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Abstract

Online averaged stochastic gradient algorithms are more and more studied since (i)
they can deal quickly with large sample taking values in high dimensional spaces, (ii)
they enable to treat data sequentially, (iii) they are known to be asymptotically efficient.
In this paper, we focus on giving explicit bounds of the quadratic mean error of the es-
timates, and this, with very weak assumptions, i.e without supposing that the function
we would like to minimize is strongly convex or admits a bounded gradient.

1 Introduction

A usual problem in stochastic optimization and machine learning is, considering a random

variable X, to estimate the minimizer of a convex function G of the form
G(h) = E[g(X,h)]

where /1 lies in a separable Hilbert space H. This problem is encountered when we estimate,
for instance, the parameters of logistic regressions (Bach, 2014; Cohen et al., 2017), the ge-
ometric median and quantiles (Cardot et al., 2013; Godichon-Baggioni, 2016; Cardot et al.,
2017), or superquantiles (Bercu et al., 2020; Costa and Gadat, 2020). Since the gradient or the
Hessian of G cannot be explicitly calculated, one cannot apply usual optimization methods
such that gradient or Newton algorithms to approximate the minimizer. A solution to over-
come this problem, considering n i.i.d copies Xj, ..., X, of X, is to approximate the solution
of the empirical function
n
Gulh) = = Y g(Xi ).

=

Nevertheless, this often necessitates high computational costs when the dimension of ‘H
and the sample size are both large. In order to partially overcome this cost problem, one
way is to focus on mini-batch gradient algorithms, i.e to consider iterative estimates of the



form

Miyp1 = My — ¢ Z Vg (Xi, my)

i€S;

where S; C {1,...,n} is the mini-batch considered at time t (Kone¢ny et al., 2015; Alfarra et al.,
2020). Nevertheless, these kinds of methods necessitate to store all the data into mem-
ory and do not enable to easily update the estimates if the data arrive sequentially. In
order to address these problems, the online stochastic gradient algorithm introduced by
Robbins and Monro (1951) should be preferred. Nevertheless, as mentioned in Pelletier
(1998), the estimates obtained with this algorithm hardly ever attain the asymptotic effi-
ciency. Fortunately, one can consider its averaged version introduced by Ruppert (1988)
and Polyak and Juditsky (1992) which is known to be asymptotically efficient (Pelletier,
2000). In this paper, we focus on non asymptotic analysis of such estimates.

1.1 Related works

The rate of convergence in quadratic mean of averaged stochastic gradient algorithms in
the case where G is strongly convex was given in Bach and Moulines (2013). Neverthe-
less, the loss of strong convexity generates several technical problems and makes the ob-
taining of non asymptotic results much more difficult. In recent works, Bach (2014) and
Gadat and Panloup (2017) succeeded in obtaining the L? rates of convergence of the esti-
mates but supposed for this that the gradient of g is bounded, which can be considered
as restrictive. For instance, this is not verified in most of regressions if the eplicative vari-
able is not bounded, or in the case of the recursive estimation of p means with p € (1,2)
(Godichon-Baggioni, 2019b). In Godichon-Baggioni (2019a), the gradient of ¢ was not sup-
posed to be bounded anymore, but it was assumed that it admits moments of any order.
Furthermore, the upper bounds of the quadratic mean errors of the estimates at time n
were not explicitly given. In addition, in Cardot et al. (2017), non asymptotic confidence
balls were given in the case of the recursive estimation of the geometric median, but these
balls where only available from a non calculated rank. Recently, Costa and Gadat (2020)
focus on the use of stochastic gradient algorithms for superquantiles estimation and give
uniform bounds of the quadratic mean error of the estimates. Nevertheless, here again, the
bound depends on non calculated constants. Finally, in a recent work, Défossez et al. (2020)
give simple proof for obtaining convergence results for some adaptive stochastic gradient

methods.

1.2 Contribution

In this work, the aim is to give a very weak framework for each we are able to obtain explicit
L? rates of convergence of stochastic gradient estimates and their averaged version. First,
we replace usual strong convexity assumption by strict (or locally strong) convexity. Second
we do not assume that the gradient of g is bounded or admits moments of any order, but
we only suppose that it admits a fourth order moment. Finally, under weak assumptions,



we give explicit bounds of the quadratic mean errors of the estimates and prove that, up to
a calculated rest term, the averaged estimates achieve the Cramer-Rao bound.

1.3 Notations

In this paper, we denote by ||.|| the euclidean norm on #, (.,.) the associated inner prod-
uct, and [|. |, the spectral norm of operators on . Remark that given /1, W' € H,wewill also
write (b, i') = hT}'. Furthermore, forallh € Handr > 0, B(h,r) :== {h' € H,|h — 1| < r}.

