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ABSTRACT

In this work, we introduce 6D Convolutional Neural Network (6DCNN) designed to tackle the
problem of detecting relative positions and orientations of local patterns when processing three-
dimensional volumetric data. 6DCNN also includes SE(3)-equivariant message-passing and nonlinear
activation operations constructed in the Fourier space. Working in the Fourier space allows signif-
icantly reducing the computational complexity of our operations. We demonstrate the properties
of the 6D convolution and its efficiency in the recognition of spatial patterns. We also assess the
6DCNN model on several datasets from the recent CASP protein structure prediction challenges.
Here, 6DCNN improves over the baseline architecture and also outperforms the state of the art.

Keywords Equivariant convolutional networks · Roto-translational convolutions · Local equivariance · 6DCNN ·
Protein structure prediction

1 Introduction

Methods of deep learning have recently made a great leap forward in the spatial data processing. This domain contains
various tasks from different areas of industry and natural sciences, including three-dimensional (3D) data analysis. For
a long time, convolutional neural networks (CNNs) remained the main tool in this domain. CNNs helped to solve
many real-world challenges, especially in computer vision. However, these architectures have rather strict application
restrictions. Unfortunately, real-world raw data rarely have standard orientation and size, which limits the efficiency
of translational convolutions. This circumstance has created an increased interest in the topic of SE(3)-equivariant
operations in recent years.

Moreover, volumetric data may contain arbitrarily-positioned and -oriented sub-patterns. Their detection makes 3D
pattern recognition particularly challenging. Indeed, a volumetric sub-pattern in 3D has six degrees of freedom (DOFs),
three to define a rotation, and three for a translation. Thus, a classical convolution technique would require scanning
through all these six DOFs and scale as O(N3M6) if a brute-force computation is used, where N is the linear size of
the volumetric data, and M is the linear size of the sub-pattern.

This work proposes a set of novel operations with the corresponding architecture based on six-dimensional (6D)
roto-translational convolutional filters. For the first time, thanks to the polynomial expansions in the Fourier space,
we demonstrate the feasibility of the 6D roto-translational-based convolutional network with the leading complexity
of O(N2M4) operations. We tested our method on simulated data and also on protein structure prediction datasets,
where the overall accuracy of our predictions is on par with the state-of-the-art methods. Proteins play a crucial role in
most biological processes. Despite their seeming complexity, structures of proteins attract more and more attention
from the data science community (Senior et al., 2020; Jumper et al., 2021; Laine et al., 2021). In particular, the task of
protein structure prediction and analysis raises the challenge of constructing rotational and translational equivariant
architectures.
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2 State of the art / Related work

Equivariant operations. The first attempt of learning rotation-equivariant representations was made in Harmonic
Networks (Worrall et al., 2017) in application to 2D images. Further, this idea was transferred to the 3D space with
the corresponding architecture known as 3D Steerable CNNs (Weiler et al., 2018). In Spherical CNNs (Cohen et al.,
2018b), the authors introduced a correlation on the rotation group and proposed a concept of rotation-equivariant CNNs
on a sphere. Spherical harmonics kernels that provide rotational invariance have also been applied to point-cloud data
(Poulenard et al., 2019). A further effort on leveraging compact group representations resulted in the range of methods
based on Clebsh-Gordan coefficients (Kondor, 2018; Kondor et al., 2018; Anderson et al., 2019). This approach was
finally generalized in Tensor field networks (Thomas et al., 2018), where rotation-equivariant operations were applied
to vector and tensor fields. Later, SE(3)-Transformers (Fuchs et al., 2020) were proposed to efficiently capture the
distant spatial relationships. More recently, Hutchinson et al. (2021) continued to develop the theory of equivariant
convolution operations for homogeneous spaces and proposed Lie group equivariant transformers, following works on
the general theory of group equivariant operations in SO(2) (Romero et al., 2020; Romero and Cordonnier, 2021) and
SO(3) (Cohen et al., 2018a). We should mention that the most common data representation in this domain is a 3D point
cloud, however, several approaches operate on regular 3D grids (Weiler et al., 2018; Pagès et al., 2019). We should also
add that some of the above-mentioned methods (Cohen et al., 2018b; Weiler et al., 2018; Kondor, 2018; Anderson et al.,
2019) employ Fourier transform in order to learn rotation-equivariant representations.

Geometric learning on molecules. As graphs and point clouds are natural structures for representing molecules, it is
reasonable that geometric learning methods have been actively evolving especially in application to biology, chemistry,
and physics. More classical graph-learning methods for molecules include MPNNs (Gilmer et al., 2017), SchNet (Schütt
et al., 2017), and MEGNet (Chen et al., 2019). Ideas for efficient capturing of spatial relations in molecules resulted in
rotation-invariant message-passing methods DimeNet (Klicpera et al., 2020b) and DimeNet++ (Klicpera et al., 2020a).
Extending message-passing mechanism with rotationally equivariant representations, polarizable atom interaction neural
networks (Schütt et al., 2021) managed to efficiently predict tensorial properties of molecules. Satorras et al. (2021b)
proposed E(n) equivariant GNNs for predicting molecular properties and later used them for developing generative
models equivariant to Euclidean symmetries (Satorras et al., 2021a).

Proteins are much bigger and more complex systems than small molecules but are composed of repeating blocks.
Therefore, more efficient and slightly different methods are required to operate on them. A very good example is
the two recent and very powerful methods AlphaFold2 (Jumper et al., 2021) and RoseTTAFold (Baek et al., 2021).
Most recent geometric learning methods designed for proteins include deep convolutional networks processing either
volumetric data in local coordinate frames (Pagès et al., 2019; Hiranuma et al., 2021), graph neural networks (Ingraham
et al., 2019; Sanyal et al., 2020; Baldassarre et al., 2021; Igashov et al., 2021a,b), deep learning methods on surfaces
and point clouds (Gainza et al., 2020; Sverrisson et al., 2020), and geometric vector perceptrons (Jing et al., 2021b,a).
In addition, several attempts were made to scale tensor-field-like SE(3)-equivariant methods to proteins (Derevyanko
and Lamoureux, 2019; Eismann et al., 2020; Townshend et al., 2020; Baek et al., 2021).

3 Model/Method

3.1 Workflow

Here, we give a brief description of all steps of our method that are described in more detail below. Firstly, for each
residue in the input protein molecule, we construct a function f(~r) that describes its local environment. More technically,
this function is a set of 3D Gaussian-shaped features centered on the location of atoms within a certain distance Rmax
from the Cα atom of the corresponding residue (see Fig. 1A).

