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ABSTRACT
In various audio signal processing applications, such as source sepa-
ration and dereverberation, accurate mathematical modeling of both
source signals and room reverberation is needed to properly describe
the audio data. In a previous paper, we introduced a stochastic room
impulse response model based on the image source principle, and
we proposed an expectation-maximization algorithm that was able
to efficiently estimate the model parameters in various experimental
settings. This paper aims to extend the model in order to account for
the dependency of the exponential decay over frequency, due to the
walls usually absorbing less energy at low frequencies than at high
frequencies. Our experimental results show that this refinement of
the model is able to generate realistic room impulse responses, that
are perceptively very close to the original ones.

Index Terms— Reverberation, room impulse response, prob-
abilistic modeling, expectation-maximization algorithm, artificial
reverberation.

1. INTRODUCTION

Audio signal processing applications such as source separation and
dereverberation often involve the modeling of room impulse re-
sponses (RIRs): the observed signal x(t) is usually modeled as the
sum of convolution products of acoustic source signals yi(t) with
the corresponding RIRs hi(t) (where index i refers to the different
acoustic sources) possibly corrupted by additive noise n(t). The
joint estimation of hi and yi requires accurate mathematical models
for both the source signals and the RIRs.

The modeling of source signals has been the main focus in
numerous papers, using various approaches including autoregressive
(AR) models [1], sinusoids plus noise models [2], Non-negative
Matrix Factorization (NMF) [3, 4], heavy-tailed stochastic models
[5], and Deep Neural Networks (DNN) [6, Chap. 7].

As for the RIR, one standard model [7, 8] is a Gaussian process
with independent samples and exponentially decreasing variance:
∀t > 0,

h(t) = e−atb(t)

b(t) ∼ N (0, σ2).
(1)

with a, σ > 0. This model is a good approximation of the late part
of reverberation, but it does not accurately represent the early reflec-
tions. However these early reflections, where the energy is mostly
concentrated, are perceptually very important. Other stochastic re-
verberation models include the use of a spatial covariance matrix
[9], complex Gaussian latent variables [10], and a more general
Student’s t model [5].
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In a previous publication [11], we introduced a new reverbera-
tion model based on the theoretical work of [12, 13]. We present in
this paper an extension of this model that accounts for the frequency
dependence of the exponential decrease of the energy in any RIR.
This frequency dependence is critical for realism, perceptive credi-
bility and theoretical exactness, but it is difficult to implement and
parametrize.

This paper is organised as follows: in Section 2 we recall the
previous model and explain how it is extended, Section 3 introduces
a parametric estimation algorithm for the new model and Section 4
presents some experimental results with both synthetic and real
RIRs. Finally, we conclude in Section 5 with perspectives for future
work.

Notation

• N (µ,R): multivariate real Gaussian distribution of mean vec-
tor µ and covariance matrix R,

• MT : transpose of matrixM ,
• I: identity matrix,
• Tr(M): trace of matrixM ,
• ‖.‖2: Euclidean vector norm,
• Fx(f): Fourier transform of signal x at frequency f ,
• X̂: discrete-time Fourier transform of signal x,

• Dr(a, b) =
1
n

∑n−1
i=0

|a(i)−b(i)|
|a(i)| : relative distance between vec-

tors a and b of size n.

2. FREQUENCY DEPENDENT REVERBERATION
MODEL

2.1. Previous model

We recall in this section the model used in our previous article [11],
as a starting point for the contribution of this paper. This model
represents a RIR h of length Lh as ∀u ∈ J0, Lh − 1K,

h(u) = b(u) + w(u)

b(u) = (G−1E−1π)(u)
(2)

where:

• w(u) ∼ N (0, σ2) is white Gaussian noise corresponding to
the measurement error of h,

• E is an Lh × Lh diagonal matrix of coefficients E(u, u) =
eau, ∀u ∈ J0, Lh − 1K; a > 0 is a fixed exponential de-
crease parameter accounting for the absorption of the walls
when sound is reflected on them,
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• matrix G−1 implements an AR filter of order Lg that repre-
sents other convolutive effects such as the inner response of
the microphone; more precisely, G is an Lh × Lh lower tri-
angular Toeplitz matrix whose entries contain a Finite Impulse
Response (FIR) filter g of length Lg such that g(0) = 1,

• π is a multivariate random vector containing i.i.d. random
variables: ∀v ∈ J0, Lh − 1K, π(v) ∼ N (0, λ) where λ > 0 is
the variance parameter.

