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Structure-based computational protein design (CPD) refers
to the problem of finding a sequence of amino acids which
folds into a specific desired protein structure, and possi-
bly fulfills some targeted biochemical properties. Recent
studies point out the particularly rugged CPD energy land-
scape, suggesting that local search optimization methods
should be designed and tuned to easily escape local min-
ima attraction basins. In this paper, we analyze the per-
formance and search dynamics of an iterated local search
(ILS) algorithm enhanced with partition crossover. Our al-
gorithm, PILS, quickly finds local minima and escapes their
basins of attraction by solution perturbation. Additionally,
the partition crossover operator exploits the structure of
the residue interaction graph in order to efficiently mix so-
lutions and find new unexplored basins. Our results on
a benchmark of 30 proteins of various topology and size
show that PILS consistently finds lower energy solutions
compared to Rosetta fixbb and a classic ILS, and that the
corresponding sequences are mostly closer to the native.
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1 | INTRODUCTION

Proteins are responsible for a wide range of vital functions in all living organisms, such as cell signaling, transport, reg-
ulation, defense against pathogens and catalysis of various chemical reactions. By exploiting the relationship between
the sequence of amino acids of a protein, its three-dimensional structure, and its function, it is possible to engineer
new proteins for various applications in health, environment and bio-nanotechnologies [1, 2, 3, 4, 5]. The need for ef-
ficient computational protein design (CPD) methods emerged from the fact that it is impossible to experimentally test
all possible protein sequences corresponding to a target protein structure. CPD therefore aims at finding a sequence
of amino acids which folds into a target three-dimensional protein structure using purely in silico methods. It can be
formalized as a combinatorial optimization problem where variables are amino acid conformations at each sequence
position and where an energy function capturing interactions between amino acids within a target three-dimensional
structure is to be minimized [6]. In the most common representation, the energy function is pairwise decomposable,
the variables take their values in a discrete set of preferred amino acid side chain nature and orientations, and the
backbone of the target structure is fixed. Under these assumptions, the CPD problem has been proven to be NP-hard
[7]. For this reason, most CPD methods rely on stochastic optimization. For example, the widely used molecular
modeling suite Rosetta relies on a simulated annealing algorithm [8]. Other existing methods rely on evolutionary
algorithms such as genetic algorithms [9] or estimation of distribution algorithms [10]. Along with local search meth-
ods, exact and deterministic methods which can provably identify the global minimum of the energy function (global
minimum energy conformation, GMEC) also exist [11]. The state-of-the-art here relies on Cost Function Networks
algorithms [12, 13], and has recently been extended to optimize sequences for one or several protein states at the
same time [14]. It is available as an open source software under the name of “POMP d ”. In addition to providing access
to the protein sequence of lowest energy, POMP d , which relies on the constraint programming solver ToulBar2 [15],
is able to exhaustively enumerate all protein sequences within a threshold to the global minimum. Using this ability, a
recent fitness landscape analysis around the optimum of CPD problems showed that the structure of CPD problems
can prevent simulated annealing from approaching the GMEC [16]. Indeed, the number and depth of local minima on
CPD problems requires simulated annealing methods to accept several unfavorable local moves in a row in order to
escape local minima. As a result, the search often get stuck with infinitesimal chances of finding the GMEC. Besides
this, it has also been shown that the gap between the best solution found with simulated annealing and the GMEC
increases with the length of the target proteins. It is thus crucial to develop new local search methods which could
shrink this gap once POMP d hits the complexity barrier of NP-hardness and cannot provide the GMEC anymore. A
careful analysis of CPD fitness landscapes put in evidence that local search methods with high exploration abilities
would be more suitable. Here, we study the performance of iterated local search algorithms (ILS) [17]. ILS is an iter-
ated process of steepest descent and random solution perturbations. The steepest descent ensures to reach a local
minimum, and the perturbation is used to jump off its attraction basin with the hope of reaching a lower local minimum
after the next steepest descent. ILS algorithms can be augmented with a so-called partition crossover, which can mix
two solutions together by taking advantage of the problem structure, in order to reach better local minima. This kind
of algorithms, mixing iterated local search and partition crossover, has already demonstrated good performance for
pseudo-boolean optimization [18].