Then, for each function f(~r), we compute its spherical Fourier expansion coefficients Fkl (ρ). The angular resolution of
the expansion is determined by the maximum order of spherical harmonics L. The radial resolution of the expansion
corresponds to the maximum reciprocal distance ρmax and is inversely proportional to the resolution σ of the real-space
Gaussian features as ρmax = π/σ (see Fig. 1B). Similarly, the radial spacing between the reciprocal points is inversely
proportional to the linear size of the data, ∆ρ = π/(2Rmax). Without loss of generality, we can set the number of
reciprocal radial points to be equal L, such that ρmax/∆ρ = L+ 1 = 2Rmax/σ.

Spherical Fourier coefficients Fkl (ρ) constitute the input for our network, along with the information about the transition
from the coordinate system of one residue to another. We start the network with the embedding block that reduces the
dimensionality of the feature space. Then, we apply a series of 6D convolution blocks that consist of 6D convolution,
normalization, and activation layers, followed by a message-passing layer. After a series of operations on continuous
data, we switch to the discrete representation and continue the network with graph convolutional layers (see Fig. 1C-D).
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In the graph representation, each node corresponds to a protein residue, and a graph edge links nodes if the distance
between the corresponding Cα atoms is smaller than a certain threshold Rn. We should also mention that the backbone
structure of a protein residue can be used to unambiguously define its local coordinate system (Pagès et al., 2019;
Jumper et al., 2021) using the Gram–Schmidt orthogonalization process starting from Cα −N and Cα − C vectors.
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Figure 1: A. Six-dimensional (6D) convolution between a filter w(~r) and a function f(~r0 + ~r). The function f(~r0 + ~r)
describes the local environment of a protein residue and is defined within a certain radius Rmax from the corresponding
Cα atom. The local coordinate system xyz is built on the backbone atoms Cα, C, N of each protein residue. R denotes
the location of a residue’s side-chain. B. The spherical Fourier space with the reciprocal spacing ∆ρ and the maximum
resolution of ρmax. Grey dots schematically illustrate points where the Fourier image is stored. C. An illustration
of a protein chain representation. Each protein residue has its own coordinate system xyz and the corresponding
local volumetric description Fkl (ρ) within a certain sphere of Rmax radius. Spheres of different residues may overlap.
Two residues are considered as neighbors in the graph representation if their Cα atoms are located within a certain
threshold Rn. D. The graph representation of the protein structure. The node features are learned by the network and
are represented with colored rectangles. The edge features are assigned based on the types of the corresponding residues
and the topological distance of the protein graph.

3.2 Representation of volumetric data

Let us consider a function f(~r) : R3 → Rdf that describes a distribution of df -dimensional features in the 3D space.
Very often, initial data is given as a point cloud, as it is typically the case for protein structures. Let us consider a set of
points located within a maximum radius Rmax at positions ~r1, ..., ~rn, ..., ~rN with the corresponding feature vectors
t1, ..., tn, ..., tN . To convert this representation to a continuous one, we assume that each point feature has a Gaussian
shape with a standard deviation σ. Then, the continuous function characterizing this area will have the form,

f(~r) =

N∑
n=1

fn(~r) =

N∑
n=1

tn exp(− (~r − ~rn)

2σ2
), (1)

where σ is the spatial resolution of the features. It is very convenient to use the Fourier description of this function in
spherical coordinates. The spherical harmonics expansion of the Fourier transform of function f(~r) will be

Fkl (ρ) = 4π(−i)l
N∑
n=1

jl(ρrn)Y kl (Ωrn)(
√

2πσ)3 exp(−σ
2ρ2

2
)tn, (2)

where ρ is the reciprocal distance. Please see Appendices A-E for more details.

3.3 6D convolution operation

The initial idea that prompted us to consider non-traditional types of convolution is the intention to perceive spatial
patterns in whatever orientations they have. In a classical 3D convolution, when a filter is applied to the image, the
result is sensitive to the orientation of the filter. Keeping this in mind, we came with the idea to extend the convolution
with an integration of all possible filter rotations. Let f(~r) : R3 → Rdi and w(~r) : R3 → Rdi ×Rdo be the initial
signal and a spatial filter, correspondingly. We propose to extend the classical convolution as follows,∫

~r

d~r f(~r0 + ~r)w(~r)→
∫

Λ

dΛ

∫
~r

d~r f(~r0 + Λ−1~r)w(Λ~r), (3)

where Λ ∈ SO(3) is a 3D rotation. Please see Fig. 1A for an illustration. Let the functions f(~r) and w(~r) be
finite-resolution and have spherical Fourier expansion coefficients F kl (ρ) and W k

l (ρ), correspondingly, which are
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nonzero for l ≤ than some maximum expansion coefficient L. Then, the result of the 6D convolution has the following
coefficients,

[Fout]
k
l (ρ) =

L∑
l1=0

l1∑
k1=−l1

8π2

2l1 + 1
W−k1

l1
(ρ)

l+l1∑
l2=|l−l1|

cl2(l, k, l1,−k1)Fk+k1
l2

(ρ), (4)

where cl are the products of three spherical harmonics, see Eq. 27. The proof can be found in Appendix F. For a
single reciprocal distance ρ, the complexity of this operation is O(L5), where L is the maximum order of the spherical
harmonics expansion.

We should specifically draw the reader’s attention to the fact of opposite rotations Λ and Λ−1 in the convolution equation
3. Indeed, if we leave only one rotation on f(~r) or w(~r), after the integration over rotations in SO(3), we will obtain the
resultant convolution of the input function that will depend only on the radial components of the filter. Alternatively,
if we apply the same rotation on both f(~r) and w(~r), it will be integrated out, and we will obtain a common 3D
translational convolution as a result.

