then Ca(s) is equal to a K-linear combination of MZV’s which can be decomposed
into two types

(2.15) Cals) = me(tz) +Zci<A<ui),

type 2 type 3
with b;, c; € K such that the following properties hold:
o For all tuples t appearing on the right-hand side,

T (t) < Ti(s), and depth(t) > depth(s).
e For tuples t' of type 2 with respect to s, we have
4t <s14 -+ sk
e For tuples u of type 3 with respect to s, we have Init(u) > Init(s).

Proof. Letting W be the empty tuple, we note that Cy (Ry) is Ry. Then the proof
follows the same lines as that of Proposition 2.12, and we omit the details. [

3. PROOF OF THEOREM A
This section is devoted to a proof of Theorem A.

Definition 3.1. Let k£ € N and s be a tuple of positive integers. We say that s is
k-admissible if it satisfies the following two conditions:

1) s1,...,5: <gq.

2) s is not of the form (s1,...,s,) with r <k, s1,...,8,-1 < ¢, and s, = q.
Here we recall s; = 0 for ¢ > depth(s).

Proposition 3.2. Fork € N and for all tuples s we can express a(s) as a K -linear
combination of (o(t) such that t is k-admissible, T (t) < Ty(s), and depth(t) >
depth(s).

Proof. The proof is by induction on k. We denote by Hj the corresponding hy-
pothesis for k:

For all tuples s we can express Ca(s) as a K-linear combination of (A(t) such
that t is k-admissible, Ty, (t) < Ty(s), and depth(t) > depth(s).

We start with & = 1 and note that T} (t) = t for all tuples t. We observe that a
tuple t is 1-admissible if t # (¢) and t; < q. We now prove H; by induction on the
first term s1 of s.

In fact, if s1 < ¢, then either s = (¢) or s is 1-admissible. If s = (¢), we are done
by using R; as in (2.8). Otherwise, s is 1-admissible, and we are also done.

Suppose that for s > ¢, H; holds for all tuples s with s; < s — 1. We claim
that H; holds for all tuples s = (s1,...,s,) with s; = s. In fact, we set W :=
(s1 —q,s2,...,5). By Lemma 2.9 the binary relation Cy (R1) equals

Sa(s1,--80) + Y aiSa(si) + D biSara(1,6) =0

where a;,b; € K, and we have
o foralli,s; <(q)+W = (s1,...,8) and s;1 < s1,
e foralli, t;, <(¢—1)+W =1(s1 —1,89,...,8).
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By Remark 2.4 we get
Cals) + > aiCalsi) + Y biCa(l,t;) =0.

The induction hypothesis implies that H; holds for all tuples s;. All tuples (1, t;)
are 1-admissible. We then conclude that H; holds for s. Thus we have proved H;.

Let k£ € N with k£ > 2. We suppose that Hy_1 holds. We now prove Hj. The
proof is again by induction on the sum s := s + - -+ + s.

If s =1, then it is clear that Hy holds. Let s € N with s > 2. Suppose that Hy,
holds for s with s; +---+ s < s. We now prove that Hy, holds for all tuples s with
§1+ -+ S =s.

In fact, let s = (s1,...,8,) € N” be a tuple with s; 4+ -+ + s = s. We suppose
further that s is not k-admissible and satisfies depth(s) = r > k. In fact, by Hp_1
we can suppose that s is (k — 1)-admissible, but not k-admissible. In particular, we
get depth(s) > k.

An algorithm. Starting with s which is not k-admissible and satisfies depth(s) > k
and s1 + -+ + s, = s, we give an algorithm to show that Hy holds for s.

Step 1. Since s is not k-admissible and satisfies depth(s) > k, there are two
possibilities for s:

e Case 1: s = (s1,...,8) with s1,...,8k,-1 < ¢, S, > ¢ for some ky < k.
e Case 2: 5 = (s1,...,8) with s1,...,s,_1 < ¢and sx =q.
For Case 1 we apply Proposition 2.12 to s to obtain an expression (2.9) for (4(s).
Otherwise, for Case 2 we apply Proposition 2.13 to s to obtain an expression (2.15)
for (4(s). Thus we always have

Cals) = Y aiCals)) + D biCalt) + ) eiCalwi), with ag,bi¢; € K.

type 1 type 2 type 3

We denote by S(s) the set of all the tuples t appearing in this expression.

We claim that for all tuples t € S(s), we have Ty(t) < Ty(s) and depth(t) >
depth(s). In fact, if we are in Case 1, then by Proposition 2.12, T, (t) < Ty, (s)
and depth(t) > depth(s). Since ky < k, it follows that Ty (t) < Ty(s). Otherwise,
we are in Case 2, and the claim follows from Proposition 2.13.

