
 

 

Supplementary Figure 1. Genetic ancestry estimation. 

(A) A two-dimensional representation of the raw genetic data was learned on 1000G, which 

consists of 5 super populations. The PPMI (B) and DIGPD (C) subjects were projected on 

this space to estimate their genetic ancestry and excluded if their projection was too far from 

the European cluster. Excluded subjects are highlighted with a black circle. 

1000G: 1000 Genomes Project; DIGPD: Drug Interaction With Genes in Parkinson’s 

Disease; PPMI: Parkinson’s Progression Markers Initiative.  



 

Supplementary Figure 2. Forest plot for the association analysis between 

the GRS of lack of premeditation and ICDs in PD. 

CI: Confidence interval; DIGPD: Drug Interaction With Genes in Parkinson’s Disease; OR: 

Odds ratio; PPMI: Parkinson’s Progression Markers Initiative. seTE: standard error of 

treatment effect; TE: treatment effect. 

  



 
Supplementary Figure 3. Power analysis. 
 

Power calculation for different prevalences were performed. At the 0.80 power threshold, the 

sample sizes allow for discovering associations with OR = 2.2 in PPMI and OR = 2.0 in 



DIGPD. Combining both cohorts allows for discovering associations with OR = 1.7. These 

are high odds ratios that are unlikely to exist for a genetic risk score for another phenotype. 

At the same power threshold, odds ratios of 1.3 and 1.1 (which are more reasonable) would 

require around 1k and 10k samples to be discovered respectively. This highlights the 

importance of the sample size for genetic analyses for which each effect size / odds ratio is 

usually very small. 

DIGPD: Drug Interaction With Genes in Parkinson’s Disease; OR: Odds ratio; PPMI: 

Parkinson’s Progression Markers Initiative. 

  



Supplementary materials and methods 

Populations 

We used data from two research cohorts: the Parkinson’s Progression Markers Initiative 

(PPMI) database and the Drug Interaction With Genes in Parkinson’s Disease (DIGPD) 

study. 

 PPMI (https://www.ppmi-info.org) is a multicenter observational clinical study using 

advanced imaging, biologic sampling and clinical and behavioral assessments to identify 

biomarkers of PD progression. Data was gathered during face-to-face visits every 6-12 

months. PD subjects were de-novo and drug-naïve at baseline. We downloaded the clinical 

and genetic data from the PPMI database (https://www.ppmi-info.org/data) on the 17th of 

October 2019. 

 DIGPD is a French multicenter longitudinal cohort with annual follow-up of PD 

patients. Eligible criteria consist in recent PD diagnosis (UK Parkinson’s Disease Society 

Brain Bank criteria) with disease duration less than 5 years at recruitment. Data was gathered 

during face-to-face visits every 12 months following standard procedures. 

Both studies were conducted according to good clinical practice, obtained approval 

from local ethic committees and regulatory authorities, and all patients provided informed 

consent prior to inclusion. 

Participants 

Inclusion criteria in our analyses included having: (i) a PD diagnosis, (ii) at least two visits 

measuring ICDs, (iii) clinical and genetic data available, and (iv) a European genetic 

ancestry. We identified 378 subjects in PPMI and 382 subjects in DIGPD matching the first 

three criteria. 

https://www.ppmi-info.org/
https://www.ppmi-info.org/data


 ICDs were assessed at each visit using the Questionnaire for Impulsive-Compulsive 

Disorders in Parkinson’s Disease - Rating Scale in PPMI, and through semi-structured 

interviews by a movement disorders specialist in DIGPD. The ICD phenotype was defined as 

the lifetime presence of ICDs. 

Genetic ancestry 

To date, most GWAS have been conducted in populations of European ancestry, which limits 

the use of GWAS-derived GRS in non-European ancestry populations, and their 

transferability to other populations depends on many factors such as linkage disequilibrium, 

allele frequencies, and genetic architecture. Directly computing GRS in another ancestry 

group that the one from the corresponding GWAS can lead to biased GRS. 

