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Introduction

The goal of these notes is to explore various results concerning the group of affine transformations of a smooth manifold endowed with a linear connection. Many of those results involve the isometry group of a Riemannian manifold and its relation to the group of affine transformations for the Levi-Civita connection.

Let M be an n-dimensional smooth manifold. For any x ∈ M , we call a frame on M at x any linear isomorphism R n -→ T x M , the set of such frames will be denoted L(M ) x . Clearly, the general linear group GL(n, R) acts naturally on L(M ) x via the map: L(M ) x × GL(n, R) -→ L(M ) x , (z, g) → z • g, and it is not hard to see that this action is simply transitive. Now define L(M ) := x∈M L(M ) x and consider the projection π : L(M ) -→ M given by π(L(M ) x ) := x. Proposition 1.0.1. Let M be an n-dimensional manifold. Then L(M ) π -→ M is a smooth principal GL(n, R)-bundle over M called the frame bundle of T M such that for any local frame {E 1 , . . . , E n } of T M defined on an open subset U ⊂ M ,the map:

σ : U -→ L(M ), x → {E 1|x , . . . , E n|x }, (1) 
is a local (smooth) section of L(M ) π -→ M . Conversely, if σ : U -→ L(M ) is any smooth section, then there exists a local frame {E 1 , . . . , E n } of T M over U such that σ is of the form (1).

In a similar way one defines on a Riemannian manifold (M, , ) the bundle of orthonormal frames O(M ) := x∈M O(M ) x where each O(M ) x consists of linear isometries (R n , , 0 ) -→ (T x M, , x ). It is clear that O(M ) ⊂ L(M ), on the other hand the orthogonal group O(n) acts simply transitively on O(M ). 

is a local (smooth) section of O(M ) π -→ M . Conversely, if σ : U -→ O(M ) is any smooth section, then there exists a local orthonormal frame {E 1 , . . . , E n } of T M over U such that σ is of the form [START_REF] Kobayashi | Transformation groups in differential geometry[END_REF].

Any diffeomorphism f : M -→ M induces a principal bundle automorphism f * : L(M ) -→ L(M ) such that the following diagram is commutative:

L(M ) L(M ) M M f * π π f
Explicitly, for any z ∈ L(M ) we have f * (z) := T π(z) f • z. Define on L(M ) the R n -valued 1-form θ ∈ Ω 1 (L(M ), R n ) given by θ z (v) := z -1 (T z π(v)), we call it the canonical form of L(M ). We have the following result:

Proposition 1.0.3. Let M be a smooth manifold and let θ denote the canonical form of the frame bundle L(M ). If f : M -→ M is any diffeomorphism of M then f * preserves θ. Conversely, if A : L(M ) -→ L(M ) is any fiber-preserving transformation leaving θ invariant, then A = f * for some f ∈ Diff(M ).

Proof. Let z ∈ L(M ) and v ∈ T z L(M ), then:

(f * θ) z (v) = θ f * (z) (T z f * (v)) = (f * (z)) -1 (T f * (z) π • T z f * (v)) = (f * z) -1 (T z (π • f * )(v)) = (f * z) -1 (T z (f • π)(v)) = (f * z) -1 • T π(z) f • T z π(v) = z -1 • T z π(v) = θ z (v).
Conversely, we first notice that since A : L(M ) -→ L(M ) is fiber-preserving, the map:

f : M -→ M, f (x) = π(A(z)), z ∈ π -1 (x),
is a well-defined diffeomorphism of M . Now:

(A * θ) z (v) = θ A(z) (T z A(v)) = A(z) -1 • T π(z) f • T z π(v),
so A will preserve θ if and only if A(z) -1 • T π(z) f = z -1 for any z ∈ P which is exactly what A = f * means.

Proposition 1.0.3 states that the morphism Diff(M ) Ψ → Aut(L(M )), f → f * sends the group of diffeomorphisms of M isomorphically onto the subgroup of automorphisms of L(M ) preserving the canonical form θ. Definition 1.0.1. Let G be a Lie group with Lie algebra g. A connection form on a principal G-bundle P π -→ M is a 1-form ω ∈ Ω 1 (P, g) satisfying:

1-For any z ∈ P and any A ∈ g, ω z ( A z ) = A where A is the fundamental vector field on P corresponding to A, i.e

A z := d dt t=0 z • exp(-tA).
2-For any g ∈ G and any

z ∈ P , v ∈ T z (p), (R * g ω) z (v) = Ad g -1 (ω z (v)),
with R g : P -→ P being the map z → z • g.

Let now ∇ be a linear connection on

M . A diffeomorphism f : M -→ M is called an affine transformation with respect to ∇ if it satisfies f * (∇ X Y ) = ∇ f * X f * Y for any X, Y ∈ χ (M )
where f * X is the vector field on M given by:

(f * X) f -1 (x) := (T x f ) -1 (X x ).
The group of such transformations will be denoted Aff(M, ∇). On the other hand, we say that X ∈ χ (M ) is an affine vector field if it generates a local 1-parameter group of affine transformations. We are going to prove in this paragraph that Aff(M, ∇) is a Lie group of dimension ≤ n 2 + n when given the compact-open topology. The idea is to reinterpret the group of affine transformations as a subgroup of Aut(L(M )) via the identification provided by Proposition 1.0.3, but in order to do this we need an artifact that represents the linear connection ∇ on the frame bundle L(M ). It turns out that the notion of connection form is the adequate solution for this task, more precisely we have the following: Proposition 1.0.4. Let M be a smooth manifold and ∇ a linear connection on M . Then there exists a unique connection form ω on L(M ) such that for any local sec-

tion σ := {E 1 , . . . , E n } of L(M ) defined on U , σ * ω = Γ where Γ ∈ Ω 1 (U, gl(n, R))
is given by:

∇E i = n j=1 Γ ij E j .
Conversely, any connection form ω on L(M ) gives rise to a linear connection ∇ on M by means of the previous expression. Proposition 1.0.5. Let M be a smooth manifold, ∇ a linear connection on M and ω the connection form on L(M ) corresponding to ∇. Let f : M -→ M be a diffeomorphism, then:

1-f ∈ Aff(M, ∇) if and only if f * preserves the connection form ω.