Consequently, for all tuples t € S(s) we get t1+-- -+t <s1+--+ s =5 We
divide the set S(s) into two disjoint subsets

S(s) = S(s)o U S(s)1

where S(s)g (resp. S(s)1) consists of all the tuples t € S(s) such that t1+-- -+t < s
(vesp. t1 + -+t = s).

We claim that if ¥ € S(s) is of type 2 with respect to s, then t' € S(s)p. In
fact, if we are in Case 1, the claim results from Proposition 2.12 and the fact that
k1 < k < depth(s). Otherwise, in Case 2 the claim follows immediately from
Proposition 2.13.

Step 2. For tuples t € S(s)g, since ¢; + --- + ¢, < s, we apply the induction
hypothesis Hy, for t, and we are done with {4(t). Thus we are reduced to deal with
tuples belonging to S(s);. Let 51 be such a tuple. Then by the above discussion 51
is of type 1 or type 3 with respect to s. Further, we have seen that Ty (s1) < Tx(s),
depth(s1) > depth(s) > k, and s11 + -+ + s1x = s. If 51 is k-admissible, then we
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are done with (4(s1). Otherwise, 51 is not k-admissible and depth(s;) > k. We
then repeat Steps 1 and 2 for s1, and so on.

Effectiveness of the algorithm. We claim that the algorithm must end after a
finite number of steps. Suppose that it is not the case. Then we obtain an infinite
sequence of tuples sg := s, 51, 62, ... such that for all 7 the following properties hold:
s; is not k-admissible, and depth(s;) > k,

Tr(si+1) < Ti(s;), and depth(s;y1) > depth(s;),

Si1 0+ Sip = 5,

5,41 is of type 1 or type 3 with respect to s;.

By Proposition 2.12 and Proposition 2.13,

e If 5,.1 is of type 1 with respect to s;, then Init(s;1) = Init(s;).

e If 5,4 is of type 3 with respect to s;, then Init(s;1) > Init(s;).
Since s; is not k-admissible, it follows that depth(Init(s;)) < k. Thus Init(s;) < ¢{*}
where ¢t*} is the sequence of k consecutive ¢’s. It implies that for ¢ sufficiently
large, we always have Init(s; 1) = Init(s;). This forces that for ¢ sufficiently large,
s;11 1s of type 1 with respect to s;. Since Init(s;11) = Init(s;), it follows from
Proposition 2.12 that s(;41)¢ < si¢ where £ := depth(Init(s;)) + 1. Therefore, we
get a contradiction.

We conclude that our algorithm must end after a finite number of steps. The

proof is finished. [l

Proof of Theorem A. Let s = (s1,...,5s,) € N” be a tuple of weight w. Proposition
3.2 applied to k = w implies that we can express (4(s) as a K-linear combination
of {4(t) such that t is w-admissible, T, (t) < T, (s), and depth(t) > depth(s). Since
w(t) = w and t is w-admissible, we get t € Ty, Then Theorem A follows. O

4. TRANSCENDENTAL TOOLS

In this section we briefly review the basic theory of Anderson dual ¢-motives.
We refer the reader to [7, §1.5] and [15, §2.4] for more details.

4.1. Dual t-motives. Letting ¢ be another variable we denote by T the Tate al-
gebra in the variable ¢ with coefficients in C, equipped with the Gauss norm ||.|.
For k € Z we consider the k-fold twisting of C((¢)) defined by

Coo((t)) = Coo((?))
f= Zaiti — )= Zafkti

We extend k-fold twisting to matrices with entries in Coo((t)) by twisting entry-
wise. We denote by K[t,o] be the non-commutative K|[t]-algebra generated by a
new variable o with the rules of = f(~Yo for all f € K[t].

Definition 4.1. An effective dual t-motive is a left K|[t, o]-module M which is free
and finitely generated over K[t] such that for £ > 0 we have

(t = 0)"(M/oM) = {0}.

We mention that effective dual ¢-motives are called Frobenius modules in [10,
§2.2]. Note that Hartl and Juschka [15, §2.4] introduced a more general notion of
dual t-motives. In particular, effective dual t-motives are always dual t-motives.
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Throughout this paper we will always work with effective dual t-motives. There-
fore, we will sometimes drop the word ”effective” where there is no confusion.

Let M and M’ be two effective dual t-motives. Then a morphism of effective dual
t-motives M — M’ is just a homomorphism of left K[t,c]-modules. We denote by
F the category of effective dual t-motives equipped with the trivial object 1.

We say that an object M of F is given by a matrix ® € Mat, (K[t]) if M is a
K[t]-module free of rank 7 and the action of o is represented by the matrix ® on a
given K [t]-basis for M.