Finally, for any x € R, [x]| gives the superior integer part of x.

1.4 Paper organization

The paper is organized as follows: first the framework and assumptions are given and
discussed in Section 2. The rate of convergence in quadratic mean of the stochastic gradient
estimates are introduced in Section 3 while the ones for their averaged version are given
in Section 4. Finally, the proofs of the convergence results for gradient estimates and their

averaged version are respectively postponed in Sections 5 and 6.

2 Framework

In what follows, we consider a random variable X taking values in a measurable space X
and let H be a separable Hilbert space (not necessarily of finite dimension). We focus on the

estimation of the minimizer 6 of the convex function G : H — R defined for all 1 € H by
G(h) :=E[g(X,h)]

with ¢ : X x H — RR. Throughout the suite, we will suppose that the following assump-
tions are fulfilled:

(A1) For almost every x € X, the functional g(x,.) is differentiable on H and there are
non-negative constants Cy, Cj, Cp, Cj such that for all h € H,

E[IVig (X 0P| < Cl+C(G) = G(0)),  E[IVag(X,h)[I*] < Ci+C5(Gh) -

(A2) The functional G is twice continuously differentiable and Amin := Amin (VZG(Q)) > 0.

(A3) The Hessian of G is uniformly bounded on #, i.e there is a positive constant Ly such
thatforallh € H,

|V2G(m)|,, < Lve-

op —

(A4) There are positive constants Ag, 7\, and a non-negative constant C,, such that Vi €
B (9 , 7 Ao ) P

Amin (V2G(h)) > Ao and  ||[VG(h) — V2G(8) (h— 0)|| < Cy, |1 — 0|7



Remark that Assumption (A1) ensures that the functional G is differentiable. One of the
main difference with Bach and Moulines (2013) and Gadat and Panloup (2017) is that they
suppose that the gradient of ¢ is uniformly bounded. Moreover, an important difference
with Godichon-Baggioni (2019a) is that we only suppose that the moment of order four of
the gradient exists instead of each moments. In addition, Assumption (A2) leads the func-
tional G to be strictly convex, so that 0 is its unique minimizer. Furthermore, Assumption
(A3) ensures that the gradient of G is Lyg-lipschitz. Finally, Assumption (A4) just means
that there is a neighborhood of 8 on each we have both locally strong convexity of G and a
locally quadratic increasing of the rest term in the Taylor’s expansion of the gradient (which
is verified as soon as the Hessian of G is lipschitz on a neighborhood of 6). Remark that if
H is a finite dimensional space, the local strong convexity was already given by (A2). As a
conclusion, these assumptions can be considered as weak compare to the existing ones in

the literature on non-asymptotic results.

3 The stochastic gradient algorithm

In what follows, let us consider Xj,..., Xy, X, 41, ... be iid copies of X. The stochastic
gradient algorithm is defined recursively for all n > 0 by (Robbins and Monro, 1951)

Ont1 = 0n — Ynt1Vig (Xnt1,0), (1)

with 6y bounded. We consider from now a stepsequence (vy,) of the form vy, = c,n™%,
wherec, >0and a € (1/2,1).
3.1 Case with unbounded gradient

In this section, we focus on the case where C, # 0 or C, # 0. We first give the rate of

convergence in quadratic mean of G (6,).

Lemma 3.1. Suppose Assumptions (A1) to (A4) hold. Then,

anac

T30 —1 ao

1 1 2 24 3 3a 3 21+4n 52 2
a '

E |:(G (Gn) o G(9>)2:| S e—zcyaon 62a167m+2a207m <u0 +0.2C3 ) Y
A min{ 1,75\0 }
Lyc

& L36C

=

A4
, a1 = max{Mzgc,Cz (4Lvy¢ +1)} , 4y =

with uy = E [(G (6) — G(0))?], a0 =

C2(4Lyc+1)’Lyc
2 2
12A5 mm{ l,r)‘O }

1LECh and 0 =

In a simple way, this lemma ensures that we have the usual rate of convergence E [G (0,,)] —
G(0) = O (n™%). This result s crucial to give the following rate of convergence in quadratic

mean of the estimates 0,,.