3.4 Nonparametric message passing of continuous data

Let us assume that our spatial data can be represented with overlapping spatial fragments, each having its own local
coordinate frame, as it is shown in Fig. 1C for the continuous representation of a protein molecule. Then, we can
recompute the fragment representation in the neighboring coordinate frames using spatial transformation operators. For
this purpose, we designed a message passing operation in a form that recomputes the spherical Fourier coefficients in a
new reference frame. We should specifically note that this operation is SE(3)-equivariant by construction, because the
spatial relationship between molecular fragments remain the same when rotating and shifting the global coordinate
system. We decompose such a spatial transformation in a sequence of a rotation followed by a z-axis translation
followed by the second rotation. Indeed, the spherical Fourier basis provides low computational complexity for the
z-translation and rotation operations. Let function fz(~r) be the results of translating function f(~r) along the z-axis by
an amount ∆. Then, the expansion coefficients of these two functions will have the following relation,

[Fz]
k
l (ρ) =

L∑
l′=k

T kl,l′(ρ,∆)Fkl′(ρ) +O

(
1

(L− l)!
(
ρ∆

2
)L−l

)
, (5)

where T kl,l′ is a translation tensor specified in Appendix D. The update of all the expansion coefficients costs O(L4)
operations.

Similarly, let function fΛ(~r) be the rotation of function f(~r) by an amount Λ ∈ SO(3), fΛ(~r) = f(Λ~r). The correspond-
ing expansion coefficients are then related as

[FΛ]kl (ρ) =

l∑
k′=−l

Dl
k′,k(Λ)Fk

′

l (ρ), (6)

where Dl
k′,k is a rotation Wigner matrix specified in Appendix C. The update of all the expansion coefficients will again

cost O(L4) operations.

3.5 Normalization

Since we are working with continuous data in the Fourier space, we have to introduce our own activation and
normalization functions. When developing the normalization, we proceeded from very basic premises. More precisely,
we normalize the signal f(~r) by setting its mean to zero and its variance to unity. This can be achieved if the following
operations are performed on the spherical Fourier expansion coefficients of the initial function,

[Fn]kl (ρ) =

{
0, if l = k = ρ = 0,

[F]kl (ρ)/S2, otherwise,
(7)

where S1 =
∫
R3 f(~r)d~r, S2 =

∫
R3(f(~r)− S1)2d~r. We should also notice that we apply the element-wise division in

Eq. 7. The proof can be found in Appendix G.
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3.6 Activation

The concept of our activation operation coincides with the idea of the classical activation in neural networks, i.e. to
nonlinearly transform the initial signal depending on how it differs from the bias. We aimed to extend Let the initial
signal be f(~r), and the bias signal with trainable Fourier coefficients be b(~r). Then, we propose the following output of
the normalization-activation block,

fa(~r) =

(
1

4

∫
R3

(N(f(~r) + b(~r))−N(b(~r)))2d3~r

)
N(f(~r) + b(~r)), (8)

where N() is the normalization operation defined in Eq. 7 such that the value 1
4

∫
R3(N(f(~r) + b(~r))−N(b(~r)))2d3~r

lies in the interval [0, 1]. If the signal f(~r) is ’coherent’ to b(~r) , f(~r) = Kb(~r),K > 0, then it does not pass the block.
The amplification factor reaches its maximum value when the two signals are anti-coherent. Parseval’s theorem allows
us to translate these formulas into operations on their expansion coefficients,

[Fa]kl (ρ) =
1

4

 L∑
l′=0

l′∑
k′=−l′

∫ ∞
0

(N(Fk
′

l′ (ρ) + Bk′

l′ (ρ))−N(Bk′

l′ (ρ)))2ρ2dρ

N(Fkl (ρ) + Bk
l (ρ)), (9)

where [Fa]kl (ρp) and Bk
l (ρp) are the expansion coefficients of functions f(~r) and b(~r), correspondingly.

3.7 Switching from the continuous to the vector representation

For most of the real-world tasks that may require the proposed architecture, a transition from a continuous functional
representation f(~r) : R3 → Rdf to a discrete vector representation h ∈ Rdf is necessary. There can be several ways to
achieve it. In the simplest case, when the input function f(~r) can be unambiguously associated with some reference
coordinate system, as in the case of protein’s peptide chain, we may use the following operation,

h =

∫
R3

f(~r)w(~r)d~r, (10)

where w(~r) : R3 → Rdf is a filter function element-wise multiplied by the input function. If the functions f(~r) and
w(~r) have corresponding expansion coefficients Fkl (ρp) and Wk

l (ρp), then this operation will have the following form
(please see more details in Appendix H),

h =

L∑
l=0

l∑
k=−l

∫ ∞
0

Fkl (ρ)W
k

l (ρ)ρ2dρ. (11)

3.8 Graph convolutions layers

In our model, the continuous representation is followed by the classical graph convolutional layers (see Fig. 1C-D).
Indeed, protein structures, on which we assess our model, allow us to use the graph representation. In such a graph,
each node corresponds to an amino acid residue and characterizes the 3D structure of its neighborhood, and each edge
between two nodes indicates their spatial proximity, i.e. the distance between the corresponding C-alpha atoms within a
certain threshold Rn (see Fig. 1D).

Let us consider a graph G that is described by the feature matrix H ∈ RN×dv , where N is the number of graph nodes
and dv is the dimensionality of the node feature space, and the adjacency matrix A ∈ RN×N×de , where de is the
dimensionality of the edge feature space. We decided to use one-hot edge features that would encode the types of
amino acids of the associated nodes. To reduce the dimensionality of the edge feature space to d′e, we use the following
trainable embedding Re ∈ Rde×d

′
e , and a reduced adjacency matrix Ar = ARe. Finally, the graph convolution step is

defined as
Hk+1 = σa(ArHkWk + HkW

s
k + bk), (12)

where Wk ∈ Rdk×dk+1×d′e and Ws
k ∈ Rdk×dk+1 are trainable matrices.

4 Experiments

4.1 6D filters

Our first step was to study the properties of the 6D roto-translational convolution operation. To do so, we generated a
small 3D pattern, f(~r), composed of six 3D Gaussians with σ = 0.4 Å shown in Fig. 2A-B. We then created a function

5
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h(~r), rotated and translated f(~r) to a new location. Figure 2C-D shows the result of the 6D convolution between h(~r)
and f(~r) given by Eq. 4. As we can expect, the maximum of this convolution corresponds to the position of the center of
mass of function h(~r), and the value of the convolution reduces as we go further from this point. We used the following
parameters for this experiment, σ = 0.4 Å, L = 4, ρmax = 0.6π Å−1, ∆ρ = 0.2π Å−1.
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Figure 2: A-B. Six Gaussian volumetric features of σ = 0.4 Å shown in the xy-plane (A) and xz-plane (B). The center
of mass of the whole pattern is shown with the pink star. C-D. The density map of the resultant 6D convolution between
an original pattern and its translated and rotated copy to the pink star position, shown in the xy-plane (C) and xz-plane
(D). E. The maximum error in determining the center of the translated and rotated pattern as a function of the expansion
order L divided by the Gaussian feature σ for 3D and 6D convolutions.

