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In this paper, we study a hyperbolic version of the Navier-Stokes equations, obtained by using the approximation by relaxation of the Euler system, evolving in a thin strip domain. The formal limit of these equations is a hyperbolic Prandtl type equation, our goal is to prove the existence and uniqueness of a global solution to these equations for analytic initial data in the tangential variable, under a uniform smallness assumption. Then we justify the limit from the anisotropic hyperbolic Navier-Stokes system to the hydrostatic hyperbolic Navier-Stokes system with small analytic data.

introduction

In fluid mechanics, the Navier-Stokes equations are nonlinear partial differential equations that describe the motion of Newtonian fluids, this equation have been a tremendous topic of research since their introduction in the 30s. In our paper, we considered a hyperbolic perturbation of the incompressible Navier Stokes equations in R × (0, ). We studied this system on a thin striped domain and provided it with no-slip boundary conditions. We denote S = {(x, y) ∈ R 2 : 0 < y < } where is the width of the strip. Our system is of the following form:

            
τ ∂ 2 t U (τ, ) + ∂ t U (τ, ) + U (τ, ) .∇U (τ, ) -2 ∆U (τ, ) + ∇P (τ, ) = 0, in S×]0, ∞[ div U (τ, ) = 0, in S×]0, ∞[

U (τ, ) /t=0 = U (τ, ) 0 , ∂ t U (τ, ) /t=0 = U (τ, ) 1 , in S (1.1) 
where U (τ, ) (t, x, y) = U (τ, ) 1

(t, x, y), U (τ, ) 2

(t, x, y) denotes the velocity of the fluid and P (τ, ) (t, x, y) the scalar pressure function, which guarantees the divergence-free property of the velocity field U (τ, ) . The system (1.1) is complemented by the no-slip boundary condition U (τ, ) |y=0 = 0 and U (τ, ) |y= = 0 in S×]0, ∞[. Here, in the equation of the velocity, the Laplacian is ∆ = ∂ 2

x + ∂ 2 y . The hyperbolic Navier-Stokes equations in R 2 space, presented here has various justifications. The system (1.1) derived by the Cattaneo approximation in 1949 for the study of the heat equation (see [START_REF] Cattaneo | Sulla conduzione del calore[END_REF][START_REF]Sur une forme de l'équation de la chaleur éliminant le paradoxe d'une propagation instantanée[END_REF] ) and others (Chester, Vernotte, etc.) proposed the following hyperbolic model.

1 c 2 ∂ 2 t θ + 1 β ∂ t θ -∆θ = 0.
This equation is called The Telegraph equation. It has a finite propagation speed and is compatible with the principle of relativity as well as the second law of thermodynamics, therefore it constitutes a satisfactory physical model. Later, in [START_REF] Brenier | On a relaxation approximation of the incompressible Navier-Stokes equations[END_REF][START_REF] Paicu | Une perturbation hyperbolique des équations de Navier-Stokes[END_REF][START_REF] Paicu | A hyperbolic singular perturbation of the Navier-Stokes equations in R 2[END_REF][START_REF] Hachicha | Approximations hyperboliques des équations de Navier-Stokes[END_REF], the case of two(or three)-dimensional space. The dissipative hyperbolic Navier-Stokes equation (1.1) is obtained after relaxation of Euler's equations and a change of scale variables.

This perturbation, seen as a relaxation of Euler's equations, was considered by Brenier, Natalini, and Puel in [START_REF] Brenier | On a relaxation approximation of the incompressible Navier-Stokes equations[END_REF], they introduced a hyperbolic system of equations, based on a relaxation approximation of the incompressible Navier-Stokes equations, following the scheme described by Jin and Xin in [START_REF] Jin | The relaxation schemes for systems of conservation laws in arbitrary space dimensions[END_REF] 

             ∂ t U + div V = ∇.Q ∂ t V + 2 τ ∇U = - 1 τ (V -U ⊗ U ) div U = 0 (U , V )| t=0 = (U 0 , V 0 ) (1.2)
In their work they proved global existence and uniqueness for the perturbed Navier-Stokes equation with initial data in H 2 (T 2 ) 2 × H 1 (T 2 ) 2 , where T 2 is the periodic square R 2 /Z 2 . Moreover, they proved the convergence of the solution to perturbed Navier-Stokes towards a smooth solution to Navier-Stokes.

Later this equation has been considered by Paicu and Raugel in [START_REF] Paicu | Une perturbation hyperbolique des équations de Navier-Stokes[END_REF][START_REF] Paicu | A hyperbolic singular perturbation of the Navier-Stokes equations in R 2[END_REF]. In their work, they proved also a global existence and uniqueness result with significantly improved regularity for the initial data, when τ is small enough. In fact, they only need the regularity in H 1 (R 2 ) 2 × L 2 (R 2 ) 2 . Also Hachicha in [START_REF] Hachicha | Approximations hyperboliques des équations de Navier-Stokes[END_REF], she get a global result of existence and uniqueness of the perturbed Navier-Stokes in two and three space dimensions and under suitable smallness assumptions on the initial data in the space

H n 2 +δ ∩ H n 2 -1+δ (R n ) n
where n = 2, 3. Moreover, for all positive time T , she proved the convergence to perturbed Navier-Stokes towards solutions to the Navier-Stokes system (NS) with initial data in H n 2 -1+s (R n ) n , s > 0. We finally mention a recently result obtained by O. Coulaud, I. Hachicha and G. Raugel in [START_REF] Coulaud | Hyperbolic Quasilinear Navierâ€"Stokes Equations in R 2[END_REF]. They considered a hyperbolic quasi-linear version of the Navier-Stokes equation in R 2 and proved the existence and uniqueness of solutions to these equations, and exhibit smallness assumptions on the data, under which the solutions are global in time in the 2D case.

The way these authors introduce their system of equations is to take advantage of methods that are usually devoted to the study of numerical schemes, and which can be applied to every conservation law. In this article, we take the problem from another point of view. In order to describe hydro-dynamical flows on the earth, in geophysics, it is usually assumed that vertical motion is much smaller than horizontal motion and that the fluid layer depth is small compared to the radius of the sphere, thus, they are a good approximation of global atmospheric flow and oceanic flow. The thin-striped domain in the system (1.1) is considered to take into account this anisotropy between horizontal and vertical directions. Under this assumption, it is believed that the dynamics of fluids on large scale tend towards a geostrophic balance (see [START_REF] Gill | Atmosphere-Ocean Dynamics[END_REF], [START_REF] Holton | An Introduction to Dynamic Meteorology[END_REF] or [START_REF] Plougonven | Lagrangian approach to the geostrophic adjustment of frontal anomalies in a stratified fluid[END_REF]).

The purpose of this paper is to show the existence and uniqueness of solutions to (1.1) in the striped domain R × (0, 1), For some analytically small initial data in the tangential variable. To simplify our system we eliminate the τ -dependency. To that extend, we perform the re-scaling

U (τ, ) (t, X) = τ α U (τ β t, X √ τ ), P (τ, ) (t, X) = τ α P (τ β t, X √ τ ). (1.3)
We replace in system (1.1), we find that α = -1 2 , β = -1 and α = -1, then our re-scaling 1.3 have the following form

U (τ, ) (t, X) = 1 √ τ U ( t τ , X √ τ ), P (τ, ) (t, X) = 1 τ P ( t τ , X √ τ
). (1.4) This scaling transforms the τ -dependent equations (1.1) into the following system of equations with initial data which depend on τ :

                 ∂ 2 t U + ∂ t U + U .∇U -2 ∆U + ∇P = 0, in S×]0, ∞[ div U (τ, ) = 0, in S×]0, ∞[ U /t=0 = √ τ U τ, 0 ( √ τ X) = U 0 , in S ∂ t U /t=0 = τ 3 2 U τ, 1 ( √ τ X) = U 1 , in S U / y=0 = U / y=1 = 0, in S×]0, ∞[ (1.5) 
In a formal way, as in [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF] and [START_REF] Aarach | Hydrostatic approximation of the 2D primitive equations in a thin strip[END_REF], taking into account this anisotropy, we also consider the initial data of the following form,

U |t=0 = U 0 = u 0 x, y , v 0 x, y ,
and

U |t=1 = U 1 = u 1 x, y , v 1 x, y .
In this paper, we look for solutions in the form      U (t, x, y) = u t, x, y , v t, x, y P (t, x, y) = p t, x, y .

(1.6)

Let S := {(x, z) ∈ R 2 : 0 < y < 1}, we can rewrite the system (1.5) as follows

                 ∂ 2 t u + ∂ t u + u ∂ x u + v ∂ y u -2 ∂ 2 x u -∂ 2 y u + ∂ x p = 0, in S×]0, ∞[ 2 (∂ 2 t v + ∂ t v + u ∂ x v + v ∂ y v -2 ∂ 2 x v -∂ 2 y v ) + ∂ y p = 0, in S×]0, ∞[ ∂ x u + ∂ y v = 0, in S×]0, ∞[ (u , v ) | t=0 = (u 0 , v 0 ) and ∂ t (u , v ) | t=0 = (u 1 , v 1 ) , in S (u , v ) | y=0 = (u , v ) | y=1 = 0.
(1.7)

Formally taking → 0 in the system (1.7), we obtain the following perturbation hydrostatic Navier-Stokes equations,

                 ∂ 2 t u + ∂ t u + u∂ x u + v∂ y u -∂ 2 y u + ∂ x p = 0, in S×]0, ∞[ ∂ y p = 0, in S×]0, ∞[ ∂ x u + ∂ y v = 0, in S×]0, ∞[ u| t=0 = u 0 , in S ∂ t u| t=0 = u 1 , in S, (1.8) 
where the velocity U = (u, v) satisfy the Dirichlet no-slip boundary condition

(u, v, ) | y=0 = (u, v) | y=1 = 0. (1.9)
Now let us state our main results.

The first result obtained in this paper is the global well-posedness of the system (1.8) with small analytic data in the tangential variable. The global well-posedness and the global analyticity of the solutions to the classical 2-D perturbed hydrostatic Navier-Stokes system are well-known (see [START_REF] Paicu | Une perturbation hyperbolique des équations de Navier-Stokes[END_REF] for instance). We remark that a similar global result seems open for the Prandtl equation, where only a lower bound of the lifespan to the solution was obtained (see [START_REF] Zhang | Long time well-posedness of Prandtle system with small data[END_REF], [START_REF] Ignatova | Almost global existence for the Prandtl boundary layer equations[END_REF]).

Theorem 1.1. Let a > 0 and s ∈] 1 2 , 1[. There exists a constant c 0 > 0 sufficiently small, such that, for any data (u 0 , u 1 ) verifying the compatibility condition 1 0 u 0 dy = 0, we have the smallness condition e a|Dx| (u 0 + u 1 ) H s + e a|Dx| ∂ y u 0 H s + e a|Dx| u 1 H s ≤ c 0 a, (1.10) where u φ is given by (2.3), and R is a constant determined by Poincaré inequality for the strip S (see (3.8)), and the functional spaces will be presented in Section 2.

then
The second result is the global well-posedness of the perturbed Navier-Stokes system (1.7) with small analytic data in the tangential variable. Theorem 1.2. Let a > 0 and s ∈] 1 2 , 1[. We assume that our initial that satisfy the following smallness condition

e a|Dx| ∂ y (u 0 , v 0 ) H s + e a|Dx| ∂ x (u 0 , v 0 ) H s + e a|Dx| (u 0 + u 1 , (v 0 + v 1 )) H s + e a|Dx| (u 1 , v 1 ) H s ≤ c 1 a, (1.12) 
for some c 1 sufficiently small. Then the system (1.7) has a unique global solution (u, v), so that

1 2 e Rt (u + ∂ t u, (v + ∂ t v)) Θ L∞ t (H s ) + e Rt ∂ y (u, v) Θ L∞ t (H s ) + e Rt ∂ x (u, v) Θ L∞ t (H s ) + 1 2 e Rt (∂ t u, ∂ t v) Θ L∞ t (H s ) + e Rt (∂ t u, ∂ t v) Θ L2 t (H s ) + e Rt ∂ y (u, v) Θ L2 t (H s ) + e Rt ∂ x (u, v) Θ L2 t (H s ) ≤ C e a|Dx| ∂ y (u 0 , v 0 ) H s + e a|Dx| ∂ x (u 0 , v 0 ) H s + e a|Dx| (u 1 , v 1 ) H s + e a|Dx| (u 0 + u 1 , (v 0 + v 1 )) H s , (1.13)
where (u Θ , v Θ ) is given by (4.1).

The main idea to prove the above two theorems is to control the new unknown u φ defined by (2.3), where u is the horizontal velocity and u φ is a weighted function of u in the dual Fourier variable with an exponential function of (a -λθ(t))|ξ|. By the classical Cauchy-Kovalevskaya theorem, one expects the radius of the analytically of the solutions decay in time and so the exponent, which corresponds to the width of the analytical strip, is allowed to vary with time. Using energy estimates on the equation satisfied by u φ and the control of the quantity which describes " the loss of the analytical radius ", we shall show that the analytical strip persists global in time. Consequently, our result is a global Cauchy-Kovalevskaya type theorem.

The third result concern the study of the convergence from the scaled anisotropic perturbed Navier-Stokes system (1.7) to the limit system (1.8), so in this theorem, we proved that the convergence is globally in time.

Theorem 1.3. Let a > 0 and s ∈] 1 2 , 1[, and (u 0 , v 0 ) satisfying (1.12). Let u 0 satisfy e a|Dx| (u 0 , u 1 ) ∈ (H s ∩H s+3 ) 2 , e a|Dx| ∂ y (u 0 , u 1 ) ∈ (H s+1 ) 2 , and there holds the compatibility condition

1 0 u 0 dy = 0 and e a|Dx| (u 0 + u 1 ) H s + e a|Dx| ∂ y u 0 H s + e a|Dx| u 1 H s ≤ c 2 a 2 + e a|Dx| (u 0 + u 1 ) H s+1 + e a|Dx| ∂ y u 0 H s+1 + e a|Dx| u 1 H s+1 , (1.14) 
for some c 2 sufficiently small, then we have

1 2 (R 1 + ∂ t R 1 , (R 2 + ∂ t R 2 )) ϕ L∞ t (H s ) + ∂ y (R 1 , R 2 ) ϕ L∞ t (H s ) + ∂ x (R 1 , R 2 ) ϕ L∞ t (H s ) + 1 2 (∂ t R 1 ) ϕ , (∂ t R 2 ) ϕ L∞ t (H s ) + (∂ t R 1 , ∂ t R 2 ) ϕ L2 t (H s ) + ∂ y (R 1 , R 2 ) ϕ L2 t (H s ) + ∂ x (R 1 , R 2 ) ϕ L2 t (H s ) ≤ e a|Dx| ((u 1 -u 1 ), (v 1 -v 1 )) H s + C e a|Dx| ∂ y (u 0 -u 0 , (v 0 -v 0 )) H s + e a|Dx| ∂ x (u 0 -u 0 , (v 0 -v 0 )) H s + e a|Dx| ((u 0 -u 0 ) + (u 1 -u 1 ), (v 0 -v 0 ) + (v 1 -v 1 )) H s + M . (1.15)
where

R 1 = u -u, R 2 = v -v, (1.16 
)

and v 0 is determined from u 0 via ∂ x u + ∂ y v = 0 and v 0 | y=0 = v 0 | y=1 = 0, (R 1 ϕ , R 2 ϕ
) is given by (6.6).

We remark that without the smallness conditions (1.12) and (1.14), we can not prove the convergence of the system (1.7) to the system (1.8) on a fixed time interval [0, t] for t < T , where T is the lifetime of the solution of the hydrostatic perturbed Navier-Stokes equation with the large initial data u 0 .

Organisation of the paper: Our paper will be divided into several sections as follows. In section 2, we present some basic notions of the Littlewood-Paley Theory and some technical lemmas. In Section 3, we prove the global wellposedness of the system (1.8) for small data in the analytic framework. Section 4 is devoted to the study of the system (1.7) and the proof of Theorem 1.2. In section 5 we present some proposition states the propagation for any H s regularity. In Section 6, we prove the convergence of the system (1.7) towards the system (1.8) when → 0. Finally, in the appendix, we give the proofs of some technical estimates.

We end this introduction by the notations that will be used in all that follows. For f g, we mean that there is a uniform constant C, which may be different from line to line, such that f ≤ Cg. We denote by f, g L 2 the inner product of f and g in L 2 (S). Finally, we denote by (d q ) q∈Z (resp. d q (t)/ q∈Z ) to be a generic element of 1 (Z) so that q∈Z d q = 1 (resp. q∈Z d q (t) = 1).

Littlewood-Paley Theory and Some technical lemmas

To introduce the result of this paper, we will recall some elements of the Littlewood-Paley theory and also introduce the function space and technique using for the proof of our result. So we define the dyadic operator in the horizontal variable, (of x variable) and for all q ∈ Z, we recall from [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] that

∆ h q a(x, y) = F -1 h ϕ(2 -q |ξ|) a(ξ, y) , S h q a(x, y) = F -1 h ψ(2 -q |ξ|) a(ξ, y) .
where ψ and ϕ are a smooth function such that

supp ϕ ⊂ {z ∈ R/ 3 4 ≤ |z| ≤ 8 3 } and ∀z > 0, q∈Z ϕ(2 -q z) = 1, supp ψ ⊂ {z ∈ R/ |z| ≤ 4 3 } and ψ(z) + q≥0 ϕ(2 -q z) = 1. and ∀ q, q ∈ N, |q -q | ≥ 2, supp ϕ(2 -q •) ∩ supp ϕ(2 -q •) = ∅.
And in all that follows, Fa and a always denote the partial Fourier transform of the distribution a with respect to the horizontal variable (of x variable), that is, a(ξ, y) = F x→ξ (a)(ξ, y). We refer to [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] and [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF] for a more detailed construction of the dyadic decomposition. Combined the definition of the dyadic operator to

∀z ∈ R, ψ(z) + j∈N ϕ(2 -j z) = 1, (2.1) 
implies that all tempered distributions can be decomposed with respect to the horizontal frequencies as

u = q∈Z ∆ v q u.
We now introduce the function spaces used throughout the paper. As in [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF], we define the anisotropic Sobolev-type spaces H s , s ∈ R as follows.

Definition 2.1. Let s ∈ R and S = R×]0, 1[. For any u ∈ S h (S), i.e., u belongs to S (S) and lim q→-∞ S h q u L∞ = 0, we set

u Ḣs def = q∈Z 2 2qs ∆ h q u 2 L 2 1 2
.

(i) For s ≤ 1 2 , we define

H s (S) def = {u ∈ S h (S) : u H s < +∞} . (ii) For s ∈ ]k -1 2 , k + 1 2 ], with k ∈ N * , we define H s (S) as the subset of distributions u in S h (S) such that ∂ k x u ∈ H s-k (S).
For a better use of the smoothing effect given by the diffusion terms, we will work in the following Chemin-Lerner type spaces and also the time-weighted Chemin-Lerner type spaces.

Definition 2.2. Let p ∈ [1, +∞] and T ∈]0, +∞]. Then, the space Lp T (H s (S)) is the closure of C([0, T ]; S(S)) under the norm u Lp T (H s (S)) def = q∈Z 2 2qs T 0 ∆ h q u(t) p L 2 dt 2 p 1 2
, with the usual change if p = +∞. 

u Lp t,f (t) (H s (S)) def = q∈Z 2 2qs t 0 f (t ) ∆ h q u(t ) p L 2 dt 2 p 1 2
.

The following Bernstein lemma gives important properties of a distribution u when its Fourier transform is well localized. We refer the reader to [START_REF] Chemin | Fluides parfaits incompressibles[END_REF] for the proof of this lemma.