Theorem 3.1. Suppose assumptions (A1) to (A4) hold. Then,

1, Ca 212 1 . 22+8n ;2 ;2 12 oltac
E {Hen - 9“2} < Aemthminey Tt o) S0 pmgaoeynt™t g 2 T Y 0 ey 1

a0 A Enin Amin

—K

. L 2C
with ag,a1,a2,0% defined in Lemma 3.1, vy = E [HGO — GHZ]], Ly = max{A—gO,iﬁyAG }, by =
0

L A 2 2 3 23 3
%max{Cz,ﬁ},clzexp (2012 5225 + 20,03 5225 ) (vo + 023 722 ) and

Y2u—1 Y 3a—1 Y 3a—1
. 2uc2 Cy L2 4c . 2lHiag2e3 3y
A — 2byc2 2 v y 9 1 —taoe, v ‘
S T L Y e ¢ s PO

In other words, we get the usual rate of convergence E {HGH - 9\\2] = O (n~*) (Bach and Moulines,
2013; Gadat and Panloup, 2017; Godichon-Baggioni, 2019a) and so, with weak assump-
tions. Moreover, contrary to Gadat and Panloup (2017) and Godichon-Baggioni (2019a),

we give an explicit boud of the quadratic mean error. Finally, note that for the main term,
2l+ac 1
A

min

vex case given by Bach and Moulines (2013). Let us now discuss about the rest terms.

4

ie cyn~%, we succeed in obtaining a term analogous to the one in the strongly con-

N 1-a . pe . ETTIRT
The term Ae~1*min®" ™" can be seen as a quantification of the error due to the initializa-
. . 212 1 loa | 228022 12 S
tion while the term ¢; =™ 35"~ 4 ——— n 2% comes from the error approximation
min min

of V2G(9) (6, — 0) by VG (6,). Remark that in the particular case of the linear regression,

Cj, = O for any r,,. Moreover, one can take ), = +00 and Ag = Apin, which leads to L; = 0

and to a bound analogous to the one in Bach and Moulines (2013).

3.2 Case with | VG(.)|| bounded

Since in several cases such as logistic regression, softmax regression or the estimation of the
geometric median one has C; = C), = 0, we now focus on this case to have more precise
bounds. We first give the rate of convergence in quadratic mean of G (6,).

Lemma 3.2. Suppose assumptions (A1) to (A4) hold. Then, for all n > 1,

1
E [(G (04) — G(G))z] < ¢y exp <—§a0c7nl“> + azMoc%n’z“

with ny = inf {n,apy,41 <1}, ¢y 1= 07 (exp <%a0c7 (ny+ 1)1*“> fyi(,) +c,3y3§’fl), My =
max {%, c7} and ag, 0’ defined in Lemma 3.1.

We can now give the rate of convergence in quadratic mean of 6, in the particular case
where C; = C) = 0.

Theorem 3.2. Suppose Assumptions (A1) to (A4) hold. Then

2 2.2 52
S R R 70 b S -« L5coo
IE |:H9n _6”2:| S A/e Amlnc’yn + /\20 e 740Cy 1 67

min

-

Moi’l_za + 72&C1C7
A%nm /\min




with n} = min{n, Aminynt1 < 1}, ag, 0? defined in Lemma 3.1, cné,Mo defined in Lemma 3.2,

and

s 2c, 3
! _AminC (n’+l)1 2 20 , apc n
A =e 7\ (Clcnrz“_l+cn0+c7uo+7(1_a)e 2805 ¢ Mo3m_1 .

Remark that here again, without surprise, the main term zf—lﬁn_"‘ is analogous to the

one for the strongly convex case given by Bach and Moulines (2013).

4 The averaged algorithm

Let us recall that the averaged algorithm introduced by Ruppert (1988) and Polyak and Juditsky
(1992) is defined for all n > 0 by

_ 1 &
0, = 6
n n+1 k;o ks
which can be written recursively as
§n+1 = _n ! (9n+l - gn) .
n+2

4.1 Case with unbounded gradient

In this section, we focus on the case where C; # 0 or C} # 0. The following theorem gives

a first rate of convergence of the averaged estimates.

Theorem 4.1. Suppose Assumptions (A1) to (A4) hold. Then

o e« O L2, 1 25y
min n+1 \/%(1_0‘) (Tl+1) \/— nin (Tl—|—1)1 w/2
/C221/4+1x\/5.\/a N 21+40‘0‘L(5 ln(n+1) N Acw 4+ Do + LsBoo + vV Cay/ 00—}—c,;1/2

al/ AT —a(n+1)/2+e/2  \fagAmin 1 +1 n+1

¢y (n+1)t-2 Cylmin (1 + 1)1

o

. — 1 - 2 _2 3 3a
with A 1= \FZ Qe §hminey ! ™ B Z;j(’)e*gcwﬂonl " MOy g1 T02C 35 <\/LTO_|_UC§/2 3361),

o

and Do, := \[\FL" Yy e 16900

Amin Cy

The main conclusion of this theorem is that we achieve the usual rate of convergence
and

VG \while the two main rest terms converge at rates > which seems to

1 1
vn+1 n+1) ( +1)17¢x/
suggest that the best choice of « could be « = 2/3. Nevertheless, in a recent work and in the
special case where V¢ is uniformly bounded, Gadat and Panloup (2017) give upper bound
for each the best rate of convergence should be achieve for « = 3/4. Furthermore, in the

particular case of linear regression for which Ls can be chosen equal to 0 and the two main



rest terms are so of order ( L and ( L 7 which suggests to take a close to % Nev-

ertheless, our bounds as thne+cl)3f1es given inn+(13)adat and Panloup (2017) or Bach and Moulines
(2013) can be considered as quite rough, that complicates to answer definitely and generally
on the best choice of «.