2-Conversely, any fiber-preserving tranformation

A : L(M ) -→ L(M ) leaving both θ and ω invariant is of the form A = f * for some f ∈ Aff(M, ∇).
Proof. Define on M the linear connection ∇ by the expression:

∇ X Y = (f * ) -1 (∇ f * X f * Y )
Fix an open subset U ⊂ M and let {E 1 , . . . , E n } be a local frame of T M defined on U which correponds to a local section σ :

U -→ L(M ). Clearly {f * E 1 , . . . , f * E n } defines a local frame of T M over V := f -1 (U ) and the corresponding local section is exactly f -1 * • σ • f : V -→ L(M ).
For convenience put g := f -1 and write:

∇E i = n j=1 Γ ij E j , ∇(f * E i ) = n j=1 Γ ij f * E j ,
where Γ := ( Γ ij ) i,j ∈ Ω 1 (U, gl(n, R)) and Γ := (Γ ij ) i,j ∈ Ω 1 (V, gl(n, R)). On the other hand, a direct computation shows that for any x ∈ U :

( ∇ E k E i ) x = g * (∇ f * E k f * E i ) x = T g(x) f ((∇ f * E k f * E i ) g(x) ) = n j=1 Γ ij ((f * E k ) g(x) )E i|x = n j=1 (g * Γ ij ) x (E k|x )E i|x .
Therefore g * Γ = Γ and thus σ * (g * ω) = Γ. In summary we proved that g * ω is the (unique) connection form on L(M ) defining ∇. So f : M -→ M is an affine transformation i.e ∇ = ∇ if and only if ω = f * ω.

Theorem 1.0.1. Let M be an n-dimensional smooth manifold with a global trivialization {X 1 , . . . , X n } of T M . Denote G the group of transformations preserving this trivialization, i.e diffeomorphisms f :

M -→ M satisfying T x f (X i|x ) = X i|f (x) .
Then G possesses a unique Lie group structure for the compact-open topology such that dim G ≤ dim M . More precisely for any p ∈ M , the map:

G -→ M, f → f (p),
is an imbedding of G onto a closed submanifold of M , and the submanifold structure on the image is what makes G a Lie transformation group. Moreover the Lie algebra of G consists of complete vector fields whose 1-parameter subgroups are in G.

Theorem 1.0.2. Let M be a smooth n-dimensional manifold and ∇ an affine connection on M , then Aff(M, ∇) is a Lie group for the compact-topology of dimension ≤ n 2 + n. More precisely for any z ∈ L(M ) the map:

Aff(M, ∇) -→ L(M ), f → f * (z),
is injective and its image is a closed submanifold of L(M ). The submanifold structure on its image makes Aff(M, ∇) a Lie transformation group. Its Lie algebra consists of complete affine vector fields on M .

Proof. First some preparation. For any x ∈ M , Recall that since GL(n, R) acts simply transitively on P x := π -1 (x), the map GL(n, R) -→ P x , g → z • g and its differential gl(n, R) -→ T z P x , A → d dt t=0 z •exp(tA) is therefore an isomorphism. In other words for any v ∈ T z P x there exists a unique A ∈ gl(n, R) such that v = A z . On the other hand it is clear that T z π(T z P x ) = 0 and since T z π :

T z P -→ T x M is surjective we get that ker(T z π) = T z P x .
Denote ω the connection form on P := L(M ) corresponding to ∇ and consider the map T P -→ P × (gl(n, R) × R n ), Z → (p(Z), ω(Z), θ(Z)), then one easily checks that the following diagram is commutative:

T P P × (gl(n, R) × R n ) P φ p pr 1
i.e the previous map is a vector bundle homomorphism. In fact, this map defines a global trivialization of T P , to see this we first notice that this map is surjective given that π : P -→ M is a submersion so any v ∈ R n is of the form v = θ z (w) and that A = ω( A) for any A ∈ gl(n, R). Let v ∈ T z P such that θ z (v) = 0 and ω z (v) = 0, then:

0 = θ z (v) = z -1 (T z π(v)),
hence v ∈ ker(T z π) := T z P π(z) , on the other hand write v = A z for some A in gl(n, R) then we get that

0 = ω z (v) = ω z ( A z ) = A,
and so v = 0, consequently φ is injective. On the other hand if σ : U -→ P is any local section one can define the map:

P |U × (gl(n, R) × R n ) ψ -→ P |U , A σ(π(z)) + (T π(z) σ)(σ π(z) (v)),
it is clear that ψ is a smooth map and one checks without difficulty that φ • ψ = Id and thus φ is a local diffeomorphism, hence we conclude that φ is a vector bundle isomorphism. Finally, let F : P -→ P be any fiber preserving transformation leaving θ and ω invariant and choose v ∈ R n and A ∈ gl(n, R) such that (z, A, v) = φ(w). Then:

φ • T z F (w) = (F (z), (F * ω) z (w), (F * θ) z (w)) = (F (z), ω z (w), θ z (w)),
which means that T z F (φ -1 (z, A, v)) = (F (z), A, v) and so F preserves any global frame of T P defined by φ. By Theorem 1.0.1 we get the desired result.

The remaining part of this section will be dedicated to prove that the isometry group of a Riemannian manifold is also a Lie group by following the same footsteps of the previous paragraph.

Assume now that (M, , ) is a Riemannian manifold and let ∇ be a metric connection on M , i.e for any X, Y, Z ∈ χ

(M ), X Y, Z = ∇ X Y, Z + Y, ∇ X Z .
Let {E 1 , . . . , E n } be a local orthonormal frame of T M defined on an open subset U ⊂ M and write

∇E i = n j=1 Γ ij E j .
Then we get that Γ ij = -Γ ji or in other terms Γ ∈ Ω 1 (U, so(n)). Thus if ω is the connection form on L(M ) corresponding to ∇ then its restriction ω to the orthogonal frame bundle O(M ) is so(n)-valued and defines therefore a connection form on O(M ) and it is in fact the only connection form on O(M ) representing ∇. Conversely any connection form on O(M ) admits a unique extension to L(M ) and defines therefore a metric connection ∇ on M .

Denote Isom(M, , ) the isometry group of the Riemannian manifold (M, , ). Proposition 1.0.6. Let (M, , ) be a Riemannian manifold, ∇ its Levi-Civita connection and ω the connection form on O(M ) representing ∇.

1-A diffeomorphism f : M -→ M is an isometry if and only if f * (O(M )) = O(M ). 2-If A : O(M ) -→ O(M )
is a fiber-preserving transformation leaving invariant the canonical form θ of O(M ), then there exists a unique isometry

f : M -→ M such that A = f * . 3-Any (principal) bundle automorphism O(M ) -→ O(M ) leaving θ invariant, leaves ω invariant.
Proof. The first point is the definition of a Riemannian isometry, the argument for the second point is the same as in Proposition 1.0.5. For the third point, observe that since ∇ is torsion-free, then ω is torsion-free as well i.e the 2-form

T ∈ Ω 2 (O(M ), R n ), called torsion form of ω,
given by:

T := ω ∧ θ + dθ, (3) 
vanishes. Let A : O(M ) -→ O(M ) be a bundle automorphism, then A * ω is a connection form on O(M ). Since A preserves the canonical form θ, we get from expression (3) that A * ω is torsion-free as well, so by uniqueness of the Levi-Civita connection we conclude that A * ω = ω.