We then compared the result of the classical 3D convolution (see Appendix B) with the proposed 6D convolution. Using
the same initial pattern, randomly rotated multiple times, we recorded the maximum positional error in determining the
center of mass of the translated pattern with respect to the maximum expansion order L. As we can see in Fig. 2E, the
6D convolution detects the position of the shifted pattern more accurately compared to its classical 3D counterpart, and
the accuracy increases with the maximum expansion order L.

4.2 Message passing and translation operator

Our next experiment was the assessment of the message-passing step. Our main goal was to study the conditions of
validity for the translation operator 29, which is also implicitly used in the 6D convolution part. Specifically, we were
interested in whether the result of the 6D convolution will be preserved after changing the coordinate systems. For this
experiment, we used the same volumetric pattern f(~r) described above and shown in Fig. 2A-B. We then shifted this
pattern to a new location and recorded the value of the 6D convolution, as described above, shown in Fig. 3A-B. For the
comparison, we computed the same 6D convolution from a different coordinated system, shifted by 3

√
3 Å from the

original one. We used parameters from the previous experiment. The result is shown in Fig. 3C-D. Both convolution
functions have their maximums near the location of the center of mass of the shifted pattern, however, their volumetric
shapes are slightly different.

For a more rigorous experiment, we examined the relative error of the translation operator 29 as a function of the
displacement of the coordinate system and the expansion order. Here, we fixed parameters to σ = 0.4 Å, ρmax = 0.6π
Å−1, ∆ρ = 0.2π Å−1, and varied the value of L. From the results shown in Fig. 3E we can see that for the
displacements within about σL/2, the error is negligibly small, which is the consequence of the Nyquist–Shannon
theorem.
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4.3 Datasets

In order to train and assess our models, we used data from the Critical Assessment of Structure Prediction (CASP)
benchmarks (Kryshtafovych et al., 2019; Moult et al., 1995). Each model from the benchmarks has a quality score
that indicates how close it is to the experimentally determined solution. There are several quality metrics designed
for protein models, e.g., GDT-TS (Zemla et al., 1999), CAD-score (Olechnovič et al., 2013), or lDDT (Mariani et al.,
2013). We trained our networks to predict the local per-residue lDDT score, which shows the precision of the local 3D
structure and topology around each amino acid. We also considered the average value of predicted local scores as the
global score for the model.

We used models from CASP8-11 stage 2 submissions as the training and validation sets. We randomly split the targets
into two sets. The training set contained 301 target structures with 104, 985 models. The validation set contained 32
target structures with 10, 872 models. Finally, we tested the networks on CASP12 stage2 dataset that has 39 native
structures and 5, 462 models, and also on CASP13 stage2 dataset with 18 native structures and 2, 583 models. All the
sets included only the models for which the native structure is publicly available.

4.4 Evaluation metrics

We assessed our networks on both global and local lDDt scores. In order to evaluate the efficiency of our networks,
we engaged the following metrics: z-scores, determination coefficient R2, and Pearson and Spearman correlations.
Z-scores are equal to the ground-truth score of the top-predicted model divided by the standard deviation of the models
for a particular target. We computed R2 and correlations in two modes, global and per-target. The per-target approach
assumed calculating metrics for each target separately and averaging results over all the targets. We used the Fisher
transformation to extract average values. For the global approach, we calculated metrics for all model structures of
regardless which target they belong to. For the local structure quality predictions, as CASP submissions do not explicitly
store local lDDt scores, we assessed our models using Spearman rank correlation of the submitted distance deviations
with the ground-truth data.

4.5 Loss function

Our loss function contains two terms, the first is the MSE between the predictions and the ground-truth local scores,
and the second is the MSE of the z-scores between these two arrays,

L(si, pi) = α
1

N

N∑
i=1

(si − pi)2 + (1− α)σ2
s

1

N

N∑
i=1

(
si − µs
σs

− pi − µp
σp

)2, (13)

where N is the number of residues in the protein model; µs = 1
N

∑N
i si, σs =

√
1
N

∑N
i (si − µs)2; µp and σp have

the same formulas but for the array pi. To make two terms in the loss function to have approximately the same amplitude,
we introduced an additional variance of the ground-truth local scores factor σ2

s . The weight α is a hyperparameter.
We need both terms in the loss function to simultaneously increase the correlation of the local predictions and to also
predict the absolute values of the scores.

4.6 Technical details

Amino-acid residues can contain atoms of 167 distinguishable types. We have also included one additional type for the
solvent molecules. Overall, the dimensionality of the volumetric function characterizing the protein model Na = 168.
We choose some maximum value of the radius Rmax, which limits the set of atoms that fall in the amino-residue
neighborhood. We also choose some parameter Rn, which is the maximum distance between amino residues that
considered as neighbors in the graph.

We use 20 amino acids types. The edge between two amino acids can be determined by a vector of the size 20×20 +dt,
where the first 20× 20 elements are a one-hot representation of the amino acids pair, with the distinguishable order of
residues in a pair. The last dt elements in this vector is a one-hot representation of the topological distance between the
residues in the protein graph. The values of Rmax, Rn, dt, and L are the hyper-parameters of the network that were
optimized with a grid search.

During the training process, we preprocessed all data using C++ code before feeding them to the network. For each
residue of each protein model, we precomputed its Fourier representation. In the case of the architectures with the
message-passing step, we have also generated tensors for the transformation of Fourier coefficients between coordinate
system frames along the edges of the graph.
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4.7 Baseline architecture

For the comparison, we introduced a baseline architecture that would help us to assess the novel layers. It begins
with trainable embedding in the feature space. We then applied the transition from the continuous to the discrete
representation using operation 11 that is followed by three graph convolutional layers described in Eq. 12. For the
activation, we used the tanh function in the last layer and the LReLU function with the ’leak’ parameter of 0.05 in all
other layers. We also introduced two trainable parameters µt and σt for the mean and the standard deviation of the local
rates in the training sample. The relationship between the output of the last layer lN and the output of the network o is
o = σtlN + µt. Overall, the baseline architecture had 21,026 trainable parameters.

Training. This network was trained on CASP 8-11 datasets in 1, 280 iterations. At each iteration, the network was fed
by 16 input protein models. One training iteration took ≈ 5 minutes on Intel ©Xeon(R) CPU E5-2630 v4 @ 2.20GHz.

Hyperparameters. The network has the following hyperparameters, σ = 2 Å, Rn = 12 Å, dt = 10, L = 4, and
Rmax = 8 Å.

4.8 6DCNN networks

The main difference between the baseline architecture and the 6DCNN networks is the presence of 6D convolution
layers in the latter. Our first architecture (6DCNN-1) contains only one 6D convolution layer. The second architecture
(6DCNN-2) has two 6DCNN layers. The 6DCNN layer is composed of the following operations: 6D convolution,
followed by normalization and activation. Consecutive 6D convolution layers are linked with the message passing step.
Table 3 lists the architectures of the networks. Overall, the 6DCNN-1 and 6DCNN-2 architectures had 187,326 and
283,426 trainable parameters, correspondingly. Figure 4A shows real-space projections of two 6D convolution filters
learned by 6DCNN-1.

Training. The two networks were trained on CASP 8-11 datasets in 1, 280 iterations. At each iteration, the networks
were fed by 16 protein models. One training iteration took ≈ 6 minutes for 6DCNN-1 and ≈ 15 minutes for 6DCNN-2
on Intel ©Xeon(R) CPU E5-2630 v4 @ 2.20GHz. Figure 4D demonstrates the learning curves on the validation dataset
of three architectures, baseline, 6DCNN-1, and 6DCNN-2.

Hyperparameters. The networks have the following hyperparameters, σ = 2 Å, Rn = 12 Å, dt = 10, L = 4, and
Rmax = 8 Å.

4.9 CASP results

In order to assess the 6DCNN architectures, we compared their performance on the CASP12 (Table 1) and CASP13
(Table 2) datasets with the baseline model and also with the state-of-the-art single-model quality assessment methods
SBROD, SVMQA, VoroCNN, Ornate, ProQ3, and VoroMQA (Cheng et al., 2019). SBROD is a linear regression model
that uses geometric features of the protein backbone (Karasikov et al., 2019). SVMQA is a support-vector-machine-
based method that also uses structural features (Manavalan and Lee, 2017). VoroMQA engages statistical features
of 3D Voronoi tessellation of the protein structure (Olechnovič and Venclovas, 2017). VoroCNN is a graph neural
network built on the 3D Voronoi tessellation of protein structures (Igashov et al., 2021a). Ornate is a convolutional
neural network that uses 3D volumetric representation of protein residues in their local reference frames (Pagès et al.,
2019). ProQ3 is a fully connected neural network operating on the precomputed descriptors (Uziela et al., 2016). We
computed the ground-truth lDDT values ourselves. Therefore, we were forced to limit the datasets to only those models
that had publicly available target structures. As a result, the CASP12 dataset turned out to be significantly bigger than
CASP13, with more demonstrative and representative results.

On the CASP12 test set, we achieved a noticeable improvement in comparison with the state-of-the-art methods. Even
though the difference between the 6DCNN networks and the baseline model performance is not big, one of the 6DCNN
architectures outperforms the baseline in every metric except for the z-score. We can also notice that the 6DCNN-2
method gives significantly higher global correlations and R2 metrics on the CASP12 dataset than 6DCNN-1 and all
other methods. However, 6DCNN-1 demonstrates better per-target correlations on CASP12 data than 6DCNN-2. Both
of the networks have higher per-target correlations than most of the state-of-the-art methods. Unfortunately, we did
not manage to achieve satisfying performance on the z-score metric. However, z-scores are rather noisy compared to
correlations, and not directly linked to the optimized loss function. The fact that 6DCNN-2 has better global correlation
scores confirms the importance of the additional 6D correlation block. Figure 4 (B-C) shows correlations between the
ground-truth global scores from the CASP12 dataset and the corresponding predictions by the two 6DCNN models.
The 6DCNN-2 map has a higher density near the diagonal, indicating a better absolute predictions of global scores and
a better R2 metric.
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On the CASP13 dataset, we did not greatly outperform the state-of-the-art methods (see Table 2). However, we reached
a performance that is on par with the state of the art. Moreover, we should notice that 6DCNN-2 did not outperform
6DCNN-1. This can be explained by the fact that we trained our models on CASP[8-11] datasets, which are rather
different from CASP13, and also that the CASP13 dataset is less representative than CASP12.
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Figure 4: A. Examples of two filters learned by 6DCNN-1, two rows represent the two filters. Each column demonstrates
different filter projections. The red color represents the positive filter values, and the blue color corresponds to the
negative values. B-C. Density maps comparing the ground-truth global lDDT scores with the predictions of the 6DCNN
networks on the CASP12 dataset, 6DCNN-2 (left, B) and 6DCNN-1 (right, C). D. Loss function on the validation
dataset during the training of the 6DCNN networks and the baseline model.

Table 4 from Appendix J lists Spearman rank correlations of local quality predictions with the corresponding ground-
truth values of our networks and the state-of-the-art methods on model structures of 11 targets from CASP13. For the
comparison, we chose only those models that had both publicly available target structures and local score predictions by
all other methods. As we did not have these predictions for the CASP12 dataset, we limited local score evaluation by
CASP13 data only. Here, we did not achieve the best results that could be explained by the small size of the dataset.

Global Per-target
Method z-score R2 Pearson, r Spearman, ρ R2 Pearson, r Spearman, ρ
SBROD 1,29 -33,66 0,55 0,54 -325,18 0,76 0,67
SVMQA 1,48 0,32 0,82 0,80 -2,44 0,76 0,73
VoroCNN 1,39 0,61 0,80 0,80 -2,79 0,73 0,69

Ornate 1,42 0,36 0,78 0,77 -5,14 0,73 0,69
ProQ3 1,18 0,26 0,74 0,77 -4,85 0,73 0,68

VoroMQA 1,18 -0,25 0,59 0,62 -6,23 0,74 0,70
Baseline 1,34 0,55 0,82 0,82 -2,35 0,78 0,71

6DCNN-1 1,26 0,57 0,81 0,81 -2,29 0,80 0, 73
6DCNN-2 1,19 0,63 0,85 0,84 −1,95 0,79 0,71

Table 1: Comparison of the 6DCNN networks with the baseline architecture and the state-of-the-art methods on the
unrefined CASP12 stage2 dataset. The best value for each metric is highlighted in bold.

Global Per-target
Method z-score R2 Pearson, r Spearman, ρ R2 Pearson, r Spearman, ρ
SBROD 1,23 0,07 0,72 0,69 -1,44 0,81 0,74

VoroCNN 1,15 0,67 0,84 0,82 0,03 0,79 0,77
VoroMQA 1,32 0,20 0,77 0,79 -1,10 0,79 0,75
ProQ3D 1,39 -0,03 0,75 0,75 -2,07 0,76 0,72
Ornate 0.93 0,26 0.62 0.67 -2,10 0,78 0,77

Baseline 1,35 0,44 0,78 0,77 -0,30 0,82 0,77
6DCNN-1 1,03 0,59 0,82 0,80 -0,02 0,83 0,79
6DCNN-2 1,30 0,56 0,79 0,78 -0,12 0,82 0,77

Table 2: Comparison of the 6DCNN networks with the baseline architecture and the state-of-the-art methods on the
unrefined CASP13 stage2 dataset. The best value for each metric is highlighted in bold.
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5 Conclusion

This work presents a theoretical foundation for 6D roto-translational spatial patterns detection and the construction of
neural network architectures for learning on spatial continuous data in 3D. We built several networks that consisted of
6DCNN blocks followed by GCNN layers specifically designed for 3D models of protein structures. We then tested
them on the CASP datasets from the community-wide protein structure prediction challenge. Our results demonstrate
that 6DCNN blocks are able to accurately learn local spatial patterns and improve the quality prediction of protein
models. The current network architecture can be extended in multiple directions, for example, including the attention
mechanism.
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Appendix

A Mathematical prerequisites

A.1 Spherical harmonics and spherical Bessel transform

Spherical harmonics are complex functions defined on the surface of a sphere that constitute a complete set of orthogonal
functions and thus an orthonormal basis. They are generally defined as

Y kl (Ω) =

√
(2l + 1)(l − k)!

4π(l + k)!
P kl (cos(ψΩ)) exp ikθΩ, (14)

where 0 ≤ ψΩ ≤ π is the colatitude of the point Ω, and 0 ≤ θΩ ≤ 2π is the longitude. As mentioned above, these
functions are orthonormal, ∫

4π

Y kl (Ω)Y k
′

l′ (Ω)dΩ = δll′δkk′ , (15)

where the second function Y k′l′ (Ω) is complex-conjugated. An expansion of a function f(~r) in spherical harmonics has
the following form,

fkl (r) =

∫
4π

f(~r)Y kl (Ωr)dΩr. (16)
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Spherical Bessel transform (SBT, sometimes referred to as spherical Hankel transform) of order l computes Fourier
coefficients of spherically symmetric functions in 3D,

Fl(ρ) = SBTl(f(r)) =

∫
f(r)jl(ρr)r

2dr, (17)

where jl(r) are spherical Bessel functions of order l. The inverse transform has the following form,

f(r) = SBT−1
l (Fl(ρ)) =

2

π

∫
Fl(ρ)jl(ρr)ρ

2dρ. (18)

Spherical Bessel functions of the same order are orthogonal with respect to the argument,∫ ∞
0

jl(ρ1r)jl(ρ2r)r
2dr =

π

2ρ1ρ2
δ(ρ1 − ρ2). (19)

A.2 Plane wave expansion

The plane wave expansion is the decomposition of a plane wave to a linear combination of spherical waves. According
to the spherical harmonic addition theorem, a plane wave can be expressed through spherical harmonics and spherical
Bessel functions,

exp i~ρ~r = 4π

∞∑
l=0

l∑
k=−l

iljl(ρr)Y
k
l (Ωρ)Y kl (Ωr). (20)

B 3D Fourier transforms in spherical coordinates

The 3D Fourier transform of a function f(~r) is defined as

F (~ρ) =

∫
R3

f(~r) expi~r~ρ d~r. (21)

The spherical harmonics expansion of this transform has the following form,

F kl (ρ) =

∫
4π

F (~ρ)Y kl (Ωρ)dΩρ. (22)

The Fourier spherical harmonics expansion coefficients relate to the real-space spherical harmonics coefficients though
SBT,

F kl (ρ) = 4π(−i)lSBTl(fkl (r)). (23)
This equation can be also rewritten as follows,

F kl (ρ) = 4π(−i)l
∫
R3

f(~r)jl(rρ)Y kl (Ωr)d~r. (24)

C Rotation of spherical harmonics and Wigner D-matrices

The Wigner D-matrices Dl are the irreducible representations of SO(3) that can be applied to spherical harmonics
functions to express the rotated functions with tensor operations on the original ones,

Y kl (ΛΩ) =

l∑
k′=−l

Dl
kk′(Λ)Y k

′

l (Ω), (25)

where Λ ∈ SO(3).

D Translation operator

Let us translate a 3D function f(~r) along the z-axis by an amount ∆. The expansion coefficients of a translated function
will be

[Fz]
k
l (ρ) =

∫
F (~ρ)e−i∆~ρ. ~ezY kl (Ω)dΩ. (26)

13
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Using the plane-wave expansion and triple spherical harmonics integrals defined though Slater coefficients
cl2(l, k, l1, k1),

cl2(l, k, l1, k1) =

∫
4π

Y kl (Ω)Y k1l1 (Ω)Y k−k1l2
(Ω)dΩ, (27)

we obtain

[Fz]
k
l (ρ) =

∞∑
p=0

l+p∑
l′=max(|l−p|,|k|)

ipjp(ρ∆)F kl′ (ρ)4π

√
2p+ 1

4π

∫
4π

Y kl (Ω)Y 0
p (Ω)Y kl′ (Ω)dΩ

=

∞∑
p=0

l+p∑
l′=max(|l−p|,|k|)

ipjp(ρ∆)F kl′ (ρ)4π

√
2p+ 1

4π
cp(l′, k, l, k).

(28)

Changing the summation order and introducing the maximum expansion order L, we arrive at

[Fz]
k
l (ρ) =

L∑
l′=|k|

T kl,l′(ρ,∆)F kl′ (ρ) +O

(
1

(L− l)!
(
ρ∆

2
)L−l

)
, (29)

where

T kl,l′(ρ,∆) =
∑
p

ipjp(ρ∆)4π

√
2p+ 1

4π
cp(l′, k, l, k). (30)

The error estimation in Eq. 29 is based on the equivalence relation jp(x) ∼ 1√
xp ( ex2p )p as p→∞ that allows us to find

the upper bound of the error,

∞∑
p=L+1

l+p∑
l′=max(|l−p|,|k|)

ipjp(ρ∆)F kl′ (ρ)4π

√
2p+ 1

4π
cp(l′, k, l, k) ≤ C

( eρ∆2 )2

(L− l − 1)!
, (31)

where C is a constant independent of L.