This model is a good approximation for simple synthetic RIRs
but has one main limitation in the case of real RIRs: the exponential
decay encoded in matrix E−1 does not depend on the frequency
of the input signal. Therefore this model leads to an estimation of
the reverberation time (T60) that does not depend on the frequency
either: T60 = 3 ln(10)

fsa
(in seconds), where fs is the sampling fre-

quency of the modeled RIR. However, in most rooms, the energy is
absorbed faster at high frequencies than at low frequencies.

2.2. Frequency dependent exponential decrease

In this section, we tackle the issue of implementing a frequency de-
pendent exponential decrease instead of the simple diagonal matrix
E of constant parameter a. One possible solution to this problem
would be to partition the RIR h into several frequency sub-bands
and process each sub-band i separately with one specific parameter
ai, but this approach has some limitations: we would need to choose
the optimal frequency partition, which could be different depending
on the RIR, the resulting model would involve many parameters, and
sub-band modeling could create discontinuities at the edge between
two successive sub-bands.

Instead, we define the setP ofLh×Lh matrices, where P ∈ P
if and only if there exists a causal impulse response p(v) such that:

P =



1 0 . . . . . . 0

0 p(0) 0 . . .
...

0 p(1) p∗2(0)
. . .

...
...

...
...

. . . 0

0 p(Lh − 2) p∗2(Lh − 3) p∗(Lh−1)(0)


where p(0) 6= 0 and p∗j is p convolved by itself j times (if j = 0,
then p∗j = δ is the Kronecker delta function).

If we consider such a matrix P and extract the submatrix P1

obtained by removing the first line and first column, we can see
that P1 = TP ′, where T is the lower-triangular Toeplitz matrix
corresponding to filter p, and P ′ is the (Lh− 1)× (Lh− 1)matrix
structured as P and constructed from filter p. By induction this
means that applying the matrix P at timestamp u is equivalent to
applying a smaller matrix P ′′ at timestamp 0 and then filtering the
result by p∗u.

This effect can be visualized in Fig. 1: we show the log-
spectrogram of Px where P ∈ P and x is white Gaussian noise
of variance 1, next to the frequency response of the filter p used in
matrix P . We can see that at a given frequency f , the higherFp(f),
the slower the corresponding exponential decay effect.

Note that if p is just an impulse of amplitude ea, then matrix
P is the same as the previously used diagonal matrix E, which
corresponds to the fact thatFp(f) is a constant: the effect of P does
not depend on the frequency in this particular case.

Figure 1: Side by side comparison of the frequency response of p
(left) and the log-spectrogram of Px (right) where P ∈ P is the
matrix corresponding to filter p and x is white Gaussian noise of
variance 1.

To ensure proper convergence, we choose to keep the AR
parametrization we already used for filter g and we apply the matrix
P−1 (which is also in P , because P is a Lie group1) instead of
P itself. We limit the length of p to Lp. We also set p(0) = 1,
while keeping the previous matrix E: E−1 will then encode the
average exponential decrease over all frequencies, while P−1 will
adjust the effect of E−1 depending on the frequency. This leads to
the following final model:

h(u) = b(u) + w(u),

b(u) = (G−1P−1E−1π)(u).
(3)

The combined effects of P and E in the model result in a
frequency dependent reverberation time T60(f) (in seconds):

T60(f) =
3 ln(10)

fs(a+ ln(
∣∣Fp(f)∣∣)) . (4)

We can note that Eyring’s formula [14], along with this equa-
tion, allows us to generate a realistic filter p by using the frequency
dependent absorption parameters of a known material.