Theorem 1.0.3. Let (M, , ) be a Riemannian manifold, then Isom(M, , ) with the compact-open topology is a Lie group of dimension ≤ n(n+1)

2

. In fact for any z ∈ O(M ), the map:

Isom(M, , ) -→ O(M ), f → f * (z), is an imbedding and its image is a closed submanifold of O(M ). If ∇ is the Levi- Civita connection of , then Isom(M, , ) is a closed subgroup of Aff(M, ∇).
Its Lie algebra consists of complete Killing vector fields on M . Proposition 1.0.7. Let (M, , ) be a Riemannian manifold, then the natural action of Isom(M, , ) on M is proper. In particular if M is compact then

Isom(M, , ) is compact. Proof. Choose a compact K ⊂ M and put G K = {f ∈ Isom(M ), f (K) ∩ K = ∅}. Let (f n ) n be an arbitrary sequence of G K , then for any n ∈ N we can find p n ∈ K such that f n (p n ) ∈ K.
Since K is compact we can assume without loss of generality that (f n (p n )) n is convergent and we denote q ∈ K its limit, similarly there exists a subsequence (p ϕ(n) ) n of (p n ) n converging to some p ∈ K and therefore

(f ϕ(n) (p ϕ(n) )) n is also convergent. Denote d : M × M -→ R + the geodesic distance, which is preserved by elements of Isom(M, , ), hence: d(f ϕ(n) (p), q) ≤ d(f ϕ(n) (p), f ϕ(n) (p ϕ(n) )) + d(f ϕ(n) (p ϕ(n) ), q) ≤ d(p, p ϕ(n) ) + d(f ϕ(n) (p ϕ(n) ), q) -→ n→+∞ 0. Next put p = π(z) with z ∈ O(M ) and C = {f ϕ(n) (p), n ∈ N} ∪ {q}, then C is a compact subset of M and since O(n) is compact we get that π -1 (C) is a compact subset of O(M ) containing the sequence ((f ϕ(n) ) * (z)) n and so it has a convergent subsequence ((f ψ(n) ) * (z)) n . Theorem 1.0.3 implies that {f * (z), f ∈ Isom(M )} is closed submanifold in O(M ) so ((f ψ(n) ) * (z)) n converges to f * (z) for some f ∈ Isom(M, , )
and by the same result we get that (f ψ(n) ) n converges to f in Isom(M, , ). We conclude that G K is compact and so Isom(M, , ) acts properly on M .

Results on the dimension of the affine group of a manifold

In this section we state some results that illustrates how the dimension of the group of affine transformations affects the global structure of the manifold. The main paragraph of this section relies on the notion of parallel transport along curves and its how it is perceived from the perspective of the frame bundle, and this will be our starting point.

Let M be an n-dimensional smooth manifold and ∇ a linear connection on M . Let γ : [0, 1] -→ M be a smooth a curve, then ∇ provides a unique linear operator denoted

D γ : Γ(γ -1 T M ) -→ Γ(γ -1 T M ) satisfying: D γ (f V ) = f V + f D γ V, f ∈ C ∞ ([0, 1], R), V ∈ Γ(γ -1 T M ),
we call it the covariant derivation along γ, here Γ(γ -1 T M ) is the space of vector fields along γ i.e smooth maps V :

[0, 1] -→ T M such that V (t) ∈ T γ(t) M . In a local frame {E 1 , . . . , E n } where ∇E i = n j=1 Γ ij E j we get that: D γ V (t) = n k=1 f k (t) + n i,j=1 f i (t)g j (t)Γ k ji (γ(t)) E k|γ(t) , (4) 
where

V (t) = f i (t)E i|γ(t) and γ(t) = g i (t)E i|γ(t) .
We say that V is parallel along γ if D γ V = 0, using that equation ( 4) is a linear system of ordinary differential equations one gets the following important result: Theorem 2.0.1. Let M be an n-dimensional manifold with a linear connection ∇ and γ : [0, 1] -→ M a smooth curve. For any v ∈ T γ(0) M , there exists a unique parallel vector field V along γ satisfying V (0) = v. We call V the parallel transport of v along γ.

Let ω be the connection form on L(M ) representing ∇, for any basis {e 1 , . . . , e n } of T γ(0) M one obtain a parallel frame {E 1 , . . . , E n } along γ i.e E i is the parallel vector field along γ satisfying E i (0) = e i , and it is an easy matter to see that {E 1 (t), . . . , E n (t)} is a basis of T γ(t) M , thus one obtains a smooth curve γ : [0, 1] -→ L(M ) given by:

γ(t) = (E 1 (t), . . . , E n (t)),
such a curve is called the horizontal lift of γ to L(M ) through {e 1 , . . . , e n }. Proposition 2.0.1. Let M be an n-dimensional manifold with a linear connection ∇ and let γ : [0, 1] -→ M and α : [0, 1] -→ L(M ) be smooth curves. Then α is a horizontal lift of γ if and only if π • α = γ and ω α(t) ( α(t)) = 0, where ω is the connection form corresponding to ∇.

Proof. Since π(α(s)) = γ(s) for any 0 ≤ s ≤ 1, we can write α(s) = (V 1 (s), . . . , V n (s)) where V i ∈ Γ(γ -1 T M ). Next choose a local frame {E 1 , . . . , E n } of M defined on an open subset U ⊂ M and let > 0 such that γ(]t -, t + [) ⊂ U then write: V i (s) = n j=1 g ij (s)E j |γ(s) , ∇E i = n j=1 Γ ij E j , (5) 
for s ∈]t -, t + [. Then it is straightforward to prove that:

D γ V i (t) = g (t) + g(t) • Γ γ(t) ( γ(t)) • E j |γ(t) ,
where g := (g ij ) i,j ∈ C ∞ ([0, 1], GL(n, R)) and Γ := (Γ ij ) i,j . On the other hand if σ : U -→ L(M ) is the local section corresponding to {E 1 , . . . , E n } then (5) means exactly that α(s) = σ • γ(s) • g(s) -1 , for convenience denote ĝ(s) := g(s) -1 . Thus:

α(t) = T (σ•γ)(t) R g(t) ((σ • γ) (t)) + d ds |s=t (σ • γ)(t) • ĝ(s) = T (σ•γ)(t) R g(t) ((σ • γ) (t)) + d ds |s=t (σ • γ)(t) • ĝ(t) • (g(t)ĝ(s)) h(s)
. Now s → h(s) is a curve in G satisfying h(t) = e and therefore:

d ds |s=t (σ • γ)(t) • ĝ(t) • h(s) = -h (t) (σ•γ)(t)•ĝ(t) ,
where h (t) is the fundamental vector field on L(M ) corresponding to -h (t) = -g(t)ĝ (t). Thus using that R * g ω = Ad g -1 (ω) and ω( A) = A we get from the previous computation:

ω α(t) ( α(t)) = g(t) • (σ * ω) γ(t) ( γ(t)) • g(t) -1 -g(t)ĝ (t) = g(t) • Γ γ(t) ( γ(t)) • g(t) -1 -g(t)ĝ (t) = g(t) • Γ γ(t) ( γ(t)) • g(t) -1 -g (t)ĝ(t) -1 (g (s)ĝ(s) = I n ) = g(t) • Γ γ(t) ( γ(t)) -g (t) • ĝ(t) -1 So we conclude that ω α(t) ( α(t)) = 0 if and only if D γ V i (t) = 0 for all 1 ≤ i ≤ n.
Recall that a vector field Z on L(M ) is called horizontal if ω(Z) = 0 and standard if θ(Z) is a constant function.