In this paper, we show the benefits of using explorative local search methods on CPD problems. We generalize
partition crossover to combinatorial optimization, combine it with an ILS in a new algorithm that we named PILS, and
compare the performances with Rosetta’s simulated annealing algorithm as implemented in the fixbb protocol and a
classical ILS on a benchmark of 30 protein targets.
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2 | MATERIALS AND METHODS

2.1 | Energy function

Definition.
Under the assumption that the protein backbone is fixed, the CPDproblem can bemodeled by only taking into account
the effects of the side chain orientation and nature at each residue position. Using this representation, the energy of
the system can be decomposed as a sum of unary and binary terms capturing respectively interactions between one
residue and the environment and interactions between pairs of residues. The total energy depends on the side chain
nature and orientation of each residue in the protein. The continuous space of side chain orientations is discretized by
using libraries of statistically preferred orientations called rotamers [19] for every possible amino acid. One solution
to the CPD problem is thus represented as a rotamer assignment for all residues in the protein. The energy function
is expressed in Equation 1, where x ∈ X represents a solution of length ` from the sequence/conformation space X
(which contains all possible rotamer assignments for a given protein structure), and where Ei and Ei j are respectively
unary and binary energy termswhose values are function of rotamer assignments at position xi (for Ei ) and at positions
xi ,xj (for Ei j ). G is the undirected interaction graph, whose edges represent all interactions between pairs of residues.

E (x ) =
∑̀
i=1

Ei (xi ) +
∑
(i ,j )∈G

Ei j (xi , xj ) (1)

In our experiments, we minimise the energy function beta_nov16, as provided by the Rosetta modeling software
[20].

Neighborhood.
Local search algorithms rely on the notion of neighborhood. In CPD,we define a neighbor of a solution as a, assignment
that differs at one position. The neighborhood relation N is defined as:

N(x ) = {x ′ ∈ X : dhammi ng (x , x ′) = 1}

where dhammi ng is the Hamming distance defined over residues: the distance is 1 if only one rotamer differs between
the two solutions. Let opi ,v (x ) = x ′ be such that [j , i , x ′

j
= xj , and x ′i = v . We have:

N(x ) = {opi ,v (x ) : i ∈ {1, . . . , ` }, v ∈ {1, . . . , ni } \ {xi }}

The size of the neighborhood is then |N | = ∑`
i=1 (ni − 1) = ∑`

i=1 ni − ` , where i is a variable index, ni is the domain
size of variable i (the number of available rotamers) and ` the number of variables.

Local update.
The time complexity to evaluate E (x ) can be reduced using incremental evaluation. Let l i = j | (i , j ) ∈ G be the set
of variables interacting with i .
Let δ (i ,v ) (x ) be the difference of energy between the neighbors x and opi ,v (x ) :

δ (i ,v ) (x ) = E (opi ,v (x )) − E (x )
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Only a few terms from Equation 1 are modified in order to compute δ (i ,v ) (x ) :

δ (i ,v ) (x ) = Ei (v ) − Ei (xi ) +
∑
j ∈l i

(Ei ,j (v , xj ) − Ei ,j (xi , xj ))

The time complexity of the incremental evaluation is then |l i |+1which is bounded by ` . This time complexity is linear
instead of quadratic using Equation 1.

The time complexity can be further reduced using double incremental evaluation. Similar to second derivative
computation, let be δ2(i ,v ) ,(k ,w ) (x ) the variation of δ (i ,v ) (x ) when x move to opk ,w (x ) .

δ2(i ,v ) ,(k ,w ) (x ) = δi ,v (opk ,w (x )) − δi ,v (x )

By definition, with x ′ = opk ,w (x ) ,

δ2(i ,v ) ,(k ,w ) (x ) = Ei (v ) − Ei (x
′
i ) − (Ei (v ) − Ei (xi )) +

∑
j ∈l i

[Ei ,j (v , x ′j ) − Ei ,j (x
′
i , x
′
j ) − (Ei ,j (v , xj ) − Ei ,j (xi , xj )) ]

δ2(i ,v ) ,(k ,w ) (x ) can be rewritten as:

δ2(i ,v ) ,(k ,w ) (x ) = Ei (xi ) − Ei (x
′
i ) +

∑
j ∈l i

[Ei ,j (xi , xj ) − Ei ,j (x ′i , x
′
j ) + Ei ,j (v , x

′
j ) − Ei ,j (v , xj ) ]