Lemma 2.1. Let k ∈ N, d ∈ N * and r 1 , r 2 ∈ R satisfy 0 < r 1 < r 2 . There exists a constant C > 0 such that, for any a, b ∈ R, 1 ≤ a ≤ b ≤ +∞, for any λ > 0 and for any u ∈ L a (R d ), we have supp ( u) ⊂ ξ ∈ R d | |ξ| ≤ r 1 λ =⇒ sup |α|=k ∂ α u L b ≤ C k λ k+d( 1 a -1 b ) u L a , and 
supp ( u) ⊂ ξ ∈ R d | r 1 λ ≤ |ξ| ≤ r 2 λ =⇒ C -k λ k u L a ≤ sup |α|=k ∂ α u L a ≤ C k λ k u L a .
Finally to deal with the estimate concerning the product of two distribution, we shall frequently use the Bony's decomposition (see [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF] ) in the horizontal variable ( of the x variable ) that for f, g two tempered distribution :

f g = T h f g + T h g f + R h (f, g), (2.2) 
where

T h f g = q S h q-1 f ∆ h q g, T h g f = q S h q-1 g∆ h q f
and the rest term satisfied

R h (f, g) = q ∆h q f ∆ h q g with ∆h q f = |q-q |≤1 ∆ h q f.
Our main difficulty relies on finding a way to estimate the nonlinear terms, which allows exploiting the smoothing effect given by the above function spaces. Using the method introduced by Chemin in [START_REF] Chemin | Le système de Navier-Stokes incompressible soixante dix ans après Jean Leray[END_REF] (see also [START_REF] Chemin | Global regularity for some classes of large solutions to the Navier-Stokes equations[END_REF], [START_REF] Paicu | Global regularity for the Navier-Stokes equations with some classes of large initial data[END_REF] or [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF]), for any f ∈ L 2 (S), we define the following auxiliary function, which allows to control the analyticity of f in the horizontal variable x, u φ (t, x, y) = e φ(t,Dx) u(t, x, y)

def = F -1 h (e φ(t,ξ) u(t, ξ, y)) φ(t, ξ) = (a -λθ(t))|ξ|. (2.3)
where the quantity θ(t), which describes the evolution of the analytic band of f , satisfies ∀ t > 0, θ(t) ≥ 0 and θ(0) = 0.

(2. [START_REF] Abdelhedi | Global existence of solutions for hyperbolic Navier-Stokes equations in three space dimensions[END_REF] In what follows, we shall always assume that t < T , with T is determined by

T def = sup t > 0 : u φ H s ≤ 1 4C 2 and θ(t) ≤ a λ . (2.5)
By virtue of (2.3) for any t < T , there holds the following convex inequality

φ(t, ξ) ≤ φ(t, ξ -η) + φ(t, η) ∀ξ, η ∈ R. (2.6)
Before starting the obtained result, we need the following lemma to characterize the product (f g) φ , indeed this product will be useful in all the rest of the paper.

Lemma 2.2. Let f ∈ L 2 x , g ∈ L 2 x , we define f + = F -1 ξ (|F x (f )|) then, we have |( f g) φ (ξ)| ≤ f + φ g + φ (ξ) and f + L 2 x = f L 2 x
Proof. Let as consider f , and g two functions in L 2

x , we have

|( f g) φ (ξ)| = e φ(ξ) | f (.) * g(.)(ξ)| ≤ e φ(ξ) | f (ξ -η)|| g(η)|dη,
By virtue of the definition of the function φ we have e φ(ξ) > 0 and e φ(ξ) ≤ e φ(ξ-η) e φ(η) , thus

|( f g) φ (ξ)| ≤ e φ(ξ-η) | f (ξ -η)|e φ(η) | g(η)|dη ≤ | f φ (ξ -η)|| g φ (η)|dη ≤ | f φ | * | g φ |(ξ) = f + φ * g + φ = f + φ g + φ (ξ)
The second point of the lemma is trivial.

Corollary 2.1. For any f and g in L 2

x , we have

| (T f g) φ | ≤ (T f + g + ) φ and | R(f, g) φ | ≤ R(f + , g + ) φ .
We next present the weighted energy estimate for the linear heat equations Lemma 2.3. Let f and g two smooth enough functions on R×(0, 1), satisfy the Dirichlet boundary condition, then we have

(1)

d dt ∆ h q f φ , ∆ h q g φ L 2 = ∆ h q (∂ t f ) φ , ∆ h q g φ + ∆ h q f φ , ∆ h q (∂ t g) φ -2λ θ(t) ∆ h q |D x | 1 2 f φ , ∆ h q |D x | 1 2 g φ , (2.7) 
In particular if f = g, we obtain that

1 2 d dt ∆ h q f φ 2 L 2 = ∆ h q (∂ t f ) φ , ∆ h q f φ L 2 -λ θ(t) ∆ h q |D x | 1 2 f φ 2 L 2 , ( 2.8) 
(2)

∆ h q (∂ 2 t f ) φ , ∆ h q (∂ t f ) φ L 2 = 1 2 d dt ∆ h q (∂ t f ) φ 2 L 2 + λ θ(t) ∆ h q |D x | 1 2 (∂ t f ) φ 2 L 2 , (2.9) 
(3)

∆ h q -∂ 2 y f φ , ∆ h q (∂ t f ) φ L 2 = 1 2 d dt ∆ h q ∂ y f φ 2 L 2 + λ θ(t) ∆ h q |D x | 1 2 ∂ y f φ 2 L 2 , (2.10) (4) 
∆ h q (∂ t f ) φ , ∆ h q (∂ t f ) φ L 2 = ∆ h q (∂ t f ) φ 2 L 2 . (2.

11)

Proof. To prove the first assertion, we apply the rules of the derivation of a product, we obtain

d dt ∆ h q f φ , ∆ h q g φ L 2 = ∆ h q ∂ t f φ , ∆ h q g φ L 2 + ∆ h q f φ , ∆ h q ∂ t g φ L 2 = ∆ h q (∂ t f ) φ , ∆ h q g φ L 2 -λ θ(t) ∆ h q |D x |f φ , ∆ h q g φ L 2 + ∆ h q f φ , ∆ h q (∂ t g) φ L 2 -λ θ(t) ∆ h q f φ , ∆ h q |D x |g φ L 2 = ∆ h q (∂ t f ) φ , ∆ h q g φ L 2 + ∆ h q f φ , ∆ h q (∂ t g) φ L 2 -2λ θ(t) ∆ h q |D x | 1 2 f φ , ∆ h q |D x | 1 2 g φ L 2
.

By using the rules of the derivation of a product and Parseval equality, we find

∆ h q (∂ 2 t f ) φ , ∆ h q (∂ t f ) φ L 2 = ∆ h q (e φ(t,|Dx|) ∂ 2 t f )∆ h q (e φ(t,|Dx|) ∂ t f )dx = ∆ h q (e φ(t,|Dx|) ∂ 2 t f ) ∆ h q (e φ(t,|Dx|) ∂ t f )dξ h = 1 2 d dt | ∆ h q (e φ(t,|Dx|) ∂ t f )| 2 dξ h + 1 2 2λ θ(t)ϕ(2 -q ξ)|ξ h |e φ(t,|ξ h |) ∂ t f (ξ)ϕ(2 -q ξ)e φ(t,|ξ h |) ∂ t f (ξ)dξ h = 1 2 d dt ∆ h q (∂ t f ) φ 2 L 2 + λ θ(t) | ∆ h q |D x | 1 2 (e φ(t,|Dx|) ∂ t f )| 2 dξ h = 1 2 d dt ∆ h q (∂ t f ) φ 2 L 2 + λ θ(t) ∆ h q |D x | 1 2 (∂ t f ) φ 2 L 2 .
By using integration by parts, we can find the estimate (2.10)

∆ h q -∂ 2 y f φ , ∆ h q (∂ t f ) φ L 2 = ∆ h q ∂ y f φ , ∆ h q (∂ t ∂ y f ) φ L 2 = 1 2 d dt ∆ h q ∂ y f φ 2 L 2 + λ θ(t) ∆ h q |D x | 1 2 ∂ y f φ 2 L 2 .
The last estimate (2.11) is trivial.

The proofs of our main result rely on the following lemmas Lemma 2.4. Let s ∈] 1 2 , 1[, T > 0 and A, B and C be smooth enough functions on R × (0, 1), let φ be defined as in (2.3) with θ(t) = ∂ y A φ (t) H s . There exist C ≥ 1 such that, for any t > 0, φ(t, ξ) > 0 and for any B ∈ L2 t, θ(t) (H s+ 1 2 ) and C ∈ L2 t, θ(t) (H s+ 1 2 ), we have q∈Z

2 2qs t 0 e Rt ∆ h q (A∂ x B) φ , e Rt ∆ h q C φ L 2 dt C e Rt B φ L2 t, θ(t) (H s+ 1 2 ) e Rt C φ L2 t, θ(t) (H s+ 1 
2 ) .

(2.12)

Proof. As in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF], using Bony's homogeneous decomposition into para-products A∂ x B in the horizontal variable and remainders as in Definition of a tempered distribution, we can write

A∂ x B = T h A ∂ x B + T h ∂xB A + R h (A, ∂ x B) where, T h A ∂ x B = q∈Z S h q-1 A∆ h q ∂ x B and R h (A, ∂ x B) = |q -q|≤1 ∆ h q A∆ h q ∂ x B.
We have the following bound of

I t 0 e Rt ∆ h q (A∂ x B) φ , e Rt ∆ h q C φ L 2 dt ≤ M 1,q + M 2,q + M 3,q ,
where

M 1,q = t 0 e Rt ∆ h q (T h A ∂ x B) φ , e Rt ∆ h q C φ L 2 dt M 2,q = t 0 e Rt ∆ h q (T h ∂xB A) φ , e Rt ∆ h q C φ L 2 dt M 3,q = t 0 e Rt ∆ h q (R h (A, ∂ x B)) φ , e Rt ∆ h q C φ L 2 dt .
We start by getting the estimate of the first term M 1,q , for that we need to use the support properties given in [ [6], Proposition 2.10] and the definition of T h A ∂ x B, and also the Lemma 2.2, we infer

M 1,q ≤ |q-q |≤4 t 0 e 2Rt S h q -1 A φ (t ) L ∞ ∆ h q ∂ x B φ (t ) L 2 ∆ h q C φ (t ) L 2 dt . (2.13)
While it follow from the Poincaré inequality on the interval {0 < y < 1}, we have the inclusion Ḣ1 y → L ∞ y and ∆

h q A φ (t ) L ∞ 2 q 2 ∆ h q A φ (t ) L 2 h (L ∞ v ) 2 q 2 ∆ h q ∂ y A φ (t ) L 2 d q (A φ ) ∂ y A φ (t ) H s , (2.14) 
with s > 1 2 . Here and in all that follows, we always denote (d q (t)) q∈Z to be a generic element of 1 (Z) d q (t) = 1. Then,

S h q -1 A φ (t ) L ∞ ∂ y A φ (t ) H s ,
then, we replace this result in our estimate (2.13), and combining with Hölder inequality, imply that

M 1,q |q-q |≤4 t 0 ∂ y A φ (t ) H s e Rt ∆ h q ∂ x B φ (t ) L 2 e Rt ∆ h q C φ (t ) L 2 dt |q-q |≤4 2 q t 0 ∂ y A φ (t ) 1 2 H s e Rt ∆ h q B φ (t ) L 2 ∂ y A φ (t ) 1 2 H s e Rt ∆ h q C φ (t ) L 2 dt |q-q |≤4 2 q t 0 ∂ y A φ (t ) H s e 2Rt ∆ h q B φ 2 L 2 dt 1 2 t 0 ∂ y A φ (t ) H s e 2Rt ∆ h q C φ 2 L 2 dt 1 2
.

we note that θ(t) ∂ y A φ (t ) H s , using the definition (2.3), we have

t 0 ∂ y A φ (t ) H s e 2Rt ∆ h q C φ 2 L 2 dt 1 2 t 0 θ(t )e 2Rt ∆ h q C φ 2 L 2 dt 1 2 2 -q(s+ 1 2 ) d q e Rt C φ L2 t, θ (H s+ 1 
2 ) .

Then,

M 1,q 2 -2qs d 2 q e Rt B φ L2 t, θ (H s+ 1 2 ) e Rt C φ L2 t, θ (H s+ 1 2 ) , (2.15) 
where

d 2 q = d q   |q-q |≤4 d q 2 (q-q )(s-1 2 )
  if we multiply (2.15) by 2 2qs and summing with respect to q ∈ Z, we get

q∈Z 2 2qs M 1,q C e Rt B φ L2 t, θ (H s+ 1 2 ) e Rt C φ L2 t, θ (H s+ 1 2 ) . (2.16) 
Similarly, by Lemma 2.2 and considering the support properties to the Fourier transform given in [ [6], Proposition 2.10] of the terms in T h ∂xB A, we obtain

M 2,q (t) ≤ t 0 e Rt ∆ h q (T h ∂xB A) φ , e Rt ∆ h q C φ L 2 dt ≤ |q-q |≤4 t 0 e 2Rt S h q -1 ∂ x B φ L ∞ h (L 2 v ) ∆ h q A φ L 2 h (L ∞ v ) ∆ h q C φ L 2 dt .
As in (2.14), we can write

∆ h q A φ L 2 h (L ∞ v ) ∆ h q ∂ y A φ L 2 2 -q 2 d q (t) ∂ y A φ (t) H s .
Since 1 2 < s < 1, we have

M 2,q ≤ |q-q |≤4 t 0 e 2Rt S h q -1 ∂ x B φ L ∞ h (L 2 v ) ∆ h q A φ L 2 h (L ∞ v ) ∆ h q C φ L 2 dt ≤ |q-q |≤4 t 0 2 -q 2 d q (t )e Rt S h q -1 ∂ x B φ L ∞ h (L 2 v ) ∂ y A φ (t) H s e Rt ∆ h q C φ L 2 dt ≤ |q-q |≤4 t 0 2 -q 2 e Rt l≤q -2 2 l 2 l 2 ∆ h l B φ L 2 ∂ y A φ (t) H s e e Rt t ∆ h q C φ L 2 dt ≤ |q-q |≤4 2 -q 2   t 0 e 2Rt l q -2 2 2 3l 2 ∆ h l B φ 2 L 2 ∂ y A φ H s dt   1 2 × t 0 e 2Rt ∂ y A φ Hs ∆ h q C φ 2 L 2 dt 1 2
.

Yet we observe from Definition 2, and s < 1 we have

  t 0 l q -2 2 2 3l 2 ∆ h l B φ 2 L 2 ∂ y A φ H s dt   1 2 l≤q -2 2 3l 2 t 0 ∂ y A φ H s e 2Rt ∆ h l B φ (t ) 2 L 2 dt 1 2 2 q (1-s) d q e Rt B φ L2 t, θ (H s+ 1 
2 ) .

So that it comes out

M 2,q ≤ d 2 q 2 -2qs e Rt B φ L2 t, θ (H s+ 1 2 ) e Rt C φ L2 t, θ (H s+ 1 2 )
where

d 2 q = d q   |q-q |≤4 d q 2 (q-q )(s-1 2 )
  is a suitable sequence of positive constants. Summing with respect to q ∈ Z, and using Fubini's theorem, we get

q∈Z 2 2qs M 2,q C e Rt B φ L2 t, θ (H s+ 1 2 ) e Rt B φ L2 t, θ (H s+ 1 2 ) , (2.17) 
where we recall that θ(t)

∂ y A φ H s .
To end this proof, it remains to estimate M 3,q (is the rest term). Using the support properties given in [ [6], Proposition 2.10], the definition of R h (A, ∂ x B) and Bernstein lemma 2.1, we can write

M 3,q = t 0 e Rt ∆ h q (R h (A, ∂ x B)) φ , e Rt ∆ h q C φ L 2 dt ≤ 2 q 2 q ≥q-3 t 0 e 2Rt ∆ h q A φ L 2 h (L ∞ v ) ∆ h q ∂ x B φ L 2 ∆ h q C φ L 2 dt ≤ 2 q 2 q ≥q-3 t 0 e 2Rt 2 q (1-1 2 ) ∂ y A φ H s ∆ h q B φ L 2 ∆ h q C φ L 2 dt ≤ 2 q 2 q ≥q-3 t 0 e 2Rt 2 q 2 ∂ y A φ H s ∆ h q B φ L 2 ∆ h q C φ L 2 dt . Since 1 2 < s < 1, we have M 3,q ≤ 2 q 2 q ≥q-3 t 0 2 q 2 ∂ y A φ H s ∆ h q e Rt B φ L 2 ∆ h q e Rt C φ L 2 dt ≤ 2 q 2 q ≥q-3 t 0 2 q 2 d q (B φ )2 -q (s+ 1 2 ) e Rt B φ H s+ 1 2 ∂ y A φ H s d q 2 -q(s+ 1 2 ) e Rt C φ H s+ 1 2 dt ≤ d q 2 -2qs t 0 e Rt B φ H s+ 1 2 ∂ y A φ H s e Rt C φ H s+ 1 2 q ≥q-3 d q 2 (q-q )s dt ≤ d 2 q 2 -2qs e Rt B φ L2 t, θ(t) (H s+ 1 2 ) e Rt C φ L2 t, θ(t) (H s+ 1 2 ) ,
where

d 2 q = d q q ≥k-3 d q 2 (q-q )s
is a suitable sequence of positive constants. Summing with respect to q ∈ Z, and using Fubini's theorem, we finally obtain q∈Z

2 2qs M 3,q e Rt B φ L2 t, θ(t) (H s+ 1 2 ) e Rt C φ L2 t, θ(t) (H s+ 1 
2 ) .

(2.18) Lemma 2.4 is then proved by summing Estimates (2.16), (2.17) and (2.18).

Lemma 2.5. Let A,B and C be a smooth function on [0, T ] × R × (0, 1), and s ∈] 1 2 , 1[, T > 0 and φ be defined as in (2.3), with θ(t) = ∂ y A φ (t) H s . There exist C ≥ 1 such that, for any t > 0, φ(t, ξ) > 0 and for any

B, C ∈ L2 t, θ(t) (H s+ 1 2 ), we have q∈Z 2 2qs t 0 e Rt ∆ h q ( y 0 ∂ x B∂ y A) φ , e Rt ∆ h q C φ L 2 dt C e Rt B φ L2 t, θ(t) (H s+ 1 2 ) e Rt C φ L2 t, θ(t) (H s+ 1 2 ) . (2.19)
Proof. As in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF], using Bony's homogeneous decomposition into para-products y 0 ∂ x Bdy ∂ y A in the horizontal variable and remainders as in Definition of a tempered distribution, we can write

∂ y A y 0 ∂ x Bdy = T h ∂yA y 0 ∂ x Bdy + T h y 0 ∂xBdy ∂ y A + R h (∂ y A, y 0 ∂ x Bdy )
where,

T h ∂yA y 0 ∂ x Bdy = q∈Z S h q-1 ∂ y A∆ h q y 0 ∂ x Bdy R h (∂ y A, y 0 ∂ x Bdy ) = |q -q|≤1 ∆ h q ∂ y A∆ h q y 0 ∂ x Bdy .
We replace, we obtain the following bound of

t 0 e Rt ∆ h q (∂ y A y 0 ∂ x Bdy ) φ , e Rt ∆ h q C φ L 2 dt t 0 e Rt ∆ h q (∂ y A y 0 ∂ x B) φ dy , e Rt ∆ h q C φ L 2 dt ≤ N 1,q + N 2,q + N 3,q ,
where

N 1,q = t 0 e Rt ∆ h q (T h ∂yA y 0 ∂ x Bdy ) φ , e Rt ∆ h q C φ L 2 dt N 2,q = t 0 e Rt ∆ h q (T h y 0 ∂xBdy ∂ y A) φ , e Rt ∆ h q C φ L 2 dt N 3,q = t 0 e Rt ∆ h q (R h (∂ y A, y 0 ∂ x Bdy )) φ , e Rt ∆ h q C φ L 2 dt .
We start by getting the estimate of the first term N 1,q , for that we need to use the support properties given in [ [6], Proposition 2.10] and the definition of T h ∂yA y 0 ∂ x Bdy , and again thanks to the Lemma 2.2 we infer

N 1,q ≤ |q-q |≤4 t 0 e 2Rt S h q -1 ∂ y A φ (t ) L 2 v (L ∞ h ) ∆ h q y 0 ∂ x B φ (t )dy L ∞ v (L 2 h ) ∆ h q C φ (t ) L 2 dt .
(2.20) While it follow from the Poincaré inequality on the interval {0 < y < 1}, we have the inclusion Ḣ1

y → L ∞ y and ∆ h q ∂ y A φ (t ) L 2 v (L ∞ h ) 2 q 2 ∆ h q ∂ y A φ (t ) L 2 d q (A φ ) ∂ y A φ (t ) H s , (2.21) 
Here and in all that follows, we always denote (d q (t)) q∈Z to be a generic element of 1 (Z) d q (t) = 1. Then,

S h q -1 A φ (t ) L ∞ ∂ y A φ (t ) H s , and ∆ h q y 0 ∂ x B φ (t )dy L ∞ v (L 2 h ) 2 q ∆ h q B φ L 2
As a result, it come out

N 1,q ≤ |q-q |≤4 2 q t 0 e 2Rt ∂ y A φ (t ) H s ∆ h q B φ L 2 ∆ h q C φ (t ) L 2 dt |q-q |≤4 2 q t 0 e 2Rt θ(t ) ∆ h q B φ L 2 ∆ h q C φ (t ) L 2 dt |q-q |≤4 2 q t 0 e 2Rt θ(t ) ∆ h q B φ 2 L 2 dt 1 2 × t 0 e 2Rt θ(t ) ∆ h q C φ 2 L 2 dt 1 2
we note that θ(t) ∂ y A φ (t ) H s , using the definition (2.3), we achieve