We say that an object M of F given by a matrix ® € Mat,.(K[t]) is uniformizable
or rigid analytically trivial if there exists a matrix ¥ € GL,(T) satisfying U(-1) =
®W. The matrix ¥ is called a rigid analytic trivialization of M.

4.2. Dual t-motives connected to MZV’s. We briefly review Anderson-Thakur
polynomials introduced in [3]. For k > 0 we set [k] := 09" —0 and Dy, := ledqu*f
For n € N we write n — 1 = ijonjqj with 0 < n; < ¢ — 1 and define I, :=
[I>0 D;Lj. We set () := 1 and v;(t) = zzl(ﬁq] - tql) for j > 1. Then
Anderson-Thakur polynomials «,(t) € A[t] are given by the generating series

—1

an(t) . _ V() g
n>1 720
Finally, we define H,(t) by switching 6 and t: H,(t) = an(t)|t:0 o By 3,
ﬂ
Equation (3.7.3)] we get that | H,|| < [6]&'. We mention that H,, here is denoted
by H,_y in [3, 10, 17].

Let s = (s1,...,8-) € N" be a tuple. Following [4] we consider the dual t-motives
M, and M, attached to s given by
(t—@)srttsr 0 0 . 0
HSD (¢ — g)sittse (t — )52t +sr 0 0
d, = 0 HG V(- g)sattse | e Mat, o (KTY),
: . (t—6)sr 0
0 . 0 HVt—60) 1

and ®/ € Mat, (K[t]) which is the upper left r x r submatrix of ®,.
Throughout this paper, we work with the Carlitz period 7 which is a fundamental
period of the Carlitz module (see [14, 22]). We fix a choice of (¢ — 1)st root of (—6)

and set
Q(t) := (—0)"9/ (@~ 1)H< )er]rx
i>1
so that Q1 = (¢ — 6)Q and & ) = 7. Given s as above, Chang introduced the
following series (see [9, Lemma .3.1] and also [10, Equation (2.3.2)]):
(4.1) Ls) = L(s1,..,8,) = > (rH, ) (QUH,,)"),

01> >4, >0

Letting I's =T, ... T, by [9, Equation (5.5.3)] we have
(4.2) £(5)(0) = T'sCals) /7).
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If we denote & the ring of series Y - a,t" € K[[t]] such that lim,_, ;o {/|an|cc =
0 and [Ks(ag, a1,...) : Ks] < 00, then any f € € is an entire function. It is proved
that £(s) € € (see [9, Lemma 5.3.1]).

Then the matrix given by

Qsittee 0 0 0
S(Sl)Q32+-~~+sT Qs2t -t 0 0
: s3+-+s, .. .
v, — : £(s2)2 | | | ear
3(81,...,S7~_1)QST 2(827...,ST_1)QST Qs 0
L£(81,-+-,5r) L(s2,...,5r) oo E(sp) 1
satisfies
oY — 9. v,

Thus W, is a rigid analytic trivialization associated to the dual ¢t-motive Ms.
We also denote by ¥, the upper r x r submatrix of ¥Us. It is clear that ¥/ is a
rigid analytic trivialization associated to the dual t-motive MZ.

4.3. The Anderson-Brownawell-Papanikolas criterion. We close this section
by recalling the Anderson-Brownawell-Papanikolas criterion which is crucial in the
sequel (see [2, Theorem 3.1.1]).

Theorem 4.2 (Anderson-Brownawell-Papanikolas). Let ® € Mat,(K[t]) be a ma-
triz such that det ® = c(t — 0)* for some ¢ € K and s € Z=°. Let 1) € Matyyx1(€)
be a vector satisfying Y=V = & and p € Maty o (K) such that pi(f) = 0. Then

there exists a vector P € Mat1x¢(K[t]) such that
Py=0 and P(0)=p.

5. PROOF orF THEOREM B

This section is devoted to a proof of Theorem B. The proof is by induction on
the weight w € N. For w = 1 we are done since 4(1) is nonzero. One can show
that (4 (1) is even transcendental over K by Wade [29] (see also [30]). Suppose that
for w' < w MZV’s in 79, are all linearly independent over K, hence over K by [9,
Proposition 4.3.1].

We claim that MZV’s in T9 are all linearly independent over K. Suppose that

there exist (a(s;) € T9 and a; € A\ {0} such that
ZaiFsiCA(si) =0.

We show that this relation leads to a contradiction. The proof of this fact is divided
into several steps.

