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ABSTRACT   

The brain extracellular space (ECS) is a complex network that constitutes a key microenvironment for cellular 

communication, homeostasis, and clearance of toxic metabolites1. Signaling molecules, neuromodulators, and nutrients 

transit via the ECS, therefore mediating the communication between cells. Despite the relevance of this important part of 

the brain, its dynamics and structural organization at the nanoscale is still mostly unknown2. We have recently 

demonstrated that single-walled carbon nanotubes (SWCNTs) can be used to image and probe live brain tissue, providing 

super-resolved maps of the brain ECS and quantitative information on the local diffusion environment3,4. Here, we propose 

an important refinement of this approach by implementing a structured illumination technique (named HiLo microscopy5) 

to image fluorescently labelled neuronal structures in parallel to SWCNT NIR imaging. This technique is based on speckle 

illumination and relies on the acquisition of one structured and one uniform illumination image to obtain images deep into 

tissues with good optical sectioning. Having access to spatially resolved SWCNT diffusivity around specific neuronal 

structures will provide more precise insights about the heterogeneity of the brain environment.  

Keywords: Single-walled carbon nanotubes, super-resolution microscopy, brain extracellular space, live brain imaging, 

neuronal structures, HiLo microscopy  

 

1. INTRODUCTION  

The extracellular space (ECS) is a complex network of biomolecules that constitutes a key microenvironment for cellular 

communication, homeostasis, and clearance of toxic metabolites1. In the brain, its spatial organization varies during sleep6, 

development7, and aging8, and it is probably altered in neuropsychiatric and degenerative diseases9. Signaling molecules, 

neuromodulators, and nutrients transit via the ECS, therefore mediating the communication between cells1. Molecules 

present in the ECS also regulate various aspects of synaptic plasticity, such as scaling of synaptic responses, metaplasticity 

and stabilization of synaptic connectivity10. Despite the relevance of this important part of the brain, its dynamics and 

structural organization at nanoscale temporal and spatial resolution still represent a knowledge frontier in brain research2. 

To date, the main methodologies to study the ECS are electron microscopy11 and macroscopic biophysical investigations, 

such as radiotracer measurements, real-time iontophoresis and integrative optical imaging2. Both techniques present 

several drawbacks, due to the intrinsic difficulties for simultaneously studying the ECS local topology and dynamics at the 

nanoscale. These include: i) the poor preservation of the fine structures of the extracellular space and matrix due to the 

chemical fixative method11 or the invasiveness of the measurement technique2, ii) the loss of the probe during the 

quantification of the ECS rheological properties because of the blood-brain barrier or cellular uptake and binding, and, 

importantly, iii) an often inadequate spatial resolution which is not suitable to correctly represents the ECS nanoscale 

network. Recently, a super-resolution shadow imaging based on 3D-STED microscopy (SUSHI) was developed to 

visualize the structure and dynamics of the ECS in response to different physiological stimuli12. Although this technique 

gave unprecedented information on the micro-anatomical organization of live brain structures, the methodology is limited 

in penetration depth in biological tissues and does not provide information about ECS molecular diffusion. 
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To access deeper intact brain tissue and measure diffusion processes in the ECS, we have recently demonstrated that single-

walled carbon nanotubes (SWCNTs) can be used to image and probe live brain tissues, providing super-resolved maps of 

the brain ECS and quantitative information on the local diffusion environment3,4. SWCNTs are stiff quasi–one-dimensional 

tubular all-carbon nanostructures, with diameters of ~1 nm and variable lengths (from hundreds of nm to several µm). This 

unusual length-to-diameter aspect ratio enhances their penetration in complex environment, while the combination of their 

length and rigidity can moderate their diffusion rates to be compatible with video-rate for single-molecule imaging13. 

Individual semiconducting SWCNTs exhibit luminesce with large Stokes shifts in the near-infrared (NIR) window 

(typically ca. 900 to 1400 nm). This range not only falls in the therapeutic window of biological tissues (typically ca. 650 

to 1400 nm), but it is also potentially free of autofluorescence coming from biological structures14. The fluorescence 

emission of SWCNTs is highly stable and displays no blinking and negligible photobleaching, allowing long-term tracking 

in biological tissues (tens of minutes). In our previous work, SWCNTs were imaged in live brain slices of both young and 

adult rodent brain4. Tracking of SWCNTs provided unique simultaneous information on local nanoscale ECS dimensions 

and diffusion environments, revealing a maze of polymorphic compartments bearing specific rheological properties. It is 

now key to correlate the localization of SWCNTs with morphological information of the brain tissue. Many cellular 

structures can be labelled using fluorescent markers, however a specialized imaging technique needs to be built up as a 

standard widefield microscope does not provide enough resolution to reveal structures deep into a biological tissue.  