E Fourier coefficients for a 3D Gaussian function

Let us consider a function of the Gaussian type in 3D,

f(~r) = exp(− (~r − ~r0)2

2σ2
). (32)

The Fourier transform of f(~r) will be

F (~ρ) =

∫
R3

exp(− (~r − ~r0)2

2σ2
) exp(−i~r~ρ)d3~r

= exp(− i2σ
2~r0~ρ+ σ4ρ2

2σ2
)

∫
exp(−r

2 + 2~r(iσ2~ρ− ~r0) + r2
0 − 2iσ2~r0~ρ− σ4ρ2

2σ2
)d3~r

= exp(−i~r0~ρ) exp(−σ
2ρ2

2
)(
√

2πσ)3.

(33)

Using the plane wave expansion (20), we obtain

F (~ρ) = 4π exp(−σ
2ρ2

2
)(
√

2πσ)3
∞∑
l=0

l∑
k=−l

(−i)ljl(ρr0)Y kl (Ωr0)Y kl (Ωρ) =

∞∑
l=0

l∑
k=−l

F kl (ρ)Y kl (Ωρ). (34)

Consequently,

F kl (ρ) = 4π(−i)l exp(−σ
2ρ2

2
)(
√

2πσ)3jl(ρr0)Y kl (Ωr0). (35)
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F Proof of Eq. (4)

Proof. We start in the proof from the translation operator in 3D (Baddour, 2010),

f(~r − ~r0) =

∞∑
l=0

l∑
k=−l

8(i)lY kl (Ωr0)

∞∑
l1=0

l1∑
k1=−l1

(−i)l1Y k1l1 (Ωr)

l+l1∑
l2=‖l−l1‖

(−i)l2cl2(l, k, l1, k1)

∫ ∞
0

fk−k1l2
(u)Sl,l1l2

(u, r0, r)u
2du,

(36)

where cl2(l, k, l1, k1) are Slater coefficients defined in Eq. 27. They are nonzero only for ‖l − l1‖ ≤ l2 ≤ ‖l + l1‖.
Sl,l1l2

(u, r, r0) is a triple Bessel product which is defined as

Sl,l1l2
(u, r, r0) =

∫ ∞
0

jl2(ρu)jl1(ρr0)jl(ρr)ρ
2dρ (37)

Let us consider the function f(~r0 − Λ−1~r), where Λ ∈ SO(3),

f(~r0 − Λ−1~r) =

∞∑
l1=0

l1∑
k2=−l1

8(i)l1Y k2l1 (Ωr0)

∞∑
l2=0

l2∑
k3=−l2

l2∑
k4=−l2

(−i)l2Y k3l2 (Ωr)D
l2
k4k3

(Λ−1)

l1+l2∑
l3=|l1−l2|

(−i)l3cl3(l1, k2, l2, k4)

∫ ∞
0

fk2−k4l3
(u)Sl1,l2l3

(u, r0, r)u
2du.

(38)

Using the symmetry properties of Wigner D-matrices,

Dl2
k4k3

(Λ−1) = (−1)(−k4+k3)Dl2
−k3−k4(Λ), (39)

we can retrieve the following equation for the convolution operation in 6D,

h(~r0) =

∫
~r

∫
Λ

f(~r0 − Λ−1~r)g(Λ~r)d~rdΛ

=

∫
~r

∫
Λ

∞∑
l=0

l∑
k=−l

l∑
k1=−l

gk1l (r)Dl
k1k

(Λ)Y kl (Ωr)

∞∑
l1=0

l1∑
k2=−l1

8(i)l1Y k2l1 (Ωr0)

∞∑
l2=0

l2∑
k3=−l2

l2∑
k4=−l2

(−i)l2Y k3l2 (Ωr)(−1)(−k3+k4)Dl2
−k3−k4(Λ)

l1+l2∑
l3=|l1−l2|

(−i)l3cl3(l1, k2, l2, k4)

∫ ∞
0

fk2−k4l3
(u)Sl1,l2l3

(u, r0, r)u
2dud~rdΛ.

(40)

Using the orthogonality of Wigner D-matrices,∫
SO(3)

Dl
k1k

(Λ)Dl1
k3k2

(Λ)dΛ =
8π2

2l + 1
δll1δkk2δk1k3 , (41)

and the orthogonality of spherical harmonics, we obtain

h(~r0) =

∫ ∞
0

∫ ∞
0

∞∑
l=0

l∑
k=−l

l∑
k1=−l

∞∑
l1=0

l1∑
k2=−l1

∞∑
l2=0

l2∑
k3=−l2

l2∑
k4=−l2

l1+l2∑
l3=|l1−l2|

8(i)l1(−i)l2(−i)l3 8π2

2l + 1
δll2δk1−k3δk−k4δkk3δll2

Y k2l1 (Ωr0)gk1l (r)cl3(l1, k2, l2, k4)(−1)(k3−k4)fk2−k4l3
(u)Sl1,l2l3

(u, r0, r)u
2dur2dr

=

∫ ∞
0

∫ ∞
0

∞∑
l=0

l∑
k=−l

∞∑
l1=0

l1∑
k2=−l1

l1+l2∑
l3=|l1−l2|

8(−i)l(i)l1(−i)l3 8π2

2l + 1
g−kl (r)

cl3(l1, k2, l,−k)Y k2l1 (Ωr0)fk2+k
l3

(u)Sl1,ll3
(u, r0, r)u

2dur2dr.

(42)
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Let us change indices: l1 → l, l→ l1, k2 → k, k → k1 l3 → l2,

h(~r0) =

∞∑
l=0

l∑
k=−l

Y kl (Ωr0)8(i)l
∫ ∞

0

∞∑
l1=0

l1∑
k1=−l1

8π2

2l1 + 1
(−i)l1

(∫ ∞
0

g−k1l1
(r)jl(ρr)r

2dr

)
l+l1∑

l2=|l−l1|

(−i)l2cl2(l, k, l1,−k)

(∫ ∞
0

fk+k1
l2

(u)jl2(ρu)u2du

)
jl(ρr0)ρ2dρ =

∞∑
l=0

l∑
k=−l

Y kl (Ωr0)
2

π2
(i)l

∫ ∞
0

 ∞∑
l1=0

l1∑
k1=−l1

8π2

2l1 + 1
G−k1l1

(ρ)

l+l1∑
l2=|l−l1|

cl2(l, k, l1,−k1)F k+k1
l2

(ρ)

 jl(ρr0)ρ2dρ.