5.1. Step 1. We first construct a dual t-motive to which we will apply the Anderson-
Brownawell-Papanikolas criterion. In what follows we set a;(t) := a;|o=1 € Fy[t] \

{0}
For each s, we have attached to it a matrix ®,,. For each s; we write s; =
(8i1,- - -, 5i,) € N% and define the set of tuples

I(ﬁl) = {@7 (Sil); ey (SiI» ey Si(lifl))}-

Recall that s; is of weight w, that means s;; + -+ + 550, = w.
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We construct a new matrix ®' by merging the same rows of ®, ,...,®{ as

follows. We set I := U;I(s;). Then the matrix ®’ will be a matrix indexed by
elements of I, write ® = (®{ ;/),ver € Mat|(K[t]). For the row which corresponds
to the empty tuple @ we define

(t—0)" if ¢ =0,
¢6,t/ = {

0 otherwise.
For the row indexed by t = (s1,..., ;) for some ¢ and 1 < j < ¢; — 1 we put
(t — g)w—w(t) if ¢ =t
Oy = HS (=0 ¢ = (51,0, 85-1))s
0 otherwise.

Note that ®; = (@ ¢ ) ver(s,) for all i.

We define ® € Mat,;1(K][t]) by

® 0 — —
o = (V 1) EMat|[|+1(K[tD, VZ(Ut)te[ EMat1X|1|(K[tD7
where

. ai()VHS D (= 0)" O i t= (si1, ..., 8i0, 1))
‘ 0 otherwise.
We now introduce a rigid analytic trivialization matrix ¥ for ®. We define

V' = (Vi y)ver € GLy(T) as follows. For the row which corresponds to the
empty tuple ) we define

0 otherwise.

Qv iy =0,
\I//@,t/ - {

For the row indexed by t = (s1,...,s;;) for some ¢ and 1 < j < ¢; — 1 we put
gHQu-—® if ¢ =0,
b = L(Sitka1)s- -0 80) Q0O ¥ = (s1,..., ;) for some 1 < k < 4,
0 otherwise.

Note that Wi = (W} ¢ )ever(s,) for all i.
We define ¥ € GL;741(T) by

o0
V= ( £ 1> € GLi741(T), f = (fo)ier € Maty,1(T)

with
(5.1) fo=>ai(®)&(si(er1):-- - sie,)
where the sum runs through the set of indices i such that t = (s;1, ..., ;) for some

0 <k </{; — 1. In particular, fy =", a;(t)£(s;).
By construction and by §4.2, we get U(—1) = ®¥, that means ¥ is a rigid analytic
trivialization for ®.
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5.2. Step 2. Next we apply the Anderson-Brownawell-Papanikolas criterion and

combine with the induction hypothesis to get some rationality results. More pre-

cisely, we claim that for all t € I, fi(0) belongs to K where f is given as in (5.1).
In fact, we consider the first column vector of ¥

_ ‘I’i,@) .
v (f@ terl

0= £(H)Qw=*M_ Further, by (4.2),

Then we have ¢(—1) = &

We also observe that for all t € I we have \Ifi

fo(0) = Zai2(5i)(9) = ZairsiCA(Si)/%w =0.

By Theorem 4.2 with p = (0,...,0,1) we deduce that there exists h = (g¢,9) €
Maty (j71+1) (K [t]) such that hey) = 0, and that g¢(f) = 0 for t € I and g(6) # 0. If
we put g := (1/g)h € Matlx(qu)(F(t)), then all the entries of g are regular at
t=20.

Now we have

(5.2) (g-g Vo) =gy —(gv) " =0.

We write g — g(-® = (By,0)(c;. We claim that B = 0 for all t € I. In fact,
expanding (5.2) we obtain

(5.3) > Bg(pr W =o.
tel
By [9, Lemma 5.3.5] (see also [10, Proposition 2.3.3]) we see that for t € I and
JeN,
(5-4) L(1)(07) = ((1)(9))"
which is also nonzero by (4.2) and [24, Theorem 4].

We put wy := maxie;w(t) and denote by I(wp) the set of t € I such that
w(t) = wp. Then dividing (5.3) by Q*~"° yields

(5.5) S B O = Y BLM+ Y BEMQY =o.
tel tel(wo) teI\I(wo)
Since each By belongs to K (t), they are defined at ¢t = 97 for j > 1. Note that the

function © has a simple zero at t = 69" for k € N. Specializing (5.5) at t = 67 and
using (5.4) yields

> BuO7)(E®)(6)” =0

tel(wo)

for j > 1. Since wy < w, by the induction hypothesis we deduce that B(8?") = 0
for 5 > 1 and for all t € I(wp). Since each By belongs to K (t), it follows that
By =0 for all t € I(wy).