N 1,q 2 -2qs d 2 q e Rt B φ L2 t, θ (H s+ 1 2 ) e Rt C φ L2 t, θ (H s+ 1 2 ) , (2.22) 
where

d 2 q = d q   |q-q |≤4 d q 2 (q-q )(s- 1 2 ) 
  if we multiply (2.22) by 2 2qs and summing with respect to q ∈ Z, we get

q∈Z 2 2qs N 1,q C e Rt B φ L2 t, θ (H s+ 1 2 ) e Rt C φ L2 t, θ (H s+ 1 2 ) . (2.23) 
Along the same way for 1 2 < s < 1, we obtain

N 2,q (t) ≤ t 0 e Rt ∆ h q (T h t 0 ∂xBdy ∂ y A) φ , e Rt ∆ h q C φ L 2 dt |q-q |≤4 t 0 e 2Rt S h q -1 y 0 ∂ x B φ dy L ∞ v (L 2 h ) ∆ h q ∂ y A φ L 2 v (L ∞ h ) ∆ h q C φ L 2 dt |q-q |≤4 d q t 0 e 2Rt S h q -1 y 0 ∂ x B φ L ∞ v (L 2 h ) θ(t )dt 1 2 × t 0 e 2Rt θ(t ) ∆ h q C φ 2 L 2 dt 1 2
Yet we observe from Definition 2, and s < 1 we have

t 0 e 2Rt S h q -1 y 0 ∂ x B φ L ∞ v (L 2 h ) θ(t )dt 1 2 
(2.24) 2 ) . So that it comes out

2 q (1-s) e Rt B φ L2 t, θ (H s+ 1 
N 2,q ≤ d 2 q 2 -2qs e Rt B φ L2 t, θ (H s+ 1 2 ) e Rt C φ L2 t, θ (H s+ 1 2 )
where

d 2 q = d q   |q-q |≤4 d q 2 (q-q )(s-1 2 )
  is a suitable sequence of positive constants. Summing with respect to q ∈ Z, and using Fubini's theorem, we get

q∈Z 2 2qs N 2,q C e Rt B φ L2 t, θ (H s+ 1 2 ) e Rt B φ L2 t, θ (H s+ 1 2 ) , (2.25) 
where we recall that θ(t) ∂ y A φ H s . To end this proof, it remains to estimate N 3,q (is the rest term). Using the support properties given in [ [6], Proposition 2.10], the definition of R h (∂ y A, y 0 ∂ x Bdy ) and Bernstein lemma 2.1, we can write

N 3,q = t 0 e Rt ∆ h q (R h (∂ y A, y 0 ∂ x Bdy )) φ , e Rt ∆ h q C φ L 2 dt ≤ 2 q 2 q ≥q-3 t 0 e 2Rt ∆ h q ∂ y A φ L 2 h (L ∞ v ) ∆ h q y 0 ∂ x B φ dy L 2 ∆ h q C φ L 2 dt ≤ 2 q 2 q ≥q-3 t 0 e 2Rt 2 q (1-1 2 ) ∂ y A φ H s ∆ h q B φ L 2 ∆ h q C φ L 2 dt ≤ 2 q 2 q ≥q-3 t 0 e 2Rt 2 q 2 ∂ y A φ H s ∆ h q B φ L 2 ∆ h q C φ L 2 dt .
Since 1 2 < s < 1, we have

N 3,q ≤ 2 q 2
q ≥q-3

t 0 2 q 2 ∂ y A φ H s ∆ h q e Rt B φ L 2 ∆ h q e Rt C φ L 2 dt ≤ 2 q 2 q ≥q-3 t 0 2 q 2 d q (B φ )2 -q (s+ 1 2 ) e Rt B φ H s+ 1 2 ∂ y A φ H s d q 2 -q(s+ 1 2 ) e Rt C φ H s+ 1 2 dt ≤ d q 2 -2qs t 0 e Rt B φ H s+ 1 2 ∂ y A φ H s e Rt C φ H s+ 1 2 q ≥q-3 d q 2 (q-q )s dt ≤ d 2 q 2 -2qs e Rt B φ L2 t, θ(t) (H s+ 1 2 ) e Rt C φ L2 t, θ(t) (H s+ 1 
2 ) , where

d 2 q = d q q ≥k-3 d q 2 (q-q )s
is a suitable sequence of positive constants. Summing with respect to q ∈ Z, and using Fubini's theorem, we finally obtain 

q∈Z 2 2qs N 3,q e Rt B φ L2 t, θ(t) (H s+ 1 2 ) e Rt C φ L2 t, θ(t) (H s+ 1 2 ) . ( 2 
(t) = ∂ y A φ (t) H s + ∂ y B φ (t) H s .
Then, there exists C ≥ 1 such that, for any t > 0, φ(t, ξ) > 0 and for any

A ∈ L2 t, τ (t) (H s+ 1 2 ) that satisfied B(t, x, y) = - y 0 ∂ x A(t, x, s)ds and ∂ x A = -∂ y B, we have 2 q∈Z 2 2qs t 0 e Rt ∆ h q (B∂ y B) φ , e Rt ∆ h q C φ L 2 dt ≤ C e Rt (A φ , C φ ) 2 L2 t, τ (t) (H s+ 1 2 )
.

Proof. As in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF], using Bony's homogeneous decomposition into para-products B∂ y B in the horizontal variable and remainders as in Definition of a tempered distribution, we can write

B∂ y B = T h ∂yB Bdy + T h B ∂ y B + R h (∂ y B, B)
We replace, we obtain the following bound of

t 0 e Rt ∆ h q (B∂ y B) φ , e Rt ∆ h q C φ L 2 dt t 0 e Rt ∆ h q (B∂ y B) φ dy , e Rt ∆ h q C φ L 2 dt ≤ L 1,q + L 2,q + L 3,q ,
where

L 1,q = t 0 e Rt ∆ h q (T h B ∂ y B) φ , e Rt ∆ h q C φ L 2 dt L 2,q = t 0 e Rt ∆ h q (T h ∂yB B) φ , e Rt ∆ h q C φ L 2 dt L 3,q = t 0 e Rt ∆ h q (R h (B, ∂ y B)) φ , e Rt ∆ h q C φ L 2 dt .
We start by getting the estimate of the first term L 1,q . Due to

∂ y B = -∂ x A, one has 2 L 1,q 2 |q -q|≤4 t 0 e 2Rt S h q -1 B φ (t) L ∞ ∆ h q ∂ y B φ (t) L 2 ∆ h q C φ (t) L 2 2 |q -q|≤4 t 0 e 2Rt S h q -1 B φ (t) L ∞ ∆ h q ∂ x A φ (t) L 2 ∆ h q C φ (t) L 2 2 |q -q|≤4 t 0 e 2Rt 2 -q 2 S h q -1 B φ (t) L ∞ 2 q 2 ∆ h q ∂ x A φ (t) L 2 ∆ h q C φ (t) L 2 |q -q|≤4 t 0 e 2Rt 2 -q 2 S h q -1 B φ (t) L ∞ ∂ x A φ (t) H s ∆ h q C φ (t) L 2 |q -q|≤4 2 -q 2 t 0 S h q -1 e Rt B φ (t ) 2 L ∞ ∂ x A φ (t ) H s dt 1 2 18 × t 0 ∆ h q e Rt C φ (t ) 2 L 2 ∂ x A φ (t ) H s dt 1 2
Yet we get, by a similar derivation of (2.24), that

t 0 S h q -1 e Rt B φ (t ) 2 L ∞ ∂ x A φ (t ) H s dt 1 2 ≤ d q 2 q (1-s) e Rt A φ L2 t, η (H s+ 1 
2 ) . Hence we deduce from the definition 2 that

L 1,q d 2 q 2 -2qs e Rt A φ L2 t, η (H s+ 1 2 ) e Rt C φ L2 t, η (H s+ 1 2 ) (2.27)
Along the same way, we have

L 2,q (t) ≤ t 0 e Rt ∆ h q (T h ∂yB B) φ , e Rt ∆ h q C φ L 2 dt |q-q |≤4 t 0 e 2Rt S h q -1 ∂ x A φ L ∞ ∆ h q B φ L 2 ∆ h q C φ L 2 dt |q-q |≤4 2 q t 0 e 2Rt ∂ y A φ H s ∆ h q B φ L 2 ∆ h q C φ L 2 dt |q-q |≤4 2 q t 0 ∂ y A φ H s e Rt ∆ h q B φ 2 L 2 dt 1 2 × t 0 ∂ y A φ H s e Rt ∆ h q C φ 2 L 2 dt 1 2 .
Then thanks to Definition 2, we arrive at

2 L 2,q d 2 q 2 -2qs e Rt B φ L2 t, η (H s+ 1 2 ) e Rt C φ L2 t, η (H s+ 1 2 )
(2.28)

To end this proof, it remains to estimate L 3,q (is the rest term). Due to ∂ y B = -∂ x A, we get, by applying lemma 2.1 that

L 3,q 2 q 2 q ≥q-3 t 0 e 2Rt ∆h q ∂ x A φ L 2 h (L ∞ v ) ∆ h q B φ L 2 ∆ h q C φ L 2 dt 2 q 2 |q-q |≤4 2 q 2 t 0 e 2Rt ∂ y A φ H s ∆ h q B φ L 2 ∆ h q C φ L 2 dt 2 q 2 |q-q |≤4 2 q 2 t 0 ∂ y A φ H s e Rt ∆ h q B φ 2 L 2 dt 1 2 × t 0 ∂ y A φ H s e Rt ∆ h q C φ 2 L 2 dt 1 2 .
which together with Definition 2 and 1 2 < s < 1 ensures that

2 L 3,q d 2 q 2 -2qs e Rt A φ L2 t, η (H s+ 1 2 ) + e Rt B φ L2 t, η (H s+ 1 2 ) e Rt C φ L2 t, η (H s+ 1 2 )
(2.29) Lemma 2.6 is then proved by summing Estimates (2.27), (2.28) and (2.29).

3. Global existence of the perturbed hydrostatic system (1.8)

The goal of this section is to prove the global well-posedness of the limit system of the Perturbed Navier-Stokes equation, we remark that the local smooth solution of the limit system follows a standard parabolic regularization method similar to the Perturbation NS system, First, we remark that the Dirichlet boundary condition (u, v) /y=0 = (u, v) /y=1 = 0, and the incompressible condition

∂ x u + ∂ y v = 0 imply that : v(t, x, y) = y 0 ∂ y v(t, x, s)ds = - y 0 ∂ x u(t, x, s)ds (3.1)
Due to the compatibility condition ∂ x 1 0 u 0 dy = 0, we deduce from

∂ x u + ∂ y v = 0 that ∂ x 1 0 u(t, x, y) dy = - 1 0 ∂ y v(t, x, y) dy = v(t, x, 1) -v(t, x, 0) = 0, (3.2) 
which together with the fact: u(t, x, y) → 0 as |x| → ∞, ensure that Then by integrating the equations ∂ 2 t u + ∂ t u + u∂ x u + v∂ y u -∂ 2 y u + ∂ x p = 0 and, for y ∈ [0, 1] and using the fact that ∂ y p = 0, we obtain

∂ x p = ∂ y u(t, x, 1) -∂ y u(t, x, 0) - 1 2 ∂ x 1 0 (u) 2 (t, x, y)dy (3.4)
In view of the system (1.8), we can transform it like a equation of order one in time, so if we define V = (u, ∂ t u), Then V satisfy the following equation

               ∂ t V + A(D)V = - 0 u∂ x u + v∂ y u + ∂ x p ∂ y p = 0 ∂ x u + ∂ y v = 0 (u, v)/ y=0 = (u, v)/ y=1 = 0 (3.5) where V = u ∂ t u and A(D) = 0 -1 -∂ 2 y 1 20
Then in view of (2.3) we observe that V φ verifies

               ∂ t V φ + λ θ(t)|D x |V φ + A(D)V φ = - 0 (u∂ x u) φ + (v∂ y u) φ + ∂ x p φ ∂ y p φ = 0 ∂ x u φ + ∂ y v φ = 0 (u φ , v φ )/ y=0 = (u φ , v φ )/ y=1 = 0 (3.6)
Where |D x | denotes the Fourier multiplier with symbol |ξ|. The main idea of this technique consists in the fact that if we differentiate, with respect to the time variable a function of the type e φ(t,Dx) u(t, x, y), we obtain an additional "good term" which plays the smoothing role. More precisely, we have

d dt e φ(t,Dx) V (t, x, y) = -θ(t) |D x | e φ(t,Dx) V (t, x, y) + e φ(t,Dx) ∂ t V (t, x, y),
where -θ(t) |D x | e φ(t,Dx) u(t, x, y) gives a smoothing effect if θ(t) ≥ 0. This smoothing effect allows to obtain our global existence and stability results in the analytic framework.

Proof of global well-posedness of system (1.8). By applying the dyadic operator in the horizontal variable ∆ h q to (3.6) and taking the L 2 inner product of the resulting equation with ∆ h q (V φ ) we obtain

∆ h q ∂ t V φ , ∆ h q V φ L 2 + λ θ(t) ∆ h q |D x |V φ , ∆ h q V φ L 2 + ∆ h q A(D)V φ , ∆ h q V φ L 2 = -∆ h q (u∂ x u + v∂ y u) φ , ∆ h q (∂ t u) φ ) L 2 -∆ h q ∂ x p φ , ∆ h q (∂ t u) φ L 2 . (3.7)
In what follows, we shall use the technical lemmas in Section 2, to handle term by term in the estimate (3.7).

By applying the result of the lemma 2.3, we find that

∆ h q ∂ t V φ , ∆ h q V φ L 2 + λ θ(t) ∆ h q |D x |V φ , ∆ h q V φ L 2 + ∆ h q A(D)V φ , ∆ h q V φ L 2 = 1 2 d dt ∆ h q u φ 2 L 2 + ∆ h q (∂ t u) φ 2 L 2 + λ θ(t) ∆ h q |D x | 1 2 u φ 2 L 2 + λ θ(t) ∆ h q |D x | 1 2 (∂ t u) φ 2 L 2 - 1 2 d dt ∆ h q u φ 2 L 2 -λ θ(t) ∆ h q |D x | 1 2 u φ 2 L 2 + 1 2 d dt ∆ h q ∂ y u φ 2 L 2 + λ θ(t) ∆ h q |D x | 1 2 ∂ y u φ 2 L 2 + ∆ h q (∂ t u) φ 2 L 2 = 1 2 d dt ∆ h q (∂ t u) φ 2 L 2 + ∆ h q ∂ y u φ 2 L 2 + ∆ h q (∂ t u) φ 2 L 2 + λ θ(t) ∆ h q |D x | 1 2 (∂ t u) φ 2 L 2 + λ θ(t) ∆ h q |D x | 1 2 ∂ y u φ 2 L 2 .
Now, for the pressure term, using the Dirichlet boundary condition (u, v)| y=0 = (u, v)| y=1 = 0, and the incompressibility condition ∂ x u + ∂ y v = 0 and the relation ∂ y p = 0, we can perform integration by parts, we get

D = ∆ h q ∂ x p φ , ∆ h q (∂ t u) φ L 2 = ∆ h q p φ , ∆ h q (∂ t ∂ x u) φ = ∆ h q p φ , ∆ h q (∂ t ∂ y v) φ = ∆ h q ∂ y p φ , ∆ h q (∂ t v) φ = 0.
Thus,

D = ∆ h q ∂ x p φ , ∆ h q |D x |(∂ t u) φ L 2 = 0.
While due to u/ y=0 = u/ y=1 = 0, by applying Poincaré inequality, we have

R ∆ h u φ 2 L 2 ≤ ∆ h q ∂ y u φ 2 L 2 . (3.8)
Then, using Lemma 2.1 and multiplying (1.6) by e 2Rt , we achieve 1 2

d dt e Rt ∆ h q (∂ t u) φ 2 L 2 + e Rt ∆ h q ∂ y u φ 2 L 2 + e Rt ∆ h q (∂ t u) φ 2 L 2 + λ θ(t ) e Rt ∆ h q |D x | 1 2 (∂ t u) φ 2 L 2 + λ θ(t ) e Rt ∆ h q |D x | 1 2 ∂ y u φ 2 L 2 ≤ ∆ h q (u∂ x u) φ , e 2Rt ∆ h q |(∂ t u) φ ) L 2 + ∆ h q (v∂ y u) φ , e 2Rt ∆ h q |(∂ t u) φ ) L 2 . (3.9) Next, we note that      J q 1 = ∆ h q (u∂ x u) φ , e 2Rt ∆ h q (∂ t u) φ ) L 2 J q 2 = ∆ h q (v∂ y u) φ , e 2Rt ∆ h q (∂ t u) φ ) L 2 .
To estimate those two non linear terms we need to use the lemmas 2.4, 2.5 and the Poincaré inequality. In view of the lemma 2.4, we replace C φ by (∂ t u) φ and A = B = u, then we conclude the following estimate of J q 

J q 1 (t ) = e Rt ∆ h q (u∂ x u) φ , e Rt ∆ h q (∂ t u) φ ) L 2 C2 -2qs d 2 q θ(t) e Rt ∂ y u φ H s+ 1 2 e Rt (∂ t u) φ H s+ 1 2 , (3.10) 
where θ(t) = ∂ y u φ H s with s > 1 2 . In view of the lemma 2.5, we replace C φ by (∂ t u) φ , A = u and B = v, then we conclude the following estimate of J q 

J q 2 (t ) = e Rt ∆ h q (v∂ y u) φ , e Rt ∆ h q (∂ t u) φ ) L 2 C2 -2qs d 2 q θ(t) e Rt ∂ y u φ H s+ 1 2 e Rt (∂ t u) φ H s+ 1 2 , (3.11) 
where θ(t) = ∂ y u φ H s , with s > 1 2 . Then we deduce from (3.9), that 1 2

d dt e Rt ∆ h q (∂ t u) φ 2 L 2 + e Rt ∆ h q ∂ y u φ 2 L 2 + e Rt ∆ h q (∂ t u) φ 2 L 2 + λ θ(t ) e Rt ∆ h q |D x | 1 2 (∂ t u) φ 2 L 2 + λ θ(t ) e Rt ∆ h q |D x | 1 2 ∂ y u φ 2 L 2 ≤ 2C2 -2qs d 2 q θ(t) e Rt ∂ y u φ H s+ 1 2 e Rt (∂ t u) φ H s+ 1 2 (3.12)
Now we still have to get some information of the norm ∂ y u φ H s , for that we need to apply the dyadic operator ∆ h q to the equation

e φ(t,|Dx|) (∂ 2 t u + ∂ t u + u∂ x u + v∂ y u -∂ 2 y u + ∂ x p) = 0, (3.13) 
and then, we take the L 2 inner product of the resulting equation (3.13) with ∆ h q u φ , we obtain

∆ h q (∂ 2 t u) φ , ∆ h q u φ L 2 + ∆ h q (∂ t u) φ , ∆ h q u φ L 2 -∆ h q ∂ 2 y u φ , ∆ h q u φ L 2 = -∆ h q (u∂ x u + v∂ y u) φ , ∆ h q u φ ) L 2 -∆ h q ∂ x p φ , ∆ h q u φ L 2 . (3.14)
In what follows, we shall use again the technical lemmas in Section 2, to handle term by term in the estimate (3.14). We start by the term

I 1 = ∆ h q (∂ 2 t u) φ , ∆ h q u φ L 2 and I 2 = ∆ h q (∂ t u) φ , ∆ h q u φ
L 2 so by using integration by parts, we find

I 1 = d dt ∆ h q (∂ t u) φ ∆ h q u φ dx -∆ h q (∂ t u) φ ∆ h q (∂ t u) φ dx + 2λ θ(t) ∆ h q |D x |(∂ t u) φ ∆ h q u φ dx,
and

I 2 = 1 2 d dt ∆ h q u φ 2 L 2 + λ θ(t) ∆ h q |D x | 1 2 u φ 2 L 2 .
Whereas due to the boundary condition, and by integrating by part, we achieve 