Proposition 2.0.2. Let M be an n-dimensional manifold with a linear connection ∇ and ω the connection form of ∇ on L(M ).

(1) Let Z be a standard horizontal vector field on L(M ). For any z ∈ L(M ), the curve defined by γ(t) := π(ϕ Z t (z)) is a geodesic on M . (2) Conversely, given a geodesic γ : [-a, a] -→ M , there exists a local standard horizontal vector field Z on L(M ) and > 0 such that γ(t) = ϕ Z t (z) for any -< t < .

Proof. Let z ∈ L(M ) then there exists > 0 such that the curve α :]-, [-→ L(M ) given by α(t) = ϕ Z t (z) is well-defined and smooth. Define

γ(t) = π(α(t)), since ω α(t) (α (t)) = ω α(t) (Z α(t) ) = 0 then Proposition 2.0.1 gives that α is a horizontal lift of γ on L(M ), therefore if we write: α(t) = (V 1 (t), . . . , V n (t)), V i ∈ Γ(γ -1 T M ),
we get that {V 1 , . . . , V n } is a parallel frame along γ. On the other hand if we write θ z (Z z ) = (a 1 , . . . , a n ) then we get that:

γ (t) = T α(t) π(Z α(t) ) = α(t)(θ α(t) (Z α(t) )) = α(t)(θ z (Z z )) = n i=1 a i E i (t),
which shows that γ is parallel along γ i.e γ is a geodesic. Conversely, let γ : [-a, a] -→ M be a geodesic and let U be a normal neighborhood of p := γ(0) in M , i.e there exists an open neighborhood V of 0 in T p M such that exp p : V -→ U is a diffeomorphism. For any x ∈ U , there exists a unique normal geodesic t → (exp p (t exp -1 p (x))) joining p to x, denote α z : [0, 1] -→ L(M ) its (unique) horizontal lift through z ∈ L(M ) p and define:

Z αz(1) := α z (1).
It is clear from this definition that ω z (Z z ) = 0 and by uniqueness of the horizontal lift, one proves that α z (t) = Z αz(t) . Furthermore be shown that Z defines a smooth vector field on a neighborhood of any z ∈ L(M ) γ(0) in which case α z (t) = ϕ Z t (z). Since γ is a normal geodesic in a small neighborhood ] -, [, we get the desired result.

Denote aff(M, ∇) := Lie(Aff(M, ∇)), any X ∈ aff(M, ∇) defines a smooth vector field X of L(M ) given by:

Xz := d dt t=0 exp(tX) * (z).
It is clear that X is a complete vector field on L(M ).

Proposition 2.0.3. Let M be an n-dimensional manifold, ∇ a linear connection on M , and let X ∈ aff(M, ∇). Suppose that ω z ( Xz ) = 0 for some z ∈ L(M ). Then the curve γ : R -→ M , γ(t) = exp(tX) • x with x = π(z) is a geodesic and its horizontal lift at z is the curve γ(t) := exp(tX) * (z), t ∈ R.

Proof. Put γ(t) = exp(tX) * (z), then clearly π(γ(t)) = γ(t), moreover from the relation exp(tX) * ω = ω we get that ω exp(tX) * z ( Xexp(tX) * z ) = ω z (Z z ) = 0 which means that γ is the horizontal lift of γ through z, in particular if z = (e 1 , . . . , e n ) then: γ(t) = (E 1 (t), . . . , E n (t)), E i being the parallel transport of e i along γ. Moreover exp(tX) * θ = θ gives that θ exp(tX) * z ( Xexp(tX) * z ) = θ z ( Xz ) so if we put θ z (X z ) = (a 1 , . . . , a n ) we get that:

γ (t) = T γ(t) π( Xγ(t) ) = γ(t)(θ γ(t) ( Xγ(t) )) = γ(t)(θ z ( Xz )) = n i=1 a i E i (t).
Hence γ is parallel along γ, i.e γ is a geodesic. Theorem 2.0.2. Let M be an n-dimensional manifold with a linear connection ∇. Then dim(Aff(M, ∇)) = n(n + 1) if and only if M is an ordinary affine space with the natural flat affine connection.

Proof. Denote G := Aff(M, ∇) and for any x ∈ M denote G x the isotropy at x for the natural action of G on M . First note that the map:

G x -→ GL(T x M ), f → T x f (6) 
is an injective Lie group homomorphism. Assume now that dim G = n(n + 1), then let x ∈ M and z ∈ L(M ) such that π(z) = x. Since the map:

G Ψ -→ L(M ), f → f * (z)
is an imbedding of G onto a closed submanifold of L(M ) and dim L(M ) = n(n + 1), then either Ψ(G) = L(M ) or Ψ(G) is a connected component of L(M ) and in any case we get that M = G • x G/G x , therefore:

dim G x = dim G -dim M = n 2 .
This gives in particular that G 0 x = GL + (T x M ) under the identification (6). Now let t > 0 and consider the transformation A t ∈ GL + (T x M ) given by A t (u) = tu. From the previous remark there exists f t ∈ G 0

x such that T x f t = A t , hence for any u, v, w ∈ T x M we get that:

A t (R ∇ x (u, v)w) = R ∇ x (A t u, A t v)A t w, A t (T ∇ x (u, v)) = T ∇ x (A t u, A t v), therefore R ∇ x (u, v)w = t -2 R ∇ x (u, v)w and T ∇ x (u, v) = t -1 T ∇ x (u, v
) for all t > 0, and so we conclude that R ∇ = 0 and T ∇ = 0.

On the other hand, let Z be a standard horizontal vector field on L(M ) i.e ω(Z) = 0 and θ(Z) is constant where ω is the connection form representing ∇ and θ is the canonical form of L(M ). If g := Lie(G) then there exists a unique X ∈ g such that Z z = Xz where:

X z := d dt t=0 exp(tX) * z, z ∈ L(M ).
From Proposition 2.0.3 we get that γ(t) = exp(tX) • x is a geodesic with horizontal lift at z the curve γ(t) = exp(tX) * (z) defined for any t ∈ R. Now γ : R -→ M is the geodesic with initial conditions γ(0) = x and γ (0) = T z π(Z z ) and therefore its horizontal lift at z is exactly

α :] -, [-→ L(M ), t → ϕ Z t (z)
, which proves that α can be extended to all of R. Since z ∈ L(M ) was arbitrary we get that Z is complete, and since we know by Proposition 2.0.2 that geodesics of M are exactly the projections of integral curves of standard horizontal vector fields, we conclude that M is (geodesically) complete.