3. ESTIMATING THE PARAMETERS

The model defined in (3) includes the observed variable h(u), the
latent variable b(u)2 and the parameters a, σ2, λ, g (FIR filter of
length Lg), and p (FIR filter of length Lp).

Since we only apply linear functions to π and w, the a pri-
ori distributions are Gaussian, thus we know that the a posteriori
distribution of b given h is also Gaussian:

b | h, g, p, a, λ, σ2 ∼ N (µ,R). (5)

Given this model, an Expectation-Maximization (EM) algo-
rithm [15] can be used to jointly estimate the parameters g, p, a,
λ and σ2 and the latent variable b(u) given an observed RIR h(u)
in the maximum likelihood sense. The algorithm alternates two
steps:

• expectation step (E-step): computing the a posteriori distribu-
tion of b given h (in this case we only need its mean vector µ
and covariance matrix R), given the current estimates of the
parameters,

1The proof and some additional results are available on HAL:
https://hal.archives-ouvertes.fr/hal-03298695/document.

2Note that we could equivalently define w(u) or π(u) as the latent vari-
able.
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• maximization step (M-step): maximizing (6) with respect to
(w.r.t.) the parameters θ = (g, p, a, λ, σ2) given the current
estimate of the a posteriori distribution of b.

More specifically, the a posteriori expectation of the log-
probability density function (PDF) of the joint distribution of ob-
served and latent random variables is:

Q =EP(b|h,θ)
[
lnP(h, b | θ)

]
=EP(b|h,θ)

[
lnP(b | θ)

]
+ EP(b|h,θ)

[
lnP(h | b, θ)

]
=−Lh

2
ln (2πλ)− 1

2λ
Tr(GPER̃EPTGT ) + Lh(Lh−1)

2
a

− Lh
2

ln (2πσ2)− 1
2σ2

[
‖h− µ‖22 + Tr(R)

] (6)

with R̃ = R+ µµT .

3.1. Expectation

For the expectation step, we can write

ln(P(h | θ)) + ln(P(b | h, θ)) = ln(P(b | θ)) + ln(P(h | b, θ))

and complete the square (i.e. identify linear and quadratic terms in b):

1

2
(b− µ)TR−1(b− µ) = C − 1

2λ
‖GPEb‖22 −

1

2σ2
‖h− b‖22

where C is a constant w.r.t. b. We then get:

R = λσ2
[
λI + σ2EPTGTGPE

]−1

,

µ =
Rh

σ2
.

(7)

3.2. Maximization

As for the maximization step, the following updates directly maxi-
mize the a posteriori expectation of the joint log-PDFQ in (6).

Filter g: The optimal filter parameters are the unique solution of
the following linear system: ∀0 < i < Lg ,

Lg−1∑
j=0

g(j)

Lh−1∑
u=0

PER̃EPT (u− i, u− j) = 0. (8)

Note that g(0) is fixed to 1, so the solution to this equation is
indeed unique (the system involves a positive definite matrix).

Variance parameter λ: The optimal parameter λ is:

λ =
1

Lh
Tr
(
GPER̃EPTGT

)
. (9)

Absorption parameter a: To update a, we use the fact that we can
swap matrices in order to simplify the calculation: GPE = EG̃P̃
where g̃(v) = g(v)e−av for 0 ≤ v < Lg and p̃(v) = p(v)e−av for
0 ≤ v < Lp.

Substituting the value of λ in the expression of Q in (6) and
canceling the partial derivative w.r.t. a, we find:

Lh−1∑
u=0

e2ua
(
Lh−1

2
− u
)
(G̃P̃ R̃P̃T G̃T )(u, u) = 0. (10)

This equation has no closed-form solution, but the solution is
unique and we can use a dichotomy method to find the optimal value
of a.