∆ h q (-∂ 2 y u φ ), ∆ h q u φ L 2 = ∆ h q ∂ y u φ , ∆ h q ∂ y u φ L 2 = ∆ h q ∂ y u φ 2 L 2 . Now,
∆ h q ∂ x p φ , ∆ h q u φ L 2 = ∆ h q p φ , ∆ h q ∂ x u φ = ∆ h q p φ , ∆ h q ∂ y v φ = ∆ h q ∂ y p φ , ∆ h q v φ = 0.
Then by using the Lemma 2.1 and by multiplying (3.14) by e 2Rt , and then integrating the resulting inequality over time, we achieve

d dt e 2Rt ∆ h q (∂ t u) φ ∆ h q u φ dx -e 2Rt ∆ h q (∂ t u) φ ∆ h q (∂ t u) φ dx + 2λ θ(t) e 2Rt ∆ h q |D x |(∂ t u) φ ∆ h q u φ dx + 1 2 d dt e Rt ∆ h q u φ 2 L 2 + λ θ(t) e Rt ∆ h q |D x | 1 2 u φ 2 L 2 + e Rt ∆ h q ∂ y u φ 2 L 2 (3.15) = -∆ h q (u∂ x u) φ , e 2Rt ∆ h q u φ ) L 2 -∆ h q (v∂ y u) φ , e 2Rt ∆ h q u φ ) L 2 . Next, we note that              L q 1 = ∆ h q (u∂ x u) φ , e 2Rt ∆ h q u φ ) L 2 L q 2 = ∆ h q (v∂ y u) φ , e 2Rt ∆ h q u φ ) L 2 L 3 q = 2λ θ(t) e 2Rt ∆ h q |D x |(∂ t u) φ ∆ h q u φ dx .
In view, of the lemma 2.4-2.5, we can deduce that

L q 1 = ∆ h q (u∂ x u) φ , e 2Rt ∆ h q u φ ) L 2 C2 -2qs d 2 q θ(t) e Rt u φ H s+ 1 2 e Rt u φ H s+ 1 2 (3.16)
and

L q 2 = ∆ h q (v∂ y u) φ , e 2Rt ∆ h q u φ ) L 2 C2 -2qs d 2 q θ(t) e Rt u φ H s+ 1 2 e Rt u φ H s+ 1 2 .
(3.17)

Then we still have to estimate L 3 q , therefore by cutting the derivative |D x | into two half derivative and the Poincaré inequality, we achieve the

L 3 q = 2λ θ(t) e 2Rt ∆ h q |D x |(∂ t u) φ ∆ h q u φ dx 2λ θ(t) e Rt ∆ h q |D x | 1 2 (∂ t u) φ e Rt ∆ h q |D x | 1 2 u φ dx 2 -2qs d 2 q 2λ θ(t) e Rt (∂ t u) φ H s+ 1 2 e Rt ∂ y u φ H s+ 1 2 (3.18)
We multiply (3.12) by 2 and we sum it with (3.15), we obtain [START_REF] Enquist | Blow up of solutions of the unsteady Prandtl's equation[END_REF]) by 2 2qs for s ∈] 1 2 , 1[ and then integrating over time, and summing with respect to q ∈ Z, we find that for t < T

1 2 d dt e Rt ∆ h q (∂ t u) φ 2 L 2 + 2 e 2Rt ∆ h q (∂ t u) φ ∆ h q u φ dx + e Rt ∆ h q u φ 2 L 2 -e Rt ∆ h q (∂ t u) φ 2 L 2 + 1 2 d dt e Rt ∆ h q (∂ t u) φ 2 L 2 + λ θ(t) e Rt ∆ h q |D x | 1 2 u φ 2 L 2 + e Rt ∆ h q ∂ y u φ 2 L 2 + d dt e Rt ∆ h q ∂ y u φ 2 L 2 (3.19) + 2 e Rt ∆ h q (∂ t u) φ 2 L 2 + 2λ θ(t ) e Rt ∆ h q |D x | 1 2 (∂ t u) φ 2 L 2 + 2λ θ(t ) e Rt ∆ h q |D x | 1 2 ∂ y u φ 2 L 2 2 -2qs d 2 q (2λ + 4C) θ(t) e Rt (∂ t u) φ H s+ 1 2 e Rt ∂ y u φ H s+ 1 2 + 2C2 -2qs d 2 q θ(t) e Rt u φ 2 H s+ 1 2 . Multiplying (3.
1 2 e Rt (u + ∂ t u) φ 2 L∞ t (H s ) + e Rt ∂ y u φ 2 L∞ t (H s ) + 1 2 e Rt (∂ t u) φ 2 L∞ t (H s ) + e Rt (∂ t u) φ 2 L2 t (H s ) + 1 2 e Rt (∂ t u) φ 2 L∞ t (H s ) +λ e Rt u φ 2 L2 t, θ(t) (H s+ 1 2 ) + e Rt ∂ y u φ 2 L2 t (H s ) +2λ e Rt (∂ t u) φ 2 L2 t, θ(t) (H s+ 1 2 ) + 2λ e Rt ∂ y u φ 2 L2 t, θ(t) (H s+ 1 2 )
≤ C e a|Dx| ∂ y u 0 2

H s + C e a|Dx| (u 0 + u 1 ) 2 H s + C e a|Dx| u 1 2 H s + (2λ + 4C) e Rt ∂ y u φ L2 t, θ(t) (H s+ 1 2 ) e Rt (∂ t u) φ L2 t, θ(t) (H s+ 1 2 ) + 2C e Rt u φ 2 L2 t, θ(t) (H s+ 1 2 )
.

(3.20)

Taking λ = 2C and 2λ = λ + 2C in the above inequality leads to We recall that we already defined θ(t) = ∂ y u φ (t) H s with 1 2 < s < 1 and θ(0) = 0. Then, for any 0 < t < T , Inequality (3.21) yields

θ(t) = t 0 ∂ y u φ (t ) H s dt ≤ t 0 e -Rt e Rt ∂ y u φ (t ) H s dt ≤ t 0 e -2Rt dt 1 2 t 0 e Rt ∂ y u φ (t ) 2 H s dt 1 2 ≤ C e Rt ∂ y u φ L2 t (H s ) ≤ C e a|Dx| ∂ y u 0 H s + e a|Dx| (u 0 + u 1 ) H s + e a|Dx| u 1 2 H s < a 2λ
A continuity argument implies that T = +∞ and we have (3.21) is valid for any t ∈ R + .

4.

Global well-posedness of the system (1.7)

The goal of this section is to prove the Theorem and to establish the global wellposedness of the system (1.7) with small analytic data. As in Section 2, for any locally bounded function Θ on R + × R and any u ∈ L 2 (S), we define the analyticity in the horizontal variable x by means of the following auxiliary function

u Θ (t, x, y) = F -1 ξ→x ( Θ(t,ξ) u (t, ξ, y)). (4.1) 
The width of the analyticity band Θ is defined by

Θ(t, ξ) = (a -λτ (t))|ξ|,
where λ > 0 with be precised later and τ (t) will be chosen in such a way that Θ(t, ξ) > 0, for any (t, ξ) ∈ R + × R and Θ(t) = Θ (t) = -λ τ (t) ≤ 0. In our paper, we will choose

τ (t) = ∂ y u Θ (t) H s + ∂ y v Θ (t) H s with τ (0) = 0. (4.2)
In what follows, for the sake of the simplicity, we will neglect the script and write (u Θ , v Θ ) instead of (u Θ , v Θ ). In view of the system (1.7), we can transform it like a equation of order one in time, so if we define U = (u, ∂ t u) and V = (v, ∂ t v), Then U and V satisfy the following equation

                   ∂ t U + A (D)U = - 0 u∂ x u + v∂ y u + ∂ x p 2 ∂ t V + B (D)V = - 0 2 (u∂ x v + v∂ y v) + ∂ y p ∂ x u + ∂ y v = 0 (u, v)/ y=0 = (u, v)/ y=1 = 0 (4.3)
where

U = u ∂ t u and A (D) = 0 -1 -2 ∂ 2 x -∂ 2 y 1 and V = v ∂ t v and B (D) = 0 -1 -2 ∂ 2 x -∂ 2 y 1
Then in view of (2.3) we observe that (U, V ) Θ verifies

                   ∂ t U Θ + λ τ (t)|D x |U Θ + A (D)U Θ = - 0 (u∂ x u) Θ + (v∂ y u) Θ + ∂ x p Θ 2 ∂ t V Θ + λ τ (t)|D x |V Θ + B (D)V Θ = - 0 2 (u∂ x v + v∂ y v) Θ + ∂ y p Θ ∂ x u Θ + ∂ y v Θ = 0 (u Θ , v Θ )/ y=0 = (u Θ , v Θ )/ y=1 = 0 (4.4)
Where |D x | denote the Fourier multiplier of the symbol |ξ|. In what follows, we recall that we use "C" to denote a generic positive constant which can change from line to line.

By applying the dyadic operator in the horizontal variable ∆ h q to (4.4) and taking the L 2 inner product of the resulting equation with ∆ h q U Θ and ∆ h q V Θ we obtain 

∆ h q ∂ t U Θ , ∆ h q U Θ L 2 + λ τ (t) ∆ h q |D x |U Θ , ∆ h q U Θ L 2 + ∆ h q A (D)U Θ , ∆ h q U Θ L 2 = -∆ h q (u∂ x u + v∂ y u) Θ , ∆ h q (∂ t u) φ ) L 2 -∆ h q ∂ x p φ , ∆ h q (∂ t u) φ L 2 (4.5) and ∆ h q ∂ t V Θ , ∆ h q V Θ L 2 + λ τ (t) ∆ h q |D x |V Θ , ∆ h q V Θ L 2 + ∆ h q B (D)V Θ , ∆ h q V Θ L 2 = -2 ∆ h q (u∂ x v + v∂ y v) Θ , ∆ h q (∂ t v) Θ ) L 2 -2 ∆ h q ∂ y p Θ , ∆ h q (∂ t v) Θ L 2 . ( 4 
∆ h q ∇p Θ , ∆ h q (∂ t u, ∂ t v) Θ L 2 = 0.
Then by using Lemma 2.1 and by multiplying (4.5) and (4.6) by e 2Rt , we achieve 1 2

d dt e Rt ∆ h q (∂ t u) Θ 2 L 2 + e Rt ∆ h q ∂ y u Θ 2 L 2 + e Rt ∆ h q (∂ t v) Θ 2 L 2 + e Rt ∆ h q ∂ y v Θ 2 L 2 + 4 e Rt ∆ h q ∂ x v Θ 2 L 2 + 2 e Rt ∆ h q ∂ x u Θ 2 L 2 + e Rt ∆ h q (∂ t u) Θ 2 L 2 + e Rt ∆ h q (∂ t v) Θ 2 L 2 +λ τ (t ) e Rt ∆ h q |D x | 1 2 (∂ t u) Θ 2 L 2 + 2 λ τ (t ) e Rt ∆ h q |D x | 1 2 (∂ t v) Θ 2 L 2 + 2 λ τ (t ) e Rt ∆ h q |D x | 1 2 ∂ x u Θ 2 L 2 +λ τ (t ) e Rt ∆ h q |D x | 1 2 ∂ y u Θ 2 L 2 +λ τ (t ) e Rt ∆ h q |D x | 1 2 ∂ y v Θ 2 L 2 + 4 λ τ (t ) e Rt ∆ h q |D x | 1 2 ∂ x v Θ 2 L 2 ≤ ∆ h q (u∂ x u) Θ , e 2Rt ∆ h q |(∂ t u) Θ ) L 2 + ∆ h q (v∂ y u) Θ , e 2Rt ∆ h q |(∂ t u) Θ L 2 + 2 ∆ h q (u∂ x v) Θ , e 2Rt ∆ h q (∂ t v) Θ ) L 2 + 2 ∆ h q (v∂ y v) Θ , e 2Rt ∆ h q (∂ t v) Θ ) L 2 (4.7)
Then we deduce from the lemma 2.4-2.6, that 1 2

d dt e Rt ∆ h q (∂ t u, ∂ t v) Θ 2 L 2 + e Rt ∆ h q (∂ y u, ∂ y v) Θ 2 L 2 + 2 e Rt ∆ h q (∂ x u, ∂ x v) Θ 2 L 2 + e Rt ∆ h q (∂ t u) Θ 2 L 2 + e Rt ∆ h q (∂ t v) Θ 2 L 2 + λ τ (t) e Rt ∆ h q |D x | 1 2 (∂ t u, ∂ t v) Θ 2 L 2 + λ τ (t ) e Rt ∆ h q |D x | 1 2 (∂ y u, ∂ y v) Θ 2 L 2 + 2 λ τ (t ) e Rt ∆ h q |D x | 1 2 (∂ x u, ∂ x v) Θ 2 L 2 ≤ 2C2 -2qs d 2 q τ (t) e Rt ∂ y u Θ H s+ 1 2 e Rt (∂ t u) Θ H s+ 1 2 + e Rt ∂ y u Θ H s+ 1 2 e Rt ( ∂ t v) Θ H s+ 1 2 . (4.8) 
Now we still have to get some information of the norm ∂ y u φ H s and ∂ x u φ H s , for that we need to apply the dyadic operator ∆ h q to the equation

e Θ(t,|Dx|) (∂ 2 t u + ∂ t u + u∂ x u + v∂ y u -∂ 2 y u -2 ∂ 2 x u + ∂ x p) = 0 e Θ(t,|Dx|) 2 (∂ 2 t v + ∂ t v + u∂ x v + v∂ y v -∂ 2 y v -2 ∂ x v) + ∂ y p = 0, (4.9) 
and then, we take the L 2 inner product of the resulting equation (4.9) with ∆ h q u Θ and ∆ h q v Θ , we obtain

∆ h q (∂ 2 t u) Θ , ∆ h q u Θ L 2 + ∆ h q (∂ t u) Θ , ∆ h q u Θ L 2 -∆ h q ∂ 2 y u Θ , ∆ h q u Θ L 2 -2 ∆ h q ∂ 2 x u Θ , ∆ h q u Θ L 2 = -∆ h q (u∂ x u + v∂ y u) Θ , ∆ h q u Θ ) L 2 -∆ h q ∂ x p Θ , ∆ h q u Θ L 2 , (4.10) and ∆ h q ( ∂ 2 t v) Θ , ∆ h q v Θ L 2 + ∆ h q ( ∂ t v) Θ , ∆ h q v Θ L 2 -∆ h q ∂ 2 y v Θ , ∆ h q v Θ L 2 -2 ∆ h q ∂ 2 x v Θ , ∆ h q v Θ L 2 = -2 ∆ h q (u∂ x v + v∂ y v) Θ , ∆ h q v Θ ) L 2 -∆ h q ∂ y p Θ , ∆ h q v Θ L 2 , (4.11)
In what follows, we shall use again the technical lemmas in Section 2, to handle term by term in the estimate (4.10) and (4.11). We start by the complicate term

I 1 = ∆ h q (∂ 2 t u) Θ , ∆ h q u Θ L 2 and I 2 = ∆ h q ( ∂ 2 t v) Θ , ∆ h q v Θ L 2
, so by using integration by parts, we find

I 1 = d dt ∆ h q (∂ t u) Θ ∆ h q u Θ dx -∆ h q (∂ t u) Θ ∆ h q (∂ t u) Θ dx + 2λ τ (t) ∆ h q |D x |(∂ t u) Θ ∆ h q u Θ dx I 2 = d dt ∆ h q ( ∂ t v) Θ ∆ h q v Θ dx -∆ h q ( ∂ t v) Θ ∆ h q ( ∂ t v) Θ dx + 2λ τ (t) ∆ h q |D x |( ∂ t v) Θ ∆ h q v Θ dx
Whereas due to the boundary condition, and by integrating by part, we achieve

∆ h q -(∂ 2 y u Θ + 2 ∂ 2 x u Θ ), ∆ h q u Θ L 2 = ∆ h q ∂ y u Θ 2 L 2 + 2 ∆ h q ∂ x u Θ 2 L 2 ∆ h q (-∂ 2 y v Θ -3 ∂ 2 x v Θ ), ∆ h q v Θ L 2 = ∆ h q ∂ y v Θ 2 L 2 + 2 ∆ h q ∂ x v Θ 2 L 2
. Now, by using the Dirichlet boundary condition (u, v)| y=0 = (u, v)| y=1 = 0, and the incompressibility condition ∂ x u + ∂ y v = 0 and the relation ∂ y p Θ = 0, we can find by integrating by parts the estimate of the pressure

∆ h q ∇p Θ , ∆ h q (u, v) Θ L 2 = ∆ h q p Θ , ∆ h q div (u, v) Θ = 0.
Then by using the Lemma 2.1 and by multiplying (4.10) and (4.11) by e 2Rt , and then integrating the resulting inequality over time, we achieve

d dt e 2Rt ∆ h q (∂ t u) Θ ∆ h q u Θ dx -e 2Rt ∆ h q (∂ t u) Θ ∆ h q (∂ t u) Θ dx + 2λ τ (t) e 2Rt ∆ h q |D x |(∂ t u) Θ ∆ h q u Θ dx d dt e 2Rt ∆ h q (∂ t v) Θ ∆ h q v Θ dx -e 2Rt ∆ h q (∂ t v) Θ ∆ h q (∂ t v) Θ dx + 2λ τ (t) e 2Rt ∆ h q |D x |(∂ t v) Θ ∆ h q v Θ dx + 1 2 d dt e Rt ∆ h q u Θ 2 L 2 + 1 2 d dt e Rt ∆ h q v Θ 2 L 2 + λ θ(t) e Rt ∆ h q |D x | 1 2 (u Θ , v Θ ) 2 L 2 + e Rt ∆ h q ∂ y u Θ 2 L 2 + e Rt ∆ h q ∂ y v Θ 2 L 2 + 2 e Rt ∆ h q ∂ x u Θ 2 L 2 + 2 e Rt ∆ h q ∂ x v Θ 2 L 2 (4.12) = -∆ h q (u∂ x u + v∂ y u) Θ , e 2Rt ∆ h q u Θ ) L 2 -2 ∆ h q (u∂ x v + v∂ y v) Θ , e 2Rt ∆ h q v Θ ) L 2 .
In view, of the lemma 2.4-2.5, and by summing 2 × (4.8) with (4.12), we obtain

d dt e Rt ∆ h q (∂ t u) Θ 2 L 2 + R e 2Rt ∆ h q (∂ t u) Θ ∆ h q u Θ dx + 1 2 e Rt ∆ h q u Θ 2 L 2 + e Rt ∆ h q (∂ t u) Θ 2 L 2 d dt e Rt ∆ h q ( ∂ t v) Θ 2 L 2 + R e 2Rt ∆ h q ( ∂ t v) Θ ∆ h q v Θ dx + 1 2 e Rt ∆ h q v Θ 2 L 2 + e Rt ∆ h q ( ∂ t v) Θ 2 L 2 + λ θ(t) e Rt ∆ h q |D x | 1 2 (u, v) Θ 2 L 2 + e Rt ∆ h q ∂ y (u, v) Θ 2 L 2 + 2 e Rt ∆ h q ∂ x (u, v) Θ 2 L 2 (4.13) + d dt e Rt ∆ h q ∂ y (u, v) Θ 2 L 2 + 2 d dt e Rt ∆ h q ∂ x (u, v) Θ 2 L 2 + 2λ θ(t ) e Rt ∆ h q |D x | 1 2 (∂ t u, ∂ t v) Θ 2 L 2 + λ τ (t ) e Rt ∆ h q |D x | 1 2 (∂ y u, ∂ y v) Θ 2 L 2 + 2 λ τ (t ) e Rt ∆ h q |D x | 1 2 (∂ x u, ∂ x v) Θ 2 L 2 4C2 -2qs d 2 q τ (t) e Rt ∂ y u Θ H s+ 1 2 e Rt (∂ t u) Θ H s+ 1 2 + e Rt ∂ y u Θ H s+ 1 2 e Rt ( ∂ t v) Θ H s+ 1 2 + 2λ2 -2qs d 2 q τ (t) e Rt ∂ y u Θ H s+ 1 2 e Rt (∂ t u) Θ H s+ 1 2 + 2C2 -2qs d 2 q τ (t) e Rt (u Θ , v Θ ) 2
H s+ 1 2 . Multiplying (4.13) by 2 2qs for s ∈] 1 2 , 1[ and then integrating over time, and summing with respect to q ∈ Z, we find that for t < T

1 2 e Rt (u+∂ t u, (v +∂ t v)) Θ 2 L∞ t (H s ) + e Rt ∂ y (u, v) Θ 2 L∞ t (H s ) + 2 e Rt ∂ x (u, v) Θ 2 L∞ t (H s ) + 1 2 e Rt (∂ t u, ∂ t v) Θ 2 L∞ t (H s ) + e Rt (∂ t u, ∂ t v) φ 2 L2 t (H s ) + λ e Rt (u, v) Θ 2 L2 t, τ (t) (H s+ 1 2 ) + e Rt ∂ y (u, v) Θ 2 L2 t (H s ) + 2 e Rt ∂ x (u, v) Θ 2 L2 t (H s ) + 2λ e Rt (∂ t u, ∂ t v) Θ 2 L2 t, τ (t) (H s+ 1 2 ) + 2λ e Rt ∂ y (u, v) Θ 2 L2 t, τ (t) (H s+ 1 2 ) + 2λ e Rt ∂ x (u, v) Θ 2 L2 t, τ (t) (H s+ 1 2 ) ≤ C e a|Dx| ∂ y (u 0 , v 0 ) 2 H s + C 2 e a|Dx| ∂ x (u 0 , v 0 ) 2 H s + C e a|Dx| (u 1 , v 1 ) 2 H s + C e a|Dx| (u 0 + u 1 , (v 0 + v 1 )) 2 H s + (2λ + 4C) e Rt ∂ y u φ L2 t, θ(t) (H s+ 1 2 ) e Rt (∂ t u) φ L2 t, θ(t) (H s+ 1 2 ) + 2C e Rt u φ 2 L2 t, θ(t) (H s+ 1 2 ) . (4.14) 
Taking λ = 2C and 2λ = λ + 2C in the above inequality leads to

e Rt (u + ∂ t u, (v + ∂ t v)) Θ L∞ t (H s ) + e Rt ∂ y (u, v) Θ L∞ t (H s ) + 2 e Rt ∂ x (u, v) Θ L∞ t (H s ) + e Rt (∂ t u, ∂ t v) Θ L2 t (H s ) + e Rt ∂ y (u, v) Θ L2 t (H s ) + 2 e Rt ∂ x (u, v) Θ L2 t (H s ) ≤ C e a|Dx| ∂ y (u 0 , v 0 ) H s + 2 C e a|Dx| ∂ x (u 0 , v 0 ) H s + C e a|Dx| (u 1 , v 1 ) H s + C e a|Dx| (u 0 + u 1 , (v 0 + v 1 )) H s , for t < T . (4.15)
We recall that we already defined τ (t) = ∂ y u Θ (t) H s + ∂ y v Θ (t) H s with τ (0) = 0. Then, for any 0 < t < T , Inequality (3.21) yields

τ (t) = t 0 ∂ y u Θ (t ) H s + ∂ y v Θ (t) H s dt ≤ t 0 e -Rt e Rt ∂ y (u, v) Θ (t ) H s dt ≤ t 0 e -2Rt dt 1 2 t 0 e Rt ∂ y (u, v) Θ (t ) 2 H s dt 1 2 ≤ C e Rt ∂ y (u, v) Θ L2 t (H s ) ≤ C e a|Dx| ∂ y (u 0 , v 0 ) H 1 2 + 2 e a|Dx| ∂ x (u 0 , v 0 ) H s + e a|Dx| (u 0 + u 1 , (v 0 + v 1 )) H s + e a|Dx| (u 1 , v 1 ) H s < a 2λ
A continuity argument implies that T = +∞ and we have (3.21) is valid for any t ∈ R + .