Consider now the universal cover M of (M, ∇) with its induced induced linear connection, then there exists an affine transformation M -→ R n . Next M = M /Γ where Γ is a discrete subgroup of Aff( M , ∇) GL(n, R) R n hence commuting with Aff( M , ∇) 0 GL + (n, R) R n . But one can show with ease that only the trivial element commutes with connected component of GL(n, R) R n , hence Γ is trivial and M is itself simply connected i.e M = M , this completes the proof.

Theorem 2.0.3. Let M be an n-dimensional manifold with an affine connection and assume that dim Aff(M, ∇) > n 2 . Then ∇ is torsion-free.

This result is a consequence of the following algebraic Lemma: Lemma 2.0.1. Let V ba an n-dimensional vector space and T : V × V -→ V a non-trivial skew-symmetric bilinear map i.e T ∈ V ⊗ Λ 2 V * . Denote H the subgroup of linear transformation preserving T , then dim H ≤ n 2 -n.

Proof of the Theorem. Denote G := Aff(M, ∇) then let x ∈ M and denote G x the isotropy at x for the natural action of G on M , then from G/G x G • x we get:

dim(G x ) ≥ dim(G) -dim(M ) > n 2 -n (7) 
On the other hand denote T ∇ the torsion tensor of ∇, then for every f ∈ G x we get that:

T ∇ x (T x f (u), T x f (v)) = T x f (T ∇ x (u, v)), u, v ∈ T x M. Therefore the group {T x f, f ∈ G x } G x preserves T ∇
x , but according to the previous Lemma and (7) we conclude that T ∇ x = 0 for any x ∈ M , i.e ∇ is torsionfree.

Another result in the same spirit is the following Theorem due to Egorov [START_REF] Egorov | The groups of motions of spaces with an affine connection[END_REF] and can be proved by essentially the same procedure: Theorem 2.0.4. Let M be an n-dimensional manifold and ∇ a linear connection on M such that dim Aff(M, ∇) > n 2 . Then ∇ has neither torsion nor curvature provided that n ≥ 4.

Relation between the isometry group and the affine group of a Riemannian manifold

In this section, we go through a number of results that have treated the relation between the group of affine transformations and the isometry group in the case of a Riemannian manifold. These results exploit the holonomy Riemannian manifolds along with the De Rham decomposition theorem in order to get to conclusions, therefore we begin by introducing the notion of holonomy.

Let M be an n-dimensional manifold and ∇ a linear connection on M . For any smooth curve γ : 

τ γ a,b = τ γ 2 t0,b • τ γ 1 a,t0 .
(3) For any smooth curve γ, τ γ a,b is an isomorphism and its inverse is exactly the linear operator τ γa,b :

T γ(b) M -→ τ γ(a) M with γ -(t) = γ(a + b -t).
Proof. 

V (ϕ(s)) = n i=1 g i (ϕ(s))E i|α(s) , γ(ϕ(s)) = n i=1 f i (ϕ(s))E i|α(s)
for any s ∈]t -, t + [, where {E 1 , . . . , E n } is a local frame of M defined on an open subset U and α(]t -, t + [) ⊂ U . Since α(s) = ϕ (s) γ(ϕ(s)), then:

D αW (s) = n i=1 ϕ (s)g i (ϕ(s))E i|α(s) + n i=1 g i (ϕ(s))(∇ αE i ) |α(s) = n i=1 ϕ (s)g i (ϕ(s))E i|α(s) + n i,j=1 ϕ (s)g i (ϕ(s))f j (ϕ(s))(∇ Ej E i ) |α(s) = ϕ (s)(D γ V )(ϕ(s)) = 0
Thus D αW (t) = 0 for any t ∈ [c, d] i.e W is parallel along α, moreover if ϕ is orientation-preserving we get that W is the parallel transport of v along α, thus:

τ α c,d (v) = W (d) = V (b) = τ γ a,b (v).
In the case where [c, d] = [a, b] and ϕ(t) = a + b -t i.e α = γ -then we get that:

τ γ - a,b • τ γ a,b (v) = τ γ - a,b (V (b)) = τ γ - a,b (W (a)) = W (b) = V (a) = v. (2)-Let V be the parallel transport of v ∈ T γ(a) M along γ and denote V 1 the parallel vector field along γ 1 satisfying V 1 (a) = v and V 2 the parallel vector field along γ 2 with initial condition V 2 (t 0 ) = V 1 (t 0 ).
Then by uniqueness of parallel transport and the expressions of γ 1 and γ 2 , we get 

V 1 = V |[a,t0] and V 2 := V [t0,b] . In particular: τ γ 2 t0,b • τ γ 1 a,t0 (v) = τ γ 2 t0,b (V (t 0 )) = V (b) = τ γ a,b ( 
τ γ a,b := τ γ t k ,b • τ γ t k-1 ,t k • • • • • τ γ t1,t2 • τ γ a,t1 , where a = t 0 < t 1 < • • • < t k < t k+1 = b is any subdivision of [a, b] such that the curve γ [ti,ti+1
] is smooth. The previous properties extend to this situation as well: Proposition 3.0.2. Let M be a smooth manifold with a linear connection ∇. Then:

(1) τ γ a,b does not depend on the orientation-preserving parametrization of the piecewise smooth curve γ :

[a, b] -→ M . (2) Given two piecewise smooth curves γ 1 : [a, b] -→ M and γ 2 : [b, c] -→ M such that γ 2 (b) = γ 1 (b) then τ γ 1 * γ 2 a,c = τ γ 2 b,c • τ γ 1 a,b . (3) For any piecewise smooth curve γ : [a, b] -→ M , τ γ a,b is invertible with inverse τ γ - a,b . It is more convenient therefore to denote τ γ a,b by τ γ γ(a),γ(b) instead or just τ γ γ(a)
when γ is a loop. Fix x 0 ∈ M and define:

Hol x0 (M, ∇) := {τ γ x0 : T x0 M -→ T x0 M,
γ is a loop based at x 0 }. Using the above observations, it is clear that Hol x0 (M, ∇) is a subgroup of GL(T x0 M ) called the holonomy group of (M, ∇) at x 0 . We also define the restricted holonomy of (M, ∇) at x 0 to be: Proof. We start by proving that Hol x0 (M, ∇) is arcwise connected. Let g ∈ Hol x0 (M, ∇), then there exists a piecewise smooth loop γ based at x 0 homotopic to the constant loop x 0 such that g = τ γ x0 . Denote

Hol x0 (M, ∇) := {τ γ x0 : T x0 M -→ T x0 M,
F : [0, 1] × [a, b] -→ M this homotopy, i.e: F (0, t) = γ(t), F (1, t) = x 0 , F (s, a) = F (s, b) = x 0 .
Put F (s, t) := γ s (t), clearly each loop γ s is contractible as well and one can assume without loss of generality that γ s is piecewise smooth for any 0 ≤ s ≤ 1, so we get a correspondence α :

[0, 1] -→ Hol x0 (M, ∇), s → τ γ s a,b with α(0) = g and α(1) = Id.
The claim amounts to proving that α is continuous.