Here, we implement a previously designed structured illumination technique (named HiLo microscopy5) in parallel to 

SWCNT NIR imaging to study morphological and diffusion properties of the brain ECS around fluorescently labeled 

presynaptic regions. HiLo implies the acquisition of one structured and one uniform illumination image to obtain by post-

acquisition analysis images with good optical sectioning. In our work, the structured illumination is based on speckle 

illumination. With our multimodal acquisition system we managed to merge on the same setup single molecule tracking 

and optically sectioned imaging in live biological samples.  

2. MATERIALS AND METHODS 

2.1 HiLo setup 

The HiLo microscope was implemented on a standard upright microscope (Nikon) used to image SWCNT diffusion. For 

HiLo, a 568 nm laser source is used to excite the fluorescence of neuronal structures. The laser speckles for structured 

illumination were obtained with a static optical diffuser (Thorlabs). The beam was initially expanded with lenses L1 and 

L2 before illuminating the diffuser (Figure 1A). Images were acquired alternating uniform (Iu) and speckle (Is) 

illuminations. HiLo images were calculated thereafter using a program developed in-house using MATLAB and following 

the procedure of  Lim et al5. Briefly, the local contrast (Cz) was directly estimated in the difference between the speckle 

and uniform image (Is – Iu). This parameter acts as a weighting function that is peaked when the object is in-focus and 

decays to zero as the object goes out-of-focus. A low-resolution estimate of the in-focus image (ILP) is then constructed by 

applying a lowpass filter (LP) to the weighted uniform illumination image, obtaining: 

 𝐼𝐿𝑃 =  𝐿𝑃 [𝐶𝑧𝐼𝑢] (1) 

The complementary high-resolution information (IHP) is obtained by applying a high-pass filter directly to the uniform 

illumination image. The final HiLo image is constructed from the fusion of the above two images, resulting in: 

 𝐼𝐻𝑖𝐿𝑜 =  𝜂𝐼𝐿𝑃 + 𝐼𝐻𝑃 (1) 

where η is a scaling function that ensures a smooth transition between low to high spatial frequencies. 

2.2 Rat organotypic slices 

Organotypic slice cultures were prepared as previously described4. Hippocampal slices (350 μm) were obtained from 

postnatal day 5 to postnatal day 7 Sprague-Dawley rats using a McIlwain tissue chopper and then placed in warm dissection 

medium containing (in mM): 175 sucrose, 25 D-glucose, 50 NaCl, 0.5 CaCl2, 2.5 KCl, 0.66 KH2PO4, 2 MgCl2, 0.28 

MgSO4-7H2O, 0.85 Na2HPO4-12H2O, 2.7 NaHCO3, 0.4 HEPES, 2×10–5% phenol red, pH 7.3. After 25 min of incubation, 

slices were transferred to hydrophilic polytetrafluoroethylene (FHLC) membranes (Millipore) set on Millicell Cell Culture 

Inserts (Millipore) and cultured for up to 14 days at 35°C / 5% CO2 in a culture medium composed of 50% Basal Medium 

Eagle, 25% Hank’s balanced salt solution, 25% horse serum, 0.45% D-glucose, and 1mM L-glutamine. 



 

 
 

 

 

 

2.3 HiLo characterization 

To validate the optical sectioning of the HiLo microscope, a fluorescent layer of Alexa 647 (Thermo Fisher) in 

polyvinylpyrrolidone (3% PVP, 1:1 ratio) was spin coated onto glass coverslips (# 1.5, Menzel-Gläser GmbH) at 920 rpm. 

Two different coverslips were then separated using a mechanical spacer, with the fluorescent layers facing each other (inset 

in Figure 1B). The space between the coverslips was filled with water. Images were taken using a long working distance 

water immersion 60× objective (NA 1.0, Nikon) and 200 ms exposure time. The resolution of the optical sectioning was 

calculated on four independent measurements. Data are presented as mean and standard deviation of the mean. 