The computation complexity of δ2(i ,v ) ,(k ,w ) (x ) may look similar to that of δi ,v (x ) . However, according to the values of
i and k , some simplifications reduce the complexity. When i = k , then x ′

i
= w , and [j ∈ l i , x ′j = xj ,

δ2(i ,v ) ,(i ,w ) (x ) = Ei (xi ) − Ei (w ) +
∑
j ∈l i

[Ei ,j (xi , xj ) − Ei ,j (w , xj ) ]

This case is the worse case. The time complexity is the same as for δi ,v (x ) computation. When i , k , and k < l i , then,
x ′
i
= xi , and [j ∈ l i , x ′j = xj ,

δ2(i ,v ) ,(k ,w ) (x ) = 0

This case is the best case, and if |l i | is bounded, it is the most common case. The complexity is 0. When i , k , and
k ∈ l i , then, x ′i = xi , [j ∈ l i \ {k }, x

′
j
= xj ,

δ2(i ,v ) ,(k ,w ) (x ) = Ei ,k (xi , xk ) − Ei ,k (xi , x
′
k ) + Ei ,k (v , x

′
k ) − Ei ,k (v , xk )

In this case, the time complexity to compute δ2(i ,v ) ,(k ,w ) (x ) is only 3 operations.

Overall, to update the δi ,v (x ) values for all neighbors (i ,v ) , the complexity is ( |l i | + 1) + 3 |lk |. |l i | and |lk | are
bounded by ` − 1 , the complexity of the update of all δ values is bounded by 4` , which is a linear complexity.
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2.2 | Algorithms

ILS.

Iterated Local Search consists in building a sequence of locally optimal solutions by iteratively perturbing the current
local minimum and applying a local search operator [17]. The ILS used in this work is given in Algorithm ??. The main
components of the algorithm are the perturbation operator and the local search operator. A perturbation of strength
k consists in randomly modifying the value of k variables in the solution. The local search operator used is a steepest
descent. This cycle of perturbations and local searches iterates while keeping track of the best solution until a limit
number of solution evaluations is reached, or if no improvement occurs in a predetermined number of iterations.

The steepest descent algorithm used as local search operator is given in Algorithm ??. Double incremental evalu-
ation is used to find the best neighbor at each iteration of the algorithm. A Binary Search Tree (BST) is used to select
one of the best neighbor with complexity O(log( |N |)) .

PILS.

The algorithm of PILS (see Algorithm 1) is built on the generic form of the ILS. It introduces a second perturbation
operator: the partition crossover. The partition crossover exploits the structure of the variable interaction graph in
order to efficiently mix two solutions [21]. A description of this crossover operator is presented in Algorithm ??. The
partition crossover operator takes two parent solutions as input. First, it removes from the interaction graph all edges
linking variableswith equal values in both solutions. These values are preserved in the child solution. Then, it evaluates
each parent solution on the set of connected components in the variable interaction graph. For each variable in each
connected component, the values from the best parent are used in the child solution. The main loop in PILS algorithm
generates two local minima solutions (sol 1 and sol 2) by perturbation and steepest descent. The two local minima
are then combined using partition crossover to produce a new solution. A local minimum is reached from this new
solution and stored in sol 1. The loop iterates until a limit number of evaluations is reached, or if no improvement
occurs in a predetermined number of iterations.

Algorithm 1 PILS algorithm
1: Inputs: emax : maximum number of "evaluations"

st eady_max : maximum number of evaluations without improvement
2: sol 1← random_init(sol 1)
3: sol 1← steepest-descent(sol 1), update(e t ot )
4: abor t ← F al se

5: repeat
6: sol 2← perturbation(sol 1, k )
7: sol 2← steepest-descent(sol 2), update(e t ot )
8: sol 1← partition-crossover(sol 1, sol 2)
9: sol 1← steepest-descent(sol 1), update(e t ot )

10: If no improvement in st eady_max iterations: abor t ← T rue

11: until e t ot ≥ emax or abor t
12: Output: sol 1 : best solution found
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Data availability.
The source code of PILS is freely available (https://forgemia.inra.fr/david.simoncini/pils). Datasets will be provided
upon request.

Ethics statement
Not applicable.