Fix a system of local coordinates (U, x 1 , . . . , x n ) centered at x 0 . For every 0 ≤ s ≤ 1, F (s, 1) = x 0 ∈ U therefore we can find an open neighborhood U s of s in [0, 1] and 0 ≤ α s < 1 such that F (U s × [α s , 1]) ⊂ U . Since [0, 1] is compact, it is the union of finitely many U si with 1 ≤ i ≤ r, so if we put α = max 1≤i≤r α si < 1 we obtain that:

F ([0, 1] × [α, 1]) = F r i=1 U si × [α, 1] = r i=1 F (U si × [α, 1]) ⊂ U.
A similar argument allows to choose α < 1 such that every γ s is smooth on

[α, 1]. Now let v ∈ T x0 M and denote V s the parallel transport of v along γ s . Put E i := ∂ ∂x i
and write for any α ≤ t ≤ 1:

V s (t) = n i=1 f i (s, t)E i|F (s,t) , ∂F ∂t (s, t) = n i=1 g i (s, t)E i|F (s,t) , ∇E i = n j=1 Γ ij E j . Then V s|[α,1]
is the solution of the following system of ordinary linear differential equations:

n k=1 ∂f k ∂t (s, t) + n i,j=1 g j (s, t)f i (s, t)Γ k ji (F (s, t)) E k|F (s,t)
It is clear that the coefficients of this system are all continuous (in fact uniformly continuous) with respect to the parameter s, therefore we get that the solution

[0, 1] × [α, 1] -→ R n , (s, t) → (f 1 (s, t), . . . , f n (s, t)) is continuous as well, in par- ticular one obtains that the map [0, 1] -→ T x0 M , s → V s (1) = α(s)(v) is also continuous for every v ∈ T x0 M . Since T x0 M is a finite-dimensional vector space we conclude that α : [0, 1] -→ Hol x0 (M, ∇) is continuous.
By Yamabe's Theorem we get that the restricted holonomy group Hol x0 (M, ∇)

has the structure of an (immersed) Lie subgroup of GL(T x0 M ). Next, observe that there exists a well-defined group homomorphism:

π 1 (M, x 0 ) -→ Hol x0 (M, ∇)/ Hol x0 (M, ∇), [γ] → [τ γ x0 ],
proving that the quotient Hol x0 (M, ∇)/ Hol x0 (M, ∇) is at most countable. Using this we can show that Hol x0 (M, ∇) is the identity component of Hol x0 (M, ∇), and since Hol x0 (M, ∇) is second-countable with countably many connected components, it has the structure of an (immersed) Lie subgroup of GL(T x0 M ).

If M is connected, the holonomy group at any point is essentially the same, in the sense of the following result: Proposition 3.0.3. Let M be a connected manifold with a linear connection ∇ and let x, y ∈ M . Then for any piecewise smooth curve γ : [a, b] -→ M joining x to y, the map:

Hol x (M, ∇) -→ Hol y (M, ∇), g → τ γ x,y • g • (τ γ x,y ) -1 , is an isomorphism. Proof. Straightforward
In what follows (M, , ) will always be a connected Riemannian manifold with Levi-Civita connection ∇. Then following that ∇ , = 0 we get that for any smooth curve γ :

[a, b] -→ M and any V, W ∈ Γ(γ -1 T M ): d dt V (t), W (t) = D γ V (t), W (t) + V (t), D γ W (t) .
In particular if V and W are parallel along γ then t → V (t), W (t) is a constant map and therefore τ γ a,b (v), τ γ a,b (w) = v, w . This leads to the following result: Proposition 3.0.4. Let (M, , ) be a Riemannian manifold with Levi-Civita connection ∇. Then Hol x (M, ∇) ⊂ O(T x M, , ) for any x ∈ M .

We use the symbol Hol x (M, , ) instead of Hol x (M, ∇) in what follows. For any x ∈ M , we will say that T x M is irreducibe if it is irreducible as a Hol x (M, , )module i.e does not admit any proper, non-trival subspace that is invariant by the action of Hol x (M, , ). In view of Proposition 3.0.3 we see that if T x M is irreducible then T y M is also irreducible for any y ∈ M . This suggests the following definition:

Definition 3.0.1. A Riemannian manifold (M, , ) is said to be irreducible if T x M is irreducible for some (hence every) x ∈ M .
The next result is a classical Theorem in riemannian geometry and will be essential for the next part: Theorem 3.0.2 (De Rham decomposition theorem). A simply connected, complete Riemannian manifold (M, , ) is isometric to the direct product M 0 × . . . , ×M k where M 0 is a Euclidean space and M 1 , . . . , M k are all simply connected, irreducible Riemannian manifolds. Such a decomposition is a unique up to an order of the factors involved.

Corollary 3.0.1. Let (M, , ) be a simply connected, complete Riemannian manifold and M = M 0 × • • • × M k its de Rham decomposition. Let x = (x 0 , . . . , x k ), then:

(1) The identification Hol x1 (M 1 , , ) × . . . Hol x k (M k , , ) → Hol x (M, , )

given by (τ

γ 1 x1 , . . . , τ γ k x k ) → τ α1 x • • • • • τ α k
x is an isomorphism, where α i is the loop given by: α i (t) = (x 1 , . . . , γ i (t), . . . , x k ).

(2) Under the previous identification, Hol xi (M i , , ) is a normal subgroup of Hol x (M, , ) acting trivially on T xj M j for j = i and irreducibly on T xi M i . (3) For any f ∈ Aff(M, ∇) and any i = 1, . . . , k,

T x f (T x0 M 0 ) = T f (x)0 M 0 , and T x f (T xi M i ) = T f (x)j M j , for some j = 1, . . . , k. If f ∈ Aff(M, ∇) 0 then T x f (T xi M i ) = T f (x)i M i .
Proof. The first and second point are a direct consequence of the De Rham decomposition, we only prove the third point. Let f : M -→ M be an affine transformation and choose a piecewise smooth loop γ : [0, 1] -→ M based at f (x). Then for any v ∈ T x0 M 0 :

τ γ f (x) (T x f (v)) = T x f (τ f -1 •γ x (v)) = T x f (v), thus T x f (v) is invariant by Hol f (x) (M, ∇) which gives that T x f (T x0 M 0 ) = T f (x)0 M 0 .
On the other hand, if w ∈ T xi M i for i = 0 then:

τ γ f (x) (T x f (w)) = T x f (τ f -1 •γ x (w)) ∈ T x f (T xi M i ), which shows that T x f (T xi M i ) is invariant, furthermore if V ⊂ T x f (T xi M i )
is any invariant subspace then in the same way (T x f ) -1 (V ) is an invariant subspace of T xi M i thus it is either trivial or equal to T xi M i proving that T x f (T xi M i ) is irreducible, in particular one gets the decomposition of T f (x) M into the sum of irreducible subspaces:

T f (x) M = T x f (T x0 M 0 ) ⊕ • • • ⊕ T x f (T x k M k )
, and by uniqueness of such decomposition we conclude that T x f (T xi M i ) = T f (x)j M j for some j = 1, . . . , k.