For validation of the technique with thick biological samples, brain slices were initially fixed for 2 hours in 

paraformaldehyde. A standard protocol for immunostaining was followed thereafter. Briefly, slices were incubated in 1% 

PBS-Triton-X100 and 4% BSA before antibody incubation. Tissues were then incubated overnight at 4 °C with allograft 

inflammatory factor 1 antibody (Iba1, Abcam) in 2% BSA PBS solution (1:200 dilution). The secondary antibody anti-

Iba1 (goat anti-rabbit Alexa568, Wako Pure Chemical Industries) at 1:1000 dilution in PBS was then applied for 2 h at 

room temperature under agitation. Each step of the immunostaining was followed with three cycles of washing in PBS (5 

min each wash). Images were taken using a long working distance objective (60×, NA 1.0, Nikon) with a 20 mW laser 

power and 200 ms exposure time. 

HiLo was additionally validated in rat organotypic slices labelled for activated presynaptic terminals. Slices were 

transferred in HEPES-based artificial cerebrospinal fluid (aCSF) containing (in mM): 130 NaCl, 2.5 KCl, 2.2 CaCl2, 1.5 

MgCl2, 10 HEPES, and 10 D-glucose, and incubated for 5 min with 20 µM of FM 4-64 lipophilic Styryl dye at 35 °C / 5% 

CO2. Tissues were then stimulated for 5 min with 50 mM KCL, for the synaptic uptake of the dye. For excessive labeling 

removal, slices were successively washed in aCSF twice for 10 to 15 min. Tissues were returned to original dishes until 

imaging. 

2.4 SWCNT preparation and incubation 

SWCNTs were prepared as previously published with  minor modifications4. Briefly, 1 mg of HiPco synthesized carbon 

nanotubes (from Rice University) was suspended with 50 mg of monofunctional phospholipid-polyethylene glycol (PL-

PEG) molecules (#mPEG-DSPE-5000, Laysan Bio) in 10 ml of deuterium oxide (Sigma Aldrich). To individually disperse 

the nanotubes, a 15 min homogenization at 19,000 rpm followed by an 8 min tip sonication at 20W were applied to the 

solution. SWCNT bundles and impurities were further precipitated by centrifugation at 3,000 rpm for 60 min. 70–80% of 

the supernatant was then collected and stored at 4 °C.  

SWCNTs were incubated in the slices 2 hours prior imaging. 3 μl of SWCNT solution was mixed with 100 μl of culture 

medium and incubated with the slices at 35 °C / 5% CO2. Slices were imaged for up to 1 h in aCSF before being discarded.  

2.5 SWCNT and synapse imaging 

Imaging of diffusing SWCNTs in the ECS of rat organotypic cultures was performed on a customized epifluorescent 

microscope (Nikon) equipped with an EMCCD camera (ProEM-HS, Princeton Instrument). A 845 nm laser was used to 

excite the (6,5) SWCNTs at a phonon sideband (λexc = 845 nm / λem = 986 nm) with a circular polarized excitation. A 

standard 4× objective (NA 0.1, Nikon) was initially used to check the CA1 position in the hippocampal slice. Images were 

collected using a water immersion 60× objective (NA 1.0, Nikon) using an exposure time of 30 ms. HiLo microscopy for 

synapse visualization was performed at the end of each SWCNT recording. 

2.6 Image analysis 

Analysis of individual diffusing SWCNTs in the ECS of live tissues was performed as previously described with some 

modifications4. Briefly, the super-localization of the SWCNT centroids was obtained by fitting the images with two-

dimensional asymmetric Gaussian functions having arbitrary orientations. Three consecutive images were averaged for 

each fit to improve the localization precision (∼50 nm in water). SWCNT coordinates were then interconnected to 

reconstruct nanotube trajectories. Drift was removed using an immobile SWCNT in the field of view. For each trajectory, 

the SWCNT length was estimated using the distribution of the longest axis of the 2D asymmetric Gaussian fits for 

negligible SWCNT movements (displacements between consecutive images < 40 nm) corrected by the point-spread 

function of the microscope and the exciton diffusion length15. 