In order to get a (quasi) optimal rate of convergence, let us suppose from now that the

variance of the gradient of g is lipschitz, i.e that the following assumption is fulfilled:

(A5) The functional £ : h — X(h) = E {th (X,h) Vg (X,h)T] is Ly lipschitz with
respect to the spectral norm.

Remark that this assumption is already present in Godichon-Baggioni (2019b) and is
analogous to Assumption (Hs) in Gadat and Panloup (2017). The following theorem en-

sures that, up to rest terms, the averaged estimates achieve the "Cramer-Rao bound".

Theorem 4.2. Suppose Assumptions (A1) to (A5) hold. Then,

\/]E [Hg” ~ QHZ} - VTr(HIZHT) L2/, 1 | 24%5./C; 1
Vn+1 Vao(l —a) Amin(n+1) \/q/\fn/iﬁ (n+1)1-2/2
21/2%/2\/(:71\/5\/@ 2% s In(n + 1)
AT —a(n+1)1/2+0/2 - \Jaghl, n+1

1+4a —1/2
Ass + Do+ LBeo + (v/Iz + ¢5V/2) /00 + v/Ixey Ao + v/Tcy Doy + 2 ncerLovuty

Amin V20 —1
+ min
/\min(n -+ 1)
+ VA e shmnen™ 1 V2,/eiLs e mhen
Cy Amin(n+1)1-2 ¢y A2 (n+1)t-e

Remark 4.1. Note that we speak about Cramer Rao bound in the sens that under reqularity as-
sumptions, any estimate 0, should verify for almost any 6 € H,

lim inf nE [(9,1 — 9)2] > Tr (H”Z(G)Hfl)

n

4.2 Case where ||VG]|| is bounded

We now focus on the case where C, = C, = 0. The following theorem gives the rate of
convergence of averaged estimates in this case.

Theorem 4.3. Suppose Assumptions (A1) to (A4) hold and that C, = C, = 0. Then,

_ N Lsoc /My 1 235,/Cq 1
[ [I =8| < 2=+ S o T v

ocLsv/My In(n+1) N oLsvV/MoA 1 + AL, + DL, + LsBl,
Amin(n+1) n+1 n+1
/AT ef%)\mincqnlf"‘ /Cn6L5 e—%uocwnl""

¢, (n+1)1-# + CyAmin (14 1)17%

+



with A, \/_Z+ > e 2 Amintyn!” ( [Cuy + /U >Zn>oexp( 1agc,n!=*) and D}, :=
/C /Lo +oo __uocfynl oc.

)\mmcv n=0

Considering from now that Assumption (A5) is fulfilled, we can now prove that the
averaged estimates also achieve, unsurprisingly, the "Cramer-Rao bound" in the case where

the gradient of G is bounded.
Theorem 4.4. Suppose Assumptions (A1) to (A5) hold and that Cy = C, = 0. Then,

\/]E [Hé —QHZ} _ VTr(H'EHT) N Lsocy /Mo 1 . 225\/C; 1
n = Vi1 (1—a) Amin(n+1)" Vor AY2(n41)1-e/2

+\/E2a/2\/_ 1 N cLsv/Mg In(n+1)
VIi—a A2+ 1)2+/2 " Agin(n+1) (n+1)Amin

min

(a + v/Lxcy s /m> Lsv/MoA L + Al + D/, + LsBly + v/Lz\/To + vIxc Al + v/Lsc, DLy

+
(Tl + 1)Amm
R /A/ e—%)\mmnl“" C ’L(S ef%aocynl’“
+ — X _
Cy Amin(n +1)17% ¢y An(n+1)t
Conclusion

In this paper, we provide explicit upper bounds of the quadratic mean error of the online
stochastic gradient estimates as well as of their averaged version, and so under very weak
assumptions. A first extension of this work could be the obtaining of precise (via concen-
tration inequalities) and calculable confidence balls or ellipse for 6 with the help of aver-
aged estimates. A second extension of this work could be to focus on the non-asymptotic
rate of convergence of online adaptive stochastic gradient algorithms, such that Adagrad
(Duchi et al., 2011), or stochastic Newton algorithms (Boyer and Godichon-Baggioni, 2020).
Finally since the averaged estimates are known to be sensitive to a bad initialization, a last
perspective could be to extend this work to the Weighted Averaged Stochastic Gradient
estimates (Mokkadem and Pelletier, 2011).
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5 Proofs of Section 3

5.1 Some properties on the functionnal G

First remark that with the help of a Taylor’s expansion of G, forall h € H,

G(h) =G(8)+ (h—0)T /01(1 — 1)V2G(0 + t(h — 0))dt(h — 0).