Next, we put wi := maxe s\ 7(w,) w(t) and denote by I(w;) the set of t € I such

that w(t) = w;. Dividing (5.3) by Q*~"* and specializing at ¢ = 07 yields

> BUeT)(EW@) =0

tel(wy)
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for 7 > 1. Since w; < w, by the induction hypothesis we deduce that B(8%") = 0
for j > 1 and for all t € I(w;). Since each By belongs to K(t), it follows that
By =0 for all t € I(w;). Repeating the previous arguments we deduce that By = 0
for all t € I as required.

We have proved that g — g(-~D® = 0. Thus

(s 1) 2= (5 5) (s )

By [10, Proposition 2.2.1] we see that the common denominator b of g¢/g for t € T
belongs to F,[t] \ {0}. If we put 6 = bg/g for t € I which belong to K[t] and
0:= (6t)t€I S Mathm(K[t]), then

o DTN )Y,

Id 0\ /¥ 0 0
. (=1 —
If we put X = (5 1) (bf 1), then X (0 1) X. By [20, §4.1.6]

there exist v € Fy(t) for t € I such that if we set v = (v¢)ier € Maty|1(Fy(t)),
v 0\ /Id 0
=0 )Y

. Id 0\ /¥ 0 v 0\ /Id 0). ..
Thus the equation ((5 1) <bf 1) = (0 1) <u 1) implies

(5.7) SV + bf = v,

The left-hand side belongs to T, so does the right-hand side. Thus v = (v{)er €
Mat |7 (Fg[t]). For any j € N, by specializing (5.7) at t = 69’ and using (4.2) and
the fact that Q has a simple zero at t = #7 we deduce that

£(0) = v(0)/b(6).

Thus for all t € I, f((0) given as in (5.1) belongs to K. The claim is proved.

5.3. Step 3. In this final step we deduce a contradiction from the previous ratio-
nality results.

For 5; we let m; € ZZ° be the biggest index such that (s;1,...,sim,) belongs to
I(s;) for some j # i. Note that s;(,,,41) 7 0 since the weights of s; and s; (j # )
are the same. For m; + 1 < k < ¢; we consider t = (s1,..., ;). Thus (5.1) gives
Je = ai(t)L(5i(k41)s - - -, 5ie;). By Step 2 we know that fi(6) belongs to K. By (4.2)
we get

air(si(k+1) »»»» Siéi)CA(si(k+1)7 ) Sifi)/%si(k+1>+‘.'+swi € K.
Since a; € K*, 5i(j11) + -+ 84, is divisible by ¢ — 1. Since this condition holds for
all m; +1 < k < ¢;, it follows that s;(,1) is divisible by ¢—1 for all m; +1 < k < {;.
Since 1 < s;(r41) < g — 1, we conclude that

Sik+1) = ¢ — 1, forallm; +1 <k <¥,.

Let m := max; m;. Then we can find two different tuples, says s; and so be
such that m; = ma = m. Thus (s11,...,51m) = (521,...,82m) and Sy(my1) #
S2(m+1)- The previous discussion shows that sy(,40) = -+- = ¢—1 and sy(42) =

-+« = q— 1. Combining with the fact that s; and so have the same weight yields
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51(m+1) = S2(m41) (mod ¢ —1). Since 1 < 81(m41), S2(m+1) < ¢ — 1, we deduce
S1(m+1) = S2(m+1), Which is a contradiction.
The proof of Theorem B is finished.

Remark 5.1. In Step 2 of the proof of Theorem B we use the crucial fact that
if Ca(s1,...,5.) belongs to T9 then (4(s1,...,s-_1) belongs to ‘J'?Ufsr. However,
this property does not hold for T,.

6. PROOF OF THEOREM D

As noticed in Remark 5.1 we cannot extend directly Theorem B to the set T,,. In
this section we provide a tricky way to bypass this problem. To do so, for w € N we
consider another set J7, consisting of MZV’s of weight w of the form (a(s1,...,5,)
where ¢ does not divide s; for all 4.

Lemma 6.1. 1) The sets T, and T7, have the same cardinality.
2) If Ca(s1,-..,5.) belongs to T,,, then Ca(s1,...,sr-—1) belongs to T, _ .

w

Proof. Part 2 is clear from the definition of 77,. For Part 1 we put d'(w) := |T7,|.
If w < q, then it is clear that |T,| = |T7,| since T,, = T/,. It suffices to show
that |J7,| satisfies the same Fibonacci-like relations as that of |T,|. In fact, let
(s1,...,8r) € N such that ¢ does not divide s; for all i. If 1 < s; < g — 1, then

(s2,...,8,) € Tp,_,,. Otherwise, s; > ¢ and it is clear that (s; —¢,s2,...,5,) €
Tiy_g- Thus we get d'(w) = Y7, d'(w — i) as desired. The proof of Part 1 is
finished. 0

In what follows we suppose that w < 2¢ — 2 and extend Theorem B to 7/,. As
mentioned in the introduction, when ¢ = 2 Corollary C and Theorem D are the
same. Thus from now on we will assume that ¢ > 2.