3 | RESULTS AND DISCUSSION

We evaluated the performance of PILS compared to ILS and Rosetta fixbb protocol on a benchmark of 30 proteins of
size ranging from 53 to 159 residues, representing all folding classes (α , β , α/β , α +β ). All calculations were run on the
high performance computing center of the University of Toulouse (CALMIP). Each method was run 100 times on each
protein target. All calculations were performed on Skylake 6140 CPUs on the HPC cluster CALMIP. The time needed
for Rosetta fixbb protocol to complete the benchmark was used as reference, and the stopping criterion of PILS and
ILS were calibrated in order to obtain comparable total CPU times. Rosetta fixbb protocol needed 9 days and 4 hours
to complete the benchmark, ILS needed 9 days and 16 hours, and PILS needed 8 days and 23 hours. Both ILS and
PILS were allowed 60,000 energy function evaluations per run. ILS and PILS runs were stopped if no improvement
was observed during respectively 1500 and 500 iterations. The perturbation strength was set to 2 for ILS and 1/3 of
the protein sequence length for PILS. The perturbation strengths are set differently for the two methods because of
their different nature: ILS uses perturbations in order to escape local minima whereas PILS needs diverse solutions
for efficient breeding with the crossover operator. In this section, we present a statistical analysis of each problem
instance, results in terms of energy minimization and native sequence recovery rates, and provide some statistics on
the search dynamics of PILS.

3.1 | Benchmark description and statistics

The PDB code and length of each protein in the benchmark, as well as main statistics extracted from the interaction
graph associated with each protein are shown in Table ??. These statistics reflect the topology of the proteins. The
neighborhood size, which is the cumulative number of rotamers at each position in the protein sequence, naturally
grows with the length of the proteins, as well as the number of links which sums up all edges in the interaction graph.
The average number of rotamers per position ( |N |/` ) remains stable, ranging from approximately 250 to 300. The
density of the interaction graph, computed as the number of edges in the graph divided by the number of possible
edges, tend to decrease with the length of the proteins. The average number of edges per residue grows with the
length, translating the fact that buried residues are more connected, and that the number of buried residues increases
with the length for globular proteins.

3.2 | Energy minimization

PILS performs consistently better than ILS and Rosetta fixbb in terms of energy minimization. Table 1 shows the
median energy and the best energy out of 100 runs for each method. The median energy achieved by PILS is sig-
nificantly better on all instances according to Mann-Whitney U test. Furthermore, the energy gap between median
values of PILS and respectively ILS and Rosetta fixbb seems to increase linearly with the size of the problems (see
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TABLE 1 Median and best performance of PILS, ILS and Rosetta. Solutions annotated with * are global optimum
proven by POMPd. Only best solutions of PILS are annotated since they are consistently superior to solutions from
other methods. For all targets, PILS systematically outperforms both other methods on median energy values
according to Mann-Whitney U test.

median best

Target PILS ILS Rosetta PILS ILS Rosetta

2erw -124.01 -123.42 -122.64 -124.01* -124.01 -123.82

2cmp -142.24 -140.24 -140.94 -143.75* -142.96 -142.71

1ku3 -147.03 -145.57 -145.35 -147.75 -147.5 -147.03

1f94 -159.67 -158.27 -157.85 -159.86 -159.86 -159.45

2cjj -144.74 -141.52 -141.03 -145.4* -144.93 -145.0

1orc -188.96 -188.03 -186.92 -189.27* -189.27 -189.14

1uoy -173.16 -171.99 -171.72 -173.16* -173.16 -173.16

4hcs -179.84 -178.65 -175.67 -180.02* -180.02 -179.9

1pgx -198.14 -194.27 -196.46 -198.21* -198.09 -197.88

1hoe -211.47 -208.45 -208.45 -211.75* -211.46 -210.78

3k3v -196.52 -190.56 -189.27 -196.63 -196.5 -194.57

1x3o -238.62 -235.08 -235.98 -239.17* -238.71 -238.08

2ckx -184.94 -179.86 -181.51 -186.77 -186.54 -186.09

1vjk -295.58 -290.88 -292.4 -295.65* -294.9 -295.42

1dsl -280.6 -271.88 -278.29 -281.39* -280.32 -281.31

1x6j -212.99 -207.89 -209.3 -213.09 -212.99 -212.27

1fna -268.79 -263.54 -264.73 -269.76* -267.65 -268.11

2yxm -307.3 -302.5 -304.92 -307.42* -307.13 -307.16

1cqy -302.06 -294.03 -297.8 -302.3* -302.04 -301.32

2pcy -299.02 -292.97 -294.9 -299.27* -298.91 -298.27

1fqt -355.78 -351.54 -351.9 -356.01* -355.84 -355.44

2a0b -322.85 -316.32 -316.35 -324.84 -324.07 -322.6

2pnd -377.85 -368.87 -372.04 -378.96 -378.18 -377.83

1mvo -361.06 -350.11 -351.73 -365.56 -364.06 -364.25

2qlc -373.0 -359.51 -361.81 -377.54 -372.07 -370.6

1aqt -423.93 -411.3 -416.34 -426.64 -422.5 -423.93

2z3v -409.61 -402.46 -403.89 -410.55 -408.85 -408.68

3f04 -414.42 -403.38 -409.53 -417.8 -415.01 -415.86

1tzv -420.67 -408.78 -414.38 -425.75 -422.26 -421.84

1z2u -411.05 -401.17 -402.31 -413.0 -411.51 -410.34
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Figure 1). The linear regression line has a steeper slope for the energy gap between PILS and ILS, but the same ten-
dency is observed in both cases. This result put in evidence the benefits of using PILS to solve difficult CPD problems.
When looking at the best energy values obtained for each method on each target, PILS either outperforms both other
methods or achieved equal performance. PILS and ILS find the same best value on 5 protein targets, PILS and Rosetta
fixbb on 1 protein target. In order to check where PILS stands in the energy landscape, we attempted to compute the
global optimum of the energy function for each target protein with POMPd [14]. POMPd could identify the GMEC on
18 instances out of 30 within a time limit of 100 hours. PILS reaches the GMEC on 16 instances out of 18 (indicated
with a star in Table 1), whereas ILS and Rosetta fixbbwere respectively able to locate the GMEC on 4 and 1 instances.
As pointed out in a previous study, the energy gap between sequences predicted with Rosetta fixbb and the GMEC
increases with the size of the problem [12]. PILS closes this gap on almost all instances for which the GMEC could be
found, showing that such enhanced iterative local search methods are preferable to simulated annealing for solving
CPD instances when the size of the problems prevent global optimization methods from returning the global optimum.
They could also speed up these global optimization methods by providing better initial upper bounds.

50 100 150 200 250 300
Problem compressed bitsize (in Mo)

0

2

4

6

8

10

12

14

En
er
gy

 g
ap

Gap between PILS and ILS
Gap between PILS and Rosetta

F IGURE 1 Gap between median energies achieved by PILS, ILS and Rosetta fixbb against compressed problem
size. Gap between PILS and ILS is shown in blue, gap between PILS and Rosetta fixbb is shown in orange. The size
of a problem is defined as the amount of bits needed to store the CPD residue interaction graph of a protein target
in compressed JSON format. The energy gap is computed as the difference in energy between the two median
values. Linear regression lines are plotted with same colors as data points.

3.3 | Native sequence recovery

Solutions returned by PILS are closer to the native sequences on average in comparison with ILS and Rosetta fixbb.
Native sequence recovery is a well-known and accepted measure for CPD in silico assessment. This test relies on
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TABLE 2 Mean native sequence recovery percentages for PILS, ILS and Rosetta. Statistically significant results
according to Mann-Whitney U test are in bold.

Target PILS ILS Rosetta Target PILS ILS Rosetta

2erw 53.86 52.61 51.8 1x6j 40.11 36.48 37.12

2cmp 38.19 38.61 37.14 1fna 41.98 37.77 37.52

1ku3 43.58 42.52 41.66 2yxm 47.61 46.24 46.42

1f94 37.27 34.94 34.84 1cqy 54.09 47.94 49.37

2cjj 39.97 36.74 37.41 2pcy 51.6 50.34 52.03

1orc 41.01 42.53 43.98 1fqt 56.79 53 52.89

1uoy 44 45.15 44.45 2a0b 38.69 35.99 37.81

4hcs 53.62 49.94 49.62 2pnd 39.68 37.99 39.3

1pgx 47.41 40.06 43.93 1mvo 44.99 42.76 42.3

1hoe 47.65 47.58 49.66 2qlc 46.72 42.97 45.1

3k3v 29.32 30.75 30.72 1aqt 44.91 41.05 44.49

1x3o 50.97 49.13 49.98 2z3v 50.12 48.93 50.61

2ckx 40.66 39.59 40.92 3f04 43.74 39.05 40.82

1vjk 62.69 58.14 60.94 1tzv 41.72 39.96 41.49

1dsl 43.07 41.9 45.6 1z2u 43.01 40.56 40.8

the relationship between protein sequence and structure: the more two sequences are similar, the more they tend to
fold into the same three-dimensional structure. Thus, if a computationally designed sequence is close to the native
sequence of the target structure, it has good chances of adopting the correct fold. Table 2 shows average native
sequence recovery rates over 100 runs for PILS, ILS and Rosetta fixbb on all protein targets. Significantly better
results according to Mann-Whitney U test are highlighted in bold. PILS outperforms other methods on 18 protein
targets out of 30, whereas ILS is better on 1 target and Rosetta fixbb is better on 5 targets. Mann-Whitney U test was
not conclusive for 6 protein targets. Putting these statistics in perspective with PILS results on energy minimization
(Table 1), sequences of lower energy are closer on average to native sequences. This suggests that the all atom energy
function developed by Rosetta has become accurate enough so that improved energy minimization is more beneficial
than sequence space sampling with simulated annealing.

3.4 | PILS search dynamics

Figure 2 (top) shows the average best solution per iteration on 100 runs for protein targets 2erw and 1z2u. These
two proteins are respectively the smallest and the largest in our benchmark. The slope of the curves is steep in the
first iterations, showing that PILS is able to quickly identify good solutions. The curve flatten a bit faster in the case
of 2erw, which is an easier target. In both cases, we observe that PILS converges to a minimum in less than 600
iterations.
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F IGURE 2 Average energy of the best solution per iteration on targets 2erw (top left) and 1z2u (top right).
Average number of connected components and successful partition crossovers per iteration on targets 2erw
(bottom left) and 1z2u (bottom right).

We then looked at the average number of connected components, and the average number of successful crossovers
on the same two protein targets (Figure 2, bottom). We consider a crossover as successful if it allows to reach a so-
lution with a lower energy than that of its two parent solutions. We observe different behaviors depending on the
protein target. The average number of connected components seems to be constant across iterations in both cases,
but is smaller in the case of 2erw. As a consequence, there are few successful crossovers in the first iterations and
no successful crossover happens after 50 iterations. In the case of 1z2u, the average number of connected compo-
nents is higher and allows more successful crossovers. Even though the frequency decreases with the iterations, the
crossover still has some impact near the end of the runs. 2erw is an easy target on which PILS and ILS could find the
global optimum. On this target, the iterated local search on its own is sufficient to quickly find good solutions. The
smaller number of connected components translate the fact that the search quickly focuses on the correct region
in the search space. It leaves no room for solution diversity which is essential for connected components to appear.
On the other side, 1z2u is the longest protein target, with the biggest neighborhood size (Table ??), and could be
considered as the most difficult target in the benchmark. In this case, the partition crossover in PILS helps finding
better solutions. PILS can be seen as a hybrid evolutionary algorithm with a population of two solutions, partition
crossover as a stochastic operator and ILS as a local search operator. From that perspective, increasing the size of
the population and defining an appropriate selection operator (selecting solutions for crossover so that the number of
connected components is maximized) would probably increase the number of successful crossovers, and as a conse-
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quence improve the performance of the algorithm. The local search operator can run independently on each solution
and could easily be parallelized to benefit from the computing power of high performance computing centers.

4 | CONCLUSION

Computational protein design has become a major tool in protein engineering and fundamental structural biology.
The massive amount of sequence data and the continuously growing number of structures in the Protein Data Bank
combinedwith nowadays computational resources and experimental validation techniques have greatly contributed to
our understanding of the determinants of protein designmodeling. Efficient optimization algorithms become crucial in
order to fully benefit from the increasing accuracy of energy functions and progress in protein designmodeling. Recent
findings on the properties of the energy landscapes describing CPD problems shed light on some misfit of classically
used local search optimization techniques such as simulated annealing. The energy landscapes appear particularly
rugged, and methods able to better escape local minima are needed.

The algorithm presented in this paper, PILS, combines an iterated local search algorithmwith a partition crossover
operator. This algorithm relies on a fast double incremental steepest descent algorithm and on a crossover which
exploits the structure of the residue interaction graph to find new solutions. Our results on a benchmark of 30 proteins
demonstrate the efficiency of PILS in terms of energy minimization and native sequence recovery. The energy gap
between PILS and the other tested methods increases linearly with the size of the problems. Additionally, PILS was
able to locate the GMEC on 16 out of 18 targets onwhich the global optimum could be proven by a global optimization
method. Solutions of better energy found by PILS often correspond to sequences having a higher sequence identity
with the native sequences. The role of the partition crossover has been identified as preponderant on difficult targets,
and could be used in a variety of parallel population-based optimization methods for computational protein design.
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