Then, thanks to Assumption (A3),
1 2
G(h) = G(6) < 5Lvc [[h 0" @
Furthermore, thanks to Assumption (A4), for allh € B (6,r,,),

(h—e)T/O'lu—t)VZG(9+t(h—9))dt(h—9)T > “Ao ||l — 0.

N —

Ifh ¢ B(O,ry,),ieif ||h— 8| > ry,, one has

7‘/\0

(h— e)T/Olu —HV2G(8 + t(h — 8))dt(h — )T > (h— G)T/OWQ —HV2G(8 + t(h — 6))dt(h — 6)

Then,

Ao
+ 50 1 =0 L=, 3)

Ao 2
G() — G(8) > 22 [ — 0] 1 oycr +

5.2 Proof of Lemma 3.1

First, thanks to a Taylor’s decomposition of G coupled with assumption (A3), we have

G (0n11) — G(6) = G (6n) — G9)+< G (6n) ,0n41— 6n)
1

1’l+1 —9 0 1 —t V G n+1 +t<97’1 —9n+])>dt <9n+] _61’1>

1
G (6n) = G(6) = us1 (VG (8n), Vg (Xus1,60)) + 5721116 [ Vag (Xiwe, )|

Denoting V,, := G (6,) — G(0) and g;,,; = Vg (Xu11,0,), and thanks to Cauchy-Schwartz
inequality, it comes

1
Vi S VR IVG @I [lghial” + 7msa Lo lghiall* + 721 Lvc gl 196 (62)]

+ 'Y%HV?! Hg;’l-‘rl HZ = 29011V (VG (1), 8111)

Then, since

L
st P IVG (80)] < ZXEImL 10 |1* +

1 ] VG (8) ]

Lycynst

it comes

1
V2+1 < vz +2’Yn+1 VG (6 n)”z ng2+1”2 + —’Yi+1LZVG Hg;HHLL + ’Y%+1Vn Hg;/q+1H2
2
= 29u11Va (VG (64) , Sns1) -



Taking the conditional expectation and thanks to assumption (A2),

1
E (V2| Fa] < VE4+2754(VG (0:)])* (C1 + CaViy) + E'Yi—&-lLZVG (CL+ChVy)

+ Y41 (Cr+ CaVa) Vi = 271 [ VG (64) | Vi 4)
Remark that thanks to Assumption (A3),
IVG (62)* < 2Lyc (G (64) — G(6))
Then, one can rewrite inequality (4) as
E [Vl Fa] < (1 +Co (4Lyc +1) 1ipq + %’yf‘lHLZVGCé) Vi +Ci(4Lyg +1) 7541 Va
231 [IVG (0| Vi + 37441 L8Ch ©)

Let us now give a lower bound of ||V G (,)|*. Thanks to a Taylor’s decomposition of

the gradient,
1 2
IVG (6)] > (/0 Amin (VG (9+t(6n—9)))dt> 16, — 6]

L%Tc % min {1, 7,, }. Thanks to inequality (2), 7, < min{1,7,,},

so that, with the help of Assumption (A4), it comes

Letus denoter, :=

: 2 2
2 771’! 2 2)\ .

IVG O = ( [ dmin (V26 @+ 1 (0, — 0)) ) 10, ~ 0] = 22 min {1,13,} ,

(6)
and one can rewrite inequality (5) as

2 LG 2 2 L36Ch, 4 2

E Vi Fa] < (1- Loc min {173, } Ynr1 +Ca(4Llyg + 1) vy + > Tni1 | Va
C1 (4L 1) 72 Ve 2 412G 7
+C1(4lve +1) Y Ve + 5V LocC @)

Finally, since

302 C2 (4Lgc + 1)%L
Tn41C1 (ALyg +1) Vi, < L—O min {1,735} vui1Vii + 71— Blve+1) e,
VG 1223 min {1,73 }

10



one can rewrite inequality (7) as

A2 L% .-C
E [V3+1!fn] < (1 - %H?f)c min {1, 7%0} +Co(4Lvc+1) 7o + Vg 2’Yi+1> 5
s C}(4Lyg+1)’Lyg 1

Tn+1 + 357
T 2min {13} 2

n1L36Ch (8)