Next let X be a complete affine vector field on M i.e X ∈ aff(M, ∇), and consider the curve γ(t) = exp(tX) • x. Let v i ∈ T xi M i , and consider u : R -→ R given by: u(t) = T x exp(tX)(v i ), τ γ 0,t (v i ) γ(t) . Then u is a smooth function satisfying u(0) = v i , v i x = 0 and therefore u(t) = 0 for -δ < t < δ, which shows that T x exp(tX)(v i ) ∈ T γ(t)i M i for all -δ < t < δ. In fact since T xi M i is finite-dimensional, one can choose δ > 0 small enough so that

T x exp(tX)(T xi M i ) ∈ T γ(t)i M i ,
for any -δ < t < δ. The result follows from the fact that Aff(M, ∇) 0 is generated by 1-parameter subgroups. 

Isom(M, , ) 0 = Isom(M 0 , , ) 0 × • • • × Isom(M k , , ) 0 , Aff(M, ∇) 0 = Aff(M 0 , ∇) 0 × • • • × Aff(M k , ∇) 0 , where ∇ is the Levi-Civita connection of M . Proof. Consider the homomorphism Ψ : Diff(M 0 ) × • • • × Diff(M k ) -→ Diff(M )
which corresponds to any k-tuple of diffeomorphisms (f 0 , . . . , f k ) the transformation f : M -→ M given by: f (x 0 , . . . , x k ) = (f 0 (x 0 ), . . . , f k (x k )).

Clearly Ψ is continuous and injective. We claim that f = Ψ(f 0 , . . . , f k ) is an affine transformation if and only if f i is an affine transformation for any 0 ≤ i ≤ k. Indeed let γ : [0, 1] -→ M be any piecewise smooth curve and write γ := (γ 0 , . . . , γ k )

then choose v = v 0 ⊕ • • • ⊕ v k ∈ T γ(0) M with v i ∈ T γ i (0) M i , then: T γ(1) f • τ γ 0,1 (v) = k i=1 T yi f i (τ γ i 0,1 (v i )), τ f •γ 0,1 (T γ(0) f (v)) = k i=1 τ fi•γ i 0,1 (T xi f i (v i )),
which shows that f preserves parallel transports on M if and only if each f i does so on M i proving the claim. One can also prove in a similar way that f is an isometry if and only if every f i is an isometry. In particular:

Ψ(Aff(M 0 )ו • •×Aff(M k )) ⊂ Aff(M ), Ψ(Isom(M 0 )ו • •×Isom(M k )) ⊂ Isom(M ).
Let f ∈ Aff(M, ∇) 0 and pr i : M -→ M i be the projection on the i-th component then denote g i := pr i • f , we will show that g i (x 0 , . . . , x k ) only depends on x i . Indeed let x = (x 0 , . . . , x k ) ∈ M , j = i and v j ∈ T xj M j then by (3) of Corollary 3.0.1:

T x g i (v j ) = T f (x) pr i (T x f (v j ) ∈Mj ) = 0
Therefore if we fix (a 0 , . . . , a k ) ∈ M and define f i : M i -→ M i by the expession:

f i (y) := g i (a 0 , . . . , y, . . . , a k ), then f i is a well-defined diffeomorphism of M i and f = Ψ(f 0 , . . . , f k ). It also follows that if f ∈ Isom(M, , ) 0 then each f i is an isometry.

Theorem 3.0.4. Let (M, , ) be a complete, irreducible Riemannian manifold, then Aff(M, ∇) = Isom(M, , ) except when M is a 1-dimensional Euclidean space.

The proof of this Theorem will be done in two steps: First one proves that on any such manifold, any affine transformation is homothetic and if furthermore (M, , ) is not Euclidean then homothetic transformations are isometries, the result follows then by observing that only 1-dimensional Euclidean spaces can be irreducible.

Let (M, , ) be a Riemannian manifold, and recall that f ∈ Diff(M ) is said to be a homothetic transformation if there exists a positive constant c > 0 such that T x f (v), T x f (w) = c 2 v, w for all x ∈ M and v, w ∈ T x M , i.e f * , = c 2 , . It is a well-known fact that if ∇ is the Levi-Civita of (M, , ), then the Levi-Civita connection ∇ for f * , is given by:

∇ X Y := f -1 * (∇ f * X f * Y ), (8) 
When f : M -→ M is a homothetic transformation we get from its definition that , and f * , share the same Levi-Civita connection i.e ∇ = ∇, which is to say that any homothetic transformation is an affine transformation. Conversely: Lemma 3.0.1. If (M, , ) is an irreducible Riemannian manifold, then every affine transformation f : M -→ M is homothetic.

Proof. According to (8), , and f * , define the same Levi-Civita ∇. Next recall that if G ⊂ O(V, , ) acts irreducibly on a Euclidean vector space (V, , ) and preserves a symmetric bilinear form B : V × V -→ R, then B = c 2 , for some constant c > 0. Applying this result to

(V, , ) = (T x M, , x ), G = Hol x (M, , ) and B = (f * , ) x ,
we obtain that for any x ∈ M , (f * , ) x = c 2

x , x for some c x > 0. Finally, if y ∈ M is another point and γ : [0, 1] -→ M is a piecewise smooth curve joining x to y, then for every v ∈ T x M :

c 2 y τ γ x (v), τ γ x (v) y = T y f (τ γ x (v)), T y f (τ γ x (v)) f (y) = τ f •γ f (x) (T x f (v)), τ f •γ f (x) (T x f (v)) f (y) = T x f (v), T x f (v) f (x) = c 2 x v, v x . Since v, v x = τ γ x (v), τ γ x (v) y for any v ∈ T x M we get that c x = c y , completing the proof. Lemma 3.0.2. If (M, ,
) is a complete Riemannian manifold which is not locally Euclidean, then every homothetic transformation is an isometry.

Proof. Suppose that (M, , ) admits a homothetic transformation f : M -→ M that isn't an isometry, and write f * , = c 2 , with c > 0. Next notice that f -1 is homothetic as well with ration 1/c, therefore we suppose without loss of generality that 0 < c < 1.

