

On the cross-lingual transferability of multilingual prototypical models across NLU tasks

Oralie Cattan, Christophe Servan, Sophie Rosset

▶ To cite this version:

Oralie Cattan, Christophe Servan, Sophie Rosset. On the cross-lingual transferability of multilingual prototypical models across NLU tasks. ACL-IJCNLP 2021, Aug 2021, Bangkok, Thailand. hal-03298408

HAL Id: hal-03298408 https://hal.science/hal-03298408

Submitted on 23 Jul 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On the cross-lingual transferability of multilingual prototypical models across NLU tasks **Oralie Cattan**^{1,2}, **Christophe Servan**¹, and **Sophie Rosset**² ¹QWANT, Neuilly-sur-Seine, France ²Université Paris-Saclay, CNRS, LISN, Orsay, France inital.lastname@qwant.com | lastname@lisn.fr

Overview

• Multilingual Natural Language Understanding (NLU) over 2 classification tasks:

Intent Recognition and **Slot Filling**

• Classification: a supervised learning task resplimited availability of high-quality annotated datasets somplex adaptation to new languages, especially for poorly endowed languages

Approaches explored:

- Transformer-based models: contextualized representations, pretraining and transfer learning
- Limitations:

[™] underperformances [Pires et al., 2019, Conneau et al., 2020]: on poorly endowed languages, when facing data scarcity rinstabilities [Zhang et al., 2021, Mosbach et al., 2021]: overfitting, label noise memorization or catastrophic forgetting

Contributions

- 1. A comparison of Transfer and Meta Learning approaches on a multilingual few-shot NLU benchmark for evaluating crosslingual generalisation
- 2. A Transformers-based Prototypical Network that enhance crosslingual representations based on a multilingual Transformer-based model (mBERT) [Devlin et al., 2019]
- 3. A new zero-shot scenario proposal

MultiATIS++ corpus

• MultiATIS++ [Xu et al., 2020]: 8 different other languages: Spanish (es), German (de), French (fr), Portuguese (pt), Hindi (hi), Chinese (zh), Japanese (ja), and Turkish (tr)

- 37,084 training examples and 7,859 test examples (Figure 1)
- Hindi and Turkish subcorpora cover only a subset of intents and slots with few labeled examples

EN	show		departures	from	atlanta	for	american	
	0		0	0	B-fromloc.city_name	0	B-airline_name	
ES	Muestra		salidas	desde	Atlanta	de	American	
	0		0	O B-fromloc.city_name		0	B-airline_name	
РТ	Mostre		partidas	de Atlanta		da	American	
	0			O B-fromloc.city_name		0	B-airline_name	
DE	Zeige	eige		von	Atlanta	für	American	
	0		0	0	B-fromloc.city_name	0	B-airline_name	
FR	Montrer	des	départs	d'	Atlanta pour		American	
FK	0	0	0	0	B-fromloc.city_name	0	B-airline_name	
71	显示	美国航空	从	亚特兰大	出发的航班			
ZH	0	B-airline_name	0	B-fromloc.city_name	0			
JA	アトランタ	発	アメリカ	便を表示する				
JA	B-fromloc.city_name	0	B-airline_name	0				
	अमेरिकन	के	लि ए	अटलांटा	से	प्रस्थान	दिखाएं	
HI	B-airline_name	0	0	B-fromloc.city_name	0	0	0	
тр	atlanta	(dan	american	kalkislarini	goster		
TR	B-fromloc.city_name	0	0	B-airline_name	0	0		

Figure 1: English training example and its translated versions in MultiATIS++.

Three configuration

1. target only: training with only the target language data 2. multilingual: training on the concatenation of all of the 9 languages and testing the model for each target language 3. zero-shot: training on the concatenation of all training datasets from all languages except the one we want to test