(43)

Using the spherical harmonics expansion,

h(~r0) =

∞∑
l=0

l∑
k=−l

Y kl (Ωr0)
1

2π2
(i)l

∫ ∞
0

Hk
l (ρ)jl(ρr0)ρ2dρ, (44)

we obtain the final result,

Hk
l (ρ) =

∞∑
l1=0

l1∑
k1=−l1

8π2

2l1 + 1
G−k1l1

(ρ)

l+l1∑
l2=|l−l1|

cl2(l, k, l1,−k1)F k+k1
l2

(ρ). (45)

G Normalization

Let us consider a function f(~r) : R3 → R and its integral overR3,
∫
R3 f(~r)d3~r. Using the fact that ∀Ω, Y 0

0 (Ω) = 1√
4π

and j0(0) = 1 and the properties of orthogonality for spherical harmonics and spherical Bessel functions we rewrite
this expression as∫
R3

f(~r)d3~r =

∫ ∞
0

∫
4π

∞∑
l=0

∑
k=−l

(i)l

4π

2

π

∫ ∞
0

F kl (ρ)jl(rρ)ρ2dρ
√

4πY kl (Ω)Y 0
0 (Ω)dΩj0(0r)r2dr =

1√
4π
F 0

0 (0).

(46)
If we set F 0

0 (0) to zero, we obtain the Fourier expansion of a function fm(~r) that can be formulated as follows,

fm(~r) = f(~r)−
∫
R3

f(~r)d3~r. (47)

Below we also explain how to normalize the integral of a square of a function to unity using Parseval’s theorem.

H Overlap integrals in 3D

H.1 Parseval’s theorem

Let us consider two finite-resolution complex-valued functions g(~r) and f(~r), meaning that their spherical Fourier
expansion coefficients F kl (ρ) and Gkl (ρ) are nonzero only for l ≤ than some maximum expansion order L. Parseval’s
theorem for these coefficients states the following (Baddour, 2010),

∫
R3

g(~r)f(~r)d~r =
1

(2π)3

∞∑
l=0

l∑
k=−l

∫ ∞
0

Gkl (ρ)F kl (ρ)ρ2dρ =
1

(2π)3

L∑
l=0

l∑
k=−l

∫ ∞
0

Gkl (ρ)F kl (ρ)ρ2dρ, (48)

In the case g(~r) = f(~r), it reduces to∫
R3

‖f(~r)‖2d~r =
1

(2π)3

∞∑
l=0

l∑
k=−l

∫ ∞
0

‖F kl (ρp)‖2ρ2
pdρ =

1

(2π)3

L∑
l=0

l∑
k=−l

∫ ∞
0

‖F kl (ρp)‖2ρ2
pdρ. (49)
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H.2 Switching from continuous to vector representation

Let f(~r) : R3 → Rdf and w(~r) : R3 → Rdf be functions with a finite resolution, i.e., their Fourier expansion
coefficients are zero for all l ≤ than some maximum expansion order L. In order to obtain a vector h ∈ Rdf , we
integrate element-wise product of two functions over the 3D space. We are using the following relation to compute our
vector representation,

h =

∫
R3

f(~r)w(~r)d~r =
1

(2π)3

L∑
l=0

l∑
k=−l

∫ ∞
0

Fkl (ρ)W
k

l (ρ)ρ2dρ, (50)

where we approximate the last integral with a numerical integration.

I Network architectures

Table 3 lists three network architectures used in our experiments.

Layers Baseline 6DCNN-1 6DCNN-2
Edges
features
embedding

Filter (410, 10); Np =
4,100

Filter (410, 10); Np =
4,100

Filter (410, 10); Np =
4,100

Nodes
features
embedding

Filter (168, 40); Np =
6,720

Filter (168, 40); Np =
6,720

Filter (168, 40); Np =
6,720

6D conv
layer - - Filter ∀l(l, 4, 40, 40);

Np = 131,200
Message-
passing - - No trainable parameters

6D conv
layer - Filter ∀l(l, 4, 40, 40);

Np = 131,200
Filter ∀l(l, 4, 40, 40);
Np = 131,200

Continuous
to discrete

Filter ∀l(l, 4, 40); Np =
3,200

Filter ∀l(l, 4, 40); Np =
3,200

Filter ∀l(l, 4, 40); Np =
3,200

GC layer Filters (40, 14, 10) and
(40, 14); Np = 6,174

Filters (40, 14, 10) and
(40, 14); Np = 6,174

Filters (40, 14, 10) and
(40, 14); Np = 6,174

GC layer Filters (14, 5, 10) and
(14, 5); Np = 775

Filters (14, 5, 10) and
(14, 5); Np = 775

Filters (14, 5, 10) and
(14, 5); Np = 775

GC layer Filters (5, 1, 10) and
(5, 1); Np = 55

Filters (5, 1, 10) and
(5, 1); Np = 55

Filters (5, 1, 10) and
(5, 1); Np = 55

The total
number of
parameters

21,026 187,326 283,426

Table 3: Comparison of the 6DCNN and the baseline network architectures with the number of trainable parameters Np
on each layer.

J Local scores’ prediction results.

Table 4 lists Spearman rank correlations of local quality predictions with the corresponding ground-truth values of our
three networks and the state-of-the-art methods on model structures of 11 targets from CASP13. For the comparison,
we chose only model structures that had both publicly available target structures and predictions of local scores from
other methods.
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Methods |ρ|
VoroCNN 0.795

ModFOLD7 0.776
VoroMQA-A 0.665

ProQ3 0.744
ProQ4 0.728
Ornate 0.540

Baseline 0.735
6DCNN-1 0.774
6DCNN-2 0.763

Table 4: Spearman rank correlations between local scores and its predictions of the 6DCNN networks, the baseline
architecture, and the state-of-the-art methods on the unrefined CASP13 stage2 dataset. Only 11 targets with the publicly
available structure are included here. The best value is highlighted in bold.
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