We start by proving that f has a fixed point. Denote d : M × M -→ R + the geodesic distance and take an arbitrary point x ∈ M then put := d(x, f (x)). Let γ : [0, 1] -→ M be a minimizing geodesic joining x to f (x), which exists since M is complete, then f i • γ is a smooth curve joining f i (x) and f i+1 (x) with length:

i = 1 0 (f i • γ) (t), (f i • γ) (t) 1 2 f i •γ(t) dt = c i , Therefore if m, n ∈ N are such that m < n then: d(f m (x), f n (x)) ≤ n-1 i=m d(f i (x), f i+1 (x)) ≤ n+1 i=m i = n+1 i=m c i ≤ c m 1 -c ,
and thus (f m (x)) m is a Cauchy sequence in (M, d) hence converges to some x * ∈ M since M is complete. Now x * is obviously a fixed point of f , furthermore x * does not depend on the choice of x, indeed given z ∈ M and α a geodesic joining z to x * , we get that f m • α is a curve joining f m (z) to f m (x * ) = x * and so:

d(f m (z), x * ) ≤ (f m • α) = c m (α) -→ m→+∞ 0. (9) 
Now fix a neighborhood U of x * in M with compact closure. Then there exists a constant K * > 0 such that for any y ∈ U and any unit vectors v 1 , v 2 ∈ T y M :

| R y (v 1 , v 2 )v 1 , v 2 y | ≤ K * , (10) 
where R denotes the curvature tensor of (M, , ). Since f is also an affine transformation, then for any z ∈ M and any orthonormal family {v, w} of T z M : Theorems 3.0.3 and 3.0.4 have a number of interesting consequences, before we state them we need to make some remarks: Let X be an affine vector field on a complete Riemannian manifold (M, , ) and denote M the universal cover of M with the induced metric p * , where p : M -→ M is the natural projection, then let M = M 0 × • • • × M k be its de Rham decomposition. Next denote X the lift of X to M , i.e the unique vector field on M satisfying T z p( X z ) = X p(z) , then X is an affine transformation and since X is complete, X is also complete hence an element of aff( M , ∇). Moreover X is Killing if and only if X is Killing. By Theorem 3.0.3, we have aff( M , ∇) aff(M 0 , ∇) × • • • × aff(M k , ∇) and so X corresponds to a unique family (X 0 , . . . , X k ) such that X i ∈ aff(M i , ∇). According to Theorem 3.0.4 gives that X 1 , . . . , X k are all Killing vector fields, therefore X will be Killing if and only if X 0 is. Corollary 3.0.2. If (M, , ) is a complete whose restricted holonomy group Hol x (M, , ) have no nonzero invariant vector, then Aff(M, ∇) 0 = Isom(M, , ) 0 , where ∇ is the Levi-Civita connection of (M, , ).

Proof. The restricted holonomy group Hol x (M, , ) is isomorphic to the restricted holonomy group of its universal cover M , this is due to the fact that contractible loops on M lift to (contractible) loops on M , this gives that the map: Hol z ( M , , ) -→ Hol p(z) (M, , ), τ γ x → T z p • τ γ z • (T z p) -1 = τ p•γ z , is an isomorphism for any z ∈ M , moreover the restricted holonomy group of M coincides with the total holonomy group since M is simply connected. So our assumption just states that M has no Euclidean factor i.e M 0 is a point, which gives in view of the previous remarks that every affine vector field on M is a Killing vector field.

Corollary 3.0.3. If X is an affine vector field of a complete Riemannian manifold (M, , ) and if the length of X is bounded, then X is a Killing vector field.

Proof. Denote M the universal cover of M with the induced metric g := p * , where p : M -→ M is the natural projection and let M = M 0 × • • • × M k be its De Rham decomposition. Next let X be the lift of X to M and write X = (X 0 , . . . , X k ) such that X i ∈ aff(M i , ∇). Then: g(X 0 , X 0 ) ≤ g( X, X) = X, X , hence if X has bounded length then so does X 0 . Now write X 0 = ξ i ∂/∂x i in some (global) Euclidean coordinate system x 1 , . . . , x r of M 0 . Since X 0 is an affine vector field then it satisfies:

(L X0 • ∇ Y -∇ Y • L X0 )Z = ∇ [X0,Z] Y.
For Y = ∂/∂x j and Z = ∂/∂x k we get that ∇Y = 0, ∇Z = 0 hence by the previous expression ∇ Y [X 0 , Z] = 0 which is equivalent to: ∂ 2 ξ i ∂x j ∂x k = 0, i, j, k = 1, . . . r. This means that X 0 = r i=1 ( r j=1 a ij x j + b i )∂/∂x i where a ij and b i are constants, but since X 0 has bounded length it follows that a ij = 0 for all i, j = 1, . . . , r proving that X 0 is a linear combination of ∂/∂x 1 , . . . , ∂/∂x r each of which is a Killing vector field on M 0 , we thus conclude that X 0 is Killing. By the previous remarks, X is a Killing vector field on M .

If M is a compact Riemannian manifold then the length of any vector field is bounded, therefore: Corollary 3.0.4 (Yano's Theorem). Let (M, , ) be a compact Riemannian manifold with Levi-Civita connection ∇. Then Aff(M, ∇) 0 = Isom(M, , ) 0 .
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  [a, b] -→ M one can define a map τ γ a,b : T γ(a) M -→ T γ(b) M by the formula τ γ a,b (v) = V (b) where V ∈ Γ(γ -1 T M ) is the parallel transport of v along γ (relative to ∇). It is clear that this map is linear since V is a solution of a system of linear ordinary differential equations, furthermore: Proposition 3.0.1. (1) τ γ a,b does not depend on the orientation-preserving parametrization of the curve γ. (2) Denote γ 1 := γ |[a,t0] and γ 2 := γ |[t0,b] i.e γ = γ 1 * γ 2 , then:

( 1 )

 1 & (3)-Choose a diffeomorphism ϕ : [c, d] -→ [a, b] and put α = γ • ϕ. Let V be the parallel transport of v ∈ T γ(a) M along γ and W := V • ϕ. Next, write:

  v). This ends the proof. These properties allows to extend the definition of τ γ a,b for piecewise smooth curves γ : [a, b] -→ M by setting:

  γ is a contractible loop based at x 0 }, which is obviously a subgroup of the holonomy group since concatenation and inverse of contractible loops remains contractible. It is also straightforward to see that Hol x0 (M, ∇) is normal in Hol x0 (M, ∇). Theorem 3.0.1. Let M be a smooth manifold and ∇ a linear connection on M . The holonomy group Hol x0 (M, ∇) possesses the structure of an (immersed) Lie subgroup of GL(T x0 M ) and Hol x0 (M, ∇) = Hol x0 (M, ∇) 0 .
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 303 Let M = M 0 × • • • × M k bethe de Rham decomposition of a complete, simply connected Riemannian manifold (M, , ).Then: