
HAL Id: hal-03298703
https://hal.science/hal-03298703v1

Submitted on 23 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strategic Reasoning with a Bounded Number of
Resources: the Quest for Tractability

Francesco Belardinelli, Stéphane Demri

To cite this version:
Francesco Belardinelli, Stéphane Demri. Strategic Reasoning with a Bounded Number of Resources:
the Quest for Tractability. Artificial Intelligence, 2021, 300, pp.103557. �10.1016/j.artint.2021.103557�.
�hal-03298703�

https://hal.science/hal-03298703v1
https://hal.archives-ouvertes.fr

Strategic Reasoning with a Bounded Number of Resources:
the Quest for Tractability

Francesco Belardinelli

Department of Computing, Imperial College London, UK

and Université Paris-Saclay, Univ Evry, IBISC, 91020, Evry-Courcouronnes, France

Stéphane Demri

Université Paris-Saclay, ENS Paris-Saclay, CNRS, LMF, 91190, Gif-sur-Yvette, France

Abstract

The resource-bounded alternating-time temporal logic RB±ATL combines strategic rea-
soning with reasoning about resources. Its model-checking problem is known to be 2ex-
ptime-complete (the same as its proper extension RB±ATL∗) and fragments have been
identified to lower the complexity.

In this work, we consider the variant RB±ATL+ that allows for Boolean combina-
tions of path formulae starting with single temporal operators, but restricted to a single
resource, providing an interesting trade-off between temporal expressivity and resource
analysis. We show that the model-checking problem for RB±ATL+ restricted to a sin-
gle agent and a single resource is ∆P

2 -complete, hence the same as for the standard
branching-time temporal logic CTL+. In this case reasoning about resources comes at
no extra computational cost. When a fixed finite set of linear-time temporal operators is
considered, the model-checking problem drops to ptime, which includes the special case
of RB±ATL restricted to a single agent and a single resource. Furthermore, we show that,
with an arbitrary number of agents and a fixed number of resources, the model-checking
problem for RB±ATL+ can be solved in exptime using a sophisticated Turing reduction
to the parity game problem for alternating vector addition systems with states (AVASS).

1. Introduction

Reasoning about resources with ATL-like logics. Reasoning about multi-agent systems
(MAS) – in which autonomous agents can interact and perform actions to reach (joint
or individual) goals – has benefited from the model-checking approach with the devel-
opment of ATL-like logics (see e.g., [1, 2]). In recent years, logic-based languages for
the specification and verification of the strategic behaviour of agents in MAS have been
the object of increasing interest amongst researchers applying formal methods to artifi-
cial intelligence. A wealth of logics for strategies have been proposed in the literature,

Email addresses: francesco.belardinelli@imperial.ac.uk (Francesco Belardinelli),
demri@lsv.fr (Stéphane Demri)

Preprint submitted to Elsevier June 27, 2021

including Alternating-Time Temporal Logic ATL [1], possibly extended with strategy
contexts [3], Coalition Logic [4], Strategy Logic [5, 6], among others. The expressive
power of these formalisms has been thoroughly studied, as well as the corresponding ver-
ification problems, thus leading to model-checking tools for concurrent game structures
and multi-agent systems [7, 8, 9, 10].

It is worth noticing that the computational models underlying these logic-based lan-
guages share a common feature: actions are normally modelled as abstract objects (typ-
ically a labelling on transitions) that bear no computational cost. However, if logics
for strategies are to be applied to concrete AI scenarios, it is key to account for the
resources that actions might consume or produce. These considerations have prompted
recently investigations in resource-aware logics for strategies [11, 12]. The need for man-
aging resources in MAS has been identified quite early and many logical formalisms
based on ATL have been introduced to endow actions with consumption or production
of resources [13, 14, 15, 16, 17]. Unsurprisingly, dealing with resources can lead to
high complexity, even undecidable model-checking problems, which is best illustrated
in [13, 15, 17]. For instance, the ATL-like logics introduced in [15] are quite rich and
general, but it is not obvious which features are to be restricted to regain decidability.
Still, decidable resource-aware logics have been identified, for instance by allowing only
resource consumption [18]. The challenge for years has been to design resource-aware
logics, general enough to allow consumption and production of resources, while having a
decidable model-checking problem, possibly low complexity, to allow the implementation
in model-checking tools.

From RB±ATL to RB±ATL∗. Early decidability results for the model-checking problem
for RB±ATL [16, 19] made use of a technique with high complexity (comparable to the
complexity of building Karp-Miller trees for Petri nets, see e.g. [20]). The logic RB±ATL
is a resource-aware logical formalism that extends ATL by endowing actions with the con-
sumption and production of resources [16]. In [12], its model-checking problem is shown
2exptime-complete by using subroutines to solve decision problems for alternating vector
addition systems with states (AVASS), see e.g., [21, 22, 23]. The 2exptime-completeness
has also been extended to RB±ATL∗, the extension of RB±ATL in which path formulae
are arbitrary LTL formulae, in the same way as the temporal logic CTL∗ extends CTL (see
[24, Chapter 7]). The 2exptime upper bound proof for RB±ATL∗ reveals to be a bit more
complex as it requires the determinisation of Büchi automata and a subroutine to solve
the parity game problem for AVASS [25], as well as a refined analysis of the complexity
function. Consequently, every logic syntactically between RB±ATL and RB±ATL∗ ad-
mits a 2exptime-complete model-checking problem and this also applies to RB±ATL+,
the extension of RB±ATL in which path formulae are arbitrary Boolean combinations
of LTL formulae of temporal depth one, in the same way as the temporal logic CTL+

extends CTL (see, e.g., [26]). Although the model-checking problem for CTL (resp. CTL+,
CTL∗) is known to be ptime-complete (resp. ∆P

2 -complete, pspace-complete) and the
one for ATL (resp. ATL+, ATL∗) ptime-complete [1] (resp. pspace-complete [27, 28],
2exptime-complete [1]), there is no difference in complexity for RB±ATL, RB±ATL+

and RB±ATL∗, as far as worst-case complexity is concerned.

Our motivation for the present contribution is threefold. Firstly, in the literature there
are several gaps in the results available for the decidability and complexity related to the

2

model-checking problem for RB±ATL [12]. For instance, if we assume two resources and
two agents in our multi-agent systems, then the model-checking problem for RB±ATL
is known to be pspace-hard [29] and in exptime [12, Cor. 1], but no tight complexity
result is available. Our long-term aim is to fill all such gaps eventually. Secondly,
while completing this picture, it is of interest to identify model-checking instances that
are tractable. Although the notion of tractable decision problem is open to discussion,
in the context of strategy and temporal logics a model-checking problem decidable in
polynomial time (in the size of the formula and the concurrent game structure) falls
certainly within the description, as it makes it amenable to implementation in a model-
checking tool. Thirdly, complexity results for resource-bounded ATL are proved by using
a wealth of different techniques, thus hindering a clear vision of the state of the art.
We aim at developing a unified framework based on general proof techniques. Vector
addition systems with states (VASS) and their alternating version (AVASS) are key
in this respect (see e.g. [20, 21]). Thus, our main motivation consists in reducing the
complexity gaps for many meaningful fragments of resource-bounded ATL, in identifying
fragments with tractable model-checking, and in proposing optimal algorithms. Finally,
we aim at developping proof methods based on counter machines, which happens to be
quite natural in view of the nature of the resources.

Let us develop these lines a bit more. When identifying fragments of RB±ATL∗
of tractable complexity, with the aim of implementing model-checking algorithms in
existing tools [8], it may happen that RB±ATL, RB±ATL+, and RB±ATL∗ have distinct
complexity when their fragments are considered, typically by restricting the number of
resources or the number of agents. It is commonly accepted that the design of suitable
fragments is essential to find a good compromise between the expressive power of the
logical language and the computational complexity of the reasoning tasks. That is why
the quest for subproblems of RB±ATL∗ obtained by limiting the temporal expressivity,
the class of concurrent game structures, or the number of resources is important for
practical use. In this paper, we study specifically the complexity of the model-checking
problem for RB±ATL+ (strict syntactic fragment of RB±ATL∗) restricted to a bounded
number of resources, with a special attention to the case of a single resource. The
same approach is also adopted for RB±ATL restricted to a single resource. It is worth
noting that as the path formulae in CTL+ (as well as in ATL+ and in RB±ATL+) are
Boolean combinations of LTL formulae of temporal depth one, this provides a generic
and natural way to design linear-time constraints. Surprisingly, this specific viewpoint
considering fragments of RB±ATL+ happens to be fruitful, not only for the identification
of interesting fragments of lower complexity, but also in terms of proof techniques to
solve the model-checking problem (see Section 4).

Our contribution. Based on the logics RB±ATL and RB±ATL∗ studied in [12] and for
which the respective model-checking problems are 2exptime-complete, we identify trac-
table fragments and lower the worst-case complexity for other fragments. Details follow.

1. We introduce the logic RB±ATL+, similarly to the way ATL+ (resp. CTL+) ex-
tends ATL (resp. CTL). We prove that the model-checking problem for RB±ATL+

restricted to a single agent and to a single resource is ∆P
2 -complete (Theorem 11).

The ∆P
2 upper bound combines ingredients for model-checking CTL+ with pro-

cedures in ptime for decision problems for vector addition systems with states

3

(VASS) [20] restricted to a single counter, newly introduced in this paper. Since
CTL+ model-checking is also ∆P

2 -complete [30], we observe that the enhanced ex-
pressivity provided by reasoning about a single resource comes at no extra compu-
tational cost.

2. Related to point 1, we introduce the new generalised control-state reachability
problem for VASS and show it to be in ptime when restricted to VASS with one
counter (1-VASS) (Theorem 10). The same problem with an unrestricted number
of counters can be easily shown to be expspace-complete, but its ptime subprob-
lem with one counter is instrumental to get the above-mentioned ∆P

2 -completeness
result. This ptime upper bound for the generalised control-state reachability prob-
lem for 1-VASS is partly based on the complexity results for the state-reachability
and nontermination problems in VASS with a single counter. As regards the latter
problems, [31] handles the boundedness problem in a way that can be adapted for
the nontermination problem and [32, Section 3.3] actually handles state-reachability
for 1-VASS. In Section 3.2, we provide a uniform treatment (see Theorems 7 and 8)
while introducting a few minor necessary updates to the proof of [31, Theorem 3.4].
Hence, we believe that this part of the paper can be considered as self-standing
contributions allowing us to design a fine-tuned algorithm to solve the generalised
control-state reachability problem restricted to 1-VASS.

3. We prove that model-checking RB±ATL is ptime-complete when we reason about
a single resource and a single agent. In the paper, this is done in two ways. First,
we show the ptime upper bound when the model-checking problem for RB±ATL+

is restricted to a single resource, a single agent, and a finite set of linear-time
operators (Theorem 15). RB±ATL is then just a special case. The second method
shows the ptime upper bound directly by using polynomial-time algorithms for the
state-reachability and nontermination problems in VASS with a single counter as
well as the ptime lower bound from CTL model-checking (see Section 5.2). Since
we show that this setting is tantamount to the Computation Tree Logic CTL with
a single resource (Theorem 19), our result means that we can reason about a single
resource in CTL too at no extra computational cost.

4. Furthermore, we generalise point 1 by showing that the model-checking problem for
RB±ATL+ restricted to r resources (for a fixed r) can be solved in exptime (The-
orem 13) by reduction to the parity game problem for AVASS [25]. Remarkably,
the number of locations in the target AVASS is exponential in the input size, which
makes a substantial difference w.r.t. what is done in [12] for RB±ATL∗, where the
number of locations is double exponential. Hence, the model-checking problem for
RB±ATL+ restricted to one resource is pspace-hard (inherited from ATL+ [27, 28])
and in exptime. Apart from the complexity results that improve our understand-
ing of fragments of RB±ATL∗, we present reductions to the parity game problem
for AVASS that can be of interest for their own sake.

Related Work. Resource-aware formalisms have a well-established tradition in math-
ematical logic, dating back at least to the work on substructural logics [33, 34, 35].
Hereafter we focus specifically on the several ATL-like formalisms that have been put for-
ward in recent years, which are characterized by endowing actions with the consumption

4

or production of resources [11, 13, 14, 15, 16, 17]. In this line of research, a remark-
able breakthrough occurred with the design of the logic RB±ATL, with production (+)
and consumption (−) of resources, whose model-checking problem was shown decidable
in [16]. Subsequently, fragments of RB±ATL have been designed with relatively low
complexity (see, e.g., [36, 19]).

In the same line, [37] considers Resource Agent Logic (RAL), which extends ATL to
verify properties of systems where agents act under resource constraints. Unlike RB±ATL,
in RAL the agents do not necessarily re-equip their resources whenever new strategies
are considered and resources are allowed to be updated based on actions taken by agents
from the opponent coalition. In [37], the authors review existing (un)decidability results
for fragments of RAL with unbounded production and consumption of resources, tighten
some existing undecidability results, and identify several aspects which affect decidability
of model-checking, including the availability of a ‘do nothing’, or idle action.

Similary, in [12] the authors revisit decidability results for resource-aware logics, with
the notable difference of leveraging on decision problems for vector addition systems with
states (VASS), in order to establish complexity characterisations of (decidable) model-
checking problems. In particular, they show that the model-checking problem for the logic
RB±ATL is 2exptime-complete by using recent results on alternating VASS [21, 25]. We
refer to Tables 2–4 in Section 2 for a detailed list of the complexity results proved therein.
Similarly to [12], in the present contribution we still leverage on VASS, but differently
from [12, 37] we provide complexity results also for the extension RB±ATL+ of RB±ATL.
Moreover, our results do not rely on the availability of an idle action, differently from [37].

Finally, in [36] the authors give a symbolic model-checking algorithm for the 1RB±ATL
fragment of RB±ATL that allows only one resource type. They evaluate the performance
of an implementation of the algorithm on an example problem that can be scaled to
large state spaces. Here, we do not tackle the problem of efficient implementation of the
decision procedures we provide.

For a thorough discussion of the current state of the art in resource-bounded ATL,
we refer to the survey paper [11].

Structure of the paper. The rest of the paper is structured as follows. In Section 2 we
present the syntax and semantics of resource-bounded alternating-time temporal logic.
In particular, we define the logic RB±ATL∗ and its fragments RB±ATL+ and RB±ATL,
we outline the state of the art on their model-checking problems, as well as the novel
results we prove. In Section 3 we introduce some background notions on vector addi-
tion systems with states (VASS), specifically for the case of a single counter. For these
1-VASS, we define the nontermination and generalised reachability problems, which are
used to provide a unified framework to solve the model-checking problem for RB±ATL+

in Section 4, where we first consider the case of a single agent and a single resource
(Section 4.1), and then the case for a fixed number r of resources (Section 4.2). Finally,
in Section 5 we present some notable extensions of our results, specifically to a bounded
number of temporal operators (Section 5.1) and to the fragment RB±ATL (Section 5.2).
In Section 5.3, we provide a comparison with the logic RBTL from [13, 38]. In short,
RBTL can be understood as the variant of RB±ATL using only the full set of agents or
the empty set as coalitions. We conclude in Section 6 by pointing to future lines of work.

Previous work by the same authors. This paper is a complete and extended version of

5

the conference articles [39] and [40] by the same authors. However, we added several
original contributions. In particular, the results pertaining to point 3 above, about the
model-checking problem for RB±ATL+ restricted to a single resource, a single agent, and
a fixed finite set of linear-time operators, are all new and did not appear in [39, 40].
Furthermore, the paper presents full proofs and extensive discussion of results and proof
techniques, pointing to possible future extensions and applications.

2. Resource-Bounded Alternating-time Temporal Logics

The presentation below for resource-bounded alternating-time temporal logics follows
closely [12, 39, 40]. In the rest of the paper, N (resp. Z) is the set of natural numbers
(resp. integers) and for m,m′ ∈ Z, [m,m′] is the set {j ∈ Z | m ≤ j ≤ m′}. For a finite
or infinite sequence w ∈ X∗ ∪Xω of elements in some given set X, we write wi or w[i]
for the (i + 1)-th element of w, i.e., w = w0w1 For i ≥ 0, w≤i = w0w1 . . . wi is the
prefix of w of length i+ 1, while w≥i = wiwi+1 . . . is the suffix of w starting at position
i. The length of a (finite or infinite) sequence w ∈ Xω ∪ X∗ is denoted as |w|, where
|w| = ω for w ∈ Xω.

2.1. The logic RB±ATL∗ and its fragments

To specify the strategic properties of agents in resource-bounded multi-agent systems,
we present the logic RB±ATL∗ as well as its fragments RB±ATL+ and RB±ATL, which
are resource-aware extensions of the alternating-time temporal logics ATL∗, ATL+, and
ATL respectively, introduced in [16, 41] to explicitly account for the production and
consumption of resources by agents. In the rest of the paper, we assume a countably
infinite set AP of atomic propositions (or atoms). Given a finite non-empty set Ag of
agents and a number r ≥ 1 of resources (often called “resource types” in the literature),
we write RB±ATL∗(Ag, r) to denote the resource-bounded logic with agents from set Ag
and r resources.

Syntax. The models of RB±ATL∗(Ag, r) and its fragments are resource-bounded concur-
rent game structures (see a formal introduction in Definition 3) in which transitions are
labelled by tuples of actions of length |Ag|, each agent performing one action. A notion
of computation arises naturally as an infinite sequence of consecutive states.

Definition 1 (RB±ATL∗). The state formulae φ and path formulae Ψ in the logic
RB±ATL∗(Ag, r) are built according to the following BNF grammar:

φ ::= p | ¬φ | φ ∧ φ | 〈〈A~b〉〉Ψ
Ψ ::= φ | ¬Ψ | Ψ ∧Ψ | XΨ | ΨUΨ

where p ∈ AP, A ⊆ Ag, and ~b ∈ (N ∪ {ω})r.
By RB±ATL∗(Ag, r) formulae, by default we understand all and only the state for-

mulae.

Similarly to the temporal logic CTL∗, the syntax of RB±ATL∗(Ag, r) distinguishes
state formulae (interpreted on states) from path formulae (interpreted on computa-

tions). The main feature of RB±ATL∗(Ag, r) are state formulae of the form 〈〈A~b〉〉Ψ,
6

where A ⊆ Ag is a coalition (set of agents), Ψ is a path formula defining a property on

computations, and ~b is an initial budget, i.e., a r-tuple over N ∪ {ω}, understood as a
quantity for each resource type, where the value ω accounts for an infinite supply of the

respective resource. Roughly speaking, 〈〈A~b〉〉Ψ is read as “the coalition A of agents has

a joint strategy implementable with budget ~b such that all the computations respecting
that strategy satisfy the linear-time property Ψ”. The initial budget is relevant as in
resource-bounded concurrent game structures, actions come with resource consumption

and production. In particular, the operator 〈〈A~b〉〉 quantifies over all computations such
that the resource counters are non-negative provided the initial budget and the cost of ac-

tions in the relevant strategy. It is worth noting that a formula 〈〈A~b〉〉Ψ is interpreted as a
property that alternates one existential quantification (over strategies) and one universal
quantification (over computations), similarly to what is done in ATL [1].

The linear-time operators next X and until U from LTL have their standard readings;
the propositional connectives ∨, ⇒, and the temporal operators eventually F and always

G are introduced as usual. The dual operator [[A
~b]] is introduced as [[A

~b]]Ψ
def
= ¬〈〈A~b〉〉¬Ψ

(in RB±ATL∗(Ag, r), path formulae are closed under negation, but this does not hold for
all its fragments).

Now let us introduce the fragments RB±ATL+(Ag, r) and RB±ATL(Ag, r) that are,
along the lines of the definition of CTL+ and CTL from CTL∗.

Definition 2 (RB±ATL+ and RB±ATL). State formulae in RB±ATL+(Ag, r) are ob-
tained from the BNF grammar for RB±ATL∗(Ag, r) by restricting path formulae as fol-
lows:

Ψ ::= ¬Ψ | Ψ ∧Ψ | Xφ | φUφ

Similarly, state formulae in RB±ATL(Ag, r) are obtained from the BNF grammar for
the logic RB±ATL∗(Ag, r) by restricting path formulae as follows:

Ψ ::= Xφ | φUφ | Gφ

Notice that Gφ is usually introduced as a shortcut for ¬(>U¬φ) in RB±ATL+, but
it has to be assumed as a primitive symbol in RB±ATL.

The logics RB±ATL+(Ag, r) and RB±ATL(Ag, r) introduce increasing restrictions on
the form of path formulae Ψ as goals in the scope of strategic operators. In RB±ATL(Ag, r)
only simple goals of the form Xφ, φUφ, and Gφ are allowed. In RB±ATL+(Ag, r), we
can also have Boolean combinations thereof. Finally, RB±ATL∗(Ag, r) allows any com-
bination of linear-time operators as temporal goals. We will see that the increased
expressivity has an impact on the complexity of the corresponding model-checking prob-
lems. We write RB±ATL∗(r) to denote the set of formulae in RB±ATL∗(Ag, r), for some
fixed non-empty set Ag of agents. Similar definitions are used for RB±ATL+(r) and
RB±ATL(r).

Semantics. We interpret the formulae in RB±ATL∗ (and therefore RB±ATL+ and RB±ATL)
by using resource-bounded concurrent game structures [42, 12], i.e., concurrent game
structures endowed with a weight function that assigns an integer to every action (here-
after understood as a gain).

7

Definition 3 (RB-CGS). A resource-bounded concurrent game structure is a tuple
M = 〈Ag, r, S,Act, act, wf, δ, L〉 such that

• Ag is the finite, non-empty set of agents (by default Ag = [1, k] for some k ≥ 1);

• r ≥ 1 is the number of resources;

• S is a finite, non-empty set of states;

• Act is a finite, non-empty set of actions;

• act : S ×Ag → (℘(Act) \ ∅) is the protocol function;

• wf : S×Ag×Act→ Zr is the (partial) weight function; that is, for s ∈ S, a ∈ Ag,
and a ∈ Act, wf(s, a, a) is defined only when a ∈ act(s, a);

• δ : S × (Ag → Act) → S is the (partial) transition function such that δ is defined
for a state s and a joint action f : Ag → Act only if for every agent a ∈ Ag,
f(a) ∈ act(s, a);

• L : AP→ ℘(S) is the (partial) labelling function.

Intuitively, a resource-bounded CGS describes the interactions of a group Ag of
agents, who perform the actions in Act according to the protocol function act. The
execution of a joint action f : Ag → Act generates a transition in the system, as specified
by the transition function δ. Moreover, on each transition the values of the r resources
are updated according to the weights wf of the joint action. Definition 3 excludes the
case with no resource types (r = 0) because in this paper we emphasize the use of re-
sources. However, by convention, having zero resource types in RB-CGS corresponds to
the standard concurrent game structures from [1]. It is worth noting that in Definition 3
we do not assume the existence of an idle action (with zero weight), which was first
introduced in [16, 19] and it is often advantageous in terms of computational complexity
(see, e.g. [37, 12]). In this paper we do not rely on the action idle to establish our
complexity results, but of course, nothing prevents us from having such a distinguished
action in our instances of the model-checking problem. The only exception for which we
require the existence of the idle action is in Section 5.2. Indeed, the existence of such
an action with no effect on resources allows us to extend computations from any state,
which is helpful for solving control-state reachability problems.

An RB-CGS M is finite whenever L is restricted to a finite subset of AP. The size
|M | of a finite RB-CGS M is the size of its encoding when integers are encoded in binary
and maps and sets are encoded in extension using a reasonably succinct encoding. All
the complexity results in the paper are about upper bounds. Using a binary encoding
for integers, which is the common practice in computer science, usually requires a bit
more efforts than a unary encoding. In this work, conciseness of the binary encoding for
integers does not lead to substantial difficulties when proving complexity upper bounds.

Now, we provide the necessary notions to interpret our languages on resource-bounded
CGS. Given a coalition A ⊆ Ag and a state s ∈ S, a joint action available to A in s
is a map f : A → Act such that for every agent a ∈ A, f(a) ∈ act(s, a). The set of
all such joint actions is denoted as DA(s). Given joint actions f , g, we write f v g if

8

Dom(f) ⊆ Dom(g), and for every agent a ∈ Dom(f), g(a) = f(a). For a joint action
f ∈ DA(s), out(s, f) is the set of immediate outcomes:

out(s, f)
def
= {δ(s, g) | for some g ∈ DAg(s), f v g}

Further, the weight of a transition from s by f (w.r.t. coalition A) is defined as

wfA(s, f)
def
=

∑
a∈A

wf(s, a, f(a))

A computation λ is a finite or infinite sequence s0
f0−→ s1

f1−→ s2 . . . such that for all
0 ≤ i < |λ| − 1 we have si+1 = δ(si, fi).

To provide a formal semantics to the strategic operator 〈〈A~b〉〉 based on RB-CGS, we
need a notion of resource-bounded strategy.

Definition 4 (Strategy). A (memoryful) strategy FA for the coalition A is a map

from the set of finite computations to the set of joint actions of A such that FA(s0
f0−→

s1 . . . sn−1
fn−1−−−→ sn) ∈ DA(sn).

A computation λ = s0
f0−→ s1

f1−→ s2 . . . respects the strategy FA iff for all i < |λ| − 1,

si+1 ∈ out(si, FA(s0
f0−→ s1 . . . sn−1

fi−1−−→ si)).

A computation λ that respects FA is maximal if it cannot be extended further while
respecting FA. Therefore, maximal computations starting in state s and respecting FA
are infinite, and we denote the set of all such maximal computations by Comp(s, FA).

Given a bound ~b ∈ (N ∪ {ω})r and a computation λ = s0
f0−→ s1

f1−→ s2 . . . in Comp(s, FA),

let the resource availability ~vi at step i ∈ N be defined as: ~v0 = ~b and for i ≥ 0,
~vi+1 = wfA(si, fi) +~vi (assuming n+ω = ω for every n ∈ Z). Then, λ is ~b-consistent iff

for all i ∈ N, we have ~vi ∈ (N∪{ω})r. A ~b-strategy FA with respect to s is a strategy such

that all the maximal computations in Comp(s, FA) are ~b-consistent. In particular, this
means that resource quantities are non-negative along the corresponding computations. If
~b[i] = ω, we actually have an infinite supply of the i-th resource, thus not constraining the
behaviour of agents with respect to that particular resource and effectively disregarding
what happens about it. Since the resource availability depends only on the agents in
coalition A, this is called the proponent restriction condition (see, e.g., [17, 12]). This
asymmetry between the proponent and the opponent coalitions is particularly helpful to
guarantee decidability of the model-checking problem, though resources can be produced
or consumed by the proponent coalition. The introduction of such a condition in [17] is
strongly motivated with the goal of getting decidable model-checking problems.

Definition 5 (Satisfaction). Given a state s ∈ S, an infinite computation λ, an atom
p ∈ AP, a state formula φ and a path formula Ψ in RB±ATL∗, the satisfaction relation
|= is defined as follows:

(M, s) |= p iff s ∈ L(p)
(M, s) |= ¬φ iff (M, s) 6|= φ
(M, s) |= φ1 ∧ φ2 iff (M, s) |= φi for i ∈ {1, 2}

9

(M, s) |= 〈〈A~b〉〉Ψ iff for some ~b-strategy FA w.r.t. s,
for all computations λ ∈ Comp(s, FA), (M,λ) |= Ψ

(M,λ) |= φ iff (M,λ[0]) |= φ
(M,λ) |= ¬Ψ iff (M,λ) 6|= Ψ
(M,λ) |= Ψ1 ∧Ψ2 iff (M,λ) |= Ψi for i ∈ {1, 2}
(M,λ) |= XΨ iff (M,λ≥1) |= Ψ
(M,λ) |= ΨUΨ′ iff for some i ≥ 0, (M,λ≥i) |= Ψ′, and

for all 0 ≤ j < i, (M,λ≥j) |= Ψ

Clearly, the alternating-time temporal logics ATL∗, ATL+, and ATL can be seen as
syntactic fragments of RB±ATL∗, RB±ATL+, and RB±ATL respectively. In particular,
the unindexed strategic operator 〈〈A〉〉 can be expressed as 〈〈A~ω〉〉. In order to stick to
the definition of the original version of RB±ATL in [16] (see also [12]) – as well as to
provide more flexibility to the specification language – we keep the bound ω, but the
way to handle it consists in reducing the dimension (i.e., eliminating the components
where it appears, as it does not bring any quantitative constraint), which can be easily
performed.

Remark. In the case of a single agent, that is, for Ag = {1}, in our languages we only

have modalities 〈〈Ag~b〉〉 and 〈〈∅~b〉〉, as well as duals [[Ag
~b]] and [[∅~b]], for ~b ∈ (N ∪ {ω})r.

By Definition 5, the meaning of these operators is as follows:

(M, s) |= 〈〈∅~b〉〉Ψ iff for every computation λ from s, (M,λ) |= Ψ

(M, s) |= [[∅~b]]Ψ iff for some computation λ from s, (M,λ) |= Ψ

(M, s) |= 〈〈Ag~b〉〉Ψ iff for some ~b-consistent computation λ from s, (M,λ) |= Ψ

(M, s) |= [[Ag
~b]]Ψ iff for every ~b-consistent computation λ from s, (M,λ) |= Ψ

Notice that the semantics of operators 〈〈∅~b〉〉 and [[∅~b]] corresponds to the meaning
of the universal (A) and existential (E) path quantifiers in CTL∗, where the weights
in the RB-CGS are ignored because of the proponent restriction condition. Hence,
RB±ATL∗({1}, r) can be thought of as a resource-bounded version of CTL∗ with r re-
sources. In Section 5.3, we show that RB±ATL∗ for the single agent case is basically
equivalent to a different resource-bounded logic RBTL∗ introduced in [38]. �

We illustrate the formal machinery introduced so far, particularly the single-agent
case, with two AI-oriented examples.

Example 1. We consider a scenario in which a rover is exploring an unknown area. At
any time the rover can choose between two modes: either it moves around or it recharges
its battery through a solar panel, but it cannot do both things at the same time. Moving
around consumes one energy unit at every time step, whereas the rover can recharge of
one energy unit at a time. Switching between these modes also requires one energy unit.

This simple scenario can be modelled as the resource-bounded CGS

M = 〈{rover}, 1, {s1, s2}, {move, recharge, switch}, act, wf, δ, L〉

depicted in Fig. 1, where in particular:

• act(s1, rover) = {move, switch} and act(s2, rover) = {recharge, switch};
10

s1 s2move : −1 recharge : +1

switch : −1

switch : −1

Figure 1: the resource-bounded CGS in Example 1.

• wf(s1, rover, move) = wf(s1, rover, switch) = wf(s2, rover, switch) = −1 and
wf(s2, rover, recharge) = +1;

• δ(s1, move) = s1, δ(s1, switch) = s2, δ(s2, recharge) = s2, and δ(s2, switch) = s1;

• AP = {moving} and L(moving) = {s1}.

Even in such a simple scenario with a single agent, we can express interesting proper-
ties such as “no matter what the rover does, at any time it has a strategy, with an initial
budget of b energy units, such that it will eventually be moving”. This specification can
be expressed as

[[{rover}ω]]G(〈〈{rover}b〉〉Fmoving) (1)

It is worth noting that formula (1) is not in RB±ATL but the next formula is. I.e., it is
easy to check that (1) above is logically equivalent to the following formula:

¬〈〈{rover}ω〉〉F¬(〈〈{rover}b〉〉Fmoving).

In Section 5.1 and 5.2 we show that specifications such as (1), concerning a single
agent and a single resource, can be efficiently verified in ptime. a

Here is another example, tailored to illustrate the expressive power of RB±ATL+

formulae.

Example 2. We consider a scenario in which two drones, d1 and d2, have to deliver
two parcels to addresses (X1, Y1) and (X2, Y2) on a [−m,m]2 grid for some m > 0. We
assume that they both start from location (0, 0). At any time, each drone can choose
between two modes: either it moves in one of the four directions (N, S, E, W) or it recharges
its battery through a solar panel (charge), but it cannot do both actions at the same
time. Moving around consumes one energy unit at every time step; whereas the drone
can recharge one unit at a time. Each drone can carry one parcel at a time, and they
can only pick them up from location (0, 0).

This scenario can be modelled as a resource-bounded CGS

M = 〈{d1, d2}, 1, [−m,m]2 × [−m,m]2, {N, S, E, W, charge}, act, wf, δ, L〉

where in every state s, for i ∈ {1, 2} and Di ∈ {N, S, E, W}:

• act(s, di) = {N, S, E, W, charge};

• wf(s, di, Di) = −1 and wf(s, di, charge) = +1;

11

• δ(((x1, y1), (x2, y2)), (D1, D2)) = ((x′1, y
′
1), (x′2, y

′
2)), where (x′i, y

′
i) is obtained from

(xi, yi) by decrementing/incrementing either xi or yi depending on Di. Notice that
on the frontier, movement in some directions is assumed to have no effect.

Similarly for δ(((x1, y1), (x2, y2)), (D1, charge)) and δ(((x1, y1), (x2, y2)), (charge, D2)).

Moreover, δ(s, (charge, charge)) = s.

• AP = {charge1, charge2, del1, del2} and L(deli) = {(Xi, Yi)}, while a state is la-
belled with chargei if drone di has charged as previous action (we can keep track
of this information with an extra bit of memory in the system state).

Even in such a simple scenario we can express interesting strategic properties in
RB±ATL+({d1, d2}, 1). Consider a budget b = max{(|X1| + |Y1|), (|X2| + |Y2|)} that
allows any drone d to deliver a single parcel to the farthest address. We can check that
in location ((0, 0), (0, 0)) the following formulae are true:

1. With budget b, every drone di, for i ∈ {1, 2}, can deliver parcel 1 and can deliver
parcel 2, without charging in the meantime:

〈〈{di}b〉〉(¬chargeU del1) ∧ 〈〈{di}b〉〉(¬chargeU del2) (2)

2. With budget 2b, neither drone can deliver both parcel 1 and 2, without charging
in the meantime (recall that drones have to pick parcels in location (0, 0)):

¬〈〈{di}2b〉〉((¬chargeU del1) ∧ (¬chargeU del2)) (3)

3. Nonetheless, with budget 2b, the drones can cooperate to deliver both parcels,
without charging in the meantime:

〈〈{d1, d2}2b〉〉((¬chargeU del1) ∧ (¬chargeU del2)) (4)

Notice that formula (2) belongs to RB±ATL, but we make use of Boolean combinations
of goals and the expressivity of RB±ATL+ to formalize (3) and (4). a

2.2. The model-checking problem: state of the art

Hereafter L is a (possibly trivial) fragment of RB±ATL∗, typically RB±ATL, RB±ATL+

or RB±ATL∗, or some of its restrictions. In the sequel, we consider the following decision
problem.

Definition 6 (Model-checking). Let M be a finite RB-CGS with Ag = [1, k] and r
resources for some k, r ≥ 1, and let s be a state in M . Let φ be a formula in a logic L
built over Ag and r resources. The model-checking problem amounts to decide whether
(M, s) |= φ.

Given a logic L, we write MC(L) to denote the corresponding model-checking prob-
lem. Below, we summarize known complexity results for subproblems of MC(L), when
L is either RB±ATL∗, RB±ATL+, or RB±ATL, obtained by bounding the number k of
agents and r of resources. We also identify the contributions made in this paper.

12

r\|Ag| ∞ ≥ 2 1
∞ 2exptime-c. [12, Th. 2 and 3] expspace-c. [12, Th. 4]
≥ 4 exptime-c. [12, Cor. 1] [21] (†) in pspace [12, Cor. 2]
3 in exptime [12, Cor. 1] (†) pspace-h. [29]
2 pspace-h. [29]

1
in pspace [19, Th. 2] (†) in ptime (Cor. 2)
ptime-h. (from ATL) ptime-h. (from CTL)

Figure 2: Complexity of model-checking RB±ATL(Ag, r). Results proved in this paper are in boldface.

2.2.1. Complexity of MC(RB±ATL) and fragments

In Figure 2, we summarize the main complexity results available in the literature for
RB±ATL(Ag, r). The ptime upper bound in boldface was originally presented by the
authors in [39], herein we provide the full proofs (see Sections 4.2, 5.2 and 5.2). It is
worth noting that all the results are known to hold in the presence of the release operator
R instead of the always operator G, except for the pspace upper bound from [19, Th. 2]
(for which further investigations would be needed). The symbol ‘∞’ corresponds to the
case when either r or |Ag| is unbounded. By contrast, ‘≥ n’ means that the number
of either resources or agents is fixed, but greater than n. Moreover, some of the results
assume the existence of an idle action (roughly, it has no effect on resources, but it
can be choosen anytime by any agent). This assumption does not impact on the lower
bounds, but it can make a difference for the upper bounds. We write ‘(†)’ to indicate
that the corresponding result is proved under the assumption of the idle action in the
cited work (though further investigations might show that even without the idle action,
the complexity upper bound is preserved).

We now discuss briefly the main results in Figure 2. For an unbounded number of
resources and at least two agents, the model-checking problem is known to be 2exptime-
complete. This result follows from Theorem 2 (upper bound) and Theorem 3 (lower
bound) in [12]. When restricted to a single agent, the same problem becomes expspace-
complete [12, Th. 4].

For a fixed number of resources greater or equal than four and at least two agents,
the model-checking problem is exptime-complete. The upper bound follows from [12,
Cor. 1], while the lower bound derives from the complexity of the control-state reacha-
bility problem for alternating VASS [21], which can be simulated by using at least two
agents only [12, Th. 3]. Further, for a fixed amount of resources greater or equal than
two, and at least two agents, the model-checking problem is in exptime [12, Cor. 1].
In the case of a single agent, the same problem is in pspace [12, Cor. 2]. Moreover,
it is pspace-hard in both cases, as we can reduce to it the control-state reachability
problem for 2-VASS, which is pspace-complete [29]. It is worth noting that in [12], all
the RB-CGS are assumed to admit an idle action.

Finally, in the case of a single resource, the problem is known to be in pspace
in general [19, Th. 2]. We observe that the case of a single resource can also capture
situations in which r > 1 resources can be converted into a unique resource (e.g., money),
possibly with different rates. Under the extra restriction of a single agent, model-checking
is in ptime, which is our theoretical contribution in Section 5.1 based on results in

13

r\|Ag| ∞ ≥ 2 1
∞ 2exptime-c. [12, Th. 2 and 3] expspace-c. [12, Th. 4]

≥ 4
in exptime (Th. 13)

exptime-h. [12, Th. 2 and 3]
pspace-c [12, Cor. 2] [27]

3
2 in exptime (Th. 13)

1
pspace-h. (from ATL+ [27]) in ∆P

2 (Th. 11)
∆P

2 -h. (from CTL+ [30])

Figure 3: The complexity of model-checking RB±ATL+(Ag, r). Results proved in this paper are in
boldface.

r\|Ag| ∞ ≥ 2 1
∞ in 2exptime [12, Th. 7] expspace-c. [12, Th. 8]
≥ 1 2exptime-h. (from ATL∗) in pspace ([12, Cor. 2] & Th. 19)

pspace-h. (from CTL∗)

Figure 4: The complexity of model-checking RB±ATL∗(Ag, r). Results proved in this paper are in
boldface.

Section 4.2 (see also Section 5.2).
It is therefore ptime-complete as the CTL model-checking problem is already ptime-

hard (see, e.g. [43, 24]). The characterisation of the complexity for one resource and
at least two agents is still open: currently, neither the proof of the ptime upper bound
in Section 5.2, nor the pspace-hardness results from [44] and [45, Sect. 5] could be
advantageously used to close this complexity gap.

2.2.2. Complexity of MC(RB±ATL+) and fragments

As regards RB±ATL+ (see Figure 3), for an unbounded number of resources we have
the same complexity results as for RB±ATL: 2exptime-completeness for at least two
agents, and expspace-completeness in the single-agent case. Also, for a single agent, the
problem is pspace-complete when considering at least two resources, just like RB±ATL.
In this paper we provide the full proof that for single-agent, single-resource RB±ATL+,
the model-checking problem is ∆P

2 -complete. This result was originally stated in [40].
In the case of at least two agents, the model-checking problem is here proved to be in
exptime for a bounded number of resources. This result gives a tight complexity bound
in the case of at least four resources, which is already known to be exptime-hard [12,
Cor. 1]. In all other cases there are no matching lower bounds, the problem is only known
to be pspace-hard from ATL+ [27].

2.2.3. Complexity of MC(RB±ATL∗) and fragments

Unlike RB±ATL and RB±ATL+, tight complexity bounds are known for all variations
of RB±ATL∗ on the number of agents and resources (see Figure 4). For at least two
agents, the model-checking problem is 2exptime-complete. The upper bound comes
from [12, Th. 7], whereas the lower bound follows from the 2exptime-hardness of ATL∗,
which is proved by using two agents only [1]. On the other hand, the problem restricted to

14

a single agent becomes expspace-complete for an unbounded number of resources [12,
Th. 8]; while for a bounded number r, model-checking RB±ATL∗({1}, r) is pspace-
complete: the lower bound follows immediately from the pspace-hardness of the model-
checking problem for CTL∗; as for the upper bound, we derive it from the fact that
model-checking RBTL∗ is in pspace [12, Cor. 2] and Theorem 19.

3. Decision Problems on 1-VASS

In this section, we present several decision problems for vector addition systems with
states restricted to one counter (1-VASS) and we establish their ptime upper bound.
These results are most relevant to analyse the complexity of the model-checking prob-
lems for RB±ATL and RB±ATL+ restricted to a single resource and a single agent.
Indeed, the restriction to a single agent entails that the strategy modalities state the
existence of specific runs in 1-VASS. After recalling the main notions about VASS and
1-VASS, we present the nontermination and control-state reachability problems, and we
introduce the new generalised control-state reachability problem. In particular, we prove
that MC(RB±ATL+({1}, 1)) is ∆P

2 -complete (see Section 4.1) by using instances of this
new generalised reachability problem on 1-VASS. We show that when restricted to a
single counter, the new generalised control-state reachability problem can be solved in
ptime, thus generalising Theorems 3.3 and 3.5 from [39]. It is worth noting that the
nontermination and control-state reachability problems are actually subproblems of the
generalised problem. Nevertheless, their study and introduction have a two-fold motiva-
tion. Solving such problems is useful to solve the generalised problem and in particular to
obtain the ptime upper bound when restricted to 1-VASS. Moreover, in Section 5.2, we
present a polynomial-time algorithm for MC(RB±ATL({1}, 1)) based on instances of the
nontermination and control-state reachability problems, which we believe it is promising
to obtain an efficient implementation, besides the fact that we are able to provide a
self-contained version of the algorithm. Still, computational improvements are expected
by taking advantage of the recent algorithmic results presented in [46].

3.1. Background on Vector Addition Systems with States

A vector addition system with states (VASS) [20] is a structure V = 〈Q, r,R〉, where Q
is a finite set of locations (a.k.a., control states), r ∈ N is its dimension (also understood
as its number of counters), R is a finite set of transitions in Q×Zr×Q. A configuration
in a VASS V is a pair 〈q, ~x〉 ∈ Q × Nr. Note that the counter values are required to be

non-negative. Given configurations 〈q, ~x〉, 〈q′, ~x′〉 and a transition t = q
~u−→ q′, we write

〈q, ~x〉 t−→ 〈q′, ~x′〉 whenever ~x′ = ~u + ~x. A run is defined as a sequence ρ = 〈q0, ~x0〉
t1−→

〈q1, ~x1〉
t2−→ 〈q2, ~x2〉 · · · of configurations, where 〈q0, ~x0〉 is the initial configuration. A run

ρ is simple if no control state appears twice. A finite path is a sequence of contiguous
transitions t1 . . . tk. It is worth stressing that paths do not take into account counter’s
values associated with transitions, while runs do. A simple path is a finite sequence of
contiguous transitions t1 . . . tk such that no control state occurs more than once. Hence,
every finite run has an induced path but not every configuration 〈q, ~x〉 can trigger a path
leading to a run because the counter values have to be non-negative A simple loop is a
sequence of contiguous transitions t1 . . . tk such that the first control state of t1 is equal
to the second control state of tk (and it occurs nowhere else) and no other control state

15

occurs more than once. An r-VASS is a VASS with r ≥ 1 counters. By convention, a
0-VASS is a finite directed graph. In Figure 5, we present a graphical representation
of a VASS with a single counter. The value on each edge corresponds to the update
tuple/value.

VASS are known to be equivalent to Petri nets for many behavioural properties, which
is particularly interesting, as Petri nets are ubiquitous computational models to handle
concurrency. A famous result states that the reachability problem for Petri nets (and
therefore for VASS) is decidable [47, 48, 49]. It has been the subject of the book [50]
and its original proof requires many non-trivial steps involving graph theory, logic, and
the theory of well-quasi-orderings. Nevertheless, the exact complexity of the reachabil-
ity problem was open for decades: we know it is expspace-hard from [51], but non-
elementarity has been shown only recently [52]. In this paper, we mainly deal with
reachability questions for 1-VASS. So, the decision problems we consider are much more
manageable than the general case with an arbitrary number of counters.

3.2. Nontermination and control-state reachability for 1-VASS

In order to show that the model-checking problem for the logic RB±ATL({1}, 1)
is ptime-complete (the lower bound is inherited from ptime-hardness of CTL model-
checking, see e.g. [43, 24]), we establish that two well-known decision problems on vector
addition systems with states (VASS), when restricted to a single counter, can be solved
in polynomial time. We provide formal proofs below as it will be also useful to design
algorithms, see Section 5.2. Besides, an energy problem equivalent to CREACH(1-VASS)
introduced below is shown in ptime in [32]. We begin by presenting two standard de-
cision problems on VASS that play a crucial role in solving the model-checking problem
for RB±ATL({1}, 1) and RB±ATL+({1}, 1).
Control-state reachability problem CREACH(VASS):

Input: a VASS V , a configuration 〈q0, ~x0〉, and a control state qf .

Question: is there a finite run with initial configuration 〈q0, ~x0〉 and with final config-
uration with state qf?

Nontermination problem NONTER(VASS):

Input: a VASS V and a configuration 〈q0, ~x0〉.

Question: is there an infinite run with initial configuration 〈q0, ~x0〉?

In order to solve these problems, we need a few more definitions. In a 1-VASS, a
simple loop is positive if the cumulated effect is positive. Given a run ρ = 〈q0, x0〉, . . . ,
〈qk, xk〉, . . . and α ≥ 0, we write ρ+α to denote the sequence 〈q0, x0 + α〉, . . . , 〈qk, xk +
α〉, If ρ is a run, the sequence ρ+α is also a run (it is important to note that VASS
have no zero-tests). The following lemma provides a characterisation of runs ending in a
distinguished final state for 1-VASS.

Lemma 1. Let V be an 1-VASS, 〈q0, x0〉 an initial configuration, and qf a location.
There is a finite run from 〈q0, x0〉 to the configuration 〈qf , xf 〉, for some xf ≥ 0, iff (1)
either q0 = qf , or

2. there is a simple run 〈q0, x0〉, . . . , 〈qk, xk〉 with k > 0 and qk = qf ; or
16

q0

q1

q2

q3

q4

q5 qf

q6 q7

+3

+4

−8

−7

−3

−2100

+1

0

+5−1
Witness runs and path for (V , 〈q0, 7〉, qf):

initial run: 〈q0, 7〉, 〈q2, 11〉, 〈q3, 4〉

“> 0 loop”: 〈q3, 4〉, 〈q5, 1〉, 〈q4, 6〉, 〈q3, 5〉

final path: q3
−3−→ q5

−2100

−−−→ qf

Figure 5: Witness runs and path from Lemma 1(3)

3. we have that

(a) there is a simple run 〈q0, x0〉, . . . , 〈qn, xn〉,

(b) there is a positive simple loop t1 . . . tβ such that 〈qn, xn〉
t1...tβ−−−→ 〈qn, xn + α〉 is

a run (α > 0),

(c) there is a simple path starting at qn and ending at qf .

Note that in Lemma 1(3), without loss of generality, we can asssume that n+β ≤ |Q|.
As an illustration of Lemma 1(3), Figure 5 presents a 1-VASS V , and witness runs and
path for the positive instance (V, 〈q0, 7〉, qf) of CREACH(1-VASS). By contrast, the
configuration 〈q0, 5〉 cannot reach qf .

Proof. First, it is not difficult to check that if either (1), (2) or (3) holds, then there is a
finite run from 〈q0, x0〉 to a configuration 〈qf , xf 〉, for some xf ≥ 0. By way of example,

firing the strictly positive simple loop at least |Q| × max{|u| : q
u−→ q′ is a transition}

times, allows us to pursue the run following the path from qn to qf .
Conversely, let us suppose that ρ = 〈q0, x0〉, . . . , 〈qk, xk〉 is a run with qk = qf . If

q0 = qf , then the witness run can be reduced to 〈q0, x0〉. Otherwise, either ρ is a
simple run and condition (2) holds, or there are 0 ≤ i < j ≤ k such that qi = qj .
In case xi ≥ xj , the subrun 〈qi, xi〉, . . . , 〈qj , xj〉 can be removed from ρ while leading
to a run reaching qf . Typically, the suffix subrun 〈qi, xi〉, . . . , 〈qj , xj〉, . . . , 〈qk, xk〉 with
ρ† = 〈qj , xj〉, . . . , 〈qk, xk〉 is replaced by ρ+α

† for α = xi − xj . Such a transformation can
be performed as soon as the subruns correspond to the application of simple loops with
negative effect. Hence, without loss of generality, we can assume that ρ has no loop with
negative effect.

If ρ is not a simple run, there are 0 ≤ I < J ≤ |Q| such that qI = qJ and xI < xJ .
We assume that I is minimal and we pick then a minimal J . Consequently,

(a) there is a simple run 〈q0, x0〉, . . . , 〈qI , xI〉;

(b) there is a strictly positive simple loop tI . . . tJ−1 such that 〈qI , xI〉
tI ...tJ−1−−−−→ 〈qI , xI +

(xJ − xI)〉;

(c) there is a path from qJ to qk = qf such that 〈qJ , xJ〉, . . . , 〈qk, xk〉 is a run. Indeed,

suppose that 〈qJ , xJ〉
tJ ···tk−1−−−−→ 〈qk, xk〉. Let t′1 · · · t′l be the path obtained from

tJ · · · tk−1 by removing simple loops as much as possible. So, t′1 · · · t′l is a simple
path from qJ to qk.

17

As a result, condition (3) is satisfied and the lemma holds. �
The characterisation in Lemma 1 can be turned into an algorithm running in poly-

nomial time that is used as a routine in the algorithm presented in Section 5.2.

Theorem 7. The problem CREACH(1-VASS) is in ptime.

Proof. Let V be an 1-VASS, 〈q0, x0〉 an initial configuration, and qf a location. If
q0 = qf , we are done. Otherwise, define values maxvaliq for i ∈ [0, |Q|] and q ∈ Q such
that if there is a run 〈q0, x0〉, . . . , 〈qj , xj〉 with qj = q and j ≤ i, then the maximal
value xj among all these runs is precisely maxvaliq. When there is no such run, by

convention maxvaliq = −∞. Similar values have been considered to solve the boundedness
problem for 1-VASS in [31]. Note also that [32, Section 3.3] shows that an energy problem
equivalent to CREACH(1-VASS) can be solved in ptime by using a similar approach,
but with slightly different objects. Let us compute the values maxvaliq:

• maxval0
q0

def
= x0 and maxval0

q
def
= −∞ for all q 6= q0.

• For all q and i+ 1 ∈ [1, |Q|],

maxvali+1
q

def
= max(maxvaliq, {maxvaliq′ + u ∈ N | q′ u−→ q is a transition}).

The values maxvaliq can be computed in polynomial time in the size of V (the number
|Q| of locations being an essential parameter as well as the maximal absolute value |u|
from updates – integers being written in binary). One can show that maxvaliq is indeed
the maximal value as specified above. The proof is by induction on i. The base case
for i = 0 is obvious and for the induction step, suppose that for all j ≤ i and q ∈ Q
maxvaljq is the maximal counter value reaching q from 〈q0, x0〉 in at most j steps. Let us

characterize the value maxvali+1
q , which is either the maximal value reached in at most i

steps (i.e., equal to maxvaliq by IH), or it is reached in exactly i+1 steps and is therefore

a value of the form maxvaliq′ + u with some transition q′
u−→ q. This is precisely the way

maxvali+1
q is computed above.

Given q ∈ Q, let Cq be the condition: there are a simple run 〈q0, x0〉, . . . , 〈qn, xn〉 with

qn = q, and a positive simple loop t1 . . . tβ such that 〈q, xn〉
t1...tβ−−−→ 〈q, xn+α〉 is a run with

α > 0, β > 0 and n+β ≤ |Q|. Note that (3) from Lemma 1 is equivalent to the existence
of some q ∈ Q such that Cq holds and there is a simple path from q to qf . Moreover,

observe that maxval
|Q|
qf 6= −∞ implies (2) or (3) and that (2) implies maxval

|Q|
qf 6= −∞.

One can show that Cq is equivalent to there being I < J ≤ |Q| such that:

(a) maxvalIq 6= −∞.

(b) maxvalIq < maxvalJq and auxval0
q < auxvalJ−Iq , where the values auxvaliq′ (i ∈

[0, J − I], q′ ∈ Q) are defined as follows (similarly to what is done for maxvaljq′):

– auxval0
q

def
= maxvalIq and auxval0

q′
def
= −∞ for all q′ 6= q.

– For all q′ and i+ 1 ∈ [1, J − I],

auxvali+1
q′

def
= max(auxvaliq′ , {auxvaliq′′ + u ∈ N | q′′ u−→ q′ is a transition}).

18

Consequently, Cq can be checked in polynomial time in the size of V . Hence there is a
finite run from 〈q0, x0〉 to the configuration 〈qf , xf 〉, for some xf ≥ 0 iff either qf = q0

or maxval
|Q|
qf 6= −∞ or there is q ∈ Q such that Cq holds and there is a simple path from

q to qf . Obviously, maxval
|Q|
qf 6= −∞ can be checked in ptime, for each q ∈ Q, Cq can

be checked in ptime too with the above characterisation. Finally, existence of a path
from q to qf is an instance of the standard graph reachability problem GAP that is in
nlogspace. So, CREACH(1-VASS) is in ptime. �

Remark. The values auxvaliq′ in the proof of Theorem 7 are necessary to guarantee

that the values maxvalIq and maxvalJq are obtained following a common subrun until

reaching the configuration 〈q, maxvalIq〉. In the proof of [31, Theorem 3.4] for solving
the boundedness problem for 1-VASS in ptime, a similar argument was needed but was
missing. Here, we fix that result too with the help of the values auxvaliq′ . �

Now, let us turn to the characterisation of runs and paths witnessing nontermination.

Lemma 2. Let V be an 1-VASS and 〈q0, x0〉 an initial configuration. There is an infinite
run starting at 〈q0, x0〉 iff

1. there is a simple run 〈q0, x0〉, . . . , 〈qn, xn〉; and

2. there is a non-negative simple loop t1 . . . tk such that 〈qn, xn〉
t1...tk−−−→ 〈qn, xn + α〉 is

a run (α ≥ 0).

Proof. Clearly, the satisfaction of the two conditions implies that there is an infinite run
starting at 〈q0, x0〉: just consider the run generated by (t1 . . . tk)ω from the configuration
〈qn, xn〉. Let us prove the other direction, similarly to what is done in the proof of
Lemma 1. Suppose that ρ = 〈q0, x0〉, . . . , 〈qk, xk〉, . . . is an infinite run. Without loss
of generality, we can assume that ρ has no simple loop with negative effect. Unless (1)
and (2) hold, there are n ≥ 0 and q ∈ Q such that qn = q, {i ∈ N | qi = q} is infinite
and 〈q0, x0〉, . . . , 〈qn, xn〉 is a simple run. Consider some J > I such that qJ = qI = q
(such indices I and J necessarily exist). Obviously, there is a non-negative simple loop

tI . . . tJ−1 such that 〈qI , xI〉
tI ...tJ−1−−−−→ 〈qJ , xJ〉 is a run. Hence, both conditions in the

statement of the lemma hold. �
Once more, the characterisation in Lemma 2 can be turned into an algorithm to check

nontermination, running in polynomial time. Note also that in Lemma 2, without loss
of generality, we can asssume that n+ k ≤ |Q|.

Theorem 8. The problem NONTER(1-VASS) is in ptime.

The proof has similarities with the proof of Theorem 7 (it may even sound a bit
simpler), but there are a few subtle differences described below.

Proof. Let V be an 1-VASS and 〈q0, x0〉 an initial configuration. Define the values
maxvaliq for i ∈ [0, |Q|] and q ∈ Q such that if there is a run 〈q0, x0〉, . . . , 〈qi, xi〉 with
qi = q (with i transitions), then the maximal value xi among all these runs is precisely
maxvaliq. Note that these values are not the same as those from the proof of Theorem 7
as we consider runs of length exactly i. When there is no such run, by convention
maxvaliq = −∞.

19

• maxval0
q0

def
= x0 and maxval0

q
def
= −∞ for all q 6= q0.

• For all q and i+ 1 ∈ [1, |Q|],

maxvali+1
q

def
= max({maxvaliq′ + u ∈ N | q′ u−→ q is a transition, maxvaliq′ 6= −∞}).

By convention, the maximal value of the empty set is −∞.

All the values maxvaliq can be computed in polynomial time in the size of V . One can

show that maxvaliq is the maximal value as specified above. Finally, the characterisation

in Lemma 2 is equivalent to: there are q ∈ Q and I < J ≤ |Q| such that maxvalIq 6= −∞
and maxvalIq ≤ maxvalJq (this time, we do not require strictness, as in the proof of

Theorem 7) and auxval0
q ≤ auxvalJ−Iq , where the values auxvaliq′ (i ∈ [0, J−I], q′ ∈ Q)

are defined as

• auxval0
q

def
= maxvalIq and auxval0

q′
def
= −∞ for all q′ 6= q;

• for all q′ and i+ 1 ∈ [1, J − I],

auxvali+1
q′

def
= max{auxvaljq′′ + u ∈ N | j ≤ i, q′′ u−→ q′ is a transition}.

All conditions can be checked in polynomial time and therefore the nontermination prob-
lem for 1-VASS is in ptime. �

More about computational complexity. Though we have shown that both problems re-
stricted to 1-VASS are in ptime, the control-state reachability problem for VASS is ex-
pspace-complete in general [51, 53]. Despite the fact that the control-state reachability
problem is a subproblem of the covering problem that has been quite studied, including
variants (see, e.g., [54, 55, 56]), [32, Section 3.3] handles the state-reachability problem
for 1-VASS in ptime and the uniform treatment we provided for control-state reachability
and nontermination problems are the building blocks to design a tailor-made algorithm
to solve the generalised control-state reachability problem restricted to 1-VASS. Above,
we provided formal arguments for tractability by appropriately tuning and correcting
the proof technique dedicated to the boundedness problem for 1-VASS from [31]. Note
also that in [57], the updates in the branching VASS (BVASS) are restricted to the set
{−1, 0,+1} (see [57, Def. 1]). Therefore the upper bound in [57] does not extend to
our present case where updates are arbitrary integers encoded in binary. When updates
are arbitrary integers encoded in binary (as done herein), the relevant problems for 1-
BVASS are known to be pspace-complete [45]. In the recent paper [46], new results
about 1-VASS and extensions have been shown. For instance, the control-state reach-
ability problem for 1-VASS is shown in NC (subclass of ptime made of problems that
can be solved in polylogarithmic parallel time), which is an improvement with respect
to ptime. Similarly, this problem for 1-VASS augmented with disequality tests is shown
in ptime [46]. The algorithm leading to the NC upper bound might be helpful to boost
further the algorithm provided in Section 5.2.

20

3.3. Generalised control-state reachability for 1-VASS

Now, we present a new decision problem on VASS that plays a crucial role in de-
ciding the model-checking problem for RB±ATL+({1}, 1). Before doing so, let us recall
some helpful property about MC(RB±ATL+({1}, 1)): verifying (M, s) |= 〈〈{1}b〉〉Ψ with
a single agent in M , amounts to check the existence of an infinite computation λ starting
from s, with initial budget b ∈ N, satisfying Ψ. This latter requirement can be reformu-
lated using the 1-VASS that can be constructed from M . Assuming that Ψ is a Boolean
formula in negation normal form (NNF) built over atoms of the form X p or pU q, the sat-
isfaction of Ψ on λ amounts to guess which atomic formulae in Ψ hold, and then to check
that the guess is correct. As ¬(pU q) is logically equivalent to G¬q∨(¬qU¬p∧¬q), ¬X p
is logically equivalent to X¬p, and X and G distributes over ∧, guessing which atomic
formulae in Ψ hold amounts to guess a conjunction of the form

XC0 ∧ GC ′0 ∧ (C1 UC
′
1) ∧ · · · ∧ (Cn UC

′
n)

for some n ∈ N, where the Ci’s and C ′j ’s are arbitrary conjunctions of literals. The
conjunct XC0 can be checked at the first step, and handling GC ′0 can be performed by
restricting the model to states satisfying C ′0. The satisfaction of the atomic path formulae
from the above conjunction (modulo the logical equivalences cited above) would make Ψ
true propositionally. More precisely, let us define a natural satisfaction relation.

Definition 9. Let Ψ be a positive Boolean combination of atomic path formulae of the
form C UC ′, XC and GC, where C and C ′ are conjunctions of literals and X be a
finite set of atomic formulae of the form C UC ′, XC or GC. We define the satisfaction
relation X |= Ψ based on the standard clauses below (which can be read as the conjunction
of the atomic path formulae from X makes Ψ true propositionnally):

X |= C UC ′ iff C UC ′ ∈ X
X |= XC iff XC ∈ X
X |= GC iff GC ∈ X
X |= Ψ′1 ∨Ψ′2 iff X |= Ψ′1 or X |= Ψ′2
X |= Ψ′1 ∧Ψ′2 iff X |= Ψ′1 and X |= Ψ′2

Indeed,
∧

Φ∈X Φ⇒ Ψ is valid, whenever X |= Ψ. So, assuming that X |= Ψ, we can
write

∧
Φ∈X Φ as a conjunction of the form

XC0 ∧ GC ′0 ∧ (C1 UC
′
1) ∧ · · · ∧ (Cn UC

′
n)

since (XC ∧ XC ′)⇔ X(C ∧ C ′) and (GC ∧ GC ′)⇔ G(C ∧ C ′) are valid.
This clarification done, let us notice that the existence of an infinite computation λ

starting from s, with initial budget b ∈ N, satisfying the conjunction is equivalent to
the existence of an infinite run with positions satisfying C ′1, . . . , C ′n, while also impos-
ing constraints on the satisfaction of the Ci’s. There might be less than n distinct
distinguished positions, in which case some witness position may satisfy two distinct C ′i
and C ′j . Similarly, the ordering of positions satisfying respectively C ′1, . . . , C ′n may not
coincide with the ordering C ′1, . . . , C ′n. The definition of GREACH(VASS) below is
designed based on these observations.
Generalised control-state reachability problem GREACH(VASS):

21

Input: a VASS V , a configuration 〈q0, ~x0〉, a sequence 〈X1, h1〉, . . . , 〈Xα, hα〉 for some
α ≥ 0 such that X1 ⊆ · · · ⊆ Xα ⊆ Q and {h1, . . . , hα} ⊆ Q. We also assume that
|{q0} ∪ {h1, . . . , hα}| = α+ 1.

Question: is there an infinite run 〈q0, ~x0〉 −→ 〈q1, ~x1〉 −→ 〈q2, ~x2〉 · · · with indices 0 <
i1 < i2 < · · · < iα such that for all j ∈ [1, α], qij = hj and {qk | k < ij} ⊆ Xj?

The condition |{q0} ∪ {h1, . . . , hα}| = α + 1 could be removed leading also to a ptime
problem. However, it is included in our definition of GREACH(VASS) because, not only
it simplifies technical developments, but more importantly, it is exactly what is needed
in the proof of Theorem 11.

Here is an illustration of the witness run for α = 2.

{q0,...,qi1−1}⊆X1︷ ︸︸ ︷
〈q0, ~x0〉 · · · 〈qi1−1, ~xi1−1〉 −→ 〈qi1 , ~xi1〉 · · · 〈qi2−1, ~xi2−1〉︸ ︷︷ ︸

{q0,...,qi2−1}⊆X2 and X1⊆X2

−→ 〈qi2 , ~xi2〉 −→ · · ·

When α = 0, the question is about the existence of an infinite run from 〈q0, ~x0〉, which
can be solved in ptime for r = 1 by Theorem 8. Similarly, GREACH(VASS) restricted
to 0-VASS (i.e., GREACH(0-VASS)) is nlogspace-complete as the Graph Accessibility
Problem (GAP) can be reduced to it and the nlogspace upper bound can be established
by showing that a positive instance requires the existence of a path of length at most
|Q| × (α+ 2) whose constraints can be checked on-the-fly in nlogspace.

Lemma 3. GREACH(0-VASS) is nlogspace-complete.

Proof. An instance of GREACH(0-VASS) takes as input a finite graph V = 〈Q,R〉 with
R ⊆ Q × Q, q0 ∈ Q, a sequence 〈X1, h1〉, . . . , 〈Xα, hα〉 for some α ≥ 0 such that
X1 ⊆ · · · ⊆ Xα ⊆ Q and {h1, . . . , hα} ⊆ Q. The instance is positive iff there is an
infinite path q0 −→ q1 −→ q2 −→ · · · with indices 0 < i1 < i2 < · · · < iα such that for all
j ∈ [1, α], qij = hj and {qk | k < ij} ⊆ Xj .

The existence of such an infinite path is actually equivalent to the existence of a finite
path q0 −→ q1 −→ q2 −→ · · · −→ qN , with indices 0 = i0 < i1 < i2 < · · · < iα < N such
that for all j ∈ [1, α], qij = hj and {qk | k < ij} ⊆ Xj with the following additional
properties:

1. For j ∈ [0, α− 1], qij −→ · · · −→ qij+1
is a simple path.

2. For some β > iα, qiα −→ · · · −→ qβ is a simple path and qβ −→ · · · −→ qN is a simple
loop (whence, qN = qβ).

Consequently, N can be bounded by (α+ 2)|Q|. Solving GREACH(0-VASS) requires
to guess a path of length at most (α+ 2)|Q| and one can check on-the-fly that it satisfies
the relevant properties, whence the nlogspace upper bound. nlogspace-hardness is
by a straightforward reduction from the Graph Accessibility Problem (GAP). �

Unlike 0-VASS, the addition of counters forbids a similar reduction of an instance of
GREACH(VASS) to reachability questions on finite graphs.

Let V , 〈q0, ~x0〉 and 〈X1, h1〉, . . . , 〈Xα, hα〉 be an instance of GREACH(1-VASS).
When α > 0, one can show that the instance is positive iff either (A) or (B) below holds.

22

Before presenting conditions (A) and (B), let us introduce some useful notation. Given
an 1-VASS V = 〈Q, r,R〉 and Q′ ⊆ Q, we write V Q

′
to denote the 1-VASS 〈Q′, r, R′〉

such that V Q
′

is the restriction of V to Q′, i.e., R′
def
= {q u−→ q′ ∈ R | q, q′ ∈ Q′}. Here are

conditions (A) and (B).

(A) The following conditions hold:

(a) For all N ≥ 0, there is a run 〈q0, z0〉 · · · 〈qn, zn〉 with 〈q0, z0〉 = 〈q0, x0〉, qn =
h1, zn ≥ N , and {q0, . . . , qn−1} ⊆ X1.

(b) V ′, h1 and 〈X2, h2〉, . . . , 〈Xα, hα〉 is a positive instance of GREACH(0-VASS)
where V ′ is the directed graph underlying V (integers on transitions are simply
removed).

(c) There is a simple path from hα to some location q′ and there is a simple loop
from q′ with a non-negative cumulated effect.

(B) (a) above does not hold, and there is a simple run 〈q0, x0〉, . . . , 〈qk, xk〉 in V X1∪{h1}

with qk = h1 and V , 〈h1, xmax〉 and 〈X2, h2〉, . . . , 〈Xα, hα〉 is a positive instance
of GREACH(1-VASS) with xmax the maximal counter value for reaching h1 in
V X1∪{h1} among all the simple runs from 〈q0, x0〉.

We briefly explain why the characterisation is correct (details follow) and leads to
a ptime upper bound. If (a) holds, one can reach the control state h1 with a counter
value as large as we want. The constraints in (b) on the subsequence 〈X2, h2〉, . . . ,
〈Xα, hα〉 induce reachability questions in the underlying directed graph V ′. Similarly,
the contraints in (c) express two simple reachability properties including the existence of
a loop with non-negative cumulated effect. Otherwise, if (a) does not hold, the instance
is positive only if there is a run ρ = 〈q0, x0〉, . . . , 〈qk, xk〉 in V X1∪{h1} with qk = h1,
and V , 〈h1, xk〉 and 〈X2, h2〉, . . . , 〈Xα, hα〉 is a positive instance of GREACH(1-VASS).
However, if not (a), we can assume that ρ is a simple run and the best we can do is to
pick xk equal to the maximal counter value for reaching h1 among all the simple runs
from 〈q0, x0〉 visiting only states in X1. Checking (a), (b), and (c) can be done in ptime
(see Section 3.2). Similarly, computing xmax in (B) can be done in ptime too.

Let us recapitulate about complexity. As GREACH(0-VASS)) is in nlogspace,
checking (A) can be done in ptime. For checking (B), if (a) does not hold, then the
computation of xmax can be done in polynomial time. A recursive call to an instance of
GREACH(1-VASS) with a sequence strictly smaller allows us to get forthcoming Theo-
rem 10.

Lemma 4. Let V , 〈q0, x0〉 and 〈X1, h1〉, . . . , 〈Xα, hα〉 be an instance of GREACH(1-
VASS) with α > 0. It is a positive instance iff either (A) or (B) holds.

Proof. Let V , 〈q0, x0〉 and 〈X1, h1〉, . . . , 〈Xα, hα〉 be an instance of GREACH(1-VASS)
with α > 0. We show the following properties.

(I) If (A) holds, then the instance is positive.

(II) If (B) holds, then the instance is positive.

(III) If the instance is positive, then either (A) or (B) holds.

23

(I) Assume that (A) holds. By the satisfaction of (b) and (c), there is a path in V ′

(i.e., the underlying finite graph of V), say q′0 −→ q′1 −→ q′2 −→ · · · −→ q′L such that
q′0 = h1 and there are indices 0 < i2 < · · · < iα with for all j ∈ [2, α], q′ij = hj
and {q′k | k < ij} ⊆ Xj . Moreover, for some β > iα, q′iα −→ · · · −→ q′β is a sim-
ple path, q′β −→ · · · −→ q′L is a simple loop, with non-negative effect if read from V . If
q′0 −→ q′1 −→ q′2 −→ · · · −→ q′β corresponds to the path t1 · · · tβ and q′β −→ · · · −→ q′L cor-
responds to the simple loop tβ+1 · · · tL, the ω-sequence t1 · · · tβ · (tβ+1 · · · tL)ω can lead
(in V) to an infinite run from location h2 whenever the initial counter value is greater

than ||R|| × (α+ 2)|Q|, for ||R|| def
= max{|u| : q u−→ q′ ∈ R}. Indeed, once the sequence of

transitions t1 · · · tβ · tβ+1 · · · tL can be fired from some initial configuration 〈h1, n〉, the
non-negative effect of q′β −→ · · · −→ q′L allows us to visit the loop infinitely. Having n at
least equal to ||R|| × (α+ 2)|Q| allows us to be on the safe side (to maintain the counter
value non-negative), as each transition in t1 · · · tβ · tβ+1 · · · tL can decrement the counter
by at most ||R|| and L ≤ (α+ 2)|Q|. The satisfaction of (a) insures that location h1 can
be reached from 〈q0, x0〉 with a counter value greater than ||R|| × (α + 2)|Q| while pre-
serving the constraints on X1. The concatenation of the finite subrun leading to 〈h1, z〉
(thanks to (a)) followed by the infinite run from 〈h1, z〉 (thanks to (b),(c)) leads to an
infinite run witnessing that the instance is positive.

(II) Assume that (B) holds. (a) does not hold and the control state h1 can be reached
with a maximal value xmax while visiting only states from X1. Let 〈q0, x0〉, . . . , 〈qk, xk〉
be the run in V X1∪{h1} with qk = h1 and xk equal to xmax. As V , 〈h1, xmax〉 and
〈X2, h2〉, . . . , 〈Xα, hα〉 is a positive instance of GREACH(1-VASS), the concatenation of
〈q0, x0〉, . . . , 〈qk, xk〉 with the infinite witness run for that instance of GREACH(1-VASS)
leads to a witness run for the instance V , 〈q0, x0〉 and 〈X1, h1〉, . . . , 〈Xα, hα〉.

(III) Now suppose that V , 〈q0, x0〉 and 〈X1, h1〉, . . . , 〈Xα, hα〉 is a positive instance of
GREACH(1-VASS). Therefore, there is an infinite run 〈q0, x0〉 −→ 〈q1, x1〉 −→ 〈q2, x2〉 · · ·
with indexes 0 < i1 < i2 < · · · < iα such that for all j ∈ [1, α], qij = hj and {qk | k <
ij} ⊆ Xj .

We need to make a case analysis depending on whether (a) holds. Condition (a)
states that h1 can be reached from 〈q0, x0〉 with a counter value as great as desired,
while visiting only states from X1. If condition (a) does not hold, then there is a maximal
counter value xmax and a run 〈q′0, y0〉 · · · 〈q′n, yn〉 in V with 〈q′0, y0〉 = 〈q0, x0〉, q′n = h1,
yn = xmax, and {q′0, . . . , q′n−1} ⊆ X1. Necessarily, we have xmax ≥ xi1 . Let ρ be the

run 〈qi1 , xi1〉 −→ · · · −→ 〈qi2 , xi2〉 · · · . Obviously, ρ+(xmax−xi1) is also a run and actually
it is a witness for the instance V , 〈h1, xmax〉 and 〈X2, h2〉, . . . , 〈Xα, hα〉. Consequently,
condition (B) holds true.

In the case condition (a) holds, qi1 −→ qi1+1 −→ · · · (the projection on Q of the suffix
run 〈qi1 , xi1〉 −→ 〈qi1+1, xi1+1〉 −→ · · ·) is a witness run for the instance V ′, h1 and 〈X2, h2〉,
. . . , 〈Xα, hα〉 of GREACH(0-VASS). Similarly, the suffix path ρ′ = qiα −→ qiα+1 −→ · · · is
infinite (hα = qiα), and therefore some state q′ is repeated infinitely often. Consequently,
there is a simple path from hα to q′ and a simple loop from q′ to q′. It remains to show
that the loop can be choosen to be non-negative so that condition (c) holds.

Suppose that the run ρ′ contains only loops with negative effects. There is a location
q∞ that occurs infinitely often in the run, and therefore this leads to a contradiction as

24

N is well-founded (indeed any non-empty subrun starting by q∞ and ending by q∞ would
decrease strictly the counter value). Consequently, ρ′ contains a subrun ρ′′ = 〈qL, xL〉 −→
〈qL+1, xL+1〉 −→ · · · 〈qL′ , xL′〉 built over a non-negative loop and by removing from ρ′ the
subruns corresponding to a negative loop, we can assume that ρ′′ is built from a non-
negative simple loop (if ρ′′ contains a subrun built over a simple non-negative loop, take
it instead). So, we can assume w.l.o.g. that 〈qL, xL〉 −→ 〈qL+1, xL+1〉 −→ · · · 〈qL′ , xL′〉 is a
simple non-negative loop. Consequently, there is a simple path from h1 to qL = qL′ and
there is a simple non-negative loop from qL (the one obtained from ρ′′), which entails
(c). �

Theorem 10. The problem GREACH(1-VASS) is in ptime.

Theorem 10 is one of the main contributions of the paper, as it is instrumental to
determine the complexity of model checking RB±ATL+({1}, 1).

Proof. Let V , 〈q0, x0〉 and 〈X1, h1〉, . . . , 〈Xα, hα〉 be an instance of GREACH(1-VASS)
of size N . Here is a simple algorithm to solve GREACH(1-VASS).

• If condition (a) holds, then return 1 if (b),(c) hold, 0 otherwise.

• Otherwise ((a) does not hold),

– if there is no simple run 〈q0, x0〉, . . . , 〈qk, xk〉 in V X1∪{h1} with qk = h1 then
return 0,

– otherwise, compute xmax and return 1 if V , 〈h1, xmax〉 and 〈X2, h2〉, . . . ,
〈Xα, hα〉 is a positive instance of GREACH(1-VASS) (0 otherwise). Note that
we perform here a recursive call with a strictly shorter sequence 〈X2, h2〉, . . . ,
〈Xα, hα〉.

The following problems can be solved in polynomial time.

• As explained in the proof of Lemma 4, GREACH(0-VASS) and (c) can be checked
in polynomial time, say in time O(p1(N)).

• Checking whether (a) holds can be done in polynomial time by using the data
structures introduced in Section 3.2, say in timeO(p2(N)). Indeed, (a) is equivalent
to the satisfaction of the conditions below:

(a′) there is a simple run 〈q0, x0〉, . . . , 〈qn, xn〉 in V X1∪{h1} and its projection over
X1 ∪ {h1} is in the regular language X∗1 (h1 + ε);

(b′) there is a positive simple loop t1 . . . tβ in V X1∪{h1} that can be fired from
〈qn, xn〉;

(c′) there is a simple path in V X1∪{h1} starting at qn, ending at h1;

(d′) if h1 occurs in the simple loop in (b′), then qn = h1.

Let us briefly show how (a′)–(d′) entail (a). Roughly speaking, the subrun is
constructed as follows. From 〈q0, x0〉 consider the simple run leading to 〈qn, xn〉
(condition (a′)). Then, take the positive simple loop from (b′) ||R|| × |Q| times
reaching the configuration 〈qn, y〉 with y ≥ ||R|| × |Q|. Then, consider the simple

25

run from 〈qn, y〉 to 〈h1, z〉 based on the transitions of the simple path from the
condition (c′). As this is a simple run, z ≥ 0 while preserving the constraints on
X1. For the proof in the other direction, this boils down to detect a positive simple
loop. The details are omitted here.

• Similarly, when the condition (a) does not hold, computing xmax (if it exists) can
also be computed in polynomial time using the proofs in Section 3.2, say in time
O(p3(N)).

From the above algorithm, checking whether (a) holds is done at most α times, as well
as computing xmax. Consequently, the algorithm runs in time O(α(p2(N2) + p3(N2)) +
p1(N2)). The value N2 is due to the fact that every time a new value xmax is computed,
it may add the initial size N (in the worst case) to the size of the new input and this can
be done at most α times with α ≤ N . �

The ptime upper bound in Theorem 10 is a drastic drop compared to the complexity
for the general problem GREACH(VASS). Indeed, GREACH(VASS) is expspace-hard
as the control-state reachability problem for VASS can be reduced to it (and then we
use [51]). GREACH(VASS) is definitely in expspace by [58, Theorem 5.4] that deals with
the linear-time µ-calculus on VASS. Besides, for all r ≥ 1, model-checking r-VASS with
linear-time µ-calculus has been shown in pspace [58, Theorem 4.1] (pspace-hardness
still holds with a unique counter, inherited from plain LTL model-checking [59]). Herein,
we established that GREACH(1-VASS) behaves even better, as it can be solved in poly-
nomial time only. Theorem 10 shall be essential for the results shown in Section 4 below.

4. The Model-Checking Problem for RB±ATL+

In this section, we mainly consider the model-checking problem for RB±ATL+({1}, 1)
as well as for RB±ATL+(r), for some fixed r ≥ 1.

To this end, we need to provide a few more introductory notions. Given an RB-CGS
M = 〈{1}, 1, S,Act, act, wf, δ, L〉 with a single agent and a single resource, we define the

1-VASS VM = 〈S, 1, RV 〉 such that q
u−→ q′ ∈ RV iff there is some action a ∈ act(q, 1)

such that δ(q, a) = q′ and wf(q, 1, a) = u. Similarly, we write KM = 〈S,R,L〉 to
denote the Kripke-style structure such that q R q′ iff there is some action a ∈ act(q, 1)
such that δ(q, a) = q′. Observe that M and VM share the same labelling function
L. We introduce Kripke-style structures as the modality 〈〈{1}ω〉〉 amounts to forgetting
about weights in M , and therefore M can be understood as the Kripke-style structure
KM , and RB±ATL+({1}, 1) model-checking reduces to CTL+ model-checking. Similarly,
the strategy modality 〈〈∅b〉〉 behaves as the universal path quantifier A in weight-free
transition systems, and therefore the model-checking problem reduces again to CTL+

model-checking. Given S1 ⊆ S, we write V S1

M (resp. KS1

M) to denote the restriction of
VM (resp. KM) to the locations/states in S1 only.

4.1. Model-checking problem for RB±ATL+({1}, 1): algorithm

To solve MC(RB±ATL+({1}, 1)), there is an essential case to consider, namely how
to verify whether (M, s) |= 〈〈{1}b〉〉Ψ (this is the key case that needs to be solved in a
satisfactory way, complexity-wise). With a single agent in M , this amounts to checking
the existence of a computation λ starting from s, with initial budget b ∈ N, satisfying Ψ.

26

This is the place where the problem GREACH(1-VASS) introduced in Section 3.3 helps.
The conditions on Ψ in Lemma 5 below are relaxed at a later stage.

Lemma 5. Let Ψ be a Boolean formula built over path formulae of the form X p or pU q,
where p, q are propositional variables. Let M be an RB-CGS, s ∈ S and b ∈ N. The
problem of checking (M, s) |= 〈〈{1}b〉〉Ψ (in RB±ATL+({1}, 1)) is in np.

Proof. We recall that verifying (M, s) |= 〈〈{1}b〉〉Ψ with a single agent in M amounts
to check the existence of an infinite computation λ starting from s, with initial budget
b ∈ N, satisfying Ψ. Without loss of generality, one can assume that Ψ is a Boolean
formula in negation normal form (NNF) built over atomic formulae of the form X p or
pU q. Satisfaction of Ψ on λ amounts to guess which atomic formulae in Ψ hold, and
then to check that the guess is correct. The verification step is done in ptime, so that
the whole step of model-checking 〈〈{1}b〉〉Ψ can be done in np.

Since ¬(pU q) is logically equivalent to G¬q ∨ (¬qU(¬p ∧ ¬q)), ¬X p is logically
equivalent to X¬p, and X and G distributes over ∧, the formula Ψ can be assumed to be
a positive Boolean formula built over atomic formulae of the form XC, GC ′ or C UC ′

where C and C ′ are conjunctions of literals. Guessing which atomic formulae in Ψ hold
to evaluate Ψ to true, amounts to guess a conjunction of the form

XC0 ∧ GC ′0 ∧ (C1 UC
′
1) ∧ · · · ∧ (Cn UC

′
n), (5)

for some n ∈ N, where the Ci’s and C ′i’s are conjunctions of literals (empty conjunctions
are equivalent to >). Below, we treat only the cases with C0 and C ′0 distinct from >
and n > 0, but the other cases admit a simpler treatment (omitted herein). Of course,
the satisfaction of the atomic path formulae from the above conjunction (modulo the
logical equivalences cited above) would make Ψ true propositionally (see Section 3.3 for
a detailed description of the conditions whereby the conjunction enforces the truth of Ψ,
see also Definition 9). Existence of an infinite computation λ starting from s, with initial
budget b ∈ N, satisfying conjunction (5) is equivalent to the existence of an infinite run
〈q0, x0〉 −→ 〈q1, x1〉 −→ 〈q2, x2〉 · · · in the 1-VASS VM satisfying the following conditions:

1. 〈q0, x0〉 = 〈s, b〉.

2. {qi | i ∈ N} ⊆ {s ∈ S | (M, s) |= C ′0}
def
= S1. Hence, we can consider V S1

M instead of
VM .

3. (M, q1) |= C0. As there is only a linear amount of configurations obtained from
〈q0, x0〉 in one step, we can easily get rid of the constraint on 〈q1, x1〉 by exploring
all possibilities (and this does not cause any exponential blow-up). Let I0 = {i ∈
[1, n] | (M, q0) |= C ′i} and I1 = {i ∈ [1, n] | (M, q1) |= C ′i and (M, q0) |= Ci}.

4. There are a partition {Y1, . . . , Yα} of [1, n] \ (I0 ∪ I1) and a strict linear ordering
0 < i1 < . . . < iα such that for all j ∈ [1, α], we have (M, qij) |=

∧
k∈Yj C

′
k and

{qβ | β < ij} ⊆ {s | (M, s) |=
∧
k∈Yj Ck}.

In a nutshell, the satisfaction of (C1 UC
′
1) ∧ · · · ∧ (Cn UC

′
n) requires n witness

positions, non necessarily pairwise different, whence the partition {Y1, . . . , Yα}.
The satisfaction of the Ck’s (first arguments of the U-formulae) is constrained by
the implicit ordering Y1, . . . , Yα and by the positions i1, . . . , iα. This is a standard
type of reasoning when CTL+ is involved, see e.g., [24].

27

Consequently, after guessing which atomic formulae hold in the path formula Ψ,
the next configuration 〈q1, x1〉, the partition Y1, . . . , Yα (with linearly ordered sets), the
sequence of states qi1 , . . . , qiα , we have then to solve an instance of GREACH(1-VASS)
for the 1-VASS V S1

M and initial configuration 〈q1, x1〉. We write Xj to denote the set {s |
(M, s) |=

∧
k∈Yj Ck}. Without any loss of generality, we can assume that q1, qi1 , . . . , qiα

are all pairwise distinct. For instance, if qik = qil , then we can simply merge Yk with
Yl. So we have to solve an instance of GREACH(1-VASS) of the form V S1

M , 〈q1, x1〉 and
〈X1, qi1〉, . . . , 〈Xα, qiα〉, which can be done in ptime by Theorem 10. The guess and
check steps can be therefore performed in np as all the witnesses are of polynomial size
in the size of the inputs, and all the checking steps can be done in polynomial time in
full generality. �

Hence, the whole model-checking algorithm for RB±ATL+({1}, 1) can be shown in ∆P
2

as it uses a polynomial amount of instances of the problem in Lemma 5. Each instance
can be solved in np, since GREACH(1-VASS) is in ptime (Theorem 10).

Theorem 11. MC(RB±ATL+({1}, 1)) is ∆P
2 -complete.

Proof. As regards the lower bound, it follows from the ∆P
2 -hardness of model-checking

CTL+ [30]. As for the upper bound, let M = 〈{1}, 1, S,Act, act, wf, δ, L〉 be an RB-CGS,
and φ a formula in RB±ATL+({1}, 1). Let us present Algorithm 1 that computes the
finite set {s ∈ S | (M, s) |= φ}, where we assume that b ∈ N and Ψ is a Boolean formula
in NNF built over path formulae of the form Xφ or φUφ′, for state formulae φ, φ′.
Moreover, let us assume that the maximal state formulae occurring in Ψ are φ1, . . . , φN
and the model-checking algorithm has already determined that they hold true exactly
on the states in sets S?1 , . . . , S

?
N , respectively. Let Ψ? be the formula obtained from

Ψ by replacing each φi by a fresh propositional variable pi, and M? be the RB-CGS

obtained from M by modifying the labelling function as follows: L?(pi)
def
= S?i . We have

the following equivalences:

1. (M, s) |= 〈〈∅b〉〉Ψ iff (KM? , s) |= AΨ? in CTL+,

2. (M, s) |= 〈〈{1}ω〉〉Ψ iff (KM? , s) |= EΨ? in CTL+.

3. Concerning the case (M, s) |= 〈〈{1}b〉〉Ψ for b ∈ N, we have (M, s) |= 〈〈{1}b〉〉Ψ iff
(M?, s) |= 〈〈{1}b〉〉Ψ?, which can be checked in np by Lemma 5.

By structural induction, one can show that (M, s) |= φ iff s ∈ MC(M,φ).
As far as computational complexity is concerned, MC(M,φ) is computed with a

recursion depth linear in the size of φ and a polynomial number of np calls. More
precisely, for each occurrence of a subformula ψ of φ, MC(M,ψ) can be computed only
once, which guarantees the overall number of calls of the form MC(M,ψ): it is sufficient
to take advantage of dynamic programming and to work with a table to remember
the values MC(M,ψ) already computed. For the sake of clarity such a mechanism is
omitted in the present algorithm. Intuitively, we would handle an array T , where T [ψ]
takes either the value ⊥ (undefined) or a subset of S. Initially, all the values of T are
undefined. Whenever MC(M,ψ) is invoked in the algorithm above, we operate a change
of the following form in the code: we first check whether T [ψ] is defined. It is only in
the case T [ψ] is undefined that a recursive call MC(M,ψ) is performed. This technique
is standard and herein we use it so that for each subformula ψ, MC(M,ψ) is actually

28

Algorithm 1 – RB±ATL+({1}, 1) Model-checking –

1: procedure MC(M,φ)
2: case φ of
3: p: return {s ∈ S | s ∈ L(p)}
4: ¬ψ: return S\ MC(M,ψ)
5: φ1 ∧ φ2: return MC(M,φ1)∩ MC(M,φ2)
6: 〈〈∅b〉〉Ψ/〈〈∅ω〉〉Ψ: return {s | (KM? , s) |= AΨ? in CTL+}
7: 〈〈{1}ω〉〉Ψ: return {s | (KM? , s) |= EΨ? in CTL+}
8: 〈〈{1}b〉〉Ψ: return {s | (M?, s) |= 〈〈{1}b〉〉Ψ? with the algorithm in the proof of

Lemma 5 }
9: end case

10: end procedure

called only once. We recall that ∆P
2 , a.k.a., ptimenp, is precisely the class of problems

that can be solved in polynomial time with an oracle in np. We also take advantage of
the fact that the model-checking problem for CTL+ is in ∆P

2 (see, e.g., [24]). �
The decision procedure for solving the model-checking problem for RB±ATL+({1}, 1)

invokes the subroutine for solving the model-checking problem for CTL+ with one counter,
that be run optimally thanks to Lemma 5. The existence of a polynomial-time re-
duction between MC(RB±ATL+({1}, 1)) and the model-checking problem for CTL+ is
guaranteed, as both problems are ∆P

2 -complete. The question about the encoding of
MC(RB±ATL+({1}, 1)) into plain CTL+ is certainly interesting and solving conditions
(A) and (B) in Lemma 4 actually amounts to detect graph-theoretical properties on the
1-VASS, so a direct encoding is feasible, but it is not further investigated here.

4.2. Model-checking problem for RB±ATL+(r)

In [12], the 2exptime upper bound for model-checking RB±ATL is obtained with a
decision procedure calling subroutines to solve the nontermination and the control-state
reachability problems for AVASS on instances of the form AM,A,s? , where M is an RB-
CGS, A is a coalition, and s? is a state in M , as described in Section 4.2.1 below. On
the other hand, to obtain the 2exptime upper bound for model-checking RB±ATL∗, also
in [12], the decision procedure calls a subroutine for solving the parity game problem for
AVASS (see Section 4.2.1) but, in the worst-case, on systems with a doubly-exponential
number of locations in the size of the input formula. Indeed, synchronised products are
considered between deterministic parity automata (on ω-words) and AVASS of the form
AM,A,s? . This is due to the fact that given an LTL formula, an equivalent deterministic
parity automaton might have a doubly-exponential number of states in the size of the
input LTL formula (see, e.g., [60, 61]). Hence, even when the number of resources r is
fixed (which is an assumption made in this section), solving MC(RB±ATL+(r)) by using
the method in [12], would lead to a 2exptime upper bound.

In this section, we explain how to gain one exponential by providing a decision pro-
cedure that solves MC(RB±ATL+(r)) in exponential time, when r is fixed (this is known
to be optimal as soon as r ≥ 4). Such an improvement can be explained by the fact
that reasoning about LTL formulae of temporal depth one is usually simpler than for
arbitrary LTL formulae (see, e.g., [62, Section 7.3]). More precisely, we are able to de-

29

sign some ad-hoc verification method using alternating VASS without going through a
translation from LTL formulae to deterministic parity automata. Apart from our new
exptime bound, this section can be viewed as providing an alternative decision pro-
cedure for solving MC(RB±ATL+) without going through the determinisation of Büchi
automata, or as generalising the reduction used to decide RB±ATL [12], but at the cost of
building AVASS with an exponential number of locations (which is strictly more expen-
sive than for RB±ATL, but strictly less than for RB±ATL∗). As CTL+ is exponentially
more succinct than CTL [63], which entails that some ATL+ (resp. RB±ATL+(Ag, r))
formulae can be exponentially more succinct than ATL (resp. RB±ATL(Ag, r)) formulae,
this extra cost for solving MC(RB±ATL+(r)) is most likely the best we can hope for.

4.2.1. Correspondence between RB-CGS and AVASS

In this section, we recall the notion of alternating vector addition systems with states
(AVASS), as well as relevant related decision problems. Roughly speaking, AVASS can
be viewed as VASS in which fork rules are also allowed, but such branching in compu-
tations has no effect on the counters. As shown in [12], AVASS are operational models
closely related to the model-checking problem for RB±ATL-like logics. First, we need to
introduce some preliminaries.

A binary tree T , which may contain nodes with a single child, is a non-empty subset
of {1, 2}∗ such that, for all n ∈ {1, 2}∗ and i ∈ {1, 2}, n · i ∈ T implies n ∈ T and,
n · 2 ∈ T implies n · 1 ∈ T . Trees of arbitrary finite arity are defined accordingly (details
are omitted herein).