Theorem 6.2. Suppose that ¢ > 2 and w < 2q — 2. Then MZV’s in T., are all
linearly independent over K.

Proof. The proof follows the same lines as that of Theorem B. We skip Steps 1 and
2 and give full details for Step 3.

The proof is by induction on the weight w € N. For w < ¢ we have T,, = T/,
and we are done by Theorem B. Letting w € N with w < 2¢ — 2, we suppose that
for w' < w MZV’s in T/, are all linearly independent over K.

We claim that MZV’s in T/, are all linearly independent over K. Suppose that
there exist Ca(s;) € 77, and a; € A\ {0} such that >, a;,I's,{a(s;) = 0. We show
that this relation leads to a contradiction and divide the proof into three steps.
Steps 1 and 2. We set a;(t) := a;|o=+ € Fq[t] \ {0}. For each s; we write s; =
(8i1,-..,5i,) and define the set of tuples I(s;) = {0, (si1),. -, (Si1,- -+, 8i0,-1))}-
Recall that s; is of weight w, that means s;; + - - + 850, = w. We set I := U;I(s;).
By Lemma 6.1 Steps 1 and 2 carry over without modification as the size restriction
on 5; of Theorem B was never used for them. Therefore, if for t € I we set

f{ = Z ai(t)’g(s’i(k-‘rl), X S'Lli)

where the sum is over indices ¢ such that t = (s1, ..., $;) for some 0 < k < ¢; — 1,
then f¢(6) belongs to K.
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Step 3. Let t € I and t # (. Then t = (s;1,...,5;) for some i and 1
k < ¢; — 1. We denote by J(t) the set of all such 7. It follows that f;

Yica i) €(Sik+1)s - - -+ Sie;) and by (4.2),

(6.1) fu0) = Z ail—‘(si(kJrl) ..... siéi)CA(Si(k+1)a ey Si&-)/%w—w(t) eK.
1€ J(t)

I IA

We claim that w — w(t) is divisible by ¢ — 1. In fact, suppose that w — w(t) is not
divisible by ¢ — 1, then 7~ ¢ K_ . Combining with (6.1) yields
Z @il (55 0k 1) renr500,) CA (Si(k41)5 - - - Sie,) = 0.
ied(b)

The MZV’s appearing in the above equality belong to T/, —w(t) Recalling that
a; # 0 for ¢ € J(t) we then obtain a contradiction by the induction hypothesis.

We have proved that w —w(t) is divisible by ¢ — 1 for all t € I\ ). Consequently,
letting s; = (si1,- - ., Sir;) we conclude that s;2, ..., S, are all divisible by ¢—1. We
now use the hypothesis w < 2¢—2 to conclude that either s; = (w) or s; = (k,q—1)

where k = w — (¢ — 1) satisfying 1 < k < ¢ — 1. In other words, we have a linear
relation

(6.2) a1l Ca(w) + azla(k,g —1) =0, for some aj,as € K*.

We can suppose that a1,as € A\{0}. We have reduced to a very simple case which
was already studied in [10] and also in [17].

We claim that (6.2) leads to a contradiction!. In fact, we put s; = k and
sy = q— 1. By (5.6) it follows that there exist &1, d, € K[t] such that

6.3) 61 =0t —0)" + 65 VHIV (- 0)” + ay ())HS TV (t - 0),
6.4) Gy =05 "t —0)* +ax(t)HV(t — 0)%2.
Kuan and Lin showed (see [17, proof of Theorem 2]) that d1,d2 belong to K[t], and

q(si+...+32)
degy 6; < ——————=
€8p 0i = g—1

Observe that if (81, da, a1 (t), az(t)) € K[t]* xF,[t]? is a solution of the above system,
then (f&1, fo2, fai(t), faz(t)) € K[t]* x Fy[t]? is also a solution for all f € F,[t].
We proceed by direct calculations. We first solve (6.4)

8y = 05t — 0)%2 + ag() H D (t — 0)%2.

We know H,, = 1. It is easy to see that a5(t) = t7—t and §, = 07 —t7 is a solution.
If we set ¢ := a4 (t)d2 — aa(t)d} € K[t], then

§ = ab(t)dz — az(t)d)

= ah ()85 (t — 0)* + ax(HV(t — 0)™)
— ap(8) (05 (¢ — 0)%2 + ah () H TV (t — 0)*)
ah(t)35 V) (t = 0)* — ax (1)35 (1 — 0)
=601t — ).