The instantaneous mean square displacement (MSD) was also calculated for each trajectory as a function of time intervals 

Δt. For short time delays (90 ms), the two-dimensional MSD can be approximated by a linear slope, 



 

 
 

 

 

 

 𝑀𝑆𝐷 (𝑡) =  4𝐷𝑖𝑛𝑠𝑡∆𝑡 (3) 

therefore allowing the definition of Dinst, the instantaneous diffusion coefficient. The local relative diffusivity was defined 

as the ratio between Dinst and the value of free diffusion (Dref) that the considered SWCNT would have in a fluid bearing 

the viscosity of the cerebrospinal fluid (ηref): 

 𝐷𝑟𝑒𝑓 =  
3𝑘𝐵𝑇𝑙𝑛(2𝜑)

8𝜋𝜂𝑟𝑒𝑓𝐿
 (4) 

where kB is the Boltzmann constant., T is the temperature, φ is the SWCNT aspect ratio and L is the nanotube length. For 

visualization purposes, the spatial diffusivity maps were convoluted with a 2D Gaussian of 50 nm full width at half 

maxima. 

3. RESULTS 

The optical setup for HiLo microscopy has been built up around a standard upright microscope also used for SWCNT 

imaging (Figure 1A). To achieve optical sectioning, a uniform widefield illumination (UWI) and a speckle illumination 

(SI) images were alternatingly acquired for each field of view (insets in Figure 1A). The SI was obtained when a diffuser 

was positioned on the laser path. To quantify the optical sectioning of the HiLo setup, z-stacks of two fluorescent layers 

of Alexa 647 spaced of ~ 250 µm were recorded in both conditions (Figure 1B). UWI only detected broad fluorescent axial 

distributions, which did not allow to recover the position of the fluorescent layers. On the other side, HiLo microscopy 

clearly distinguished the two separate coatings, showing sharp peaks of fluorescence at 35 and 280 µm axial positions. The 

full width at half maximum of the peaks proved to be 9.5 ± 2.4 µm. Fixed brain slices stained for Iba1 were then used to 

demonstrate the capability of the microscope for optical sectioning in high-scattering biological samples (Figure 1C). The 

HiLo microscope revealed the expression of the proteins on individual cells, not distinguishable in UWI. The optical 

sectioning of the technique was further demonstrated by the 3D reconstruction of a z-stack, which confirmed the 

localization of the staining in different cell compartments. HiLo microscopy also proved the removal of the background 

fluorescence coming from out-of-focus optical layers. The capability of the technique was finally tested on its ability to 

image active presynaptic terminals of rat organotypic slices labelled with FM 4-64 dyes (Figure 1D). The in-built HiLo 

microscope allowed to distinguish and localize individual synapses at different depths in the tissue, which standard 

widefield imaging could not reveal. This confirmed the removal of the background fluorescence for live high-scattering 

biological samples.  

 



 

 
 

 

 

 

 

Figure 1. Schematic and characterization of the HiLo setup. A) A 568 nm laser was expanded with lenses L1 and L2 before reaching a 

static diffuser. Fluorescent images were acquired with an EM-CCD camera. Insets are fluorescent Alexa 647 layers imaged with uniform 

widefield (UWI) and speckle illumination (SI). B) Two Alexa 647 layers can be distinguished in HiLo microscopy (solid red line), while 

they appeared as broad peaks in UWI (dotted blue). C) Comparison of standard widefield and HiLo microscopy (planar view, 3D 

reconstruction and surface plot) in a brain slice stained for Iba1. The HiLo microscope revealed the expression of the proteins on 

individual cells and confirmed the removal of the out-of-focus background fluorescence. Sale bars are 20 µm. D) Comparison of standard 

widefiled and HiLo micrscopy on a rat organotypic slice stained for active presynaptic terminals. Scale bars are 5 µm. 

HiLo microscopy was then applied in parallel to SWCNT imaging to correlate the localizations of the NTs with 

morphological information of the brain tissue (Figure 2A). SWCNTs were initially functionalized with PL-PEG molecules, 

to prevent non-specific biomolecule adsorption and minimize their sticking onto biologicals structures. The first 10 µm of 

tissue were discarded to exclude the first cell layers potentially damaged by the preparation. SWCNTs showed high 

photoluminescence stability (Video 1). The continuous NIR excitation did not evidence photobleaching of the nanoprobes. 

The correlation of the visible (i.e. synapses) and the NIR (i.e. SWCNTs) images gave indication of SWCNT presence in 

the proximity of these key neuronal structures (insets in Figure 2A).   

Freely moving SWCNTs in the brain ECS were detected for several minutes at different depths in the tissue and up to 70 

µm (Figure 2B). For each recorded frame, the 2D Gaussian fitting analysis allowed the extraction of the nanotube centroids 

with subwavelength precision (∼50 nm). Moreover, the asymmetric Gaussian fits gave information on the distribution of 

the SWCNT length (Figure 2B). The length distribution was centered on 500 nm with very few outliers, confirming the 

consistency and reproducibility of the nanotube preparation. Reconstructed trajectories (example in Figure 2C) gave an 

indication of the total area of SWCNT activity. On a total of 20 SWCNTs and with an average recording time of 2.5 

minutes, nanotubes explored on average ~ 17 µm2 with a peak of ~ 50 µm2 (Figure 2C). Maps on local diffusivities 

(Dinst/Dref, Figure 2D) were calculated using a 390 ms sliding window along the global MSDs, revealing spatially 

heterogeneous diffusion patterns depending on the rheological properties of the brain ECS. 

 

 



 

 
 

 

 

 

 

Figure 2. HiLo micrscopy in parallel to NIR imaging. A) Schematic of the experimental setup. A NIR laser line with controlled circular 

polarization (PBS, polarization beam splitter) was added to the HiLo visible imaging. Rat organotypic slices were cultured for up to 14 

days before being imaged. SWCNTs were incubated for 2 h at 35°C / 5% CO2 before each experiments. Insets are an example of active 

presynaptic terminals imaged with HiLo microscopy (red) and in combination with SWCNT NIR imaging (white). B) Graph of imaging 

depth and SWCNT length for 20 independent experiments. Data are expressed as mean ± standard error of the mean. C) Example of a 

trajectory retrieved after the 2D Gaussian fitting of the SWCNT localizations (~5000 points). Scale bar is 1 µm. Graph represents the 

area explored by tracked SWCNTs during 20 independent recordings. Data are expressed as mean ± standard error of the mean. D) 

Example of the instantaneous diffusivity map from the trajectory presented in (C). Scale bar is 2 µm. 

 

Video 1. Example of SWCNTs in rat organotypic slices. Scale bar is 5 µm. http://dx.doi.org/doi.number.goes.here 

4. DISCUSSION 

This study presents the implementation of a HiLo microscope in parallel to NIR imaging to correlate the localizations of 

freely moving SWCNTs with morphological information of the brain tissue. HiLo microscopy is indeed a powerful 

technique, and has already been applied to image different biological samples5 and for functional imaging of calcium 

http://dx.doi.org/doi.number.goes.here


 

 
 

 

 

 

dynamics16. Here, HiLo microscopy allows the correlation of the synaptic positions with areas of SWCNT activity in the 

ECS of live brain tissues.  

HiLo was implemented on a standard widefield microscope and was validated on different biological specimens/molecular 

probes. The technique presented a high versatility and reproducibility, and can be easily extended to target different 

morphological features of the biological tissues (e.g. by labelling the components of the extracellular matrix). The in-built 

setup achieved optical sectioning both in fixed and live brain tissues. When combined with single particle tracking of 

SWCNTs, HiLo allowed the visualization of active presynaptic regions in live tissue, which standard widefield 

illumination could not reveal. Moreover, SWCNTs were used to explore the live brain ECS, giving information on the 

diffusivity environment at the nanoscale level. Importantly, SWCNTs can be tracked in live brain tissues for several 

minutes, showing negligible photobleaching and/or tissue damage, providing the opportunity to image specific events 

when the nanotubes approach the fluorescently labeled structures identified by HiLo. Having access to spatially resolved 

SWCNT diffusivity around specific neuronal structures will provide novel insights about the heterogeneity of the 

environment, which macroscopic methods cannot reveal. This work opens up novel opportunities to unveil the fundamental 

characteristics of the brain ECS. 

5. CONCLUSIONS 

This study presents a simple, easy-to-implement and cost-efficient method to achieve optical sectioning in thick high-

scattering samples. HiLo microscopy in combination with deep-tissue super-localization microscopy represent a unique 

approach in neuroscience, paving the way to probe adult brain tissues in aging and neurological disorders. Moreover, 

single-nanotube tracking together with other labelling strategies will enable targeting specific unexplored compartments, 

such as the synaptic cleft or the perineuronal milieu. 
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