Definition 12 (AVASS [21]). An alternating VASS is a tuple A = 〈Q, r,R1, R2〉 such
that Q is a finite set of locations; r ≥ 0 is the number of resources; R1 is a finite subset
of Q× Zr ×Q (update rules); and R2 is a (finite) subset of Q×Q×Q (fork rules).

Standard VASS [20] are AVASS with no fork rules (i.e., R2 = ∅). A derivation skeleton
in A is a labelling D : T → (R1 ∪ R2 ∪ {⊥}) such that T is a binary tree, and if n has
one child (resp. has two children, is a leaf) in T , then D(n) ∈ R1 (resp. D(n) ∈ R2,
D(n) =⊥). A derivation in A based on D is a labelling D̂ : T → Q× Zr such that:

• if n has one child n′ in T , D(n) = 〈q, ~u, q′〉 and D̂(n) = 〈q,~v〉 for some ~v, then
D̂(n′) = 〈q′, ~v + ~u〉;

• if n has two children n′ and n′′ in T , D(n) = 〈q, q1, q2〉 and D̂(n) = 〈q,~v〉 for some
~v, then D̂(n′) = 〈q1, ~v〉 and D̂(n′′) = 〈q2, ~v〉.

So, the fork rules do not update the value of resources. Hence, there is an asymmetry
between update rules and fork rules. Differently from branching VASS (see, e.g., [64, 65,
57, 45, 66]), fork rules have no effect on counter values. A derivation D̂ is admissible (or
a proof) whenever only natural numbers occur in it. By way of example, a proof can be

found below (with the root at the bottom) assuming that R1 = {q1
〈−2,3〉−−−→ q0, q2

〈4,4〉−−→ q3}

30

and R2 = {q0 −→ q1, q2}.

〈q3, 〈9, 9〉〉
〈q2, 〈5, 5〉〉

....
〈q1, 〈3, 8〉〉 〈q2, 〈3, 8〉〉

〈q0, 〈3, 8〉〉
〈q1, 〈5, 5〉〉

〈q0, 〈5, 5〉〉
〈q1, 〈7, 2〉〉

Hereafter, we consider the following decision problems pertaining to AVASS.

Control-state reachability: given an AVASS A and control states q0 and qf , is there

a finite proof with root labelled by 〈q0,~0〉 and each leaf belonging to {qf} × Nr?

Nontermination: given an AVASS A and a control state q0, is there a proof whose root
is labelled by 〈q0,~0〉 and all the maximal branches are infinite?

Parity game problem: given an AVASS A, a state q0 ∈ Q, ~b ∈ Nr, and a colouring
col : Q→ [0, p− 1] for some number p ≥ 1, is there a proof with root labelled by

〈q0,~b〉, all the maximal branches being infinite, and the maximal colour occurring
infinitely often along each maximal branch being even?

These problems are known to be 2exptime-complete [21, 22, 25]. Decidability of
control-state reachability and nontermination problems were first established in [67] by
using monotonicity of the games. The 2exptime upper bound is preserved if we assume
that the root is labelled by 〈q0,~b〉 with ~b ∈ Nr encoded in binary or if the set of fork rules
R2 is a finite subset of

⋃
β≥2Q

β (by suitably adapting all the definitions, see e.g., [12,

Lemma 7]). Elements in Qβ are said to be (β − 1)-ary (β − 1 is the number of branches
in the forking).

By [25, Corollary 5.7] on the parity energy game problem with initial credit, and
by [23, Lemma 4] relating the parity game problem for AVASS and the parity energy
game problem, the former can be solved in time

(|Q| × ||R1||)2O(r×log(r+p))

+O(r × log||~b||),

where ||~b|| def
= max{|~b[i]| : i ∈ [1, r]} and ||R1||

def
= max{||~u|| : q ~u−→ q′ ∈ R1}. When r and p

are bounded, the problem is therefore in exptime. Indeed, the expression 2O(r×log(r+p))

and r are bounded, whereas ||R1|| is at most exponential in the size of the input (integers
are encoded in binary).

Now, we briefly recall the correspondence established in [12] between strategies in
RB±ATL-like logics and proofs in AVASS. Since we use this correspondence in the paper,
we explain it in detail for the reader’s benefit. Below, we consider AVASS with fork rules
in

⋃
β≥2Q

β (arbitrary arity), and where proofs are trees with nodes labelled by elements
in Q×Nr. Let M be a finite RB-CGS, A ⊆ Ag be a coalition, and s? be one of its states.
We construct the AVASS AM,A,s? such that the set of computations in M starting in s?

and respecting a strategy FA corresponds to a derivation skeleton whose root is labelled
by an update rule with first state s?. Hence, we leverage on the fact that a ~b-strategy

31

generates a set of maximal computations that can be arranged as a finitely-branching
tree with infinite branches only, and such an infinite tree can be viewed precisely as an
infinite proof on AM,A,s? .

Given M = 〈Ag, r, S,Act, act, wf, δ, L〉 and a distinguished state s? ∈ S, the AVASS

AM,A,s?
def
= 〈Q, r,R1, R2〉 is built as follows:

Q
def
= {s?} ∪ {〈s, f〉 | s ∈ S, f ∈ DA(s)} ∪
{〈g, s′〉 | s′, s′′ ∈ S, g ∈ DAg(s

′′), δ(s′′, g) = s′}.

Every location in Q is attached to a state in S and contains a finite piece of infor-
mation: in 〈s, f〉, f is a joint action available to A implementing its strategy whereas in
〈g, s′〉, we remember the global joint action to reach s′.

• The set R1 of update rules contains the following elements.

– 〈s?, wfA(s?, f), 〈s?, f〉〉, for all f ∈ DA(s?). Indeed, the locations in Q at-
tached to s? have a special treatment.

– 〈〈g, s〉, wfA(s, f), 〈s, f〉〉, for all 〈g, s〉 ∈ Q and f ∈ DA(s).

• The set R2 of fork rules contains the following elements.

– For 〈s, f〉 ∈ Q, let {〈g1, s1〉, . . . , 〈gα, sα〉} = {〈g, s′〉 ∈ S | s′ = δ(s, g), g ∈
DAg(s), f v g}. This set is non-empty because the protocol function always
returns a non-empty set of actions. We recall that a protocol function in an
RB-CGS is a map of the form act : S ×Ag → (℘(Act) \ ∅).
We add the α-ary fork rule 〈〈s′, f〉, 〈g1, s1〉, . . . , 〈gα, sα〉〉 to R2. The joint
actions available for the opponent coalition (Ag\A) determine which locations
〈g1, s1〉, . . . , 〈gα, sα〉 can be reached. It is the proponent restriction condition
that guarantees that using fork rules in this place (i.e., without updating the
counter values) is correct. We recall that the proponent restriction condition
enforces that the resource availability depends only on the agents in proponent
coalitions.

Given an infinite computation λ = s0
g1−→ s1

g2−→ s2 . . . starting in s? = s0, also
respecting a strategy FA, we can associate it with an infinite sequence (which we call an
extended computation)

ext(λ,A)
def
= s0

~u0−→ 〈s0, f0〉 −→ 〈g0, s1〉
~u1−→ 〈s1, f1〉 −→ · · ·

with s0 = s?, and for all n ≥ 0, fn = FA(s0
g1−→ s1 . . .

gn−→ sn) where fn is the restriction of
gn to A and wfA(sn, fn) = ~un. Hence, the way ext(λ,A) is designed from λ essentially
depends on the weight of the actions fired by the agents in the coalition A. Typically,
A 6= A′ may lead to ext(λ,A) different from ext(λ,A′) (but not necessarily).

Further, transitions in M can be viewed as triples 〈s′, g, s′′〉 such that δ(s′, g) = s′′,

also written as s′
g−→ s′′. The finite set of such transitions is denoted by ΣM , which can

be interpreted as a finite alphabet when M is finite. An infinite computation λ = s0
g1−→

s1
g2−→ s2 . . . can then be represented as the ω-word (s0

g1−→ s1) · (s1
g2−→ s2) · (s2

g3−→ s3) · · ·
in ΣωM . Given an infinite branch of the proof in AM,A,s? corresponding to the extended

32

computation s0
~u0−→ 〈s0, f0〉 −→ 〈g1, s1〉

~u1−→ 〈s1, f1〉 −→ · · · , its ΣM -projection is defined as

the sequence (s0
g1−→ s1) ·(s1

g2−→ s2) ·(s2
g3−→ s3) · · · Formal correspondences between M and

AM,A,s? are below. It is worth noting that in the proofs of AM,A,s? , along all branches,
there is a strict alternation between update rules and fork rules.

Proposition 1. [12, Lemma 4] Let L ⊆ ΣωM and ~b ∈ Nr. There is a ~b-strategy FA
w.r.t. s? in M such that the set Comp(s?, FA) of computations is included in L iff there

is a proof in AM,A,s? with root labelled by 〈s?,~b〉, every maximal branch being infinite,
and its ΣM -projection being in L.

By way of example, let Sφ be the set of states in S satisfying the (state) formula φ (S is
from some RB-CGS M) and Lφ be the restriction of ΣωM to ω-words involving only states

from Sφ (i.e., s
g−→ s′ is allowed with s, s′ ∈ Sφ). By Proposition 1, (M, s?) |= 〈〈A~b〉〉Gφ iff

there is a proof in AM,A,s? restricted to locations involving only states in Sφ whose root

is labelled by 〈s?,~b〉 and every maximal branch is infinite. This property can actually be
generalised to any language in ΣωM defined from a language in Sω and this is used in the
proof of forthcoming Lemma 7.

4.2.2. Carefully constructing AVASS

In this section, we explain how to handle the verification of (M, s?) |= 〈〈A~b〉〉Ψ, for

A ⊆ Ag and ~b ∈ Nr. As in Section 3, we assume w.l.o.g. that Ψ is a Boolean formula
in NNF built over atomic formulae of the form X p or pU q, where p, q are propositional
variables. These are the building blocks to handle the general case, that is considered

at a later stage (see Theorem 13). To determine the satisfaction of (M, s?) |= 〈〈A~b〉〉Ψ,
we construct an AVASS A? = 〈Q?, r, R?1, R?2〉, a colouring col? : Q? → [0, 1] (defining a
co-Büchi condition, as there are two colors and the smallest one is even), and q? ∈ Q?
such that

1. (M, s?) |= 〈〈A~b〉〉Ψ iff there is a proof with root labelled by 〈q?,~b〉 such that all the
maximal branches are infinite and the maximal (only) colour that appears infinitely
often along each branch is 0.

2. |Q?| is (only) exponential in |M |+ |Ψ|.

3. ||R?1|| ≤ |Ag| ×max({||wf(s, a, a)|| : s ∈ S, a ∈ Ag, a ∈ Act}).

In Section 4.2.1, we have shown how to define an AVASS AM,A,s? = 〈Q, r,R1, R2〉
given M , A and s?. The AVASS A? is made of copies of AM,A,s? so that the general
behavior of AM,A,s? is preserved, but we decorate the locations with a finite memory
taking care of the satisfaction of the path formula Ψ.

Let us provide a few more definitions. Without loss of generality, we assume that Ψ
is a positive Boolean combination of atomic path formulae of one of the following forms:
G `, `1 U `2, `U(`1 ∧ `2), X ` where the `’s are literals. Notice that the transformation to
obtain this shape can be performed in linear time (see Lemma 5).

Let s ∈ S be a state and Φ be a Boolean combination of atomic path formulae of the
form above. We write s(Φ) to denote the Boolean combinations of atomic path formulae
obtained from Φ according to the following clauses:

33

1. If G ` occurs in Φ and (M, s) 6|= `, then replace every occurrence of G ` in Φ by ⊥.

2. If `1 U `2 occurs in Φ and (M, s) |= `2 (resp. (M, s) 6|= `2 ∨ `1) , then replace every
occurrence of `1 U `2 in Φ by > (resp. by ⊥).

3. The clause for handling `U(`1 ∧ `2) is similar to (2).

4. If X ` occurs in Φ and (M, s) |= ` (resp. (M, s) 6|= `), then replace every occurrence
of X ` in Ψ by > (resp. by ⊥).

We write s[Φ] to denote the path formula defined as for s(Φ) except that only the
first three clauses are considered (next-time atomic formulae remain untouched, if any).
Intuitively, when Φ is a path formula to be satisfied on the extension of a current finite
computation and s is visited next, the path formula s(Φ) is obtained from Φ by replacing
the atomic path subformulae in Φ that are definitely true or false by > or ⊥, respectively.
The final value for s(Φ) is obtained by using simplification rules to eliminate or propagate
> or ⊥, if possible (e.g., ⊥ ∨φ is reduced to φ). Hence, s(Φ) may take the values ⊥ or >
(not strictly speaking path formulae, but we assume so below). The same simplifications
are used for s[Φ]. For technical reasons, we have also introduced the path formula s[Φ]
that is computed without taking into account the next-time subformulae. This is helpful,
when a path formula Φ is updated at the first position of a computation. Indeed, suppose
that (M,λ) |= X ` with λ[0] = s. Obviously, (M,λ≥1) |= ` and λ[1] satisfies the literal `.
In particular, if Φ contains X ` and (M,λ) |= Φ, then we may wish to replace X ` by > in
Φ but this can be done only after visiting λ[1], whence the slight difference between the
definitions of s(Φ) and s[Φ]. We write S(Ψ) to denote the set of path formulae obtained
from Ψ by successive applications (possibly zero) of s(·) and s[·] for some s ∈ S, i.e.,

S(Ψ)
def
= {s1(s2(· · · sn[Ψ] · · ·)) | s1, . . . , sn ∈ S, n ≥ 0}.

Observe that only the first application sn[Ψ] uses the transformation of the form s[·]
and therefore ignores the X-formulae for the reasons just explained above. Here are its
main properties.

Lemma 6. Let Ψ be a path formula as above, M be an RB-CGS, and λ be one of its
computations.

(correctness.1) (M,λ) |= Ψ iff (M,λ) |= s[Ψ] for λ[0] = s.

(correctness.2) If Ψ has no next-time atomic formulae, then (M,λ) |= s(Ψ) iff (M,λ≥1) |=
s(Ψ) for λ[0] = s.

(correctness.3) (M,λ) |= s[Ψ] iff (M,λ≥1) |= s′(s[Ψ]) for λ[0] = s and λ[1] = s′.

(small size) Ψ ∈ S(Ψ) and |S(Ψ)| is in O(3|Ψ|).

(stabilisation) There is i ≥ 0 such that for all j ≥ i, we have λ[j](· · · (λ[0][Ψ]) · · ·) =
λ[i](· · · (λ[0][Ψ]) · · ·).

As a consequence of Lemma 6, for all i ≥ 0, we have (M,λ) |= Ψ iff (M,λ≥i) |=
λ[i](· · · (λ[0][Ψ]) · · ·). By Lemma 6(stabilisation), there exists a “limit” path formula
Φλ,Ψ equal to some path formula of the form λ[I](· · · (λ[0][Ψ]) · · ·) for some I ≥ 1, such

34

that the satisfaction of a subset {G `1, . . . ,G `q} of always formulae from Φλ,Ψ makes the
path formula propositionally true, assuming that (M,λ) |= Ψ holds true. In particular,
this means that (M,λ) |= G `1∧· · ·∧G `q. Without loss of generality, we can also asssume
no position after I witnesses the satisfaction of an until formula from Φ (since there are
a finite amount of positive occurrences of until formulae in Φ).

Proof. (correctness.1)

• If G ` occurs in Ψ and (M, s) 6|= `, then (M,λ) 6|= G `. Consequently, (M,λ) |= Ψ
iff (M,λ) |= Ψ[G `←⊥].

• Similarly, if `1 U `2 occurs in Ψ and (M, s) |= `2, then (M,λ) |= `1 U `2. Conse-
quently, (M,λ) |= Ψ iff (M,λ) |= Ψ[`1 U `2 ← >]. As in the definition, taking care
of formulae `U(`1 ∧ `2) is similar.

• If `1 U `2 occurs in Ψ and (M, s) 6|= `1 ∨ `2, then (M,λ) 6|= `1 U `2. Consequently,
(M,λ) |= Ψ iff (M,λ) |= Ψ[`1 U `2 ←⊥].

So let Φ be the path formula obtained from Ψ by applications of the above-mentioned
substitutions, after applying the simplifications related to ⊥ and >. Note that the order
in which the substitutions are applied is irrelevant as well as how the simplications are
performed. The path formula Φ is actually equal to s[Ψ]. From the above properties, we
conclude (M,λ) |= Ψ iff (M,λ) |= Φ.

(correctness.2) The proof is similar to the proof for (correctness.1) by observing that
if the truth status of an until formula (resp. the falsity of an always formula) could not
be determined at state s and Ψ has no next-time atomic formulae, then (M,λ) |= Ψ iff
(M,λ≥1) |= Ψ.

(correctness.3) Suppose that X ` occurs in Ψ.

• If (M, s′) |= `, then (M,λ) |= s[Ψ] iff (M,λ) |= (s[Ψ])[X `← >].

• If (M, s′) 6|= `, then (M,λ) |= s[Ψ] iff (M,λ) |= (s[Ψ])[X `←⊥].

So let Φ be the path formula obtained from Ψ by applications of the above-mentioned
substitutions, after applying the simplifications related to ⊥ and >. Again, note that the
order in which the substitutions are applied is irrelevant as well as how the simplifications
are performed thanks to confluence. Indeed, when Φ′ (resp. Φ′′) can be obtained from
Φ by applying either a transformation from clauses (1)-(4) in the definition of s(·) or a
simplication, then there is ΨC that can be obtained from Φ′ (resp. Φ′′) in at most one
step, whence the confluence property. From the above properties, we have (M,λ) |= Ψ
iff (M,λ) |= Φ.

As Φ has no next-time atomic formulae, by (correctness.2), we have (M,λ) |= Φ
iff (M,λ≥1) |= Φ. By (correctness.1), we have (M,λ≥1) |= Φ iff (M,λ≥1) |= s′(Φ)
(s′(Φ) = s′[Φ] because Φ has no next-time X) and one can check that s′(Φ) is logically
equivalent to s′(s[Ψ]).

35

(small size) By definition, Ψ ∈ S(Ψ), as Ψ can be viewed as obtained from Ψ with no
application of s(·) or s[·]. Each original subformula of Ψ evolves in Φ ∈ S(Ψ) in three
possible ways: (1) it remains as it is; (2) it is substituted by ⊥; or (3) it is substituted
by > (actually simplifications are also performed when ⊥ ∨ . . . or >∧ . . . occur), whence
|S(Ψ)| is in O(3|Ψ|).
(stabilisation) As the size of s(Ψ) is at most the size of Ψ, for any sequence s1, s2, . . ., the
size of sn+1(sn(· · · s1[Ψ] · · ·)) is at most the size of sn(sn−1(· · · s1[Ψ] · · ·)). Necessarily,
the size of sn(sn−1(· · · s1[Ψ] · · ·)) stabilises from some position i. As any transformation
strictly decreases the number of literals, we get the stabilisation of the path formula. �

Let us explain how Q? is defined and used. By definition, Q? is equal to S(Ψ) × Q
so that each Φ ∈ S(Ψ) has its own copy of AM,A,s? . A location 〈Φ, q〉 is intended
to follow the rules of AM,A,s? to satisfy the path formula Φ. In order to update Φ,
when the proof visits a next location q′ attached to the state s′ ∈ S, the next location
in Q? becomes 〈s′(Φ), q′〉. The (initial) location q? is defined as the pair 〈s?[Ψ], s?〉,
where s?[Ψ] is built from the first three clauses only for defining s(·) (i.e., the atomic
path formulae of the form X ` are exceptionally ignored to start with), which is safe by
Lemma 6(correctness.1). Let us explain now how to define the update and fork rules
when the locations in S(Ψ)×Q are involved (Φ ∈ S(Ψ)).

• If 〈s?, ~u, 〈s?, f〉〉 ∈ R1, then 〈〈Φ, s?〉, ~u, 〈Φ, 〈s?, f〉〉〉 ∈ R?1 and if 〈〈g, s〉, ~u, 〈s, f〉〉 ∈
R1, then 〈〈Φ, 〈g, s〉〉, ~u, 〈Φ, 〈s, f〉〉〉 ∈ R?1. For every Φ ∈ S(Ψ), the update rules
(related to the actions of coalition A) do not modify the first argument Φ as no
next location is reached yet.

• If 〈〈s, f〉, 〈g1, s1〉, . . . , 〈gα, sα〉〉 ∈ R2, then

〈〈Φ, 〈s, f〉〉, 〈s1(Φ), 〈g1, s1〉〉, . . . , 〈sα(Φ), 〈gα, sα〉〉〉 ∈ R?2.

Note that we move from Φ to si(Φ) in order to simplify Φ based on literals holding
at si. We perform such an update for all the branches.

Consequently, a proof involving locations in S(Ψ)×Q leads to a proof inAM,A,s? when

the first component Φ in 〈Φ, q〉 is ignored. For all 〈Φ, q〉 in Q?, we have col?(〈Φ, q〉) def
= 0

if {G `1, . . . ,G `n} |=PROP Φ, where G `1, . . . , G `n are the G-formulae in Φ and |=PROP

is the propositional entailment (which can be checked in logspace [68]). Otherwise,

col?(〈Φ, q〉) def
= 1. So for acceptance, we want to use locations 〈Φ, q〉 with colour zero

to be the only ones to occur infinitely often (and actually to stabilise on such a path

formula Φ). In particular, by definition, col?(〈⊥, q〉) def
= 1 and col?(〈>, q〉) def

= 0. The
rationale for the definition of col? is simply that an infinite branch of a derivation in
A?, at some point Φ stabilises and all the states in S attached to the locations on that
branch satisfy all the G-formulae in Φ (otherwise some of them would be replaced by ⊥).
The colour zero is attached only to locations in Q? for which the satisfaction of all the
G-formulae entails the satisfaction of the final path formula Φ, see also the paragraph
after the presentation of Lemma 6. Correctness of the construction is stated below.

Lemma 7. Let ~b ∈ Nr. Then, (M, s?) |= 〈〈A~b〉〉Ψ iff there is a proof in A? whose root

is labelled by 〈q?,~b〉 and all the maximal branches are infinite and the maximal colour

that appears infinitely often is 0. Moreover, (M, s?) |= 〈〈A~b〉〉Ψ can be checked in time

exponential in |M |+ |〈〈A~b〉〉Ψ|.
36

Proof. The proof combines advantageously the properties of AM,A,s? [12] and the ones
for A? related to the satisfaction of path formulae.

Let us start by performing the complexity analysis before providing the correctness
arguments. As |Q| is in O(|M |2), we have |Q?| is in O(3|Ψ|× |M |2), see Lemma 6(small
size). The value ||R?1|| is bounded by |Ag| × max({||wf(s, a, a)|| : s ∈ S, a ∈ Ag, a ∈
Act}), which is bounded by |M |2|M | (as a direct consequence of the construction of
AM,A,s?). By using the expression

(|Q| × ||R1||)2O(r×log(r+p))

+O(r × log||~b||)

for the parity game problem for AVASS (see Section 4.2.1), when r is fixed and p = 2,

(M, s?) |= 〈〈A~b〉〉Ψ can be checked in time exponential in |M |+ |〈〈A~b〉〉Ψ|.
Let ~b ∈ Nr. We write AM,A,s? = 〈Q, r,R1, R2〉 to denote the AVASS defined in

Section 4.2.1 given M , A and s?. Similarly, we write A? = 〈Q?, r, R?1, R?2〉 to denote the
AVASS defined from AM,A,s? and Ψ as shown above. The locations in Q? have one of
the following forms:

〈Φ, s?〉, 〈Φ, 〈s, f〉〉, 〈Φ, 〈g, s〉〉,
where Φ is a path formula obtained from Ψ by replacing some atomic path formulae by
either > or ⊥, whereas s?, 〈s, f〉 and 〈g, s〉 are locations from Q. By construction of A?,
removing from a proof in A? the value Φ (projection on the second component of the
locations), leads to a proof in AM,A,s? .