1=1,2.

) )

IR, Pellarin pointed out that there was an elementary proof using Mahler’s method (private
communication, August 2020).
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Here the last equality holds since as(t), a5(t) belong to Fy[t]. Comparing the degree
of t we deduce that 6 = 0. Thus ax(t) = fah(t) = f(t? —t), 62 = fd, = f(07 —t9)
for some f € Fg[t] and f # 0.

We know that Hs, =1 and Hy = Hyqp—1 = (t7—1t)+ (k—1)(¢t?—07). Replacing
these in (6.3) we have to solve

(6.5) 51 =6t —0) +65 V(-0 + ay (HSV (& — 0)”

where 01 € K[t] and degy 61 < 5. We will treat separately two cases: 1 <k < g—1
and k =q— 1.

If1l< k< qg—1, then w < 2q — 2. It follows that degyd; < w + 1 since
degy 91 < %. From (6.5) we see that ¢; is divisible by (¢t — 0)*. Then we write

0 =(ad+0)(t—0)", a,beF,t].
Replacing this expression in (6.5) and twisting once yields
af?+b = (ah+b)(t? —09)(t—0)F "1 4 (09 —t0) f+[(t9 — t) + (k — 1)(t — 69)] a1 (t).

Comparing the coefficients for % and 0*~! we get @ = 0 and b = 0. We then
compare the coefficients for 67 and get f = (k — 1)ay(t). Substituting f = (k —
1)ai(t) yields a contradiction t9 — ¢ =0, as a1 (f) # 0.
Otherwise, k = ¢ — 1, then w = 2¢ — 2. As before, §; is divisible by (¢ — )" and
satisfies degy 01 < qqfwl = w + 2. Thus we write
61 = (af* + b0 +c)(t —0)", a,b,c€F,t].
Replacing this expression in (6.5) and twisting once yields

af? + 607 + ¢ = (a2 + b0 + c)(t — 0)2972 4 (09 — t9) f + [(¢9 — t) — 2(t9 — 09)] @y ().

Comparing the coefficients for §24=1 and 6272, we get af? + b0 + ¢ = a(t — 6)>.
Multiplying both sides by t? — ¢ and using the equality

(#1 = 0)[(t7 — £) = 20t — 7)) = (¢ — 07)° — (&7 — )"
yields
[a(t? —t) —ar ()] (t = 07)% = [a(t? — 1) — ar ()] (t — 0)*7 + (89 — 1) f(t? —1).
Thus
[a(t? — 1) — ax (1)) [(t — 09)2 — (¢ — 0)*7] = (67 —49) f(17 — 1),

Since f # 0, we also obtain a contradiction since the right-hand side is divisible by
6 — t but not the left-hand side.
The proof of Theorem 6.2 is finished. O

Remark 6.3. Our method could not extend to the case w = 2¢g—1. This is because
of the following fact: (4(2¢ — 1) and Ca(1,2q — 2) are K-linearly dependent, which
could be verified by writing down €(,_1)(R1) (see also [18]).

Proof of Theorem D. Theorem D follows from Theorem A, Lemma 6.1 and Theo-
rem 6.2. (]



(1]
2]

(3]
(4]

(9]
[10]

11]
(12]

(13]
(14]

(15]

[16]
(17]

18]
(19]
20]
21]
22]
23]
(24]
[25]
[26]

27]

ON ZAGIER-HOFFMAN’S CONJECTURES IN POSITIVE CHARACTERISTIC 25

REFERENCES

G. Anderson. t-motives. Duke Math. J., 53(2):457-502, 1986.

G. Anderson, W. D. Brownawell, and M. Papanikolas. Determination of the algebraic relations
among special I'-values in positive characteristic. Ann. of Math. (2), 160(1):237-313, 2004.
G. Anderson and D. Thakur. Tensor powers of the Carlitz module and zeta values. Ann. of
Math. (2), 132(1):159-191, 1990.

G. Anderson and D. Thakur. Multizeta values for Fg[t], their period interpretation, and
relations between them. Int. Math. Res. Not. IMRN, (11):2038-2055, 2009.

J. Burgos Gil and J. Fresan. Multiple zeta values: from numbers to motives. to appear, Clay
Mathematics Proceedings.

F. Brown. Mixed Tate motives over Z. Ann. of Math. (2), 175:949-976, 2012.

D. Brownawell and M. Papanikolas. A rapid introduction to Drinfeld modules, t-modules and
t-motives. In G. Bockle, D. Goss, U. Hartl, and M. Papanikolas, editors, t-motives: Hodge
structures, transcendence and other motivic aspects”, EMS Series of Congress Reports, pages
3-30. European Mathematical Society, 2020.