Approach proposed

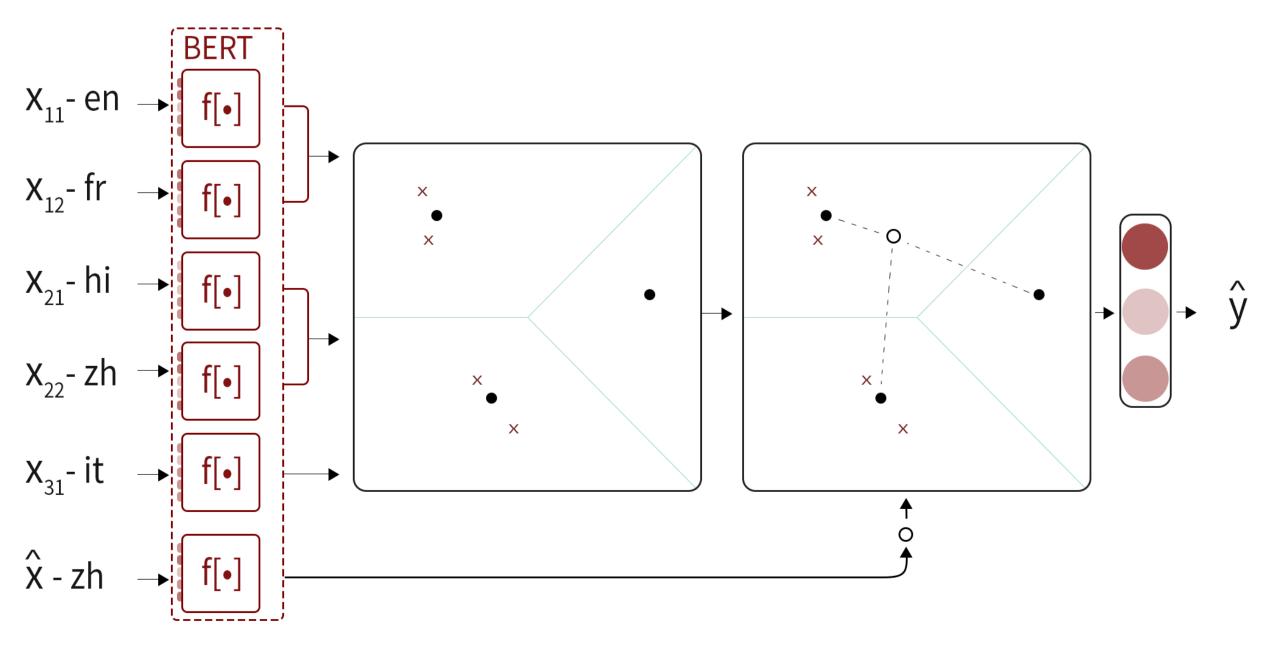


Figure 2: Transformer-based Prototypical Neural Network

- query sets
- metric space to perform classification
- based PNN encoder (Figure 2)

Results

config.	encoder	en	es	de	zh	ja	pt	fr	hi	tr
target only	mBERT	98.54	97.31	98.43	97.09	97.20	97.54	98.88	90.93	83.36
	mBERT + PNN 5w1s	97.46	95.14	97.18	96.35	95.53	96.80	97.11	84.95	85.17
	mBERT + PNN 5w10)s 98.77	96.97	98.5 4	97.0	96.64	97.42	97.98	91.33	89.33
multilingual	mBERT	98.42	97.98	98.59	97.65	97.45	98.3	98.46	95.33	93.93
	mBERT + PNN 5w1s	95.33	93.71	95.93	95.89	94.42	94.00	94.78	91.4	90.91
	mBERT + PNN 5w10)s 99.87	98.54	98.60	98.67	98.54	98.32	98.66	95.49	92.61
zero-shot	mBERT	96.42	97.98	97.54	96.71	97.45	97.42	97.87	94.37	91.61
	mBERT + PNN 5w1s	93.73	92.02	93.27	95.62	91.73	93.51	93.28	90.51	89.92
	mBERT + PNN 5w10)s 96.47	97.87	96.86	97.65	96.64	98.10	97.45	93.17	90.67

Table 1: Averaged intent accuracies obtained with PNNs on 5-way k-shot classification $k \in [1, 1]$ 10] (best scores are marked in bold) and baseline results.

config.	encoder	en	es	de	zh	ja	pt	fr	hi	tr
target only	mBERT	95.64	85.52	94.88	92.93	93.13	91.71	92.78	85.12	78.22
	mBERT + PNN	95.76	87.40	95.63	93.45	93.93	92.22	93.13	85.70	82.67
multilingual	mBERT	96.02	88.03	95.03	93.63	93.01	92.31	91.18	87.39	86.83
	mBERT + PNN	98.40	92.09	97.12	95.50	97.24	95.81	96.80	89.59	88.39
zero-shot	mBERT	94.10	87.14	94.23	92.17	92.61	91.59	90.79	86.14	85.86
	mBERT + PNN	93.25	86.99	93.57	91.82	92.38	91.19	90.39	87.49	86.83

 Table 2: Averaged slot F1s obtained with PNNs on 5-way 10-shot and baseline results (highest

scores are marked in bold).

Conclusions

- ships learnt with transfer learning
- only a fraction of training examples using PNNs

• Episodic learning: N-way, k-shot classification tasks, support and

• Prototypical Neural Network [Snell et al., 2017] (PNN): *learn the*

• From convolution and recurrent features extractors to a mBERT-

• Performance gains achieved by exploiting language interrelation-

• Competitive NLU systems for under-resources languages with

References

- [Conneau et al., 2020] Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzm'an, F., Grave, E., Ott, M., Zettlemoyer, L., and Stoyanov, V. (2020). Unsupervised crosslingual representation learning at scale. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 8440–8451, Online. Association for Computational Linguistics.
- [Devlin et al., 2019] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Associa-

tion for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics. [Mosbach et al., 2021] Mosbach, M., Andriushchenko, M., and Klakow, D. (2021). On the stability of fine-tuning {bert}: Misconceptions, explanations, and strong baselines. In International Conference on Learning Representations.

- [Pires et al., 2019] Pires, T., Schlinger, E., and Garrette, D. (2019). How multilingual is multilingual BERT? In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4996–5001, Florence, Italy. Association for Computational Linguistics.

[Snell et al., 2017] Snell, J., Swersky, K., and Zemel, R. (2017).

Prototypical networks for few-shot learning. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information Processing Systems 30, pages 4077–4087. Curran Associates, Inc.

- line. Association for Computational Linguistics.

[Xu et al., 2020] Xu, W., Haider, B., and Mansour, S. (2020). Endto-end slot alignment and recognition for cross-lingual NLU. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 5052–5063, On-

[Zhang et al., 2021] Zhang, T., Wu, F., Katiyar, A., Weinberger, K. Q., and Artzi, Y. (2021). Revisiting few-sample {bert} finetuning. In International Conference on Learning Representations.