(⇒) First, suppose that (M, s?) |= 〈〈A~b〉〉Ψ. Without loss of generality, we assume that
Ψ is a positive Boolean combination of atomic path formulae of one of the following forms:
G `, `1 U `2, `U(`1 ∧ `2), X ` where the `’s are literals. By definition of the satisfaction

relation, there is a ~b-strategy FA with respect to s? such that for all λ ∈ Comp(s?, FA),
we have (M,λ) |= Ψ. As done in [12, Section 4], the computations in Comp(s?, FA) can
be organised as an infinite tree corresponding to a derivation skeleton for AM,A,s? . Let
us recall the definition of such a tree TFA equipped with a labelling function L : TFA → S
and with a partial map R : TFA × TFA → (

⋃
s′∈S DAg(s

′)). We reproduce below some
material from [12, Section 4] to have a self-contained formalisation. Below, we use some
notations a bit different from those in the previous sections.

• L(ε)
def
= s? where ε is the root of TFA .

• For all finite words w = k1 · · · kβ in TFA such that L(w) is already defined, we add
to TFA the values k1 · · · kβ · 1, . . . , k1 · · · kβ · α such that

– FA(L(ε)
R(ε,k1)−−−−→ L(k1)

R(k1,k1k2)−−−−−−→ L(k1k2) · · · R(k1···kβ−1,k1···kβ)−−−−−−−−−−−−→ L(w)) = f

– {〈g1, s1〉, . . . , 〈gα, sα〉} = {〈g, s′′〉 ∈ DAg(s
′) × S | s′′ = δ(s′, g), g ∈ DAg(s

′),
f v g} with s′ = L(w).

– For all j ∈ [1, α], L(w · j) def
= sj and R(w,w · j) def

= gj .

The tree TFA is defined by saturation of the above rules, and the maps L and R are
defined accordingly. A maximal branch w of 〈TFA ,R,L〉 is understood as an element
of (N \ {0})ω, such that any (strict) finite prefix of w belongs to TFA . The label of w,
written lab(w), is defined as follows:

L(ε)
R(ε,k1)−−−−→ L(k1)

R(k1,k1k2)−−−−−−→ L(k1k2) · · · R(k1···kβ−1,k1···kβ)−−−−−−−−−−−−→ L(k1 · · · kβ) · · ·
37

where w = k1k2k3 · · · . By construction, lab(w) is a maximal computation (respecting
the strategy FA). The following properties are shown in [12, Section 4] and simply state
that 〈TFA ,R,L〉 contains all the computations from s? that respect the strategy FA.

1. Completeness. For every maximal computation λ starting at s? and respecting
FA, there is a maximal branch w in 〈TFA ,R,L〉 such that λ = lab(w).

2. Soundness. For every maximal branch w in 〈TFA ,R,L〉, there is a maximal com-
putation λ starting at s? and respecting FA such that lab(w) = λ.

Let T̂FA be the tree obtained from TFA such that k1 · · · kβ in TFA implies 1 ·k1 · · · 1 ·kβ
in T̂FA . The essential step now is to build a derivation skeleton D : T̂FA → (R1 ∪R2) as
follows, where all the maximal branches of TFA are infinite.

• D(ε) = 〈s0, wfA(s0, FA(s0)), 〈s0, FA(s0)〉〉 with s0 = s?.

• D(1) = 〈〈s0, FA(s0)〉, 〈g1, s1〉, . . . , 〈gα, sα〉〉, where 1, . . . , α ∈ TFA (but α+1 6∈ TFA),
and for all j ∈ [1, α], L(j) = sj and R(ε, j) = gj . By construction of AM,A,s? , the
rule D(1) is the unique fork rule starting from 〈s0, FA(s0)〉.

• Let n = 1k11 · · · 1kβ . By construction we can assume that we already have that
D(1k11 · · · kβ−11) = 〈〈s′, f ′〉, 〈g1, s1〉, . . . , 〈gα, sα〉〉.
Let g′ be equal to R(k1 · · · kβ , k1 · · · kβ · 1) and f be the restriction of g′ to A (so
f v g′). Then,

D(n) = 〈〈gkβ , skβ 〉, wfA(skβ , f), 〈skβ , f〉〉.

• Let n = 1k11 · · · 1kβ1 with k1, . . . , kβ ≥ 1 be such that

D(1k11 · · · kβ) = 〈〈g, s′〉, wfA(s′, f), 〈s′, f〉〉 ∈ R1.

Then, D(n) = 〈〈s′, f〉, 〈g1, s1〉, . . . , 〈gα, sα〉〉 where k1 · · · kβ1, . . . , k1 · · · kβα ∈ TFA
(but k1 · · · kβ(α+ 1) 6∈ TFA), and for all j ∈ [1, α],

– L(k1 · · · kβ · j) = sj with β ≥ 1;

– R(k1 · · · kβ , k1 · · · kβj) = gj with β ≥ 1 and 1 ≤ kβ ≤ α.

By construction of AM,A,s? , D(n) is the unique fork rule starting from 〈s′, f〉.

Given an infinite branch w of D (resp. w of the derivation D̂ based on D), say
w = 1k11k21k3 · · · ∈ Nω, we define the extended computation ext(w,A) as follows.
Suppose that the label of such a branch is characterised by the values below. Any prefix
of the form 1k11 · · · kβ is associated with an update rule whereas any prefix of the form
1k11 · · · kβ1 is associated with a fork rule (not necessarily binary). Intuitively, we specify
for each position on the branch which rule is applied next.

D(ε) = 〈s0, ~u0, 〈s0, f0〉〉
D(1) = 〈〈s0, f0〉, 〈g1

1 , s
1
1〉, . . . , 〈g1

α1
, s1
α1
〉〉

...
D(1k11 · · · ki) = 〈〈giki , s

i
ki
〉, ~uiki , 〈s

i
ki
, fi〉〉.

D(1k11 · · · ki1) = 〈〈siki , fi〉, 〈g
i+1
1 , si+1

1 〉, . . . , 〈gi+1
αi+1

, si+1
αi+1
〉〉

...
38

Then,

ext(w,A)
def
= s0

~u0−→ 〈s0, f0〉 −→ 〈g1k1
, s1k1
〉 ~u1−→ 〈s1k1

, f1〉 −→ 〈g2k2
, s2k2
〉 ~u2−→ 〈s2k2

, f2〉 −→ 〈g3k3
, s3k3
〉 · · ·

In [12, Lemma 3], the following properties are established.

(†) Completeness. For every maximal computation λ starting at s? and respecting
FA, there is a maximal branch w in D such that ext(λ,A) = ext(w,A). Note that
ext(λ,A) is defined earlier (see Section 4.2.1).

(‡) Soundness. For every maximal branch w in D, there is a maximal computation
λ starting at s? and respecting FA such that ext(w,A) = ext(λ,A).

In order to define a proof D? in A? whose root is labelled by 〈q?,~b〉 such that all
the maximal branches are infinite and the maximal colour that appears infinitely often
is 0, it suffices to start from the proof D̂ and to decorate with path formulae Φ ∈ S(Ψ)
each node of D (already labelled by a location q). Given Φ ∈ S(Ψ) and a compu-
tation λ, by Lemma 6(correction.2) we have (M,λ) |= Φ implies (M,λ≥1) |= s(Φ)
when s = λ[0] and Φ has no next-time atomic formulae. Consequently, for each com-
putation λ, we can define an ω-sequence Φ0,Φ1, . . . ∈ S(Ψ)ω such that for all i ≥ 0,
Φi = λ[i](· · · (λ[0][Ψ]) · · ·). Moreover, there is Iλ ≥ 0 such that ΦIλ ,ΦIλ+1, . . . ∈ {ΦIλ}ω
because of Lemma 6(stabilisation).

Let w be a maximal branch in D such that ext(w,A) = s0
~u0−→ 〈s0, f0〉 −→ 〈g1

k1
, s1
k1
〉 ~u1−→

〈s1
k1
, f1〉 −→ 〈g2

k2
, s2
k2
〉 ~u2−→ 〈s2

k2
, f2〉 −→ 〈g3

k3
, s3
k3
〉 · · · . By (‡) above, there is a maximal

computation λ starting at s? and respecting FA such that ext(w,A) = ext(λ,A). Let
Φ0,Φ1, . . . ∈ S(Ψ)ω be the ω-sequence defined from λ (since it satisfies Ψ, a property
inherited from FA). Let w be the corresponding maximal branch in D? where the deco-
ration is performed as follows (overloaded notation):

ext(w,A) = 〈Φ0, s0〉
~u0−→ 〈Φ0, 〈s0, f0〉〉 −→ 〈Φ1, 〈g1

k1 , s
1
k1〉〉

~u1−→

〈Φ1, 〈s1
k1 , f1〉〉 −→ 〈Φ2, 〈g2

k2 , s
2
k2〉〉

~u2−→ 〈Φ2, 〈s2
k2 , f2〉〉 −→ · · ·

Note that for all i ≥ 0, the path formula Φi appears in two consecutive locations (and
this can happen many times if Φi = Φj for some j > i). One can check that the colour
zero occurs infinitely often along w because Φi stabilises to a value (say ΦIλ) such that all
the always formulae hold true and make ΦIλ true propositionally. Actually, this is a con-
sequence of (M,λ) |= Ψ and the way the path formulae Φi’s are computed (see Lemma 6).

(⇐) Reciprocally, assume that there is a proof D? whose root is labelled by 〈q?,~b〉
such that all the maximal branches are infinite and the maximal colour that appears
infinitely often is 0. We recall that ΣM is the finite alphabet made of triples 〈s′, g, s′′〉
such that δ(s′, g) = s′′ in M . Let LΨ be the subset of ΣωM made of ω-sequences (LTL
models) satisfying the path formula Ψ. By the bookkeeping of path formulae in S(Ψ), one
can establish that the ΣM -projection of every maximal branch belongs to LΨ. Indeed,
suppose that on the branch the projection of S(Ψ) is the ω-sequence Ψ0,Ψ1, We
have Ψ0 = s[Ψ] where s is s? and there is t ≥ 1 such that for all t′ ≥ t, we have Ψt′ = Ψt.

39

Finally, from the coloring map, we know that the satisfaction of always formulae of the
form G ` in Ψt makes it propositionally true. Moreover, all the underlying visited states
satisfy `.

By Proposition 1, there is a ~b-strategy FA w.r.t. s? in M such that the set of compu-
tations Comp(s?, FA) is included in LΨ. Consequently, there is a ~b-strategy FA w.r.t. s? in

M such that for all λ ∈ Comp(s?, FA), we have (M,λ) |= Ψ. That is, (M, s?) |= 〈〈A~b〉〉Ψ.
�

4.2.3. The model-checking algorithm

We immediately prove the main result of the section.

Theorem 13. For all r ≥ 1, MC(RB±ATL+(r)) is in exptime.

Proof. The proof of Theorem 13 makes use of a labelling algorithm, very similarly to

the one in the proof of Theorem 11. However, to decide whether (M, s?) |= 〈〈A~b〉〉Ψ,

for ~b ∈ (N ∪ {ω})r, we first perform a reduction of the dimension by identifying the

component in ~b equal to ω. Then, we take advantage of Lemma 7 in order to check an
instance of the corresponding parity game problem for AVASS, which can be done in
exponential time. As the number of such requests is only polynomial in the size of the
input formula, the whole algorithm runs in exponential time.

The general structure of the proof follows faithfully the (standard) structure of the
proof for Theorem 11. Let M = 〈Ag, r, S,Act, act, wf, δ, L〉 be an RB-CGS, and φ be a
formula in RB±ATL+(Ag, r). Let us present Algorithm 2, an exponential-time labelling
algorithm that computes the finite set {s ∈ S | (M, s) |= φ}.

The algorithm works on the structure of formula φ. The cases for atomic formulae
and Boolean connectives are immediate. Then, we consider in detail the case of strategic

formulae 〈〈A~b〉〉Ψ. Without loss of generality, we assume that Ψ is a Boolean formula
in NNF built over atomic path formulae of the form Xφ or φUφ′, where φ, φ′ are state
formulae. Let us assume that the maximal state formulae occurring in Ψ are φ1, . . . , φN
and the model-checking algorithm has already determined that they hold true exactly
on the states in S?1 , . . . , S

?
N , respectively. Let Ψ? be the formula obtained from Ψ by

replacing each φi by a fresh atom pi, and M? be the RB-CGS obtained from M by

modifying the labelling function as in the proof of Theorem 11: L?(pi)
def
= S?i .

Concerning the case (M, s?) |= 〈〈A~b〉〉Ψ, for A 6= ∅, we have (M, s?) |= 〈〈A~b〉〉Ψ iff

(M?, s?) |= 〈〈A~b〉〉Ψ?. Let I ⊆ [1, r] be the set of components such that ~b(i) = ω for all

i ∈ I. We have (M, s?) |= 〈〈A~b〉〉Ψ iff (M?\I , s?) |= 〈〈A~b\I〉〉Ψ? where M?\I (resp. ~b \ I)

is obtained from M? (resp. ~b) by removing the components in I. In Algorithm 2, we
define A? = 〈Q?, r, R?1, R?2〉, col? : Q? → [0, 1], and a distinguished location q? ∈ Q?

as explained in Section 4.2.2, but built on M?\I , Ψ? and s? instead. By Lemma 7,

(M, s?) |= 〈〈A~b〉〉Ψ iff there is a proof whose root is 〈q?,~b \ I〉 such that all the maximal
branches are infinite and the maximal colour that appears infinitely often is 0.

Furthermore, note that we have the following equivalence: (M, s?) |= 〈〈∅~b〉〉Ψ iff
(KM? , s?) |= AΨ? in CTL+. It is worth noting that strictly speaking, the distinction

between 〈〈∅~b〉〉 and 〈〈A~b〉〉 in Algorithm 2 is not needed because the model-checking in-
stance with CTL+ can be formulated as an instance of the parity game problem for

40

AVASS. However, it allows us to pinpoint when a call to a subroutine about AVASS is
really needed and when a routine about CTL+ suffices.

Algorithm 2 – RB±ATL+(Ag, r) model checking –

1: procedure MC(M,φ)
2: case φ of
3: p: return {s ∈ S | s ∈ L(p)}
4: ¬ψ: return S\ MC(M,ψ)
5: φ1 ∧ φ2: return MC(M,φ1)∩ MC(M,φ2)

6: 〈〈∅~b〉〉Ψ: return {s | KM? , s |= AΨ? in CTL+}
7: 〈〈A~b〉〉Ψ: return {s? ∈ S | A?, col?, q?,~b\I is a positive instance of the parity

game problem for AVASS }
8: end case
9: end procedure

By structural induction, one can show that (M, s) |= φ iff s ∈ MC(M,φ) (as in the
proof of Theorem 11). As far as computational complexity is concerned, MC(M,φ) is
computed with a recursion depth linear in the size of φ and a polynomial amount of
exptime requests. The exptime upper bound is due to Lemma 7 and the complexity
analysis following the statement of Lemma 7. Note also that for each occurrence of
a subformula ψ of φ, MC(M,ψ) can be computed only once, which guarantees the
overall number of calls of the form MC(M,ψ): again, it is sufficient to take advantage
of dynamic programming and to work with a table to remember the values MC(M,ψ)
already computed (omitted in the present algorithm and already explained earlier). We
also take advantage of the fact that the model-checking problem for CTL+ is in ∆P

2 ⊆
exptime. �

Because of the results in [21, 12], we obtain immediately the following corollary.

Corollary 1. Let r ≥ 4 and |Ag| ≥ 2. Then, MC(RB±ATL+(Ag, r)) is exptime-
complete

The exptime lower bound follows from [12, Corollary 1]. Specifically, in the proof
of [12, Theorem 3] (by reduction from the control-state reachability for AVASS [21]) RB-
CGS can be restricted to two agents. The exptime upper bound is from Theorem 13.
In the case of one resource, we obtain the following bounds.

Theorem 14. For r ∈ {1, 2, 3}, MC(RB±ATL+(r)) is pspace-hard and in exptime.

The pspace lower bound follows from the pspace-hardness of MC(ATL+) [27].

Discussion. Though establishing an exptime upper bound for MC(RB±ATL+(1)) re-
veals a substantial improvement in complexity compared to the 2exptime-completeness
of MC(RB±ATL∗) [12], the exact complexity remains open and seems quite challenging.
It is still unclear to us whether the developments in [27, Section 3.2] or in [28] about
MC(ATL+) could be adapted to obtain an optimal upper bound.

As far as the complexity of MC(RB±ATL+(1)) is concerned, it is natural to wonder
whether the model-checking problem for Parity-Energy ATL, also called pe-ATL in [69]

41

when the energy bound is bounded below and unbounded above can be used to analyse
the complexity of MC(RB±ATL+(1)). MC(pe-ATL) is in ∆P

2 [69] and it seems hopeless
to take advantage of this bound1 to solve efficiently MC(RB±ATL+(1)) since MC(ATL+)
is already pspace-hard [27]. A notable difference between RB±ATL+(1) and pe-ATL,
is that the parity condition in pe-ATL is actually a global fairness condition for all the
computations of the CGS.

5. Further Results: Applications and Extensions

In this section, we leverage on the results from the previous sections to derive inter-
esting consequences for syntactic fragments of our languages (typically by bounding the
number of linear-time temporal operators), as well as for logics that happen to be closely
related to RB±ATL, RB±ATL+, and RB±ATL∗.

5.1. Restricting the linear-time temporal operators

In this section, we introduce fragments of RB±ATL+ obtained by restricting the set
of path formulae by allowing only a finite amount of patterns for each fragment. This
is a standard approach in the literature about temporal logics, as it allows us to restrict
ourselves to a bounded number of temporal patterns supposedly useful in practice, in
order to obtain more tractability results [24]. For instance, RB±ATL can be understood
as the fragment of RB±ATL+ in which the only temporal patterns are X p, p1 U p2 and
G p. For each fragment (defined below), we establish that its model-checking problem
restricted to a single agent and a single resource can be solved in ptime by building upon
our algorithm to solve RB±ATL+({1}, 1).

We recall that the path formulae for RB±ATL+(Ag, r) are obtained from the following
grammar: Ψ ::= ¬Ψ | Ψ ∧ Ψ | Xφ | φUφ. Given a finite set O = {⊕1, . . . ,⊕n}
of patterns understood as built-in linear-time temporal operators, we associate to each
pattern ⊕i an arity ai ≥ 1 and an LTL formula Ψi(p1, . . . , pai) of temporal depth one
(its definition that unambiguously provides a semantics to the operator ⊕i). Hence, the
formula Ψi(p1, . . . , pai) is an LTL formula built from the grammar below, where p, q ∈ AP:

Ψ ::= p | ¬Ψ | Ψ ∧Ψ | pU q | X p,

We write RB±ATL+
O to denote the fragment of RB±ATL+ in which path formulae

are defined from the grammar below:

Ψ ::= ⊕1(φ1, . . . , φa1) | . . . | ⊕n(φ1, . . . , φan),

where the φi’s are state formulae and O = {⊕1, . . . ,⊕n}.
Let t be the map that transforms RB±ATL+

O formulae into RB±ATL+ formulae using
the definitions for the linear-time temporal operators in O. Namely, t is the identity for
propositional variables and it is homomorphic for Boolean connectives. Finally, for all

⊕i ∈ O, we have t(⊕i(φ1, . . . , φai))
def
= Ψi(t(φ1), . . . , t(φai)). The satisfaction relation

|= for RB±ATL+
O is essentially defined as for RB±ATL+ except for formulae of the

1We thank Dario Della Monica for checking that the np upper bound stated in [69, Theorem 5.1] is
actually an ∆P

2 upper bound in view of the algorithm developped in [69, Section 4].

42

form ⊕i(φ1, . . . , φai). More precisely, (M, s) |= φ in RB±ATL+
O

def⇔ (M, s) |= t(φ) in
RB±ATL+.

Let us explain how RB±ATL can be viewed as a syntactic fragment of RB±ATL+
O?

for some finite set O? = {⊕1,⊕2,⊕3} of patterns, with a1 = 1 and a2 = a3 = 2. We

define Ψ1(p1)
def
= X p1, Ψ2(p1, p2)

def
= p1 U p2 and Ψ3(p1, p2)

def
= ¬(p1 U p2). The definitions

related to ⊕1 and ⊕2 are well-motivated to capture the formulae of the form 〈〈A~b〉〉Xφ
and 〈〈A~b〉〉φ1 Uφ2 from RB±ATL, respectively. However, the pattern ⊕3 is instrumental

to capture formulae of the form 〈〈A~b〉〉Gφ. Indeed, in LTL, G p is logically equivalent to

¬(>U¬p) and therefore 〈〈A~b〉〉G p from RB±ATL is logically equivalent to 〈〈A~b〉〉⊕3(>,¬p)
in RB±ATL+

O? . It is even immediate to add the release operator R, not necessarily native

to RB±ATL, as 〈〈A~b〉〉φ1 Rφ2 is captured by 〈〈A~b〉〉 ⊕3 (¬φ1,¬φ2) in RB±ATL+
O? (recall

that state formulae are closed under negation, unlike path formulae in RB±ATL+
O?).

The main result of interest herein about RB±ATL+
O is stated below (with associated

arities and definitions). Observe that RB±ATL is equal to RB±ATL+
O for some O.

Theorem 15. Let O = {⊕1, . . . ,⊕n} be a finite fixed set of patterns. The model-
checking problem for RB±ATL+

O({1}, 1) is in ptime.

Proof. Let O = {⊕1, . . . ,⊕n} be a fixed finite set of patterns (with associated definitions
Ψ1, . . . , Ψn and the corresponding map t parameterised by O). The ptime upper bound
is obtained by running exactly the algorithm described in the proof of Theorem 11 and
by taking advantage of the fact that O is fixed in RB±ATL+

O({1}, 1) so that the model-
checking algorithm runs in ptime.

To this end, let us first establish a few properties about RB±ATL+
O({1}, 1). For all

i ∈ [1, n], the LTL formula Ψi(p1, . . . , pai) is a constant of the logic RB±ATL+
O({1}, 1).

Further, Ψi(p1, . . . , pai) can be put in NNF in linear-time in the size of Ψi(p1, . . . , pai);
and since ¬X p is logically equivalent to X¬p and ¬(pU p′) is logically equivalent to
G¬p′∨(¬p′ U(¬p∧¬p′)), Ψi(p1, . . . , pai) is logically equivalent to a path formula Ψ′i(p1, . . . ,
pai) in NNF such that the negation ¬ occurs only in front of propositional variables, and
the atomic formulae have one of the forms XC, GC, and C UC ′, with C, C ′ being con-
junctions of literals. In particular, Ψ′i(p1, . . . , pai) can be computed in linear-time in the
size of Ψi(p1, . . . , pai), also by using the fact that X and G distributes over ∧. As in the
proof of Lemma 5, guessing which atomic formulae in Ψ′i hold to evaluate Ψ′i to true,
amounts to guess a conjunction of the form

XC0 ∧ GC ′0 ∧ (C1 UC
′
1) ∧ · · · ∧ (Cm UC ′m),

for some m ∈ N, where the Ci’s and C ′j ’s are arbitrary conjunctions of literals (empty con-
junctions are equivalent to >). Each conjunction above can be understood as a proposi-
tional valuation on the path formula Ψ′i(p1, . . . , pai), and because Ψ′i(p1, . . . , pai) is fixed,
the number of relevant conjunctions that need to be considered is exponential in the size of
Ψi but, more importantly, it is a constant for the logic RB±ATL+

O({1}, 1). Hence, as ex-
plained in the proof of Lemma 5, checking whether (M, s) |= 〈〈{1}b〉〉⊕i(φ1, . . . , φai) holds
amounts to invoke a constant number of instances of GREACH(1-VASS). This constant
number depends on the number of valuations/conjunctions satisfying Ψ′i(p1, . . . , pai) and
on the constant number of guesses (see again the proof of Lemma 5) to construct the

43

instances of GREACH(1-VASS). Hence, in the labelling algorithm from the proof of The-
orem 11, the case for formulae of the form 〈〈{1}b〉〉 ⊕i (φ1, . . . , φai) requires polynomial
time only (assuming that O is fixed), which allows us to get an overall complexity in
ptime. �

As a corollary, we obtain the main result established in [39].