Propagation of the regularity and of the vorticity of the hyperbolic Parndtl equation (1.8)

In this section, we present first a proposition states the propagation for any H s regularity on the solution of the perturbed hyperbolic Navier-Stokes equations (1.8). The second proposition allows us to control two derivatives in the normal direction ∂ 2 y in any H s , despite the difficulties raised by the boundary conditions. Those propositions will be useful in the last section when we prove the global convergence of the Theorem 1.3 Proposition 5.1. We assume that the condition (1.10) is satisfied, then for any s > 1 2 and 1 2 < δ < 1, there exist a small constant C, such that for

λ = C(1 + e a|Dx| ∂ y u 0 H δ+1 + e a|Dx| (u 0 + u 1 ) H δ+1 + e a|Dx| u 1 H δ+1 ),
we have

1 2 e Rt (u + ∂ t u) φ L∞ t (H s ) + 1 2 e Rt (∂ t u) φ L∞ t (H s ) + e Rt ∂ y u φ L∞ t (H s ) + e Rt (∂ t u) φ L2 t (H s ) + e Rt ∂ y u φ L2 t (H s ) ≤ C e a|Dx| ∂ y u 0 H s + C e a|Dx| (u 0 + u 1 ) H s + C e a|Dx| u 1 H s , for t < T . (5.1)
Proof of the proposition 5.1. We start by the first estimate of the temperature equation, we deduce from the lemma 2.4 that for any s > 1 2 we have

t 0 | ∆ h q (u∂ x u) φ , ∆ h q (∂ t u) φ L 2 |dt ≤ Cd 2 q 2 -2qs u φ L2 t, θ(t) (H s+ 1 2 ) (∂ t u) φ L2 t, θ(t) (H s+ 1 
2 ) . (5.2) In view of the proof the lemma 2.4, we need only to proof that

t 0 | ∆ h q (T h ∂xu u) φ , ∆ h q (∂ t u) φ L 2 |dt ≤ Cd 2 q 2 -2qs u φ L2 t, θ(t) (H s+ 1 2 ) (∂ t u) φ L2 t, θ(t) (H s+ 1 
2 ) . We infer

t 0 | ∆ h q (T h ∂xu u) φ , ∆ h q (∂ t u) φ L 2 |dt |q -q|≤4 t 0 S h q -1 ∂ x u φ (t ) L ∞ ∆ h q u φ (t ) L 2 ∆ h q (∂ t u) φ (t ) L 2 dt |q -q|≤4 2 q t 0 ∂ y u φ (t ) H δ ∆ h q u φ (t ) L 2 ∆ h q (∂ y u) φ (t ) L 2 dt |q -q|≤4 2 q t 0 ∂ y u φ (t ) H δ ∆ h q u φ (t ) 2 L 2 dt 1 2 × t 0 ∂ y u φ (t ) H δ ∆ h q (∂ t u) φ (t ) L 2 dt 1 2
, where 1 2 < δ < 1, which leads to (5.2). While it follows also from the proof of the lemma 2.4 that

t 0 |(∆ h q (T h ∂yu v + R h (v, ∂ y u)) φ , ∆ h q (∂ t u) φ ) L 2 |dt ≤ d 2 q 2 -2qs u φ L2 t, θ(t) (H s+ 1 2 ) (∂ t u) φ L2 t, θ(t) (H s+ 1 
2 ) , so we have yet to determine the estimate of

t 0 |(∆ h q (T h v ∂ y T ) φ , ∆ h q T φ ) L 2 |dt , we have ∆ h q v φ (t) L ∞ d q (t)2 q 2 u φ (t) 1 2 H δ+1 ∂ y u φ (t) 1 2 H δ , so that S h q -1 v φ (t ) L ∞ 2 q 2 u φ (t) 1 2 H δ+1 ∂ y u φ (t) 1 2
H δ , which implies that

t 0 |(∆ h q (T h v ∂ y u) φ , ∆ h q (∂ t u) φ ) L 2 |dt |q -q|≤4 t 0 S h q -1 v φ (t ) L ∞ ∆ h q ∂ y u φ (t ) L 2 ∆ h q (∂ t u) φ (t ) L 2 dt |q -q|≤4 2 q 2 u φ 1 2 L ∞ t (H δ+1 ) ∆ h q ∂ y u φ L 2 t (L 2 ) t 0 ∂ y u φ (t( ) H δ ∆ h q (∂ t u) φ (t ) L 2 dt 1 2 d 2 q 2 -2qs u φ 1 2 L∞ t (H δ+1 ) ∂ y u φ L2 t (H s ) (∂ t u) φ L2 t, θ(t) (H s+ 1 
2 ) . By summing all the terms we obtain

t 0 |(∆ h q (v∂ y u) φ , ∆ h q (∂ t u) φ ) L 2 |dt d 2 q 2 -2qs (∂ t u) φ L2 t, θ(t) (H s+ 1 2 ) × u φ L2 t, θ(t) (H s+ 1 2 ) + u φ 1 2 L∞ t (H δ+1 ) ∂ y u φ L2 t (H s ) . (5.3)
Along the same way we can obtain

t 0 | ∆ h q (u∂ x u) φ , ∆ h q u φ L 2 |dt ≤ Cd 2 q 2 -2qs u φ 2 L2 t, θ(t) (H s+ 1 2 )
.

(5.4)

and t 0 |(∆ h q (v∂ y u) φ , ∆ h q u φ ) L 2 |dt d 2 q 2 -2qs u φ L2 t, θ(t) (H s+ 1 2 ) × u φ L2 t, θ(t) (H s+ 1 2 ) + u φ 1 2 L∞ t (H δ+1 ) ∂ y u φ L2 t (H s ) .
(5.5) By virtue of (5.2), (5.3) (5.4) and (5.5), we deduce from (3.9) and (3.15) that

d dt e Rt ∆ h q (∂ t u) φ 2 L 2 + e 2Rt ∆ h q (∂ t u) φ ∆ h q u φ dx + 1 2 e Rt ∆ h q u φ 2 L 2 -e Rt ∆ h q (∂ t u) φ 2 L 2 + λ θ(t) e Rt ∆ h q |D x | 1 2 u φ 2 L 2 + e Rt ∆ h q ∂ y u φ 2 L 2 + d dt e Rt ∆ h q ∂ y u φ 2 L 2 (5.6) + 2 e Rt ∆ h q (∂ t u) φ 2 L 2 + 2λ θ(t ) e Rt ∆ h q |D x | 1 2 (∂ t u) φ 2 L 2 + 2λ θ(t ) e Rt ∆ h q |D x | 1 2 ∂ y u φ 2 L 2 2 -2qs d 2 q (λ + 2C) θ(t) e Rt ((∂ t u) φ , ∂ y u φ ) 2 H s+ 1 2 + 2C2 -2qs d 2 q θ(t) e Rt u φ 2 H s+ 1 2 + Cd 2 q 2 -2qs u φ H s+ 1 2 ∂ y u φ 1 2 H δ+1 ∂ y u φ H s + (∂ t u) φ H s+ 1 2 ∂ y u φ 1 2 H δ+1 ∂ y u φ H s
Multiplying (5.6) by 2 2qs for s > 1 2 and 1 2 < δ < 1 and then integrating over time, and summing with respect to q ∈ Z, we find that for t < T

1 2 e Rt (u + ∂ t u) φ 2 L∞ t (H s ) + 1 2 e Rt (∂ t u) φ 2 L∞ t (H s ) + e Rt ∂ y u φ 2 L∞ t (H s ) + e Rt (∂ t u) φ 2 L2 t (H s ) +λ e Rt u φ 2 L2 t, θ(t) (H s+ 1 2 ) + e Rt ∂ y u φ 2 L2 t (H s ) +2λ e Rt (∂ t u) φ 2 L2 t, θ(t) (H s+ 1 2 ) +2λ e Rt ∂ y u φ 2 L2 t, θ(t) (H s+ 1 2 )
≤ C e a|Dx| ∂ y u 0 2

H s + C e a|Dx| (u 0 + u 1 ) 2 H s + +C e a|Dx| u 1 2 
H s + 2C e Rt u φ 2 L2 t, θ(t) (H s+ 1 2 ) + (λ + 2C) e Rt u φ L2 t, θ(t) (H s+ 1 2 ) e Rt (∂ t u) φ L2 t, θ(t) (H s+ 1 2 ) +C u φ L2 t, θ (H s+ 1 2 ) ∂ y u φ 1 2 L∞ t (H δ+1 ) ∂ y u φ L2 t (H s ) +C (∂ t u) φ L2 t, θ (H s+ 1 2 ) ∂ y u φ 1 2 L∞ t (H δ+1 ) ∂ y u φ L2 t (H s ) .
(5.7) Applying Young's inequality yields

C u φ 1 2 L∞ t (H δ+1 ) e Rt ∂ y u φ L2 t (H s ) e Rt u φ L2 t, θ(t) (H s+ 1 2 ) ≤ C u φ L∞ t (H δ+1 ) e Rt u φ 2 L2 t, θ(t) (H s+ 1 2 ) + 1 2 e Rt ∂ y u φ 2 L2 t (H s ) .
Then we achieve 

(H s+ 1 2 ) + e Rt ∂ y u φ 2 L2 t (H s ) +2λ e Rt (∂ t u) φ 2 L2 t, θ(t) (H s+ 1 2 ) +2λ e Rt ∂ y u φ 2 L2 t, θ(t) (H s+ 1 2 )
≤ C e a|Dx| ∂ y u 0 2

H s + C e a|Dx| (u 0 + u 1 ) 2 H s + C e a|Dx| u 1 2 H s + C(2 + ∂ y u φ L∞ t (H δ+1 ) ) e Rt u φ 2 L2 t, θ(t) (H s+ 1 2 ) + (λ + C(2 + ∂ y u φ L∞ t (H δ+1 ) ) e Rt (u, ∂ t u) φ 2 L2 t, θ(t) (H s+ 1 2 )
. (5.8)

Therefore if we take which in particular implies that under the condition (5.9), there hold

λ ≥ C 2 + ∂ y u φ L∞ t (H δ+1 ) , ( 5 
∂ y u φ L∞ t (H δ+1 ) ≤ C e a|Dx| ∂ y u 0 H δ+1 + C e a|Dx| (u 0 + u 1 ) H δ+1 + C e a|Dx| u 1 H δ+1 .
Then by taking λ = C(2 + e a|Dx| ∂ y u 0 H δ+1 + e a|Dx| (u 0 + u 1 ) H δ+1 + e a|Dx| u 1 H δ+1 ), where 1 2 < δ < 1. Therefore the condition of the proposition is satisfied and then the proposition is proved. Proposition 5.2. We assume that the condition (1.10) is satisfied, then for any s > 0, there exist a small constant C, such that for

λ = C(1 + e a|Dx| ∂ y u 0 H δ+1 + e a|Dx| (u 0 + u 1 ) H δ+1 + e a|Dx| u 1 H δ+1 ),
we have

1 2 e Rt ∂ y (u + ∂ t u) φ L∞ t (H s ) + 1 2 e Rt ∂ y (∂ t u) φ L∞ t (H s ) + e Rt ∂ 2 y u φ L∞ t (H s ) + e Rt ∂ y (∂ t u) φ L2 t (H s ) + e Rt ∂ 2 y u φ L2 t (H s ) ≤ C e a|Dx| ∂ 2 y u 0 H s + C e a|Dx| ∂ y (u 0 + u 1 ) H s + C e a|Dx| ∂ y u 1 H s , for t < T . (5.10)
Proof. of the proposition 5.2. We start our proof by applying the partial derivative on y (∂ y ) to (1.8), we obtain

∂ 2 t ∂ y u + ∂ t ∂ y u + ∂ y (u∂ x u) + ∂ y (v∂ y u) -∂ 3 y u + ∂ x ∂ y p = 0. Due to the free divergence condition of U (it mean that ∂ x u + ∂ y v = 0), we have ∂ y (u∂ x u) + ∂ y (v∂ y u) = ∂ y u∂ x u + u∂ x ∂ y u + ∂ y v∂ y u + v∂ 2 y u = ∂ y u∂ x u + u∂ x ∂ y u -∂ x u∂ y u + v∂ 2 y u = u∂ x ∂ y u + v∂ 2
y u, so our equation becomes

∂ 2 t w + ∂ t w + u∂ x w + v∂ y w -∂ 2 y w + ∂ x q = 0 (5.11)
where w = ∂ y u and q = ∂ y p. from which, using that -∂ y w + ∂ x q is vanishing on the boundary, we get, by using a similar derivation of (3.9) and (3.15), it mean that we do the scalar product of our equation with ∆ h q (w + 2∂ t w) φ , so that

d dt e Rt ∆ h q (∂ t w) φ 2 L 2 + e Rt ∆ h q ∂ y w φ 2 L 2 + 2 e Rt ∆ h q (∂ t w) φ 2 L 2 + 2λ θ(t ) e Rt ∆ h q |D x | 1 2 (∂ t w) φ 2 L 2 + 2λ θ(t ) e Rt ∆ h q |D x | 1 2 ∂ y w φ 2 L 2 ≤ C ∆ h q (u∂ x w) φ , e 2Rt ∆ h q (∂ t w) φ L 2 + ∆ h q (v∂ y w) φ , e 2Rt ∆ h q (∂ t w) φ L 2 + R ∆ h q ∂ x p φ • e 2Rt ∆ h q (∂ t w(t, x, 1) -∂ t w(t, x, 0)) φ dx , (5.12) and d dt e 2Rt ∆ h q (∂ t u) φ ∆ h q w φ dx -e 2Rt ∆ h q (∂ t w) φ ∆ h q (∂ t w) φ dx + 2λ θ(t) e 2Rt ∆ h q |D x |(∂ t w) φ ∆ h q w φ dx + 1 2 d dt e Rt ∆ h q w φ 2 L 2 + λ θ(t) e Rt ∆ h q |D x | 1 2 w φ 2 L 2 + e Rt ∆ h q ∂ y w φ 2 L 2 (5.13) = -∆ h q (u∂ x w) φ , e 2Rt ∆ h q w φ ) L 2 -∆ h q (v∂ y w) φ , e 2Rt ∆ h q w φ ) L 2 + R ∆ h q ∂ x p φ • e 2Rt ∆ h q (w(t, x, 1) -w(t, x, 0)) φ dx.
Now, We start to estimate the pressure term, for date we denote

K q = R ∆ h q ∂ x p φ • ∆ h q (∂ t w(t, x, 1) -∂ t w(t, x, 0)) φ dx.
In view of (3.4) and the lemma 2.3, we write

K q = R ∆ h q ∂ x p φ • e 2Rt ∆ h q (∂ t w(t, x, 1) -∂ t w(t, x, 0)) φ dx = R ∆ h q (w φ (t, x, 1) -w φ (t, x, 0) • ∆ h q ∂ t w(t, x, 1) -∂ t w(t, x, 0) φ dxdt - 1 2 R ∆ h q ( 1 0 (u) 2 φ dy) • ∆ h q ∂ t w(t, x, 1) -∂ t w(t, x, 0) φ dx = 1 2 d dt R ∆ h q (w(t, x, 1) -w(t, x, 0) 2 φ dx + λ θ(t) R ∆ h q |D x | (w(t, x, 1) -w(t, x, 0) 2 φ dx - 1 2 R ∆ h q ( 1 0 (u) 2 φ dy) • ∆ h q ∂ t w(t, x, 1) -∂ t w(t, x, 0) φ dx
If we use the lemma 2.3 to the following quantity

R ∆ h q ( 1 0 (u) 2 dy) • e 2φ ∆ h q w(t, x, 1) - w(t, x, 0) φ dx, we can obtain that 1 2 R ∆ h q e φ ∂ x ( 1 0 (u) 2 dy) • ∆ h q ∂ t w(t, x, 1) -∂ t w(t, x, 0) φ dx = 1 2 ∂ t R ∆ h q e φ ∂ x ( 1 0 (u) 2 dy) • e φ ∆ h q w(t, x, 1) -w(t, x, 0) dx - R ∆ h q e φ ∂ x ( 1 0 (u∂ t u)dy) • e φ ∆ h q w(t, x, 1) -w(t, x, 0) dx + 2 λ θ(t) 2 R ∆ h q e φ |D x |∂ x ( 1 0 (u) 2 dy) • e φ ∆ h q w(t, x, 1) -w(t, x, 0) dx.
So we multiply our equation by e 2Rt , we achieve that

|e 2Rt K q (t)| ≤ 1 2 d dt ∆ h q e Rt w φ 2 L ∞ v (L 2 h ) + λ θ(t) ∆ h q e Rt |D x | 1 2 w φ 2 L ∞ v (L 2 h ) + 1 2 ∂ t | R e 2Rt ∆ h q e φ ∂ x ( 1 0 (u) 2 dy) • e φ ∆ h q w(t, x, 1) -w(t, x, 0) |dx + R |e 2Rt ∆ h q e φ ∂ x ( 1 0 (u∂ t u)dy) • e φ ∆ h q w(t, x, 1) -w(t, x, 0) |dx + λ θ(t) R |e 2Rt ∆ h q e φ |D x |∂ x ( 1 0 (u) 2 dy) • e φ ∆ h q w(t, x, 1) -w(t, x, 0) |dx.
from which, we infer

|e 2Rt K q (t)| ≤ 1 2 d dt ∆ h q e Rt w φ 2 L ∞ v (L 2 h ) + ∆ h q e Rt ∂ x (u 2 ) φ 2 L 1 v (L 2 h ) + λ θ(t) 2 ∆ h q e Rt |D x | 1 2 w φ 2 L ∞ v (L 2 h ) + λ θ(t) 2 ∆ h q e Rt |D x | 1 2 ∂ x (u 2 ) φ 2 L 1 v (L 2 h ) + C ∆ h q e Rt w φ 2 L ∞ v (L 2 h ) + ∆ h q e Rt (u∂ t u) φ 2 L 1 v (L 2 h ) + λ θ(t) 2 ∆ h q e Rt |D x | 1 2 w φ 2 L ∞ v (L 2 h )
By applying Bony decomposition, we have for any s > 1 2 and