Frequency dependent exponential decrease filter p: To update
p, we use the fact that we can also swap matrices GP = PG̃ with
G̃ = P−1GP and we maximize the log-probability Q w.r.t. p
while considering that G̃ is constant w.r.t. p. Since we cannot
find a closed-form solution that cancels the gradient w.r.t. vector
p, we proceed to maximizing (6) using Newton’s method [16], that
involves computing the gradient vector and the Hessian matrix ofQ.

Computation of the gradient vector: The first order derivative
ofQ w.r.t. p(i) for 0 < i < Lp is:

∂Q
∂pi

=
−1
λ

Lh−1∑
u=0

P ↓DG̃ER̃EG̃TPT (u− i, u) (11)

whereD is theLh×Lh diagonalmatrix of coefficientsD(u, u) = u,
P ↓(u, v) = P (u− 1, v − 1) if 1 ≤ u, v < Lh, and P ↓(u, v) = 0
otherwise.

Computation of theHessianmatrix: The second order derivative
ofQ w.r.t. p(i) and p(j) for 0 < i, j < Lp is:

∂2Q
∂pj∂pi

=
−1
λ

Lh−1∑
u=0

(
P ↓↓D2G̃ER̃EG̃

TPT (u− i− j, u)

+ P ↓DG̃ER̃EG̃TDTP ↓T (u− i, u− j)
) (12)

whereD2 is theLh×Lh diagonal matrix of coefficientsD(u, u) =
(u − 1)u, P ↓↓(u, v) = P (u − 2, v − 2) if 2 ≤ u, v < Lh, and
P ↓↓(u, v) = 0 otherwise.

White noise variance parameter σ2:
The update of the white noise variance is:

σ2 =
1

Lh

(
‖h− µ‖22 + Tr(R)

)
. (13)

3.3. Initialization of the parameters

An adequate initialization of the parameters is critical to make the
EM algorithm converge faster (although our numerical simulations
showed that the convergence to the optimal solution is not sensitive
to initialization). Since we did not change the initialization part of
the algorithm, the details can be found in [11]. The new parameter
p can be initialized as p(v) = 1 if v = 0 and p(v) = 0 otherwise.

4. EXPERIMENTAL RESULTS

In this section, we present a few experimental results obtained by
learning the model parameters on both synthetic and real RIRs. The
experiments on synthetic RIRs allow us to compare the learned
parameters to the true parameters, while accurately modeling real
RIRs is a more challenging problem.

For both experimental setups, we empirically fixed the hyper-
parameters Lg = 21 and Lp = 10 (in practice, the method is not
very sensitive to these parameters’ values).

4.1. Synthetic RIR

The synthetic RIRs we used were generated by Roomsimove [17].
Roomsimove is aMATLAB toolbox that simulates a parallelepipedic
room, and allows us to specify the dimensions of the room, the
frequency dependent absorption of the walls, the filter g, and the
position of the source and microphone in the room. We manually
added the noisew(u) in order to account for the measurement error.
We used the following parameters in Roomsimove:
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(a) Dr(1/Ĝest, 1/Ĝtrue) with
the estimated parameters from the
newmodel (blue) and the estimation
from the previous model (orange).

(b)Dr(T60,est, T60,true)with the
estimated parameters from the new
model (blue) and the estimation
from the previous model (orange).

Figure 2: Mean and standard deviation over 20 experiments of the
estimation of the AR filter of coefficients g (left) and the frequency
dependent T60 (right) to the true parameters for different SNRs.

• g
∗(−1)
true is a combination of a high-pass filter with low cut-off
frequency at 20 Hz, that is implemented as a recursive filter
of order (2,2) (default settings of Roomsimove), and a FIR
filter approaching the frequency response of an Audio-Technica
ATM650 microphone3,

• the room is of size 2× 3× 4 (in meters),
• the sampling frequency is fs = 16000 Hz,
• the sources and microphones in the room are omnidirectional,
• the frequency dependent T60,true can be computed from the

frequency dependent absorption values of the walls and room
dimensions, which are inputs of Roomsimove, through Eyring’s
formula [14].