L. Carlitz. On certain functions connected with polynomials in Galois field. Duke Math. J.,
1(2):137-168, 1935.

C.-Y. Chang. Linear independence of monomials of multizeta values in positive characteristic.
Compos. Math., 150(11):1789-1808, 2014.

C.-Y. Chang, M. Papanikolas, and J. Yu. An effective criterion for Eulerian multizeta values
in positive characteristic. J. Bur. Math. Soc. (JEMS), 21(2):405-440, 2019.

H.-J. Chen. On shuffle of double zeta values over Fg[t]. J. Number Theory, 148:153-163, 2015.
P. Deligne. Multizétas, d’apres Francis Brown. Séminaire Bourbaki. Vol. 2011/2012. Exposés
1043-1058. Astérisque, 352:161-185, 2013.

P. Deligne and A. Goncharov. Groupes fondamentaux motiviques de Tate mixte. Ann. Sci.
Ecole Norm. Sup. (4), 38(1):1-56, 2005.

D. Goss. Basic Structures of function field arithmetic, volume 35 of Ergebnisse der Mathe-
matik und ihrer Grenzgebiete (3). Springer-Verlag, Berlin, 1996.

U. Hartl and A. K. Juschka. Pink’s theory of Hodge structures and the Hodge conjectures over
function fields. In G. Bockle, D. Goss, U. Hartl, and M. Papanikolas, editors, t-motives: Hodge
structures, transcendence and other motivic aspects”, EMS Series of Congress Reports, pages
31-182. European Mathematical Society, 2020.

M. Hoffman. The algebra of multiple harmonic series. J. Algebra, 194:477-495, 1997.

Y.-L. Kuan and Y.-H. Lin. Criterion for deciding zeta-like multizeta values in positive char-
acteristic. Exp. Math., 25(3):246-256, 2016.

J. A. Lara Rodriguez and D. Thakur. Zeta-like multizeta values for Fy[t]. Indian J. Pure
Appl. Math., 45(5):787-801, 2014.

Y. Mishiba. Algebraic independence of the Carlitz period and the positive characteristic
multizeta values at n and (n,n). Proc. Amer. Math. Soc., 143(9):3753-3763, 2015.

M. Papanikolas. Tannakian duality for Anderson-Drinfeld motives and algebraic independence
of Carlitz logarithms. Invent. Math., 171(1):123-174, 2008.

T. Terasoma. Mixed Tate motives and multiple zeta values. Invent. Math., 149(2):339-369,
2002.

D. Thakur. Function field arithmetic. World Scientific Publishing Co., Inc., River Edge, NJ,
2004.

D. Thakur. Relations between multizeta values for Fy[t]. Int. Math. Res. Not., (12):2318—
2346, 2009.

D. Thakur. Power sums with applications to multizeta and zeta zero distribution for Fgy[t].
Finite Fields Appl., 15(4):534-552, 2009.

D. Thakur. Shuffle relations for function field multizeta values. Int. Math. Res. Not. IMRN,
(11):1973-1980, 2010.

D. Thakur. Multizeta values for function fields: a survey. J. Théor. Nombres Bordeaux,
29(3):997-1023, 2017.

D. Thakur. Multizeta in function field arithmetic. In G. Bockle, D. Goss, U. Hartl, and M. Pa-
panikolas, editors, t-motives: Hodge structures, transcendence and other motivic aspects”,
EMS Series of Congress Reports, pages 441-452. European Mathematical Society, 2020.



26 TUAN NGO DAC

(28] G. Todd. A conjectural characterization for Fy(¢)-linear relations between multizeta values.
J. Number Theory, 187:264-28, 2018.

[29] L. I. Wade. Certain quantities transcendental over GF(p",z). Duke Math. J., 8:701-720,
1941.

[30] J. Yu. Transcendence and special zeta values in characteristic p. Ann. of Math. (2), 134(1):1-
23, 1991.

[31] D. Zagier. Values of zeta functions and their applications. In First European Congress of
Mathematics, Vol. II Paris, 1992), volume 120 of Progr. Math., pages 497-512. Birkh&user,
Basel, 1994.

UnN1v LyoN, CNRS, UNIVERSITE CLAUDE BERNARD LyoN 1, INSTITUT CAMILLE JORDAN, UMR
5208, F-69622 VILLEURBANNE, FRANCE
Email address: ngodac@math.univ-1lyonl.fr



	1. Introduction
	2. Algebraic tools
	3. Proof of Theorem A
	4. Transcendental tools
	5. Proof of Theorem B
	6. Proof of Theorem D
	References