1 2 < δ < 1 e Rt ∆ h q ∂ x (u 2 ) φ L 1 v (L 2 h ) e Rt ∆ h q ∂ x (u 2 ) φ L 2 d q 2 -qs u φ L ∞ e Rt u φ H s ≤ d q 2 -qs u φ H δ e Rt u φ H s+1 and e Rt ∆ h q ∂ x (u∂ t u) φ L 1 v (L 2 h ) e Rt ∆ h q ∂ x (u∂ t u) φ L 2 d q 2 -qs u φ L ∞ e Rt ∂ t u φ H s+1 + ∂ t u φ L ∞ e Rt u φ H s+1 ≤ d q 2 -qs u φ H δ e Rt ∂ t u φ H s+1 + ∂ t u φ H δ e Rt u φ H s+1 .
While notice that 1 0 ∆ h q ∂ y u φ (t, x, y)dy = 0, then for any fixed (t, x) ∈ R + × R, there exist Y q 0 (t, x) so that ∆ h q ∂ y u φ (t, x, Y q 0 (t, x)) = 0. So we have

(∆ h q ∂ y u φ (t, x, y)) 2 ≤ ∆ h q ∂ y u φ L 2 v ∆ h q ∂ 2 y u φ L 2 v , which implies that ∆ h q ∂ y u φ (t, x, y)) L ∞ v (L 2 h ) ≤ ∆ h q ∂ y u φ L 2 ∆ h q ∂ 2 y u φ L 2 . As a result, it comes out t 0 |e 2Rt K q (t )|dt ≤ d 2 q 2 -2qs 1 4 e Rt w φ 2 L ∞ t (H s ) + 1 4 e Rt ∂ y w φ 2 L ∞ t (H s ) (5.14) + 1 2 u φ 2 L ∞ t (H δ ) e Rt u φ 2 L ∞ t (H s+1 ) + λ 4 u φ L ∞ t (H δ+1 ) e Rt ∂ y u φ 2 L 2 t, θ (H s+ 1 2 ) + 1 4 e Rt w φ 2 L 2 t (H s ) + 1 4 e Rt ∂ y w φ 2 L 2 t (H s ) + u φ 2 L 2 t (H δ ) e Rt ∂ t u φ 2 L ∞ t (H s+1 ) + ∂ t u φ 2 L 2 t (H δ ) e Rt u φ 2 L ∞ t (H s+1 ) + λ 4 u φ L ∞ t (H δ+1 ) e Rt ∂ y u φ L 2 t, θ (H s+ 1 2 ) e Rt ∂ 2 y u φ L 2 t, θ (H s+ 1 2 ) + λ 4 e Rt ∂ y u φ L 2 t, θ (H s+ 1 2 ) e Rt ∂ 2 y u φ L 2 t, θ (H s+ 1 2 )
Along the same way we obtain

t 0 |e 2Rt R ∆ h q ∂ x p φ • ∆ h q (w(t, x, 1) -w(t, x, 0)) φ dx|dt (5.15) ≤ Cd 2 q 2 -2qs 1 4 e Rt w φ 2 L 2 t (H s ) + u φ 2 L 2 t (H δ ) e Rt u φ 2 L ∞ t (H s+1 ) + 1 4 e Rt ∂ y w φ 2 L 2
t (H s ) . It follows from the proof of Lemma 2.4, for any s > 1 2 and 1 2 < δ < 1

t 0 ∆ h q (T h u ∂ x w + R h (u, ∂ x w)) φ , e Rt ∆ h q (∂ t w) φ L 2 dt ≤ Cd 2 q 2 -2qs e Rt w φ L2 t, θ (H s+ 1 2 ) e Rt (∂ t w) φ L2 t, θ (H s+ 1 
2 ) .

While we deduce from the lemma 2.1 and the definition 2.3

t 0 | ∆ h q (T h ∂xw u) φ , ∆ h q (∂ t w) φ L 2 |dt |q -q|≤4 t 0 S h q -1 ∂ x w φ (t ) L ∞ h (L 2 v ) ∆ h q u φ (t ) L 2 h (L ∞ v ) ∆ h q (∂ t w) φ (t ) L 2 dt |q -q|≤4 2 q t 0 w φ (t ) H δ ∆ h q ∂ y u φ (t ) L 2 ∆ h q (∂ t w) φ (t ) L 2 dt |q -q|≤4 2 q t 0 w φ (t ) H δ ∆ h q w φ (t ) 2 L 2 dt 1 2 × t 0 w φ (t ) H δ ∆ h q (∂ t w) φ (t ) L 2 dt 1 2 Cd 2 q 2 -2qs e Rt w φ L2 t, θ (H s+ 1 2 ) e Rt (∂ t w) φ L2 t, θ (H s+ 1 
2 ) .

Then we conclude for any s >

1 2 t 0 | ∆ h q (u∂ x w) φ , e Rt ∆ h q (∂ t w) φ L 2 |dt (5.16) Cd 2 q 2 -2qs e Rt w φ L2 t, θ (H s+ 1 2 ) e Rt (∂ t w) φ L2 t, θ (H s+ 1 
2 ) .

In the same way we have

t 0 | ∆ h q (u∂ x w) φ , e Rt ∆ h q w φ L 2 |dt (5.17) Cd 2 q 2 -2qs e Rt w φ 2 L2 t, θ (H s+ 1 2 )
.

On the other hand, we deduce from the lemma 2.1 that for any s >

1 2 t 0 | ∆ h q (T h v ∂ y w) φ , ∆ h q (∂ t w) φ L 2 |dt |q -q|≤4 t 0 S h q -1 v φ (t ) L ∞ ∆ h q ∂ y w φ (t ) L 2 ∆ h q (∂ t w) φ (t ) L 2 dt |q -q|≤4 2 q 2 u φ 1 2 L ∞ t (H δ+1 ) ∆ h q ∂ y w φ L 2 t (L 2 ) t 0 ∂ y u φ (t( ) H δ ∆ h q (∂ t w) φ (t ) L 2 dt 1 2 d 2 q 2 -2qs u φ 1 2 L∞ t (H δ+1 ) ∂ y w φ L2 t (H s ) (∂ t w) φ L2 t, θ(t) (H s+ 1 
2 ) .

In the same way we obtain that

t 0 | ∆ h q R h (v, ∂ y w) φ , ∆ h q (∂ t w) φ L 2 |dt d 2 q 2 -2qs u φ 1 2 L∞ t (H δ+1 ) ∂ y w φ L2 t (H s ) (∂ t w) φ L2 t, θ(t) (H s+ 1 
2 ) .

Finally, we use the lemma 2.4, we find

t 0 | ∆ h q (T h ∂yw v) φ , ∆ h q (∂ t w) φ L 2 |dt |q -q|≤4 t 0 S h q -1 ∂ y w φ (t ) L ∞ h (L 2 v ) ∆ h q v φ (t ) L 2 h (L ∞ v ) ∆ h q (∂ t w) φ (t ) L 2 dt |q -q|≤4 t 0 ∂ y w φ H δ ∆ h q ∂ x u φ L 2 ∆ h q (∂ t w) φ L 2 dt Cd 2 q 2 -2qs ∂ y w φ L2 t (H δ ) ∆ h q ∂ x u φ L ∞ t (H s+1 ) (∂ t w) φ L2 t(H s) .
Then by summing we deduce that

t 0 | ∆ h q (v∂ y w) φ , ∆ h q (∂ t w) φ L 2 |dt Cd 2 q 2 -2qs ∂ y w φ L2 t (H δ ) ∆ h q ∂ x u φ L ∞ t (H s+1 ) (∂ t w) φ L2 t(H s) + Cd 2 q 2 -2qs u φ 1 2 L∞ t (H δ+1 ) ∂ y w φ L2 t (H s ) (∂ t w) φ L2 t, θ(t) (H s+ 1 2 ) (5.18) 
Along the same way we can found that

t 0 | ∆ h q (T h v ∂ y w + R h (v, ∂ y w)) φ , ∆ h q w φ L 2 |dt d 2 q 2 -2qs u φ 1 2 L∞ t (H δ+1 ) ∂ y w φ L2 t (H s ) w φ L2 t, θ(t) (H s+ 1 
2 ) .

Then we still have to estimate T h ∂yw v, so by integration by part we can obtain

t 0 | ∆ h q (T h ∂yw v) φ , ∆ h q w φ L 2 |dt ≤ t 0 | ∆ h q (T h w ∂ y v) φ , ∆ h q w φ L 2 |dt + t 0 | ∆ h q (T h w v) φ , ∆ h q ∂ y w φ L 2 |dt .
Due to the free divergence

∂ x u + ∂ y v = 0 we deduce t 0 | ∆ h q (T h w ∂ y v) φ , ∆ h q w φ L 2 |dt |q -q|≤4 t 0 S h q -1 w φ (t ) L ∞ h (L 2 v ) ∆ h q ∂ x u φ (t ) L 2 h (L ∞ v ) ∆ h q w φ (t ) L 2 dt |q -q|≤4 2 q ∂ y u φ H δ ∆ h q w φ L 2 ∆ h q w φ (t ) L 2 dt Cd 2 q 2 -2qs w φ 2 L2 t, θ(t) (H s+ 1 2 )
.

While we observe that

t 0 | ∆ h q (T h w v) φ , ∆ h q ∂ y w φ L 2 |dt |q -q|≤4 t 0 S h q -1 w φ (t ) L ∞ h (L 2 v ) ∆ h q v φ (t ) L 2 h (L ∞ v ) ∆ h q ∂ y w φ (t ) L 2 dt |q -q|≤4 t 0 w φ H δ ∆ h q ∂ x u φ L 2 ∆ h q ∂ y w φ L 2 dt Cd 2 q 2 -2qs w φ L2 t (H δ ) u φ L∞ t (H s+1 ) ∂ y w φ L2 t (H s )
. By summarizing the above estimates, we obtain

t 0 | ∆ h q (v∂ y w) φ , ∆ h q w φ L 2 |dt Cd 2 q 2 -2qs u φ 1 2 L∞ t (H δ+1 ) ∂ y w φ L2 t (H s ) w φ L2 t, θ(t) (H s+ 1 2 ) 
(5.19)

+ Cd 2 q 2 -2qs w φ L2 t (H δ ) u φ L∞ t (H s+1 ) ∂ y w φ L2 t (H s ) + w φ 2 L2 t, θ(t) (H s+ 1 2 )
By inserting the resulting estimates (5.14)-(5.19) in (5.12) + (5.13) and then repeating the last step of the proof of Proposition 5.1, we achieve

d dt e Rt ∆ h q (∂ t w) φ 2 L 2 + e 2Rt ∆ h q (∂ t w) φ ∆ h q w φ dx + 1 2 e Rt ∆ h q w φ 2 L 2 -e Rt ∆ h q (∂ t w) φ 2 L 2 + λ θ(t) e Rt ∆ h q |D x | 1 2 w φ 2 L 2 + e Rt ∆ h q ∂ y w φ 2 L 2 + d dt e Rt ∆ h q ∂ y w φ 2 L 2
(5.20)

+ 2 e Rt ∆ h q (∂ t w) φ 2 L 2 + 2λ θ(t ) e Rt ∆ h q |D x | 1 2 (∂ t w) φ 2 L 2 + 2λ θ(t ) e Rt ∆ h q |D x | 1 2 ∂ y w φ 2 L 2 2 -2qs d 2 q (λ + 2C) θ(t) e Rt ((∂ t w) φ , ∂ y w φ ) 2 H s+ 1 2 + 2C2 -2qs d 2 q θ(t) e Rt w φ 2 H s+ 1 2 + Cd 2 q 2 -2qs w φ H s+ 1 2 ∂ y u φ 1 2 H δ+1 ∂ y w φ H s + (∂ t w) φ H s+ 1 2 ∂ y u φ 1 2 H δ+1 ∂ y w φ H s + u φ 2 H δ e Rt ∂ t u φ 2 H s+1 + ∂ t u φ 2 H δ e Rt u φ 2 
H s+1 + u φ 2 H δ e Rt u φ 2 H s+2 (5.21) 
Multiplying (5.20) by 2 2qs for s > 1 2 and 1 2 < δ < 1, and then integrating over time, and summing with respect to q ∈ Z, we find that for t < T

1 2 e Rt (w+∂ t w) φ 2 L∞ t (H s ) + 1 2 e Rt (∂ t w) φ 2 L∞ t (H s ) + e Rt ∂ y w φ 2 L∞ t (H s ) + e Rt (∂ t w) φ 2 L2 t (H s ) +λ e Rt w φ 2 L2 t, θ(t) (H s+ 1 2 ) + e Rt ∂ y w φ 2 L2 t (H s ) +2λ e Rt (∂ t w) φ 2 L2 t, θ(t) (H s+ 1 2 ) +2λ e Rt ∂ y w φ 2 L2 t, θ(t) (H s+ 1 2 )
≤ C e a|Dx| ∂ y w 0 2

H s + C e a|Dx| (w 0 + w 1 ) 2 H s + +C e a|Dx| w 1 2 H s + 2C e Rt w φ 2 L2 t, θ(t) (H s+ 1 2 ) + (λ + 2C) e Rt w φ L2 t, θ(t) (H s+ 1 2 ) e Rt (∂ t w) φ L2 t, θ(t) (H s+ 1 2 ) +C w φ L2 t, θ (H s+ 1 2 ) ∂ y u φ 1 2 L∞ t (H δ+1 ) ∂ y w φ L2 t (H s ) +C (∂ t w) φ L2 t, θ (H s+ 1 2 ) ∂ y u φ 1 2 L∞ t (H δ+1 ) ∂ y w φ L2 t (H s ) + ∂ t u φ 2 L 2 t (H δ ) e Rt u φ 2 L ∞ t (H s+1 ) + u φ 2 L 2 t (H δ ) e Rt ∂ t u φ 2 L ∞ t (H s+1 ) + u φ 2 L 2 t (H δ ) e Rt u φ 2 L ∞ t (H s+2 ) (5.22) 
Applying Young's inequality yields

C ∂ y u φ 1 2 L∞ t (H δ+1 ) e Rt ∂ y w φ L2 t (H s ) e Rt w φ L2 t, θ(t) (H s+ 1 2 ) ≤ C ∂ y u φ L∞ t (H δ+1 ) e Rt w φ 2 L2 t, θ(t) (H s+ 1 2 ) + 1 2 e Rt ∂ y w φ 2 L2 t (H s ) .
Then we achieve Then, taking λ = C(2 + e a|Dx| ∂ y u 0 H δ+1 + e a|Dx| (u 0 + u 1 ) H δ+1 + e a|Dx| u 1 H δ+1 ), therefore the condition of the proposition is satisfied and then the proposition is proved.

As a matter of fact, it remains to present the estimate of ∆ h q (∂ 2 t u) φ L 2 , this estimate will serve us in the proof of the last theorem 1.3. Indeed by applying ∆ h q to (3.13) and take the L 2 inner product of resulting equation with ∆ h q (∂ 2 t u) φ . That yields

∆ h q (∂ 2 t u) φ 2 L 2 = ∆ h q ∂ 2 y u φ , ∆ h q (∂ 2 t u) φ L 2 -∆ h q (∂ t u) φ , ∆ h q (∂ 2 t u) φ L 2 -∆ h q (u∂ x u) φ , ∆ h q (∂ 2 t u) φ L 2 -∆ h q (v∂ y u) φ , ∆ h q (∂ 2 t u) φ L 2 -∆ h q ∂ x p φ , ∆ h q (∂ 2 t u) φ L 2 . The fact that (∂ t u) φ = ∂ t u φ + λ θ(t)|D x |u φ implies ∆ h q (∂ t u) φ , ∆ h q (∂ 2 t u) φ L 2 = 1 2 d dt ∆ h q (∂ t u) φ 2 L 2 + λ θ(t)2 q ∆ h q (∂ t u) φ 2 L 2 , from which, we deduce that ∆ h q (∂ 2 t u) φ 2 L 2 + 1 2 d dt ∆ h q (∂ t u) φ 2 L 2 ≤ I 1 + I 2 + I 3 + I 4
, where (3.1) and integrations by parts, we find

I 1 = ∆ h q ∂ 2 y u φ , ∆ h q (∂ 2 t u) φ L 2 I 2 = ∆ h q (u∂ x u) φ , ∆ h q (∂ 2 t u) φ L 2 I 3 = ∆ h q (v∂ y u) φ , ∆ h q (∂ 2 t u) φ L 2 I 4 = ∆ h q ∂ x p φ , ∆ h q (∂ 2 t u) φ L 2 . Since ∂ x u + ∂ y v = 0, using
I 4 = ∆ h q ∂ x p φ , ∆ h q (∂ 2 t u) φ L 2 = 0.
For I 1 , I 2 and I 3 we have

I 2 = ∆ h q ∂ 2 y u φ , ∆ h q (∂ 2 t u) φ L 2 ≤ C ∆ h q (∂ 2 y u) φ 2 L 2 + 1 10 ∆ h q (∂ 2 t u) φ 2 L 2 I 2 = ∆ h q (u∂ x u) φ , ∆ h q (∂ 2 t u) φ L 2 ≤ C ∆ h q (u∂ x u) φ 2 L 2 + 1 10 ∆ h q (∂ 2 t u) φ 2 L 2 I 3 = ∆ h q (v∂ y u) φ , ∆ h q (∂ 2 t u) φ L 2 ≤ C ∆ h q (v∂ y u) φ 2 L 2 + 1 10 ∆ h q (∂ 2 t u) φ 2 L 2 . Then, we deduce that ∆ h q (∂ 2 t u) φ 2 L 2 + 1 2 d dt ∆ h q (∂ t u) φ 2 L 2 ≤ C ∆ h q (u∂ x u) φ 2 L 2 + ∆ h q (v∂ y u) φ 2 L 2 + ∆ h q ∂ 2 y u φ 2 L 2 .
Multiplying the result by e 2Rt and integrating over [0, t], we get

e Rt ∆ h q (∂ 2 t u) φ 2 L 2 t (L 2 ) + 1 2 e Rt ∆ h q (∂ t u) φ 2 L ∞ t (L 2 ) ≤ C ∆ h q e a|Dx| u 1 2 L 2 + e Rt ∆ h q (u∂ x u) φ 2 L 2 t (L 2 ) + e Rt ∆ h q (v∂ y u) φ 2 L 2 t (L 2 ) + e Rt ∆ h q ∂ 2 y u φ 2 L 2 t (L 2 ) .
Multiplying the above inequality by 2 2q(δ+1) with 1 2 < δ < 1, then taking the square root of the resulting estimate, and finally summing up the obtained equations with respect to q ∈ Z, we obtain e Rt (∂ 

The convergence to the perturbed hydrostatic Navier-Stokes equations

In this section, we justify the limit from the scaled perturbed anisotropic Navier-Stokes system to the perturbed hydrostatic Navier-Stokes system in a 2-D striped domain. As in the sections 3 and 4, the main idea will be to obtain a control of the difference between the two solutions in analytic spaces, by using energy estimates with exponential weights in the Fourier variable. As previously, the exponent of the exponential weight is depending on time but shall take into account now the "loss of the analyticity" for both solutions, of the re-scaled perturbed Navier-Stokes system and respectively of the perturbed hydrostatic Navier-Stokes equations. To this end, we introduce

     R 1, = u -u, R 2, = v -v, q = p -p. (6.1)
Then, systems (1.7) and (1.8) imply that (R 1, , R 2, , q ) verifies

                 ∂ 2 t R 1, + ∂ t R 1, -2 ∂ 2 x R 1, -∂ 2 y R 1, + ∂ x q = F 1, in S×]0, ∞[, 2 ∂ 2 t R 2, + ∂ t R 2, -2 ∂ 2 x R 2, -∂ 2 y R 2, + ∂ y q = F 2, , ∂ x R 1, + ∂ y R 2, = 0 R 1, , R 2, | t=0 = (u 0 -u 0 , v 0 -v 0 ) , ∂ t R 1, , R 2, | t=0 = (u 1 -u 1 , v 1 -v 1 ) , R 1, , R 2, | y=0 = R 1, , R 2, | y=1 = 0, (6.2)
where the remaining terms F i, , with i = 1, 2, are determined by

F 1, = 2 ∂ 2 x u -(u ∂ x u -u∂ x u) -(v ∂ y u -v∂ y u), F 2, = -2 ∂ 2 t v + ∂ t v -2 ∂ 2 x v -∂ 2 y v + u ∂ x v + v ∂ y v . (6.3) 
As (R 1, , R 2, ) satisfies the boundary condition and also the free divergence, therefore these two conditions allows us to write

R 2, (t, x, y) = y 0 ∂ y R 2, (t, x, s)ds = - y 0 ∂ x R 1, (t, x, s)ds (6.4)
If we replace y by 1 in (6.4), we deduce from the incompressibility condition

∂ x R 1, + ∂ y R 2, = 0 that ∂ x 1 0 R 1, (t, x, y) dy = - 1 0 ∂ y R 2, (t, x, y) dy = R 2, (t, x, 1) -R 2, (t, x, 0) = 0.
In what follows, for simplicity, we shall neglect the subscript in (R 1, , R 2, , q , ). In view of the system (6.2), we can transform it like a equation of order one in time, so if we define G = (R 1 , ∂ t R 1 ) and H = (R 2 , ∂ t R 2 ), Then G and H satisfy the following equation

                     ∂ t G + A (D)G = 0 F 1 -∂ x q 2 ∂ t H + B (D)H = 0 F 2 -∂ y q ∂ x R 1 + ∂ y R 2 = 0 (R 1 , R 2 )/ y=0 = (R 1 , R 2 )/ y=1 = 0 (6.5) where G = R 1 ∂ t R 1 and A (D) = 0 -1 -2 ∂ 2 x -∂ 2 y 1 and H = R 2 ∂ t R 2 and B (D) = 0 -1 -2 ∂ 2 x -∂ 2 y 1 .
In view of (2.3), we define for any suitable function f

f ϕ (t, x, y) = F -1 ξ→x e ϕ(t,ξ) f (t, ξ, y) where ϕ(t, ξ) = (a -µη(t)) |ξ|, (6.6) 
where µ ≥ λ will be determined later, and η(t) is given by

η(t) = t 0 ( (∂ y u Θ , ∂ x u Θ )(t ) H s + ∂ y u φ (t ) H s ) dt .
We can observe that, if we take c 0 and c 1 small enough in Theorems 1.1 and 1.2 then ϕ(t) ≥ 0 and 0 ≤ ϕ(t, ξ) ≤ min (φ(t, ξ), Θ(t, ξ)) .