To estimate the genetic ancestry of the PD subjects in PPMI and DIGPD, we used 

data from the 1000 genomes (1000G) project to learn a low-dimensional representation of the 

genetic data, which captures the main dimension of ancestry. Using the 50,842 common raw 

SNPs between 1000G, PPMI and DIGPD, we applied the Uniform Manifold Approximation 

Projection algorithm on the 1000G data to learn a low-dimensional space of the raw SNPs. 

Finally, we projected the PPMI and DIGPD subjects onto the main principal components to 

identify in which clusters they were the closest to. Subjects projected on another cluster than 

the European cluster were excluded. 

Genotyping and quality control 

Genotype data was acquired using NeuroX arrays in PPMI (267,607 variants measured), and 

Illumina Multi-Ethnic Genotyping Arrays in DIGPD (1,779,819 variants). We excluded 

variants with missing rates greater than 2% and variants deviating from Hardy-Weinberg 

equilibrium (p < 1E-8). We excluded related individuals (third-degree family relationships), 



individuals with mismatching between reported sex and genetically determined sex, and 

individuals with outlying heterozygosity (± 3 SD). We then imputed missing SNPs using the 

Michigan Imputation Server for PPMI and the Sanger Imputation Server for DIGPD, using 

the reference panel of the Haplotype Reference Consortium (release 1.1). 

For GRS calculation, we selected SNPs that were (i) biallelic, (ii) frequent enough 

(minor allele frequency > 1%), and (iii) imputed with sufficient accuracy (R2 > 0.8 for PPMI, 

INFO Score > 0.9 for DIGPD).  

Phenotypes and genome-wide association studies 

Phenotypes of interest included known or putative factors clinically associated with ICDs in 

PD, such as anxiety, depression, personality traits including impulsivity, eating and sleep 

disorders. We were also interested in more general phenotypes such as body height, body 

mass index (BMI), intelligence, and number of years of education, more because of the 

sample size of the corresponding GWAS rather than their prior association with ICDs in PD. 

In particular, body height and body mass index are phenotypes that are easy to collect with 

precision, and for which very large GWAS are available and the corresponding GRS explain 

a large part of the variance. These phenotypes are also usually collected in research cohorts, 

allowing for comparing the GRS with the true phenotypes, and thus validating our 

computation of the GRS. 

We used the NHGRI-EBI GWAS Catalog to select the largest GWAS to date on 

samples of European ancestry. When summary statistics from several GWAS were available 

for a given phenotype, we only included the largest study. 

Computation of genetic risk scores 

When summary statistics were fully available, we estimated the coefficients of the GRS using 

the SBLUP algorithm implemented in the GCTA software. SBLUP directly estimates GRS 



coefficients from summary statistics, using a reference sample to estimate the linkage 

disequilibrium between SNPs. SBLUP is a random effects model that converts the 

coefficients, estimated from a GWAS using the BLUP (best linear unbiased predictor) 

algorithm and available in the corresponding summary statistics, into approximate best linear 

unbiased predictors. When summary statistics were not available in full, we computed small 

GRS by performing clumping to select the most significant, low correlated variants (r
2
 < 0.1 

or distance > 10,000kb), and directly using the coefficients provided in the summary 

statistics. Clumping and GRS computation were performed using the PLINK software. 

Statistical analyses 

We estimated the association between the binary ICD phenotype and GRS using logistic 

regression, while correcting for age, sex, genetic ancestry (first four components), and the 

number of visits. We added the correction for the number of visits to reflect the fact that 

lifetime phenotype may be more likely as the number of visits increases. We performed the 

analyses in each cohort independently as the contributions of all the SNPs were estimated 

altogether, and the number of SNPs was much lower in PPMI than in DIGPD. We applied 

per-sample Bonferroni correction for multiple comparisons. We also investigated the 

association of the combination of the 40 GRS altogether with the likelihood-ratio test. 

 As the sample sizes were relatively small in both cohorts, we also performed a meta-

analysis to estimate the combined effects of each GRS separately and combined altogether 

using fixed effects models with the inverse-variance weighting method. 

Logistic regressions were performed using the statsmodels Python package. Meta-

analyses were performed using the meta R package. Processing of the different text-like files 

was performed using the pandas and NumPy packages. 