Fig. 2 shows the mean and standard deviation over 20 experi-
ments of the relative distance Dr , as defined in the notation para-
graph of Section 1, between the estimation and the true value of the
AR filter of coefficients g and the frequency dependent T60 for dif-
ferent Signal to Noise Ratios (SNR). We also included, as baselines,
the same comparisons with the estimations of our previous model
[11] on the same RIR, i.e. without the inclusion of matrix P : the
corresponding T60 does not depend on frequency f .

We can see that, although the estimation is more difficult in
the case of low SNR values, it is generally improved for both the
parameter g and the frequency dependent T60.

4.2. Real RIRs

The experiments on real RIRs were conducted on RIRs from the
Mardy [18] dataset. This dataset was chosen for its relatively short
reverberation time, allowing for faster execution of theEMalgorithm.

The main drawback of the proposed algorithm being its compu-
tational time, we had to extract the first 8000 samples of the RIRs to
learn the parameters, with a sampling frequency of fs = 24000 Hz,
losing some information in the process. Even with this trimming
of the RIRs, one iteration takes up to 2 minutes on an AMD Ryzen
5 3600 3.6 GHz processor and we needed 200 iterations to reach a
good estimation of the parameters.

With the estimated parameters, we then generated a synthetic
RIR according to the stochastic model. Fig. 3 shows three spectro-
grams: in 3c, the spectrogram of an RIR from the Mardy database,
in 3a, the spectrogram of an RIR generated from the new model
parameters learned on the real RIR, and in 3b, the spectrogram of

3Based on http://recordinghacks.com/microphones/Audio-
Technica/ATM650.

(a) Spectrogram of an RIR gener-
ated from the learned parameters
of the new model.

(b) Spectrogram of an RIR gener-
ated from the learned parameters
of the old model.

(c) Spectrogram of the true RIR.

Figure 3: Three spectrograms in decibels (dB) compared: the true
RIR (bottom) and both generated RIRs with the new (left) and old
(right) model.

an RIR generated from the previous model [11] parameters, not
accounting for the frequency dependence of the exponential decay.

We can see that the frequency dependence of the exponential
decay permits us to describe the true RIR more accurately, and that
the new model manages to create a perceptually credible synthetic
RIR that is very close to the original one. Indeed, the informal
listening tests4 that we conducted, by filtering an anechoic recording
from the TSP dataset [19] with the true and estimated RIRs, con-
firmed this observation: as non-professional sound engineers, we
were able to hear that the new model generated an RIR with much
more perceptive quality than the previous model, and which is very
close to the true RIR.

5. CONCLUSION

This paper extended previousworks on stochastic reverberationmod-
eling, and investigated the pertinence of introducing a frequency
dependent exponential attenuation in order to better represent real
RIRs. The implementation of an EM algorithm showed that this
model is able to represent real RIRs with enough accuracy to gener-
ate perceptually credible synthetic RIRs, close to the original ones.

Our main future objective is to reduce the computational com-
plexity of the estimation algorithm, which in turn would enhance the
estimation itself since we would be able to process longer RIRs and
perform more iterations of the algorithm. To this end, one possible
approach would be to investigate the mathematical properties of the
Lie groupP and its corresponding Lie algebra, and to exploit a more
efficient parametrization of matrix P .

Other directions to be explored include: conducting more exper-
iments once the computational cost of the estimating algorithm will
have been reduced; extending this monophonic model to a spatial
model (i.e. modeling the statistical dependencies between sensors);
and estimating the reverberation model from reverberated audio sig-
nals instead of the clean RIRs, for example in the context of dere-
verberation or source separation.

4The code used and a few audio examples are available on the GitHub
repository https://github.com/Aknin/P_matrix_model
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