Then in view of (6.6), we observe that (G, H) ϕ verifies In what follows, we recall that we use "C" to denote a generic positive constant which can change from line to line. Thanks to the theorems 1.1 and 1.2, the propositions 5.1 and 5.2, we deduce for

                     ∂ t G ϕ + µ η(t)|D x |G ϕ + A (D)G ϕ = 0 F 1 ϕ + ∂ x q ϕ 2 ∂ t H ϕ + µ η(t)|D x |H ϕ + B (D)H ϕ = - 0 F 2 ϕ + ∂ y q ϕ ∂ x R 1 ϕ + ∂ y R 2 ϕ = 0 (R 1 ϕ , R 2 ϕ )/ y=0 = (R 1 ϕ , R 2 
1 2 < s < 1 that u Θ L∞ (R + ;H s ) + (u + ∂ t u) φ L∞ (R + ;H s ∩H s+3 ) + ∂ 2 y u φ L2 (R + ;H s ∩H s+3 ) + ∂ y u φ L2 (R + ;H s ∩H s+3 ) + ∂ 2 t u φ L2 (R + ;H s+1 ) ≤ M, (6.8 
) where u Θ and u φ are respectively determined by (4.1) and (2.3) and M ≥ 1 is a constant independent to .

Proof of the theorem 1.3 We apply the dyadic operator in the horizontal variable ∆ h q to (6.7) and taking the L 2 inner product of the resulting equation with ∆ h q G ϕ and ∆ h q H ϕ we obtain

∆ h q ∂ t G ϕ , ∆ h q G ϕ L 2 + µ η(t) ∆ h q |D x |G ϕ , ∆ h q G ϕ L 2 + ∆ h q A (D)G ϕ , ∆ h q G ϕ L 2 = ∆ h q (F 1 ) ϕ , ∆ h q (∂ t R 1 ) ϕ ) L 2 -∆ h q ∂ x q ϕ , ∆ h q (∂ t R 1 ) ϕ L 2 (6.9) and ∆ h q ∂ t H ϕ , ∆ h q H ϕ L 2 + µ η(t) ∆ h q |D x |H ϕ , ∆ h q H ϕ L 2 + ∆ h q B (D)H ϕ , ∆ h q H ϕ L 2 = -∆ h q (F 2 ) ϕ , ∆ h q (∂ t R 1 ) ϕ ) L 2 -∆ h q ∂ y q ϕ , ∆ h q (∂ t R 1 ) ϕ L 2 . ( 6 
.10) Due to the free divergence condition, we have

∆ h q ∇q ϕ , ∆ h q (∂ t R 1 , ∂ t R 2 ) ϕ L 2 = 0.
Then by using Lemma 2.1, we achieve 1 2

d dt ∆ h q (∂ t R 1 ) ϕ 2 L 2 + ∆ h q ∂ y R 1 ϕ 2 L 2 + ∆ h q (∂ t R 2 ) ϕ 2 L 2 + ∆ h q ∂ y R 2 ϕ 2 L 2 + 4 ∆ h q ∂ x R 2 ϕ 2 L 2 + 2 ∆ h q ∂ x R 1 ϕ 2 L 2 + ∆ h q (∂ t R 1 ) ϕ 2 L 2 + ∆ h q (∂ t R 2 ) ϕ 2 L 2 + µ η(t ) ∆ h q |D x | 1 2 (∂ t R 1 ) ϕ 2 L 2 + 2 µ η(t ) ∆ h q |D x | 1 2 (∂ t R 2 ) ϕ 2 L 2 + 2 µ η(t ) ∆ h q |D x | 1 2 ∂ x R 1 ϕ 2 L 2 + µ η(t ) ∆ h q |D x | 1 2 ∂ y R 1 ϕ 2 L 2 + µ η(t ) ∆ h q |D x | 1 2 ∂ y R 2 ϕ 2 L 2 + 4 µ η(t ) ∆ h q |D x | 1 2 ∂ x R 2 ϕ 2 L 2 ≤ ∆ h q (F 1 ) ϕ , ∆ h q (∂ t R 1 ) ϕ ) L 2 + ∆ h q (F 2 ) ϕ , ∆ h q (∂ t R 2 ) ϕ L 2 . (6.11)
Now we still have to take the inner product in L 2 with ∆ h q R 1 ϕ and ∆ h q R 2 ϕ to the equation

e ϕ(t,|Dx|) (∂ 2 t R 1 + ∂ t R 1 -∂ 2 y R 1 -2 ∂ 2 x R 1 + ∂ x p -F 1 ) = 0 e ϕ(t,|Dx|) 2 (∂ 2 t R 2 + ∂ t R 2 -∂ 2 y R 2 -2 ∂ x R 2 ) + ∂ y p -F 2 = 0, (6.12) 
we obtain

∆ h q (∂ 2 t R 1 ) ϕ , ∆ h q R 1 ϕ L 2 + ∆ h q (∂ t R 1 ) ϕ , ∆ h q R 1 ϕ L 2 -∆ h q ∂ 2 y R 1 ϕ , ∆ h q R 1 ϕ L 2 -2 ∆ h q ∂ 2 x R 1 ϕ , ∆ h q R 1 ϕ L 2 = ∆ h q (F 1 ) ϕ , ∆ h q R 1 ϕ ) L 2 -∆ h q ∂ x q ϕ , ∆ h q R 1 ϕ L 2 , (6.13) and ∆ h q ( ∂ 2 t R 2 ) ϕ , ∆ h q R 2 ϕ L 2 + ∆ h q ( ∂ t R 2 ) ϕ , ∆ h q R 2 ϕ L 2 -∆ h q ∂ 2 y R 2 ϕ , ∆ h q R 2 ϕ L 2 -2 ∆ h q ∂ 2 x R 2 ϕ , ∆ h q R 2 ϕ L 2 = F 2 ) ϕ , ∆ h q R 2 ϕ ) L 2 -∆ h q ∂ y q ϕ , ∆ h q R 2 ϕ L 2 , (6.14)
In what follows, we shall use again the technical lemmas in Section 2, to handle term by term in the estimate (6.13) and (6.14). We start by the complicate term

I 1 = ∆ h q (∂ 2 t R 1 ) ϕ , ∆ h q R 1 ϕ L 2 and I 2 = ∆ h q ( ∂ 2 t R 2 ) ϕ , ∆ h q R 2 ϕ L 2
, so by using integration by parts, we find

I 1 = d dt ∆ h q (∂ t R 1 ) ϕ ∆ h q R 1 ϕ dx -∆ h q (∂ t R 1 ) ϕ ∆ h q (∂ t R 1 ) ϕ dx + 2µ η(t) ∆ h q |D x |(∂ t R 1 ) ϕ ∆ h q R 1 ϕ dx I 2 = d dt ∆ h q ( ∂ t R 2 ) ϕ ∆ h q R 2 ϕ dx -∆ h q ( ∂ t R 2 ) ϕ ∆ h q ( ∂ t R 2 ) ϕ dx + 2µ η(t) ∆ h q |D x |( ∂ t R 2 ) ϕ ∆ h q R 2 ϕ dx
Then by using the Lemma 2.1, we achieve

d dt ∆ h q (∂ t R 1 ) Θ ∆ h q R 1 Θ dx -∆ h q (∂ t R 1 ) Θ ∆ h q (∂ t R 1 ) Θ dx + 2µ η(t) ∆ h q |D x |(∂ t R 1 ) Θ ∆ h q R 1 Θ dx + d dt ∆ h q (∂ t R 2 ) Θ ∆ h q R 2 Θ dx -∆ h q (∂ t R 2 ) Θ ∆ h q (∂ t R 2 ) Θ dx + 2µ η(t) ∆ h q |D x |(∂ t R 2 ) Θ ∆ h q R 2 Θ dx + 1 2 d dt ∆ h q R 1 Θ 2 L 2 + 1 2 d dt ∆ h q R 2 Θ 2 L 2 + µ τ (t) ∆ h q |D x | 1 2 (R 1 Θ , R 2 Θ ) 2 L 2 + ∆ h q ∂ y R 1 ϕ 2 L 2 + ∆ h q ∂ y R 2 ϕ 2 L 2 + 2 ∆ h q ∂ x R 1 Θ 2 L 2 + 2 ∆ h q ∂ x R 2 Θ 2 L 2 (6.15) = ∆ h q (F 1 ) ϕ , ∆ h q R 1 ϕ ) L 2 + ∆ h q (F 2 ) ϕ , ∆ h q R 2 ϕ ) L 2 .
Then by summing 2 × (6.11) with (6.15) and we multiply the resulting by 2 2qs for s ∈] 1 2 , 1[ and then integrating over time, and summing with respect to q ∈ Z, we find that for t < T

1 2 (R 1 +∂ t R 1 , (R 2 +∂ t R 2 )) ϕ 2 L∞ t (H s ) + 1 2 (∂ t R 1 ) ϕ , (∂ t R 2 ) ϕ 2 L∞ t (H s ) + ∂ y (R 1 , R 2 ) ϕ 2 L∞ t (H s ) + 2 ∂ x (R 1 , R 2 ) ϕ 2 L∞ t (H s ) + (∂ t R 1 , ∂ t R 2 ) ϕ 2 L2 t (H s ) + µ (R 1 , R 2 ) ϕ 2 L2 t, η(t) (H s+ 1 2 ) + ∂ y (R 1 , R 2 ) ϕ 2 L2 t (H s ) + 2 ∂ x (R 1 , R 2 ) ϕ 2 L2 t (H s ) + 2µ (∂ t R 1 , ∂ t R 2 ) ϕ 2 L2 t, η(t) (H s+ 1 2 ) + 2µ ∂ y (R 1 , R 2 ) ϕ 2 L2 t, η(t) (H s+ 1 2 ) + 2µ ∂ x (R 1 , R 2 ) ϕ 2 L2 t, η(t) (H s+ 1 2 ) ≤ C e a|Dx| ∂ y (u 0 -u 0 , (v 0 -v 0 )) 2 H s + C 2 e a|Dx| ∂ x (u 0 -u 0 , (v 0 -v 0 )) 2 H s +C e a|Dx| ((u 0 -u 0 )+(u 1 -u 1 ), (v 0 -v 0 )+ (v 1 -v 1 )) 2 H s ++C e a|Dx| ((u 1 -u 1 ), (v 1 -v 1 )) 2 H s + q∈Z 2 2qs t 0 ∆ h q (F 1 ) ϕ , ∆ h q R 1 ϕ ) L 2 dt + t 0 ∆ h q (F 2 ) ϕ , ∆ h q R 2 ϕ ) L 2 dt + t 0 ∆ h q (F 1 ) ϕ , ∆ h q (∂ t R 1 ) ϕ ) L 2 dt + t 0 ∆ h q (F 2 ) ϕ , ∆ h q (∂ t R 2 ) ϕ ) L 2 dt . (6.16) Now we claim that t 0 ∆ h q F 1 ϕ , ∆ h q R 1 ϕ L 2 dt + t 0 ∆ h q F 1 ϕ , ∆ h q (∂ t R 1 ) ϕ L 2 dt 2 -q d 2 q ∂ y u ϕ L2 t (H 5 
2 ) R 1 ϕ L2 t (H 1 2 ) + (∂ t R 1 ) ϕ L2 t (H 1 2 ) + 2 -2qs d 2 q u ϕ 1 2 L∞ t (H s+1 ) ∂ y R 1 ϕ L2 t H s ) R 1 ϕ L2 t, η (H s+ 1 2 ) + (∂ t R 1 ) ϕ L2 t, η (H s+ 1 2 ) + (R 1 , ∂ t R 1 ) ϕ 2 L2 t, η (H s+ 1 2 )
. (6.17)

t 0 ∆ h q F 2 ϕ , ∆ h q R 2 ϕ L 2 dt + t 0 ∆ h q F 2 ϕ , ∆ h q (∂ t R 2 ) ϕ L 2 dt 2 -2qs d 2 q R 1 ϕ 2 L2 t, η (H s+ 1 2 ) + 2 (R 2 ϕ , (∂ t R 2 ) ϕ ) 2 L2 t, η (H s+ 1 2 ) + 2 (R 2 ϕ , (∂ t R 2 ) ϕ ) L2 t (H s ) × (∂ 2 t u) ϕ L2 t (H s+1 ) + (∂ t u) ϕ L2 t (H s+1 ) + ∂ y u ϕ L2 t (H s+3 ) + ∂ y u ϕ L2 t (H s+1 ) + 2 (R 2 ϕ , (∂ t R 2 ) ϕ ) L2 t, η (H s+ 1 2 ) R 2 ϕ L2 t, η (H s+ 1 2 ) + u ϕ 1 2 L∞ t (H s ) ∂ y u ϕ L2 t (H s+ 3 2 ) + u ϕ 1 2 L∞ t (H s+1 ) ( ∂ y R 2 ϕ L2 t (H s ) + ∂ y u ϕ L2 t (H s+1
) ) , (6.18) the proof of those estimates will be presented later in the Appendix A.

By virtue of (6.8), (6.17) and (6.18), we infer

2 i=1 t 0 ∆ h q F i ϕ , ∆ h q R i ϕ L 2 dt + t 0 ∆ h q F i ϕ , ∆ h q (∂ t R i ) ϕ L 2 dt d 2 q 2 -q M ( R 1 , ∂ t R 1 ) ϕ L2 t (H s ) + M 1 2 ∂ y R 1 ϕ L2 t H s ) (R 1 , ∂ t R 1 ) ϕ L2 t, η (H s+ 1 2 )
so, we define

G q 1 = t 0 ∆ h q F 1 ϕ , ∆ h q (∂ t R 1 ) ϕ L 2 dt = t 0 ∆ h q ( 2 ∂ 2 x u -(u ∂ x R 1 + R 1 ∂ x u) -(v ∂ y R 1 + R 2 ∂ y u)) ϕ , ∆ h q (∂ t R 1 ) ϕ L 2 dt ≤ I q 1 + I q 2 + I q 3 
, where

I q 1 = t 0 ∆ h q ( 2 ∂ 2 x u) ϕ , ∆ h q (∂ t R 1 ) ϕ L 2 dt I q 2 = t 0 ∆ h q (u ∂ x R 1 + R 1 ∂ x u) ϕ , ∆ h q (∂ t R 1 ) ϕ L 2 dt I q 3 = t 0 ∆ h q (v ∂ y R 1 + R 2 ∂ y u) ϕ , ∆ h q (∂ t R 1 ) ϕ L 2 dt .
We first observe that

I q 1 ≤ Cd 2 q 2 -2qs 2 u ϕ L2 t (H s+2 ) (∂ t R 1 ) ϕ L2 t (H s ) . (A.1)
For I 2 , we write

I q 2 = t 0 ∆ h q (u ∂ x R 1 + R 1 ∂ x u) ϕ , ∆ h q (∂ t R 1 ) ϕ L 2 dt ≤ I 21 + I 22 ,
where

I q 21 = t 0 ∆ h q (u ∂ x R 1 ) ϕ , ∆ h q (∂ t R 1 ) ϕ L 2 dt I q 22 = t 0 ∆ h q (R 1 ∂ x u) ϕ , ∆ h q (∂ t R 1 ) ϕ L 2 dt .
Lemma (2.4) implies

I q 21 ≤ Cd 2 q 2 -2qs R 1 ϕ L2 t, η(t) (H s+ 1 2 ) (∂ t R 1 ) ϕ L2 t, η(t) (H s+ 1 
2 ) , (A.2)

For I 22 , using Bony's decomposition for the horizontal variable, we write

R 1 ∂ x u = T h ∂xu R 1 + T h R 1 ∂ x u + R h (R 1 , ∂ x u)
, and then, we have the following bound

I q 22 = t 0 ∆ h q (T h ∂xu R 1 + T h R 1 ∂ x u + R h (R 1 , ∂ x u)) ϕ , ∆ h q (∂ t R 1 ) ϕ L 2 dt ≤ I q 22,1 + I q 22,2 + I q 22,3 with 
I q 22,1 = t 0 ∆ h q (T h ∂xu R 1 ) ϕ , ∆ h q (∂ t R 1 ) ϕ L 2 dt I q 22,2 = t 0 ∆ h q (T h R 1 ∂ x u) ϕ , ∆ h q (∂ t R 1 ) ϕ L 2 dt I q 22,3 = t 0 ∆ h q (R h (R 1 , ∂ x u) ϕ , ∆ h q (∂ t R 1 ) ϕ L 2 dt .
Using the support properties given in [ [6], Proposition 2.10] and the definition of T h R 1 ∂ x u, we have

I q 22,2 ≤ |q-q |≤4 t 0 S h q -1 R 1 ϕ L ∞ h (L 2 v ) ∆ h q ∂ x u ϕ L 2 h (L ∞ v ) ∆ h q (∂ t R 1 ) ϕ L 2 ≤ |q-q |≤4 t 0 2 q 2 S h q -1 R 1 ϕ L 2 ∆ h q ∂ x u ϕ L 2 h (L ∞ v ) ∆ h q (∂ t R 1 ) ϕ L 2 . Since ∆ h q ∂ x u ϕ L 2 h (L ∞ v ) d q (u ϕ ) u ϕ 1 2 H s+1 ∂ y u ϕ 1 2
H s , then,

I q 22,2 = t 0 ∆ h q (T h ∂xu R 1 ) ϕ , ∆ h q (∂ t R 1 ) ϕ |q-q |≤4 t 0 2 q 2 S h q -1 R 1 ϕ L 2 d q (u ϕ ) u ϕ 1 2 H s+1 ∂ y u ϕ 1 2 H s ∆ h q (∂ t R 1 ) ϕ L 2 |q-q |≤4 t 0 d q (u ϕ )2 q 2 2 -q s ∂ y R 1 ϕ H s u ϕ 1 2 H s+1 ∂ y u ϕ 1 2 H s 2 -q d q (∂ t R 1 ) ϕ H s+ 1 2 d 2 q 2 -2qs u ϕ 1 2 L∞ t (H s+1 ) ∂ y R 1 ϕ L2 t (H s ) (∂ t R 1 ) ϕ L2 t, η(t) (H s+ 1 2 )
Now, we recall that

∆ h q ∂ x u ϕ L ∞ ≤ l≤q-2 2 3l 2 ∆ h l u ϕ 1 2 L 2 ∆ h l ∂ y u ϕ 1 2 L 2
2 q ∂ y u ϕ H s , so we can deduce

I q 22,1 = t 0 ∆ h q (T h ∂xu R 1 ) ϕ , ∆ h q (∂ t R 1 ) ϕ ≤ |q-q |≤4 t 0 S h q -1 ∂ x u ϕ L ∞ ∆ h q R 1 ϕ L 2 ∆ h q (∂ t R 1 ) ϕ L 2 |q-q |≤4 t 0 2 q ∂ y u ϕ H s ∆ h q R 1 ϕ L 2 ∆ h q (∂ t R 1 ) ϕ 2 |q-q |≤4 2 q t 0 ∂ y u ϕ H s ∆ h q R 1 ϕ 2 L 2 dt 1 2 t 0 ∂ y u ϕ H s ∆ h q (∂ t R 1 ) ϕ 2 L 2 dt 1 2
Using the definition of η(t) and Definition 2.3 we have

t 0 ∂ y u ϕ H s ∆ h q R 1 ϕ 2 L 2 dt 1 2 2 -q(s+ 1 2 ) d q R 1 ϕ L2 t, η(t) (H s+ 1 
2 ) .

Then, I q 22,1

2 -2qs d 2 q R 1 ϕ L2 t, η(t) (H s+ 1 2 ) (∂ t R 1 ) ϕ L2 t, η(t) (H s+ 1 2 )
where

d 2 q = d q   |q-q |≤4 d q  
In a similar way, we have

I q 22,3 = t 0 ∆ h q (R h (R 1 , ∂ x u)) ϕ , ∆ h q (∂ t R 1 ) ϕ dt 2 q 2
q ≥q-3

t 0 ∆ h q R 1 ϕ L 2 ∆h q ∂ x u ϕ L 2 h (L ∞ v ) ∆ h q (∂ t R 1 ) ϕ L 2 dt 2 q 2
q ≥q-3

t 0 2 q 2 ∆ h q R 1 ϕ L 2 ∂ y u ϕ H s ∆ h q (∂ t R 1 ) ϕ L 2 2 q 2
q ≥q-3

2 q 2 t 0 ∂ y u ϕ H s ∆ h q R 1 ϕ L 2 dt t 0 ∂ y u ϕ H s ∆ h q (∂ t R 1 ) ϕ L 2 dt d 2 q 2 -2qs R 1 ϕ L2 t, η(t) (H s+ 1 2 ) (∂ t R 1 ) ϕ L2 t, η(t) (H s+ 1 2 )
Then we conclude that

I 22 Cd 2 q 2 -2qs (R 1 , ∂ t R 1 ) ϕ 2 L2 t, η(t) (H s+ 1 2 ) + u ϕ L∞ t (H s+1 ) ∂ y R 1 ϕ 2 L2 t (H s ) (A.3)
For the term I q 3 , we write

I q 3 = t 0 v ∂ y R 1 + R 2 ∂ y u)) ϕ , ∆ h q (∂ t R 1 ) ϕ L 2 dt ≤ I q 31 + I q 32 , (A.4) 
where

I q 31 = t 0 ∆ h q (v ∂ y R 1 ) ϕ , ∆ h q (∂ t R 1 ) ϕ L 2 dt I q 32 = t 0 ∆ h q (R 2 ∂ y u) ϕ , ∆ h q (∂ t R 1 ) ϕ L 2 dt . Since v ∂ y R 1 = (R 2 + v)∂ y R 1 = R 2 ∂ y R 1 + v∂ y R 1 ,
we get I q 31 ≤ I q 31,1 + I q 31,2 , with

I q 31,1 = t 0 ∆ h q (R 2 ∂ y R 1 ) ϕ , ∆ h q (∂ t R 1 ) ϕ L 2 dt I q 31,2 = t 0 ∆ h q (v∂ y R 1 ) ϕ , ∆ h q (∂ t R 1 ) ϕ L 2 dt .
Lemma (2.5) implies

I q 31,1 = Cd 2 q 2 -2qs R 1 ϕ L2 t, η(t) (H s+ 1 2 ) (∂ t R 1 ) ϕ L2 t, η(t) (H s+ 1 
2 ) . (A.5)

For the term I q 31,2 , we apply Bony's decomposition with respect to the horizontal variable

v∂ y R 1 = T h v ∂ y R 1 + T h ∂yR 1 v + R h (v, ∂ y R 1 ).
Using (3.1), we have

S h q -1 v ϕ L ∞ = S h q -1 y 0 ∂ x u ϕ (t, x, s)ds L ∞ l≤q -2 2 3l 2 ∆ h l u ϕ 1 2 L 2 ∆ h l ∂ y u ϕ 1 2 L 2 2 q 2 u ϕ 1 2 H s+1 ∂ y u ϕ 1 2
H s , from which, we infer

t 0 ∆ h q (T h v ∂ y R 1 ) ϕ , ∆ h q (∂ t R 1 ) ϕ L 2 dt |q -q|≤4 t 0 S h q -1 v ϕ L ∞ ∆ h q ∂ y R 1 ϕ L 2 ∆ h q (∂ t R 1 ) ϕ L 2 dt ≤ |q -q|≤4 t 0 2 q 2 u ϕ 1 2 H s+1 ∂ y u ϕ 1 2 H s ∆ h q ∂ y R 1 ϕ L 2 ∆ h q (∂ t R 1 ) ϕ L 2 dt ≤ d 2 q 2 -2qs u ϕ 1 2 L∞ t (H s+1 ) ∂ y R 1 ϕ L2 t (H s ) (∂ t R 1 ) ϕ L2 t, η(t) (H s+ 1 
2 ) , (A.6)

where {d q } forms a suitable sequence.

In the same way, we have

∆ h q v ϕ (t, x, y) L 2 h (L ∞ v ) u ϕ 1 2 H s+1 ∂ y u ϕ 1 2
H s , from which, we infer

t 0 ∆ h q (T h ∂yR 1 v) ϕ , ∆ h q (∂ t R 1 ) ϕ L 2 dt |q -q|≤4 t 0 S h q -1 ∂ y R 1 ϕ L ∞ h (L 2 v ) ∆ h q v ϕ L 2 h (L ∞ v ) ∆ h q (∂ t R 1 ) ϕ L 2 dt |q -q|≤4 t 0 u ϕ 1 2 H s+1 S h q -1 ∂ y R 1 ϕ L ∞ h (L 2 v ) ∂ y u ϕ 1 2 H s ∆ h q (∂ t R 1 ) ϕ L 2 dt ≤ d 2 q 2 -2qs u ϕ 1 2 L∞ t (H s+1 ) ∂ y R 1 ϕ L2 t (H s ) (∂ t R 1 ) ϕ L2 t, η(t) (H s+ 1 2 ) ,
where {d q } forms a suitable sequence. Finally, we have

t 0 ∆ h q (R h (v, ∂ y R 1 )) ϕ , ∆ h q (∂ t R 1 ) ϕ L 2 dt 2 q 2
q ≥q-3

t 0 ∆ h q v ϕ L 2 h (L ∞ v ) ∆h q ∂ y R 1 ϕ L 2 ∆ h q (∂ t R 1 ) ϕ L 2 dt 2 q 2
q ≥q-3

t 0 u ϕ 1 2 H s+1 ∆h q ∂ y R 1 ϕ L 2 ∂ y u ϕ 1 2 H s ∆ h q (∂ t R 1 ) ϕ L 2 dt ≤ d 2 q 2 -2qs u ϕ 1 2 L∞ t (H s+1 ) ∂ y R 1 ϕ L2 t (H s ) (∂ t R 1 ) ϕ L2 t, η(t) (H s+ 1 
2 ) , Then we obtaine the following estimates,

I q 31,2 C2 -2qs d 2 q u ϕ 1 2 L∞ t (H s+1 ) ∂ y R 1 ϕ L2 t (H s ) (∂ t R 1 ) ϕ L2 t, η(t) (H s+ 1 
2 ) . (A.7)

We now estimate the term I q 32 in (A.4). Bony's decomposition for the horizontal variable implies

I q 32 = t 0 ∆ h q (T h R 2 ∂ y u + T h ∂yu R 2 + R h (R 2 , ∂ y u)) ϕ , ∆ h q (∂ t R 1 ) ϕ L 2
dt ≤ I q 32,1 + I q 32,2 + I q 32,3 , where

I q 32,1 = t 0 ∆ h q (T h R 2 ∂ y u) ϕ , ∆ h q (∂ t R 1 ) ϕ L 2 dt I q 32,2 = t 0 ∆ h q (T h ∂yu R 2 ) ϕ , ∆ h q (∂ t R 1 ) ϕ L 2 dt I q 32,3 = t 0 ∆ h q (R h (R 2 , ∂ y u)) ϕ , ∆ h q (∂ t R 1 ) ϕ L 2 dt .
We first observe that

I q 32,1 |q -q|≤4 t 0 S h q -1 R 2 ϕ L ∞ ∆ h q ∂ y u ϕ L 2 ∆ h q (∂ t R 1 ) ϕ L 2 dt |q -q|≤4 t 0 2 -q 2 S h q -1 R 2 ϕ L ∞ ∂ y u ϕ H s ∆ h q (∂ t R 1 ) ϕ L 2 dt .
Due to the fact that R 2 (t, x, y) = -y 0 ∂ x R 1 (t, x, s)ds, we deduce

S h q -1 R 2 ϕ L ∞ y 0 S h q -1 ∂ x R 1 ϕ (t, x, s) L ∞ h ds 2 3q 2
S h q -1 R 1 ϕ L 2 , and then from which, we have

I q 32,1 |q -q|≤4 t 0 2 -q 2 S h q -1 R 2 ϕ L ∞ ∂ y u ϕ H s ∆ h q (R 1 ) ϕ L 2 |q -q|≤4 t 0 2 -q 2 2 3q 2 S h q -1 R 1 ϕ L 2 ∂ y u ϕ H s ∆ h q (R 1 ) ϕ L 2 dt |q -q|≤4 2 q t 0 ∂ y u ϕ H s S h q -1 R 1 ϕ 2 L 2 dt 1 2 t 0 ∂ y u ϕ H s ∆ h q (R 1 ) ϕ 2 L 2 dt 1 2
, Taking into account the definition of η(t) and Definition 2.3 we obtain

t 0 ∂ y u ϕ H s ∆ h q (∂ t R 1 ) ϕ 2 L 2 dt 1 2
2 -q(s+ 1 2 ) d q (∂ t R 1 ) ϕ L2 t, η(t) (H s+ 1

2 ) . Then,

I q 32,1 2 -2qs d 2 q R 1 ϕ L2 t, η(t) (H s+ 1 
2 ) (∂ t R 1 ) ϕ L2 t, η(t) (H s+ 1 2 ) (A.8)

Now, for I q 32,2 , we have

I q 32,2 |q -q|≤4 t 0 S h q -1 ∂ y u ϕ L ∞ h (L 2 v ) ∆ h q R 1 ϕ L 2 h (L ∞ v ) ∆ h q (∂ t R 1 ) ϕ L 2 dt |q -q|≤4 t 0 2 q 2 ∂ y u ϕ H s 2 q 2 ∆ h q R 1 ϕ L 2 ∆ h q (∂ t R 1 ) ϕ L 2 dt |q -q|≤4 2 q t 0 ∂ y u ϕ H s ∆ h q R 1 ϕ 2 L 2 dt 1 2 t 0 ∂ y u ϕ H s ∆ h q (∂ t R 1 ) ϕ 2 L 2 dt 1 2 d 2 q 2 -2qs R 1 ϕ L2 t, η(t) (H s+ 1 2 ) (∂ t R 1 ) ϕ L2 t, η(t) (H s+ 1 
2 ) . We end by estimate I q 32,3 , in the same way, we have

I q 32,3 2 q 2
q ≥q-3

t 0 ∆ h q R 2 ϕ L 2 h (L ∞ v ) ∆h q ∂ y u ϕ L 2 ∆ h q (∂ t R 1 ) ϕ L 2 dt 2 q 2
q ≥q-3

t 0 2 q 2 ∆ h q R 1 ϕ L 2 ∂ y u ϕ H s ∆ h q (∂ t R 1 ) ϕ L 2 dt 2 q 2
q ≥q-3

2 q 2 t 0 ∂ y u ϕ H s ∆ h q R 1 ϕ 2 L 2 dt 1 2 t 0 ∂ y u ϕ H s ∆ h q (∂ t R 1 ) ϕ 2 L 2 dt 1 2 d 2 q 2 -2qs R 1 ϕ L2 t, η(t) (H s+ 1 2 ) (∂ t R 1 ) ϕ L2 t, η(t) (H s+ 1 
2 ) , Summing all the resulting estimate, we can achieve

I q 32 Cd 2 q 2 -2qs R 1 ϕ L2 t, η(t) (H s+ 1 2 ) ∂ t R 1 ) ϕ L2 t, η(t) (H s+ 1 
2 ) . (A.9)

Remark A.1. For the proof when we have R 1 and not ∂ t R 1 , it also the some we need just to replace in all the proof with R 1 instead of ∂ t R 1 .

By summing up (A.1)-(A.9), we conclude the proof of (6.17).

A.2. Proof of estimate (6.18). We first deduce from ∂ x u + ∂ y v = 0, that

2 t 0 ∆ h q (∂ t v) ϕ , ∆ h q (∂ t R 2 ) ϕ L 2 dt Cd 2 q 2 -2qs 2 (∂ t u) ϕ L2 t (H s+1 ) (∂ t R 2 ) ϕ L2 t (H s ) 2 t 0 ∆ h q (∂ 2 t v) ϕ , ∆ h q (∂ t R 2 ) ϕ L 2 dt Cd 2 q 2 -2qs 2 (∂ 2 t u) ϕ L2 t (H s+1 ) (∂ t R 2 ) ϕ L2 t (H s ) ,
Then, we deduce from the proof of (A.7) that t 0 ∆ h q (v∂ y v) ϕ , ∆ h q w 2 ϕ L 2 dt d 2 q 2 -2qs u ϕ ) .

As a result, it comes out

J q 5 Cd 2 q 2 -2qs (R 1 ϕ , (∂ t R 2 ) ϕ ) 2 L2 t, η(t) (H s+ 1 2 ) + 2 u ϕ 1 2 L∞ t (H s+1 ) ( ∂ y R 2 ϕ L2 t (H s ) + ∂ y u 2 ϕ L2 t (H s+1 ) ) (∂ t R 2 ) ϕ L2 t, η(t) (H s+ 1 
2 ) . (A.13)

Remark A.2. For the proof when we have R 2 and not ∂ t R 2 , it also the some we need just to replace in all the proof with R 2 instead of ∂ t R 2 .

By summing up (A.10)-(A.13), we conclude the proof of (6.18)

1 0u

 1 (t, x, y)dy = 0. (3.3)

1

 1 

2

 2 

  by using the Dirichlet boundary condition (u, v)| y=0 = (u, v)| y=1 = 0, and the incompressibility condition ∂ x u + ∂ y v = 0 and the relation ∂ y p φ = 0, we can find by integrating by parts the estimate of the pressure

. 6 )

 6 By using the Dirichlet boundary condition (u, v)| y=0 = (u, v)| y=1 = 0, and the incompressibility condition ∂ x u + ∂ y v = 0 and the relation, we can perform integration by parts, we get

ϕ )/ y=1 = 0 ( 6 . 7 )

 067 Where |D x | denote the Fourier multiplier of the symbol |ξ|.

  Definition 2.3. Let p ∈ [1, +∞] and let f ∈ L 1 loc (R + ) be a non negative function. Then, the space Lp

t,f (t) (H s (S)) is the closure of C([0, T ]; S(S)) under the norm

  .26) Lemma 2.5 is then proved by summing Estimates (2.23), (2.25) and (2.26).

Lemma 2.6. For any s ∈]

1 

2 , 1[ and t ≤ T * , and φ be defined as in (2.3), with η

1 2 e

 2 Rt (u + ∂ t u) φ L∞ t (H s ) + e Rt ∂ y u φ L∞ t (H s ) + e Rt (∂ t u) φ L2 t (H s ) + e Rt ∂ y u φ L2 Rt (∂ t u) φ L∞ t (H s ) ≤ C e a|Dx| ∂ y u 0 H s +C e a|Dx| (u 0 +u 1 ) H s +C e a|Dx| u 1

			t (H s )
	+	1 2	e 2 H s , for t < T . (3.21)

  Rt (∂ t w) φ Rt (∂ t w) φ Rt (∂ t w) φ L∞ t (H s ) + e Rt ∂ y w φ L∞ t (H s ) + e Rt (∂ t w) φ L2 Rt ∂ y w φ L2 t (H s ) ≤ C e a|Dx| ∂2 y u 0 H s + e a|Dx| ∂ y (u 0 + u 1 ) H s + e a|Dx| u 1 H s + e a|Dx| u 0 H s+2 + e a|Dx| u 0 H s+1 + e a|Dx| u 1 H s+1

		1 2	e Rt (w+∂ t w) φ	2 L∞ t (H s ) +	1 2	e Rt (∂ t w) φ	2 L∞	2 L2 t (H s )
			+ λ e Rt w φ	2 L2 t, θ(t)	(H s+ 1 2 )	+ e Rt ∂ y w φ	2 L2	2 L2 t, θ(t)	(H s+ 1 2 )
								+ 2λ e Rt ∂ y w φ	2 L2 t, θ(t)	(H s+ 1 2 )
				≤ C e a|Dx| ∂ y w 0	2 H s + C e a|Dx| (w 0 + w 1 ) 2 H s + +C e a|Dx| w 1	2 H s
					+ C(2 + ∂ y u φ L∞ t (H δ+1 ) ) e Rt w φ	2 L2 t, θ(t)	(H s+ 1 2 )
				+ (λ + C(2 + ∂ y w φ L∞ t (H δ+1 ) ) e Rt (w, ∂ t w) φ	2 L2 t, θ(t)	(H s+ 1 2 )
		+ ∂ y w φ	2 L2 t (H δ ) e Rt u φ	2 L ∞ t (H s+1 ) + C e Rt (∂ t u) φ	2 L ∞ t (H s+1 ) + C e Rt u φ	2 L ∞ t (H s+2 ) . (5.23)
	Therefore if we take			
							λ ≥ C(2 + ∂ y u φ L∞ t (H δ+1 ) ),	(5.24)
	and using the fact that ∂ y w L2 t (H δ ) ≤ C, we obtain
	1 2	e Rt (w + ∂ t w) φ L∞ t (H s ) +	1 2	e

t (H s ) + e Rt ∂ y w φ 2 L∞ t (H s ) + e t (H s ) + 2λ e t (H s ) + e

  Rt (∂ t u) φ L∞ t (H δ+1 ) ≤ C e a|Dx| u 1 H δ+1 + e Rt (u∂ x u) φ L2 t (H δ+1 ) + e Rt (v∂ y u) φ L2 t (H δ+1 ) + e Rt ∂ 2 y u φ L2 t (H δ+1 ) . (5.25) Next, it follows from the law of product in anisotropic Sobolev spaces and Poincar é inequality that e Rt (u∂ x u) φ L2 t (H δ+1 ) ≤ C u φ L∞ (H δ ) e Rt ∂ y u φ L2 t (H δ+2 ) ; e Rt (v∂ y u) φ L2 t (H δ+1 ) ≤ C u φ L∞ (H δ ) e Rt ∂ y u φ L2 t (H δ+2 ) + u φ L∞ (H δ+2 ) e Rt ∂ y u φ L2 t (H δ ) . Inserting the above estimates into (5.25) and then using the smallness condition u φ H δ ≤ 1 4C 2 and propositions 5.1 and 5.2, we finally obtain e Rt (∂ t u) φ L2 t (H δ+1 ) + e Rt (∂ t u) φ L∞ t (H δ+1 ) ≤ C e a|Dx| u 1 H δ+1 + e a|Dx| ∂ y u 0 H δ+2 + e a|Dx| (u 0 + u 1 ) H δ+2 + e a|Dx| ∂ 2 y u 0 H δ+1 + e a|Dx| ∂ y (u 0 + u 1 ) H δ+1 .

	2 t u) φ L2 t (H δ+1 ) +	1 2	e

  L∞ t (H s+1 ) ∂ y v ϕ L2 t (H s ) (∂ t R 2 ) ϕ L2 (H s+1 ) ∂ y u ϕ L2 t (H s+1 ) (∂ t R 2 ) ϕ L2

	1	
	2	t, η(t) (H s+ 1 2 )
	Cd 2 q 2 -2qs u ϕ	1 2 L∞

t t, η(t) (H s+ 1 2
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2 ) . (6. [START_REF] Enquist | Blow up of solutions of the unsteady Prandtl's equation[END_REF] from which and (6.16), we deduce that

. (

Applying Young's inequality gives rise to

2 ) ) (6.21)

Taking √ µ = CM lead to (3.1), this completes the proof of the theorem 1.3.

Appendix A. Proof of estimates (6.17) and (6.18)

A.1. Proof of estimate (6.17). We first observe that

Then now we still have to control

and

We start first by J 4 q , we have J q 4 ≤ 2 (J q 41 + J q 42 ) , where

It follows from Lemma 2.4 that

For the second term, Bony's decomposition for the horizontal variable gives

H s , and the relation (3.1), we have

2 ) .

While again thanks to (3.1), we find

which leads to

2 ) .

Along the same way, we obtain

2 ) .

This gives rise to

2 ) . (A.12) Now for J q 5 , We first note that

.

From (A.7), we have

2 ) .

As for (A.3), we obtain

2 ) u ϕ