Corollary 2. Model-checking RB±ATL({1}, 1) is in ptime.

Obviously, if O is expressive enough for RB±ATL+
O to embed CTL, both problems

MC(RB±ATL+
O({1}, 1)) and MC(RB±ATL({1}, 1)) are ptime-complete since ptime-

hardness is inherited from the model-checking problem for CTL [43]. Note also that
ptime fragments of ATL+ have been investigated in [70].

5.2. Model-checking RB±ATL({1}, 1) is in ptime: a refined algorithm

In Section 5.1, we showed that model-checking RB±ATL({1}, 1) is in ptime us-
ing instances of the decision problem GREACH(1-VASS). Below, we provide a dif-
ferent polynomial-time algorithm for solving MC(RB±ATL({1}, 1)) in which we only
use instances of CREACH(1-VASS) and NONTER(1-VASS) (instead of the more gen-
eral decision problem GREACH(1-VASS), which is not necessary for RB±ATL({1}, 1)).
The interest of this different proof derives from the particular version of the problem
MC(RB±ATL({1}, 1)) we consider in this section, which differs in two points from the
problem analysed in Section 5.1. The first point concerns the use of the linear-time
temporal operator release R instead of the always operator G, which provides more gen-
erality in the syntax. The second point provides some restriction as we assume that in
the input RB-CGS, there is some idle action idle that can be triggered from any state
and for any agent and such that its cost is zero. The latter hypothesis has been assumed
in [39], following developments in [12], and it happens to be essential to use instances
of CREACH(1-VASS). The algorithm presented below appears in [39] and compared to
the algorithm underlying the proof of Corollary 2, it is designed to be implemented more
efficiently. Hereafter, for every b ∈ N ∪ {ω}, we write 〈〈b〉〉φ instead of 〈〈{1}b〉〉φ.

As done in Section 4, given an RB-CGS M = 〈{1}, S,Act, 1, act, wf, δ, L〉 with a
single agent and a single resource, the corresponding 1-VASS VM = 〈S, 1, RV 〉 is such

that q
u−→ q′ ∈ RV iff there is some action a ∈ act(q, 1) such that δ(q, a) = q′ and

wf(q, 1, a) = u. Similarly, we write KM = 〈S,R,LK〉 to denote the Kripke structure
such that qRq′ iff there is some action a ∈ act(q, 1) such that δ(q, a) = q′ and LK(q) = {q}
(by a slight abuse of notations, we assume that AP = Q). Note that, thanks to the idle

action, KM is now a total Kripke structure, i.e., every world has at least one successor.
We now investigate the relationship between computations in M and runs in VM and

in KM , respectively. Below, given a b-consistent computation q0
a0−→ q1

a1−→ q2 · · · , the
sequence of associated resource values is denoted by (vi)i∈N. We recall that v0 = b and
vi+1 = vi + wf(qi, 1, ai) for all i ≥ 0.

Lemma 8. Let M be an RB-CGS with a single agent and a single resource.

(I) Let q0
a0−→ q1

a1−→ q2 · · · be a b-consistent computation associated to the family (vi)i∈N
of resource values. If b ∈ N, then 〈q0, v0〉 −→ 〈q1, v1〉 −→ 〈q2, v2〉 · · · is an infinite
run in VM ; otherwise (i.e., b = ω) q0 −→ q1 −→ q2 · · · is an infinite path in KM .

44

(II) Let 〈q0, v0〉 −→ 〈q1, v1〉 −→ 〈q2, v2〉 · · · be an infinite run in VM . Then, there is a

v0-consistent computation q0
a0−→ q1

a1−→ q2 · · · associated to the family (vi)i∈N of
resource values.

(III) Let q0 −→ q1 −→ q2 · · · be an infinite path in KM . Then, there is an ω-consistent

computation q0
a0−→ q1

a1−→ q2 · · · in M .

Proof. (I) Let q0
a0−→ q1

a1−→ q2 · · · be a b-consistent computation associated to the family

(vi)i∈N of resource values, and b ∈ N. We show that for all i ≥ 0, 〈qi, vi〉
t−→ 〈qi+1, vi+1〉

in VM holds for some transition t in VM . Indeed, by definition, for i ≥ 0, qi
ai−→ qi+1 in

M iff δ(qi, ai) = qi+1 for some u = wf(qi, 1, a). Then, by definition of VM , we have that

qi
u−→ qi+1. Moreover, the resource availability vi+1 = vi + u is greater than zero, as the

computation is b-consistent, and therefore 〈qi, vi〉
t−→ 〈qi+1, vi+1〉 holds for t = qi

u−→ qi+1.
Clearly, if b = ω, q0 −→ q1 −→ q2 · · · is an infinite path in KM .

(II) Let 〈q0, v0〉 −→ 〈q1, v1〉 −→ 〈q2, v2〉 · · · be an infinite run in VM . We show that

in M , for all i ≥ 0, qi
ai−→ qi+1 and vi ≥ 0. Indeed, for i ≥ 0, 〈qi, vi〉

t−→ 〈qi+1, vi+1〉
holds iff for some transition t = qi

u−→ qi+1 and vi+1 = u + vi ≥ 0. By definition of
VM , this means that in M there is some action ai ∈ act(qi, 1) such that δ(qi, ai) = qi+1

and wf(qi, 1, a) = u. Hence, qi
ai−→ qi+1 and vi ≥ 0. Therefore, q0

a0−→ q1
a1−→ q2 · · · is a

v0-consistent computation associated to the family (vi)i∈N of resource values.
(III) If q0 −→ q1 −→ q2 · · · is an infinite path in KM . Then, by reasoning similarly

to point (II) we can show that q0
a0−→ q1

a1−→ q2 · · · , where each action ai is such that
δ(qi, ai) = qi+1, is an ω-consistent computation in M . �

Lemma 8 is instrumental to the three following lemmas that are at the heart of the
model-checking algorithm for RB±ATL({1}, 1). As earlier in the paper, given S1 ⊆ S,
we write V S1

M (resp. KS1

M) to denote the restriction of VM (resp. KM) to the states in S1

only.

Lemma 9. Let M be an RB-CGS for RB±ATL({1}, 1), S1 ⊆ S with s ∈ S1, and b ∈ N.

(I) There is a b-consistent computation starting at s in M that visits only states in S1

iff (V S1

M , 〈s, b〉) is a positive instance of NONTER(1-VASS).

(II) There is an ω-consistent computation starting in s in M that visits only states in
S1 iff (KM , s) |= EG(

∨
s′∈S1

s′) in CTL.

Proof. (I) ⇒ Suppose that λ = q0
a0−→ q1

a1−→ q2 · · · is a b-consistent computation starting
in s = q0 that visits only states in S1. By Lemma 8.(I), 〈q0, v0〉 −→ 〈q1, v1〉 −→ 〈q2, v2〉 · · ·
is an infinite run in V S1

M for v0 = b. As a result, (V S1

M , 〈s, b〉) is a positive instance of
NONTER(1-VASS). For the ⇐-direction the proof is similar, while using Lemma 8.(II).

(II)⇒ Suppose that λ = q0
a0−→ q1

a1−→ q2 · · · is an ω-consistent computation starting in
s = q0 that visits only states in S1. By Lemma 8.(I), q0 −→ q1 −→ q2 · · · is an infinite path
in KM . Hence, the CTL formula EG(

∨
s′∈S1

s′) is true at s in KM . For the ⇐-direction
the proof is similar, while using Lemma 8.(III). �

Hence, Lemma 9 is a consequence of Lemma 8, which will be generalised in Lemma 11.
Let us focus now on the until operator U.

45

Lemma 10. Let M be an RB-CGS for RB±ATL({1}, 1), S1, S2 ⊆ S with s ∈ S, and
b ∈ N.

(I) There is a b-consistent computation starting at s in M such that its projection on
S is in S∗1 · S2 · Sω (understood as an ω-regular expression) iff for some s′ ∈ S2,
(V S1∪S2

M , 〈s, b〉, s′) is a positive instance of CREACH(1-VASS).

(II) There is an ω-consistent computation starting at s in M such that its projection on
S is in S∗1 · S2 · Sω iff in CTL, we have

(KM , s) |= E(
∨
s′∈S1

s′)U(
∨

s′′∈S2

s′′).

Proof. (I)⇒ Suppose that λ = q0
a0−→ q1

a1−→ q2 · · · is a b-consistent computation starting at
s inM such that its projection on S is in S∗1 ·S2·Sω. By Lemma 8.(I), 〈q0, v0〉 −→ 〈q1, v1〉 −→
〈q2, v2〉 · · · is an infinite run in VM for v0 = b, whose projection is in S∗1 · S2 · Sω and
qn ∈ S2. Then, clearly (V S1∪S2

M , 〈s, b〉, qn) is a positive instance of CREACH(1-VASS).
For the ⇐-direction the proof is similar, while using Lemma 8.(II) and the idle action
that allows us to extend a finite trace to an infinite one.

(II)⇒ Suppose that λ = q0
a0−→ q1

a1−→ q2 · · · is an ω-consistent computation starting in
s = q0 such that its projection on S is in S∗1 · S2 · Sω. By Lemma 8.(I), q0 −→ q1 −→ q2 · · ·
is an infinite path in KM . Hence, the CTL formula E(

∨
s′∈S1

s′)U(
∨
s′′∈S2

s′′) is true at
s in KM . For the ⇐-direction the proof is similar, while using Lemma 8.(III). �

This is again a consequence of Lemma 8 but here, we have to use the fact that the
distinguished action idle is enabled in any state (which is handy to extend to infinity a
finite witness run). Finally, we consider the linear-time temporal operator R.

Lemma 11. Let M be an RB-CGS for RB±ATL({1}, 1), S1, S2 ⊆ S with s ∈ S, and
b ∈ N.

(I) There is a b-consistent computation starting at s in M such that its projection on S
is in Sω2 ∪ (S2 \ S1)∗ · (S1 ∩ S2) · Sω iff either (V S2

M , 〈s, b〉) is a positive instance of

NONTER(1-VASS) or for some s′ ∈ S1 ∩ S2, (V S2

M , 〈s, b〉, s′) is a positive instance
of CREACH(1-VASS).

(II) There is an ω-consistent computation starting at s in M such that its projection on
S is in Sω2 ∪ (S2 \ S1)∗ · (S1 ∩ S2) · Sω iff in CTL, we have

(KM , s) |= (EG
∨

s′′∈S2

s′′) ∨ E(
∨

s′∈(S2\S1)

s′)U(
∨

s′′∈S1∩S2

s′′).

CTL with the release operator R is known to also admit a ptime model-checking prob-
lem (see, e.g., [24, Chapter 7]). The CTL formula in Lemma 11(II) can be equivalently
replaced by

E(
∨
s′∈S1

s′)R(
∨

s′′∈S2

s′′).

In Algorithm 3 below, we shall use the release operator R in CTL in order to simplify the
involved formulae.

46

Proof. (I) ⇒ If there is a b-consistent computation λ starting in s that only visits states
in S2, then by Lemma 9.(I), (V S2

M , 〈s, b〉) is a positive instance of NONTER(1-VASS). On
the other hand, if the projection of λ on S belongs to (S2 \ S1)∗ · (S1 ∩ S2) · Sω, then

by Lemma 10(I), for some s′ ∈ S1 ∩ S2, (V
(S2\S1)∪(S1∩S2)
M , 〈s, b〉, s′) is a positive instance

of CREACH(1-VASS). Since (S2 \ S1) ∪ (S1 ∩ S2) = S2, (V S2

M , 〈s, b〉, s′) is also a positive
instance of CREACH(1-VASS).

For the ⇐-direction the proof is similar. In particular, if (V S2

M , 〈s, b〉, s′) is a positive
instance of CREACH(1-VASS) for some s′ ∈ S1 ∩ S2, then by Lemma 10.(I), there is
a b-consistent computation λ starting at s in M such that its projection on S is in
(S2 \ S1)∗ · (S1 ∩ S2) · Sω. Similarly, if (V S2

M , 〈s, b〉) is a positive instance of NONTER(1-
VASS), by Lemma 9(I), there is a b-consistent computation λ starting at s in M such
that its projection on S is in Sω2 .

(II) The result follows similarly by item (II) in Lemma 9 and 10. �
Let M = 〈{1}, S,Act, 1, act, wf, δ, L〉 be a resource-bounded CGS, and φ be a for-

mula in RB±ATL({1}, 1). Let us present below Algorithm 3 that is a polynomial-time
algorithm that computes the finite set GMC(M,φ) (by default, b ∈ N).

By induction, it can be shown that (M, s) |= φ iff s ∈ GMC(M,φ). Lemma 10
and Lemma 11 are used to prove the soundness of the subroutines for U and R, with
b ∈ N∪{ω}, respectively. When the strategy modality is 〈〈∅b〉〉, it behaves as the standard
path quantifier A in CTL∗, which is reflected in Algorithm 3. As far as computational
complexity is concerned, GMC(M,φ) is computed with a recursion depth linear in the
size of φ and the control-state reachability and nontermination problems can be solved in
polynomial time by Theorem 7 and 8. More precisely, for each occurrence of a subformula
ψ of φ, GMC(M,ψ) can be computed only once, which guarantees the overall number of
calls of the form GMC(M,ψ) to be at most polynomial: it is sufficient to take advantage
of dynamic programming and to work with a table to remember the values GMC(M,ψ)
already computed (omitted in the present algorithm, see also the proof of Theorem 11).
It is also worth observing that the instances we consider are polynomial in the sizes of
M and φ. Finally, we take advantage of the fact that the model-checking problem for
CTL including R remains in ptime (see, e.g., [24, Chapter 7]).

Consequently, reasoning about a single resource in CTL comes at no extra compu-
tational cost. Hence, in principle we can verify specification such as formula (1) in
Example 2 efficiently.

5.3. Comparison with RBTL and RBTL∗

In this section we discuss the resource-bounded temporal logic RBTL∗, which extends
CTL∗ by adding resources [13, 38]. In particular, we show that this logic is essentially
the same as single-agent RB±ATL∗. While such a result is not surprising, apparently it
has so far been overlooked in the literature. Indeed, in [12], complexity results are given
independently for both RBTL∗ and single-agent RB±ATL∗, even though the two logics
will be proved to be translatable one into the other. Such an equivalence allows us to
apply results for single-agent RB±ATL to RBTL as well. We first introduce the syntax
and semantics of RBTL∗ as given in [38].

Definition 16. Given r ≥ 1, the state formulae φ and path formulae Ψ in RBTL∗ are

47

Algorithm 3 – RB±ATL({1}, 1) Model-checking –

1: procedure GMC(M,φ)
2: case φ of
3: p: return {s ∈ S | s ∈ L(p)}
4: ¬ψ: return S \GMC(M,ψ)
5: ψ1 ∧ ψ2: return GMC(M,ψ1) ∩GMC(M,ψ2)
6: 〈〈b〉〉Xψ: return {s | ∃ a ∈ act(s, 1), 0 ≤ b+wf(s, 1, a), δ(s, a) ∈ GMC(M,ψ)}
7: 〈〈ω〉〉Xψ: return {s | ∃ a ∈ act(s, 1), δ(s, a) ∈ GMC(M,ψ)}
8: 〈〈∅ω〉〉Xψ: return {s | ∀ a ∈ act(s, 1), δ(s, a) ∈ GMC(M,ψ)}
9: 〈〈∅b〉〉Xψ: return {s | ∀ a ∈ act(s, 1), δ(s, a) ∈ GMC(M,ψ)}

10: 〈〈b〉〉ψ1 Uψ2: S1 := GMC(M,ψ1); S2 := GMC(M,ψ2);
return {s ∈ S | ∃ s′ ∈ S2 s.t. (V S1∪S2

M , 〈s, b〉, s′) is a positive
11: inst. of CREACH(1-VASS) }
12: 〈〈ω〉〉ψ1 Uψ2: S1 := GMC(M,ψ1); S2 := GMC(M,ψ2);

return {s ∈ S | KM , s |= E(
∨
s′∈S1

s′)U(
∨
s′∈S2

s′)}
13: 〈〈∅ω〉〉ψ1 Uψ2: S1 := GMC(M,ψ1); S2 := GMC(M,ψ2);

return {s ∈ S | KM , s |= A(
∨
s′∈S1

s′)U(
∨
s′∈S2

s′)}
14: 〈〈∅b〉〉ψ1 Uψ2: S1 := GMC(M,ψ1); S2 := GMC(M,ψ2);

return {s ∈ S | KM , s |= A(
∨
s′∈S1

s′)U(
∨
s′∈S2

s′)}
15: 〈〈b〉〉ψ1 Rψ2: S1 := GMC(M,ψ1); S2 := GMC(M,ψ2);

return {s ∈ S | (V S2

M , 〈s, b〉) is a positive inst. of NONTER(1-VASS) }
∪{s ∈ S | ∃ s′ ∈ S1 ∩S2 s.t. (V S2

M , 〈s, b〉, s′) is a positive inst. of CREACH(1-VASS)
}

16: 〈〈ω〉〉ψ1 Rψ2: S1 := GMC(M,ψ1); S2 := GMC(M,ψ2);
return {s ∈ S | KM , s |= E(

∨
s′∈S1

s′)R(
∨
s′∈S2

s′)}
17: 〈〈∅ω〉〉ψ1 Rψ2: S1 := GMC(M,ψ1); S2 := GMC(M,ψ2);

return {s ∈ S | KM , s |= A(
∨
s′∈S1

s′)R(
∨
s′∈S2

s′)}
18: 〈〈∅b〉〉ψ1 Rψ2: S1 := GMC(M,ψ1); S2 := GMC(M,ψ2);

return {s ∈ S | KM , s |= A(
∨
s′∈S1

s′)R(
∨
s′∈S2

s′)}
19: end case
20: end procedure

48

built according to the following BNF grammar:

φ ::= p | ¬φ | φ ∧ φ | 〈~b〉Ψ
Ψ ::= φ | ¬Ψ | Ψ ∧Ψ | XΨ | ΨUΨ,

where p ∈ AP and ~b ∈ (N ∪ {ω})r.
Formulae in RBTL∗ are understood as the state formulae.

The fragment RBTL of RBTL∗ is obtained by restricting path formulae just like in the
case of RB±ATL: Ψ ::= Xφ | φUφ | Gφ. The fragment RBTL+ is defined from RBTL∗ as
RB±ATL+ is defined from RB±ATL∗ in Section 2. In [12] the interpretation of RBTL∗ is
given on a particular class of models, based on vector addition systems with states.

Definition 17 (Model). A model for RBTL∗ is a tuple A = 〈Q, r,R, L〉 such that (i)
〈Q, r,R〉 is a serial VASS, i.e., for every q ∈ Q, there exist q′ ∈ Q and ~u ∈ Zr such that
(q, ~u, q′) ∈ R; and (ii) L : AP → P(Q) is a labelling function.

The assumption of seriality on models appeared originally in [38], but it is omitted, for
example, in [12]. Here we assume seriality to facilitate the comparison with RB±ATL∗,
whose models are also serial by definition.

In a model A, a pseudo-run ρ is an infinite sequence (q0, ~v0) → (q1, ~v1) → . . . such
that for all i ≥ 0, there exists (q, ~u, q′) ∈ R such that qi = q, qi+1 = q′, and ~vi+1 = ~u+~vi
(with n + ω = ω). A pseudo-run ρ is a run iff for all i ≥ 0, ~vi ∈ (N ∪ {ω})r. This is
consistent with the notions used so far.

Definition 18 (Satisfaction relation). The satisfaction relation |= in model A, for
state q ∈ Q, run ρ, p ∈ AP, state formula φ, and path formula Ψ is defined as follows
(clauses for Boolean connectives are immediate and thus omitted):

(A, q) |= p iff q ∈ L(p)

(A, q) |= 〈~b〉Ψ iff for some infinite run ρ from (q,~b), (A, ρ) |= Ψ
(A, ρ) |= φ iff (A, ρ[0]) |= φ
(A, ρ) |= XΨ iff (A, ρ≥1) |= Ψ
(A, ρ) |= ΨUΨ′ iff for some i ≥ 0, (A, ρ≥i) |= Ψ′, and for all 0 ≤ j < i, (A, ρ≥j) |= Ψ

The model-checking problem for RBTL∗ takes as inputs a model A, a location q and
an RBTL∗ state formula φ, and asks whether (A, q) |= φ holds. A similar definition can
be provided for all relevant fragments of RBTL∗.

We now prove that the logics RBTL∗ and RB±ATL∗({1}, r) are semantically equiva-
lent, in the sense that truth-preserving translations exist between models and formulae.
First, consider the translation maps τ and τ ′ between RBTL∗ and RB±ATL∗({1}, r) such
that τ, τ ′ are the identity on AP , they are homomorphic for Boolean and temporal oper-

ators, and τ(〈~b〉Ψ)
def
= 〈〈{1}~b〉〉 τ(Ψ), τ ′(〈〈{1}~b〉〉Ψ)

def
= 〈~b〉τ ′(Ψ), and τ ′(〈〈∅~b〉〉Ψ)

def
= [~ω]τ ′(Ψ),

where [~ω]Ψ
def
= ¬〈~ω〉¬Ψ.

Further, given an RB-CGS M = 〈{1}, AP, S,Act, r, act, wf, δ, L〉 with a single agent
1, define the associated model AM = 〈VM , L〉 for RBTL∗ such that VM is the VASS
associated to M , as defined in Section 4. Symmetrically, given a model A = 〈Q, r,R, L〉,
define the associated single-agent RB-CGS MA = 〈{1}, r,Q,R, act, wf, δ, L〉 (the set of
actions is equal to the set of transitions R) such that for every q ∈ Q,

49

• act(q, 1) = {(q′, ~u, q′′) ∈ R | q = q′};

• for every (q, ~u, q′) ∈ act(q, 1), wf(q, 1, (q, ~u, q′)) = ~u;

• for every (q, ~u, q′) ∈ act(q, 1), δ(q, (q, ~u, q′)) = q′.

Notice that, by the assumption of seriality in Definition 17, for every q ∈ Q, act(q, 1) 6=
∅, as required by Definition 3 of RB-CGS.

We now state the following auxiliary lemma, whose proof follows immediately by the
definitions of AM and MA above.

Lemma 12. 1. Given a single-agent RB-CGS M , state s ∈ S, and budget ~b ∈ (N ∪
{ω})r,

(a) for every ~b-consistent computation λ starting at s in M , in AM there exists

a run ρλ from (s,~b) such that for every i ≥ 0, (λi, ~vi) → (λi+1, ~vi+1) with

~vi+1 = ~vi + wf(λi, 1, ai) and λi
ai−→ λi+1.

(b) for every run ρ from (s,~b) in AM , ρ = ρλ for some ~b-consistent computation
λ starting at s in M .

2. Given a model A for RBTL∗, state q ∈ Q, and budget ~b ∈ (N ∪ {ω})r,

(a) for every run ρ from (q,~b) in A, in MA there exists a ~b-consistent computa-

tion λρ such that for every i ≥ 0, λρ[i]
(ρi,~u,ρi+1)−−−−−−−→ λρ[i + 1] with (ρi, ~vi) →

(ρi+1, ~vi+1) and ~vi+1 = ~u+ ~vi.

(b) for every ~b-consistent computation λ starting at q in MA, λ = λρ for some

run ρ starting at (q,~b) in A.

Proof. (sketch) 1a) Let λ be a ~b-consistent computation from s ∈ S, say λ = s0
a0−→

s1
a1−→ s2 · · · with the associated resource values (~vi)i∈N. We recall that ~v0 = ~b and

~vi+1 = ~vi + wf(si, 1, ai) for all i ≥ 0. Let us consider the sequence (s0, ~v0) −→ · · · −→
(si, ~vi) · · · . By definition of AM , for all i ≥ 0, we have (si, ~vi)

ti−→ (si+1, ~vi+1) in AM with

ti = si
wf(si,1,ai)−−−−−−→ si+1. Consequently, ρ is a run in AM from the configuration (s,~b) as

s = s0 and ~b = ~v0.
1b) Consider a run ρ from (s,~b) in AM , and the ~b-consistent computation λ = s0

a0−→
s1

a1−→ s2 · · · , with associated resource values (~vi)i∈N, such that s0 = s and for every i ≥ 0,
ρi = (si, ~vi) and ~vi+1 = ~vi + wf(si, 1, ai). It is not difficult to check that ρ = ρλ.

The proof for item (2) is similar. �
By using Lemma 12 we can finally prove that RB±ATL∗({1}, r) and RBTL∗ are closely

related semantically.

Theorem 19.

1. For every state formula φ and path formula Ψ in RBTL∗, and model A with state
q ∈ Q and run ρ,

(A, q) |= φ iff (MA, q) |= τ(φ)

(A, ρ) |= Ψ iff (MA, λρ) |= τ(Ψ)

where λρ is obtained from ρ as in Lemma 12.(2a).
50

2. For every state formula φ′ and path formula Ψ′ in RB±ATL∗, and single-agent
RB-CGS M with state s ∈ S and computation λ,

(M, s) |= φ′ iff (AM , s) |= τ ′(φ′)

(M,λ) |= Ψ′ iff (AM , ρλ) |= τ ′(Ψ′)

where ρλ is obtained from λ as in Lemma 12.(1a).

Proof. Both items can be proved by mutual induction on the structure of formulae. The
base cases for propositional variables and the inductive cases for Boolean and temporal
operators are immediate.

Item (1), case for φ = 〈~b〉Ψ. ⇒ Suppose that (A, q) |= φ, that is, for some run ρ from

(q,~b), (A, ρ) |= Ψ. By Lemma 12.(2a), inMA we can construct a~b-consistent computation
λρ from q such that (MA, λρ) |= τ(Ψ) by the induction hypothesis. This means that

(MA, q) |= 〈〈{1}
~b〉〉 τ(Ψ) = τ(〈~b〉Ψ) = τ(φ). ⇐ If (MA, q) |= 〈〈{1}

~b〉〉τ(Ψ) = τ(φ), then

for some ~b-consistent computation λ, (MA, λ) |= τ(Ψ). By Lemma 12.(2b), λ = λρ for

some run ρ from (q,~b) in A, and by induction hypothesis we obtain (A, ρ) |= Ψ, that is,
(A, q) |= φ.

Item (2), case for φ′ = 〈〈{1}~b〉〉Ψ′. ⇒ Suppose that (M, s) |= φ′, that is, for some
~b-consistent computation λ from s, (M,λ) |= Ψ′. By Lemma 12.(1a), in AM we can

construct a run ρλ from (s,~b) such that (AM , ρλ) |= τ ′(Ψ′) by induction hypothesis.

Hence, (AM , s) |= 〈~b〉τ ′(Ψ′) = τ ′(φ′). ⇐ Suppose that (AM , s) |= τ ′(φ′) = 〈~b〉τ ′(Ψ′).
That is, for some run ρ from (s,~b), (AM , ρ) |= τ ′(Ψ′). By Lemma 12.(1b) we have

that ρ = ρλ for some ~b-consistent computation λ such that (M,λ) |= Ψ′ by induction
hypothesis. Hence, (M, s) |= φ′.

Case for φ′ = 〈〈∅~b〉〉Ψ′. ⇒ Suppose that (AM , s) 6|= τ ′(φ′) = [~ω]τ ′(Ψ′). That is, for
some run ρ from (s, ~ω), (AM , ρ) 6|= τ ′(Ψ′). By Lemma 12.(1b) we have that ρ = ρλ for
some ~ω-consistent computation λ from s such that (M,λ) |= Ψ′ by induction hypothesis.
Hence, (M, s) 6|= φ′. ⇐ Suppose that (M, s) 6|= φ′, that is, for some computation λ from
s, (M,λ) 6|= Ψ′. By Lemma 12.(1a), in AM there exists a run ρλ from (s, ~ω) such that
(AM , ρλ) 6|= τ ′(Ψ′) by induction hypothesis. Hence, (AM , s) 6|= [~ω]τ ′(Ψ′) = τ ′(φ′). �

As a consequence of Theorem 19, RBTL∗ and the restriction of RB±ATL∗ to a single
agent are essentially the same logic in the sense that their translations according to τ, τ ′

are semantically faithful when single-agent RB-CGS are understood as RBTL∗ models
(i.e., a VASS with a valuation). A similar result holds for RBTL (resp. RBTL+) and
single-agent RB±ATL (resp. RB±ATL+), as τ, τ ′ preserves these fragments. Based on
the correspondences established in Theorem 19 and the fact that translations τ, τ ′ are
polynomial, we derive the complexity results for the model-checking problem in Fig. 6.
Notice that, for all numbers of resources, we have tight complexity bounds. Moreover, for
the case of a single resource, the model-checking problem is no harder than for the cor-
responding fragment of CTL∗. Thus, we conclude that reasoning about a single resource
in CTL∗ and fragments comes at no extra computational cost.

6. Conclusions and Future Work

In this work, we have pushed further our understanding of the relationship between
reasoning about resources in ATL-logics and decision problems for vector addition systems

51

r RBTL RBTL+ RBTL∗

∞ expspace-c. [12, Th. 4]
≥ 4 in pspace [12, Cor. 2]
3 pspace-h. [29] [27]
2

1
in ptime (Cor. 2) in ∆P

2 (Th. 11) in pspace ([12, Cor. 2])
ptime-h. (from CTL) ∆P

2 -h. (from CTL+ [30]) pspace-h. (from CTL∗)

Figure 6: The complexity of model-checking RBTL, RBTL+, and RBTL∗.

with states (VASS) or variants. This allowed us to establish new complexity results about
model-checking problems for ATL-logics with resources and to identify several fragments
with low complexity.

More precisely, we proved that the model-checking problem for RB±ATL+({1}, 1) is
in ∆P

2 (Theorem 11) by essentially introducing the generalised reachability problem for
1-VASS, and showing it to be in ptime (Theorem 10). Hence, MC(RB±ATL+({1}, 1))
is no more complex than MC(CTL+), despite the greater expressive power due to the
presence of one resource. Additionally, we have established that the model-checking
problem for RB±ATL({1}, 1) is ptime-complete and actually this holds for any fragment
of RB±ATL+({1}, 1) with a fixed finite set of linear-time temporal operators (see Sec-
tion 5.1). For r ≥ 1, we proved MC(RB±ATL+(r)) to be in exptime, with an identical
upper bound for its subproblem MC(RB±ATL(r)). To show this, we presented a reduc-
tion to the parity game problem for AVASS that is optimal complexity-wise, so that
we avoid the doubly-exponential blow-up observed when defining the reduction from
MC(RB±ATL∗) in [12]. When r ≥ 4, we obtain exptime-completeness (Corollary 1).

Our main contributions are directed towards reducing the complexity gaps for many
meaningful fragments of RB±ATL∗ and identifying fragments with a tractable model-
checking problem. Apart from the application to practical case studies that would take
advantage of our identified tractable fragments and associated algorithms, here are re-
search directions for future work.

• What is the precise complexity of MC(RB±ATL+(Ag, 1)) with arbitrary finite sets
Ag of agents? Currently, this problem is known to be in exptime for |Ag| ≥ 2 and
pspace-hard from MC(ATL+) [27]). However, it is an open problem whether there
is a decision procedure running in polynomial space. To this end, refined analyses
from [71, 72, 25] might help.

• It is well-known that CTL and CTL+ are equally expressive [26], and this result
extends to ATL and ATL+ [27]. In both cases, the characterisation of the com-
plexity for the respective model-checking problem differs. It is an open problem
whether RB±ATL(Ag, r) and RB±ATL+(Ag, r), for |Ag| ≥ 2 and r ≥ 1, are equally
expressive.

• Another challenging issue consists in characterising the complexity of the problem
MC(RB±ATL(Ag, 1)) for arbitrary finite sets of agents (currently known to be in
pspace for |Ag| ≥ 2 [19] and ptime-hard from MC(CTL) [43]).

52

Acknowledgment. We would like to deeply thank the anonymous referees for all
their suggestions that helped us a lot improve the quality of this document. We would
like also to thank Michael Blondin (University of Sherbrooke) for pointing us to [31] and
for insightful feedback, as well as the anonymous referees at AAMAS’19 and ECAI’20
for their suggestions and comments that helped us improve the conference papers [39]
and [40]. Francesco Belardinelli acknowledges the support of the ANR JCJC Project
SVeDaS (ANR-16-CE40- 0021) and Stéphane Demri acknowledges the support of the
Centre National de la Recherche Scientifique (C.N.R.S.).

[1] R. Alur, T. Henzinger, O. Kupferman, Alternating-time temporal logic, Journal of the ACM 49 (5)
(2002) 672–713.

[2] R. Alur, L. de Alfaro, T. Henzinger, S. Krishnan, F. Mang, S. Qadeer, S. Rajamani, S. Tasiran,
MOCHA user manual, Tech. rep., University of California at Berkeley (2000).

[3] F. Laroussinie, N. Markey, Augmenting ATL with strategy contexts, Information and Computa-
tion (245) (2015) 98–123.

[4] M. Pauly, A modal logic for coalitional power in games, Journal of Logic and Computation 12 (1)
(2002) 149–166.

[5] K. Chatterjee, T. Henzinger, N. Piterman, Strategy logic, in: CONCUR’07, Vol. 4703 of Lecture
Notes in Computer Science, Springer, 2007, pp. 59–73.

[6] F. Mogavero, A. Murano, G. Perelli, M. Vardi, Reasoning about strategies: On the model-checking
problem, ACM Transactions on Computational Logic 15 (4) (2014) 34:1–34:47.

[7] P. Cermák, A. Lomuscio, F. Mogavero, A. Murano, MCMAS-SLK: A model checker for the verifi-
cation of strategy logic specifications, in: CAV’14, Vol. 8559 of Lecture Notes in Computer Science,
Springer, 2014, pp. 525–532.

[8] A. Lomuscio, H. Qu, F. Raimondi, MCMAS: an open-source model checker for the verification of
multi-agent systems, Software Tools for Technology Transfer 19 (1) (2017) 9–30.

[9] R. Alur, L. de Alfaro, R. Grosu, T. Henzinger, A. Thomas, M. Kang, C. Kirsch, R. M. F. Mang,
B.-Y. Wang, jMocha: A model checking tool that exploits design structure, in: Proceedings of the
23rd International Conference on Software Engineering (ICSE01), IEEE, 2001, pp. 835–836.

[10] M. Kacprzak, W. Nabialek, A. Niewiadomski, W. Penczek, A. Pólrola, M. Szreter, B. Woźna,
A. Zbrzezny, Verics 2007 - a model checker for knowledge and real-time, Fundamenta Informaticae
85 (1) (2008) 313–328.

[11] N. Alechina, B. Logan, State of the art in logics for verification of resource-bounded multi-agent
systems, in: A. Blass, P. Cégielski, N. Dershowitz, M. Droste, B. Finkbeiner (Eds.), Fields of Logic
and Computation III - Essays Dedicated to Yuri Gurevich on the Occasion of His 80th Birthday,
Vol. 12180 of Lecture Notes in Computer Science, Springer, 2020, pp. 9–29.

[12] N. Alechina, N. Bulling, S. Demri, B. Logan, On the complexity of resource-bounded logics, Theo-
retical Computer Science 750 (2018) 69–100.

[13] N. Bulling, B. Farwer, On the (Un-)Decidability of Model-Checking Resource-Bounded Agents, in:
ECAI’10, 2010, pp. 567–572.

[14] D. Della Monica, M. Napoli, M. Parente, On a logic for coalitional games with priced-resource
agents, Electronic Notes in Theoretical Computer Science 278 (2011) 215–228.

[15] N. Bulling, V. Goranko, How to be both rich and happy: Combining quantitative and qualitative
strategic reasoning about multi-player games (extended abstract), in: Proceedings 1st International
Workshop on Strategic Reasoning (SR’13), Vol. 112 of EPTCS, 2013, pp. 33–41.

[16] N. Alechina, B. Logan, H. Nguyen, F. Raimondi, Decidable model-checking for a resource logic with
production of resources, in: ECAI’14, 2014, pp. 9–14.

[17] N. Alechina, N. Bulling, B. Logan, H. Nguyen, On the boundary of (un)decidability: Decidable
model-checking for a fragment of resource agent logic, in: IJCAI’15, AAAI Press, 2015, pp. 1494–
1501.

[18] N. Alechina, B. Logan, H. Nguyen, A. Rakib, A logic for coalitions with bounded resources, in:
IJCAI’09, 2009, pp. 659–664.

[19] N. Alechina, B. Logan, H. Nguyen, F. Raimondi, Model-checking for resource-bounded ATL with
production and consumption of resources, Journal of Computer and System Sciences 88 (2017)
126–144.

[20] R. Karp, R. Miller, Parallel program schemata, Journal of Computer and System Sciences 3 (2)
(1969) 147–195.

53

[21] J. Courtois, S. Schmitz, Alternating vector addition systems with states, in: MFCS’14, Vol. 8634
of Lecture Notes in Computer Science, Springer, 2014, pp. 220–231.

[22] M. Jurdziński, R. Lazić, S. Schmitz, Fixed-dimensional energy games are in pseudo-polynomial
time, in: ICALP’15, Vol. 9135 of Lecture Notes in Computer Science, Springer, 2015, pp. 260–272.

[23] P. Abdulla, R. Mayr, A. Sangnier, J. Sproston, Solving Parity Games on Integer Vectors, in:
CONCUR’13, Vol. 8052 of Lecture Notes in Computer Science, Springer, 2013, pp. 106–120.

[24] S. Demri, V. Goranko, M. Lange, Temporal Logics in Computer Science, Cambridge University
Press, 2016.

[25] T. Colcombet, M. Jurdziński, R. Lazić, S. Schmitz, Perfect half space games, in: LiCS’17, IEEE
Press, 2017, pp. 1–11.

[26] A. Emerson, J. Halpern, Decision procedures and expressiveness in the temporal logic of branching
time, Journal of Computer and System Sciences 30 (1985) 1–24.

[27] N. Bulling, W. Jamroga, Verifying agents with memory is harder than it seemed, AI Communica-
tions 23 (4) (2010) 389–403.

[28] V. Goranko, A. Kuusisto, R. Rönnholm, Game-theoretic semantics for ATL+ with applications to
model checking, in: AAMAS’17, ACM, 2017, pp. 1277–1285.

[29] M. Blondin, A. Finkel, S. Göller, C. Haase, P. McKenzie, Reachability in two-dimensional vector
addition systems with states is PSPACE-complete, in: LiCS’15, ACM Press, 2015, pp. 32–43.

[30] F. Laroussinie, N. Markey, P. Schnoebelen, Model checking CTL+ and FCTL is hard, in: FoS-
SaCS’01, Vol. 2030 of Lecture Notes in Computer Science, Springer, 2001, pp. 318–331.

[31] L. Rosier, H.-C. Yen, A multiparameter analysis of the boundedness problem for vector addition
systems, Journal of Computer and System Sciences 32 (1986) 105–135.

[32] K. Chatterjee, L. Doyen, T. Henzinger, The cost of exactness in quantitative reachability, in: Mod-
els, Algorithms, Logics and Tools - Essays Dedicated to Kim Guldstrand Larsen on the Occasion of
His 60th Birthday, Vol. 10460 of Lecture Notes in Computer Science, Springer, 2017, pp. 367–381.

[33] J. Girard, Linear logic, Theoretical Computer Science (1987) 1–101.
[34] U. Engberg, G. Winskel, Completeness Results for Linear Logic on Petri Nets, Annals of Pure and

Applied Logic 86 (2) (1997) 101–135.
[35] F. Paoli, Substructural Logics: A Primer, Vol. 13, 2002.
[36] N. Alechina, B. Logan, H. Nguyen, F. Raimondi, Symbolic model checking for one-resource RB+-

ATL, in: IJCAI’15, AAAI Press, 2015, pp. 1069–1075.
[37] N. Alechina, N. Bulling, B. Logan, H. Nguyen, The virtues of idleness: A decidable fragment of

resource agent logic, Artificial Intelligence 245 (2017) 56–85.
[38] N. Bulling, B. Farwer, Expressing properties of resource-bounded systems: The logics RBTL∗ and

RBTL, in: CLIMA X, Vol. 6214 of Lecture Notes in Computer Science, Springer, 2009, pp. 22–45.
[39] F. Belardinelli, S. Demri, Resource-bounded ATL: the quest for tractable fragments, in: AAMAS’19,

2019, pp. 206–214.
[40] F. Belardinelli, S. Demri, Reasoning with a bounded number of resources in ATL+, in: ECAI’20,

2020, pp. 624–631.
[41] N. Alechina, B. Logan, H. Nguyen, F. Raimondi, L. Mostarda, Symbolic model-checking for

resource-bounded ATL, in: AAMAS’15, International Foundation for Autonomous Agents and
Multiagent Systems, 2015, pp. 1809–1810.

[42] N. Alechina, B. Logan, H. Nguyen, A. Rakib, Resource-bounded alternating-time temporal logic,
in: AAMAS’10, IFAAMAS, 2010, pp. 481–488.

[43] P. Schnoebelen, The complexity of temporal logic model checking, in: AiML’02, Vol. 4 of Advances
in Modal Logic, King’s College Publications, 2003, pp. 437–459.

[44] P. Jančar, Z. Sawa, A note on emptiness for alternating finite automata with a one-letter alphabet,
Information Processing Letters 104 (5) (2007) 164–167.

[45] D. Figueira, R. Lazić, J. Leroux, F. Mazowiecki, G. Sutre, Polynomial-space completeness of reach-
ability for succinct branching VASS in dimension one, in: ICALP’17, Vol. 80 of LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017, pp. 119:1–119:14.

[46] S. Almagor, N. Cohen, G. Pérez, M. Shirmohammadi, J. Worrell, Coverability in 1-VASS with
Disequality Tests, in: CONCUR’20, Vol. 285 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2016, pp. 38:1–38:20.

[47] E. Mayr, An algorithm for the general Petri net reachability problem, SIAM Journal of Computing
13 (3) (1984) 441–460.

[48] R. Kosaraju, Decidability of reachability in vector addition systems, in: STOC’82, 1982, pp. 267–
281.

[49] J. Leroux, The general vector addition system reachability problem by Presburger inductive invari-

54

ants, in: LiCS’09, IEEE, 2009, pp. 4–13.
[50] C. Reutenauer, The mathematics of Petri nets, Masson and Prentice, 1990.
[51] R. Lipton, The reachability problem requires exponential space, Tech. Rep. 62, Department of

Computer Science, Yale University (1976).
[52] W. Czerwinski, S. Lasota, R. Lazić, J. Leroux, F. Mazowiecki, The reachability problem for Petri

nets is not elementary, in: STOC’19, 2019, pp. 24–33.
[53] C. Rackoff, The covering and boundedness problems for vector addition systems, Theoretical Com-

puter Science 6 (2) (1978) 223–231.
[54] M. F. Atig, P. Habermehl, On Yen’s path logic for Petri nets, in: RP’09, Vol. 5797 of Lecture Notes

in Computer Science, Springer, 2009, pp. 51–63.
[55] M. Blockelet, S. Schmitz, Model-checking coverability graphs of vector addition systems, in:

MFCS’11, Vol. 6907 of Lecture Notes in Computer Science, Springer, 2011, pp. 108–119.
[56] S. Demri, On selective unboundedness of VASS, Journal of Computer and System Sciences 79 (5)

(2013) 689–713.
[57] S. Göller, C. Haase, R. Lazić, P. Totzke, A polynomial-time algorithm for reachability in branching

VASS in dimension one, in: ICALP’16, Vol. 55 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2016, pp. 105:1–105:13.

[58] P. Habermehl, On the complexity of the linear-time mu-calculus for Petri nets, in: ICATPN’97,
Vol. 1248 of Lecture Notes in Computer Science, Springer, 1997, pp. 102–116.

[59] A. Sistla, E. Clarke, The complexity of propositional linear temporal logic, Journal of the ACM
32 (3) (1985) 733–749.

[60] M. Vardi, P. Wolper, Reasoning about infinite computations, Information and Computation 115
(1994) 1–37.

[61] S. Schewe, Tighter bounds for the determinisation of Büchi automata, in: FoSSaCS’09, Vol. 5504
of Lecture Notes in Computer Science, Springer, 2009, pp. 167–181.

[62] S. Demri, P. Schnoebelen, The complexity of propositional linear temporal logics in simple cases,
Information and Computation 174 (1) (2002) 84–103.

[63] T. Wilke, CTL+ is exponentially more succinct than CTL, in: FST&TCS’99, Vol. 1999 of LNCS,
Springer, 1999, pp. 110–121.

[64] K. Verma, J. Goubault-Larrecq, Karp-Miller Trees for a Branching Extension of VASS, Discrete
Mathematics and Theoretical Computer Science 7 (2005) 217–230.

[65] S. Demri, M. Jurdziński, O. Lachish, R. Lazić, The covering and boundedness problems for branch-
ing vector addition systems, Journal of Computer and System Sciences 79 (1) (2013) 23–38.

[66] F. Mazowiecki, M. Pilipczuk, Reachability for Bounded Branching VASS, in: CONCUR’19, Vol.
140 of Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2019, pp. 28:1–28:13.

[67] J. Raskin, M. Samuelides, L. Van Begin, Games for counting abstractions, Electronic Notes in
Theoretical Computer Science 128 (6) (2005) 69–85.

[68] N. Lynch, Log Space recognition and translation of parenthesis languages, Journal of the ACM
24 (4) (1977) 583–590.

[69] D. Della Monica, A. Murano, Parity-energy ATL for qualitative and quantitative reasoning in MAS,
in: AAMAS’18, 2018, pp. 1441–1449.

[70] V. Goranko, A. Kuusisto, R. Rönnholm, Game-theoretic semantics for ATL+ with applications to
model checking, Information and Computation 276.

[71] K. Chatterjee, L. Doyen, Energy parity games, Theoretical Computer Science 458 (2012) 49–60.
[72] V. Malvone, A. Murano, L. Sorrentino, Concurrent multi-player parity games, in: AAMAS’16,

ACM, 2016, pp. 689–697.

55