A2 min{ 1,75\0 }

Let us denote qy = oo

, 41 = max{ /\3 C2 (4LVG+1)}, ap, = %LZVGCQ, (7'2 =

4L2VG ’

C(4Lyc+1)’Lyg
2. 2

12A5 mm{l,r%}

2 /
+ C”Lgccl ,and u, = E [V?], one can rewrite inequality (8) as

upi1 < (1 —aoyns1+ @Y1+ a272+1) Uy + 0295

Letnyg = inf {n, ag > 2a1Yn+1 + 2a2’y% +1}‘ Then, one can rewrite inequality (8) as

e (L4 MY +a27541) e + 0775, i1 <o
e (1 — %ao’)’n+1) Uy + 0’2’)/2+1 if n > Ny

Remark that if n > ny, by definition of a;,

4

<1. )

1 0
_aor)/l’l+l S 2 >~
4H1L

VG

2
We now consider two distinct cases: n < ng and n > ny.
Case where n < ng: With the help of an induction, one can check that for all n < ny,

n

n n
un [T +mri +ad)u+ ), [T (A+ar +ar)cn
i=1 k=1 i=k+1

::ul,n :3u2/n

As in Bach and Moulines (2013), remark that by definition of 1y and since 1 4+ x < ¢, for all
n S no,

n 1 n n
Uy, < ugexp (Z alfy,% + ayy%) < upexp (—an Z ’yk> exp <2 Z al’yi + az’ﬁ) (10)
k=1 k=1 k=1

In a same way, one can check that for all n < ny,

n n
Usw <TT (1 + @72 +a293) Y 0293
k=1 k=1

n n
< exp (Z ai + ﬂz’Y%) Y o
k=1 k=1
1 n
< exp (—an Z ’yk> exp <2
k=1

n

k=1

n
ayE + ayy,i’) Y i (11)
P

11



Case where nn > ng: With the help of an induction, one can check that for all n > ny,

n n 1
w< IT (1=300m)u+ ¥ T (1= 300m) o2

ii?’lo-l-l k= 1’lg+ll k+1

/

=:Us, =:Uyp

Furthermore, since

1 no no 1o
Upy < Uy py + U, < exp <_§ ) 'yk> exp <2 Y mve+ ami) <u0 +?y 72)
k=1

k=1 k=1

one can obtain

1 n n 1o
Uz, < exp (—an ) 'yk> exp <2 Y mvi+ ayyi) <uo +o2 ) 72)
k=1 k=1

k=1

(12)

Let us now bound Uy , and differentiate two cases: ng < [n/2] —1land ny > [n/2] — 1.

Case where n > ng > [n/2] — 1: Since <y is decreasing,

n n 1
U <Pvan 3. T1 (1 - 5%%’) Yk

k=ng+1i=k+1
2(7 n 1
’Yn0+1 Z H (1 - —ﬂo’h> <1 - E%%’)
k=no+1i=k+1 i=k

2(7 1 1
= ’)’n0+l (1 - H (1 - §a07i>>
i=np+1

and thanks to inequality (9) and since <y is decreasing,

20% , 202 ,
Uy, < E’Ynﬁl < %’Y[H/zw

Case where 1y < [n/2] —1: Asin Bach and Moulines (2013), forallm = no+1, ...,
has

1 n
Uy < exp (‘Eﬂo ) ')’k) Z ‘TZ’Yk+ —’Ym

k=m+1 k=ngp+1

Taking m = [n/2] — 1, leads to

Uy, < exp — 510 Yo Z o+ Or)/[n/ﬂfl

k= (n/Z] k=ngp+1

Final bound of Uy ,: Since 7y is decreasing,

1 n [n/2] ) 3 20-2 )
Uy, < exp —an Z Yk Z o+ a—'V[n/zl—l
k=[n/2] k=nop+1 0

12

n, one

(14)



Lower bound of } | _; 74: Remark that since -y is decreasing, forall n > 1,
- n Cy 1-u
Y= ) 'YkZE’)’n:E” .
k=1

Conclusion: Thanks to inequalities (10) to (14), it comes

1 n n n 20.2
u, < exp (‘5610 ) ’)’k) exp <2 Y mni +ﬂ27£> (uo +) Uz’h%) + E% (15)
2]

k=[n/ k=1 k=1
with
7%11/21—1 if [n/2] >mnp+1
v = 7%11/2] if [n/2] <np+landn>mng+1
0 else

Then, using integral tests for convergence,

1 - 20 3 3 pltdag22
< - o 2.3 ’Y 20
u, < exp < 4c7a0n > exp <2a1c Yog —1 +2a2c Y — 1) <u0+a cﬂy3 — 1) + a0

=0y

(16)

5.3 Proof of Theorem 3.1
We have, since 0,, is F,,-measurable,
E |61 = 0117 [Fa] = 1160 — 011> = 2741 (0 — 6,YG (60)) + V211 | Vg (Xosn,00) * 1 72|
Then, linearizing the gradient, we obtain
E |61 = 0117 [Fu] = 1160 — 01> = 241 (6 — 6, H (8, — 0)) + 27411 (6 — 0,6,)
+ 721 E Vg (Ko, 00) I 1]

with 0, = H (6, —6) — VG (6,). Thanks to Assumption (A1) and (A2) as well as Cauchy-

Schwarz inequality,

E 601 = 617 1] < (1= usamin) 18 = 61 +9242C1 + T 1001+ 4511Ca (G (Ba) — G(69))

leading, thanks to inequality (2), to

1
E [[|f541 - 6]°] < (1 ~ PrsrAmin + Efyﬁchch) E {16 — 811 + 71C1+ T |16,
min
(17)
Remark that in order to have a usual induction relation on the quadratic mean error, we
need to have a rate of convergence of [E [H On ||2} . Here is the main difference with Godichon-Baggioni
(2019a): remarking that thanks to assumption (A3), ||9,|| < Lyg ||6, — 0]|, with the help of

13



(A4), it comes
2
16ull = 1100 ]l L6, —0<ry, + 19l Lo, —6y>r,, < Cao 160 — 011" L6, ~6)<r,, + L 100 — 01l Lyg, 051,

Then, thanks to inequality (3), it comes

2Cy, 2Lyg

on|| <
ol < o

(G (6n) = G(8)) Lo, g <r,, + (G (64) — G(0)) Ljo,—g)>r,, < Ls (G (0) — G(6))
(18)

. . 2Cy, 2L . .
with L; = max {A—OO, ﬁ } Then, one can rewrite inequality (17) as

1
E [||6.1 - 0]°] < (1 — YutAmin + —7§+1C2ch> E [|l6, — 01°] + 241G+ T2 130,
2 /\min

(19)
with v, defined in equation (16). Let us denote b; = L%G max {Cz, 2/\;%}, and let n; =

inf {#n, Amin > 27,+101}. Then, denoting w, = E [HGH - 9”2], one can rewrite inequality
(19) as

< (1+ 172 .) wa + G2y + 1= L2, ifn <m
+1 min .
! (1= IAminYns1) wn + C172, + P Loy, ifn > m

Furthermore, by definition of b, remark that for all n > ny,

1 )‘Izmn
E)\min7n+l < 4b <L (20)

Case where n < ny: With the help of an induction, one can check that for all n < ny,

n

LZ
w, < H 1+ 97by) wo + Z IT a+ b17?) <C1’Yk + A—‘S.’kakq)
i=1 k=1i=k+1 min

/

:ZAL,/, :ZBL,,

Remark that by definition of n; and since 1 + x < e,

n 1 n n
Ay, < exp (Z bw%) < exp <_§/\min ) ’m) exp <2b1 ) 7%)
k=1

k=1 k=1

Furthermore, by definition of 711, one can check that

n n L2
Biu <] (1+b17) Z <C1’Yk ’kak—1>

k=1 k=1 )\mm
n n L%
< exp Z Z (Cm . 'kak—1>
1 n 5 n L2
<exp _E/\minZ'Yk exp | 2b1 ) 1 Z <Cm A‘f 'kak—1>
k=1 k=1 k=1 min

14



Then, if n < 17, one have

1 n n n L2
wy, < exp <_§/\min ) ’Yk) exp <2b1 ) ’Y%) (wo +) (Q’Y% + 2 ’YkUk1>> (21)
k=1

k=1 k=1 Amin

Case where n > ny: With the help of an induction, one can check that for all n > ny,

(] S .
wp= T (1=3Amn7i ) wm+ )5 T (1= 5Ammi | (700 + =m0k
i=n1+1 k=n1+1i=k+1 min

/

:ZAZ,,, :ZBZ,n

Thanks to inequality (20), one has [T, 11 (1 — 3Amin7i) < exp (—3Amin Yj—p, 417i), and
with the help of inequality (21), it comes

1 n n n LZ
Az n < exp <_§)\min ). ’Yk) exp <2b1 ). ’Y%) <wo +) (’Y%Q + A—(S.'kakl>>
k=1 k=1 k=1 min

Let us now bound B, , and differentiate two cases: [n/2] —1 > nj and [n/2] —1 < n;.

Case where n > n; > [n/2] — 1: Since y; and vy are decreasing, and since

L2 n n 1
Bon < (’Yn1+1C1 + —évm) Y. 11 (1 - EAmm’Yi) Yk

Amin k=n1+1i=k+1

( L3 2 i ﬁ 1 . 1
= | vn+1C1 + ——vy ) <1 - —/\min’h> — <1 — —/\min’h>
! Amin ") Aomi 2 72

min Min ey, 41 i=k+1

With the help of inequality (20) and since y, and vy are decreasing,

L2 2 L 1
Bow < | Ym+1Ci+ A—~vn1 F—. 1- H 1- EAmin’)’i
min min i=ni+1
L2 2
Yns21C1 + Ao Om/2l-1 ) 3

Case where 117 < [n/2] —1: Asin Bach and Moulines (2013), since y; and vy are decreasing,
one can check that forallm =n1+1,...,n

1 m L2 2C 212
By < exp <__/\rnm Z 'Yk) Z ('}’%Cl + A—é.'kak—l) + ')’mA L + 5" Um-1
min

/\2
k=m+1 k=ni1+1 min

Taking m = [n/2] — 1, it comes by definition of 17,

By < exp (-EAmm ), ')’k) Y. ('chl+ YkVk— 1) + Yn/2)- . L+ Uln/2]-2

2
k=ni+1 Amin A min

15



Final bound of B, ,,: Foralln > n;,

1 n (”/21 L2
Bon < exp —E/\min Z Tk Z (’Y%Q + A—(s.')/kvkl> +
2“ min

k=[n/ k=n1+1
with
212 .
V2l hes + 02— ifm < [n/2] =1
2m1n
Ty = ’Y[n/ﬂ%"“%v(n/ﬂ—l if[n/2] —1<mnjandn >m
0 else

Final bound of w,: Letusrecall that} ;v > Y, rn/2] Yk > 5 = %nl“", so that, with

the help of integral tests for convergence,

w, < ex —l)x nC 1Y) ex 2bc2270é wo + 2C 2u +2 L(ZS i v +r
n S €Xp | =y AminCy p 15,1 0T M5 T Ammk:17k k—1 n

Let us recall that foralln > 1,

1 20 3o
v, < exp <_Z“°C7”M> P <2alc%2a —p tame g 1> (vo S e b

=1

ao

With the help of integral tests for convergence,

n - 1 ; 21—1—4&(720’5; 3
_1 < upcy+c1+c ct " ——apc, t %) dt
k;’rkvkl_%7+ 1+1/1 v eXp< 70y ) + 0 3a_1

n 1+4w 42 3
< ugc, +c1 — _ 4 exp —laoc e + 270G
- ap(1 — ) 477 1 ap  3a—1

21 +4a 0.2 C,b; 3

4C1 1
< upcy +c1+ m exp —ZaocnY +

ap 3 —1

Finally, thanks to inequality (15)

21+8040_2c2 2L2 1aa
< <C1 exp <—%ﬂocyn1“"> + 7771_2“ 5 i 2 C1 a

1+da 2.2
3 3w ) 2%,

— Co 1
ao Afnm Amin !
it comes
2 144w ;2.2

_l/\ - c nl—a 2bh C2270¢ 2 20( 2L§ 4:C1 _la ¢ o C'Y 30(

wy, < e Mmint T ety 2T | g 45, C + —= | uocy +c1 + ———e 2109 4
"= ( O o =1 A \ 27T ap(1 — ) a  3a—1
148 ,2 2 2 1+
+ | crex (——aoc n ”‘> +—T | =+ con ¥
( P 7gh% ag A2 Amin

16
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ie

14+8x 2 .2 2
E [Hen _ GHZ] < Ap— iAmingyni=® n Cleffliaocwlia . AR C’yana 2L5 21+sz16 o
o aop Aiznin /\min 7
with
. 20c2Cy 12 4c : l+ng23 4,
A — 2b7c2 524 Y 7 6 1 —lage, v
e~ 1Y w0+2‘x_1+ A u0c7+c1+a0(1_a)e + 0 31

5.4 Proof of Lemma 3.2
If C, = C} = 0, one can rewrite inequality (8) as
Up1 < (1= agyns1) tn + ‘TZ'YiH

A2 min{ 1,75\0 }
Lvg

G} (4Lyc+1)°Lyg
2. 2
12A5 mm{ l,r)‘O }

2 ’
ey LG C

+ 132 Letng = inf {n,apy,41 < 1}.

withu, = E [Vnz],ao = ,and o2 =

One can rewrite previous inequality as
L S if n < nj
Un+1 < 2,3 : /
(1 —aoyng1) n + 0%, ifn>mn.
Then, we just have to study the case where n > n(. With the help of an induction, one has
n n

n
ue < [T Q=aov)une+ Y, ] (1—aomi)

i=ny+1 k=ny+1i=k+1

=, =y,
We now bound each term on the right-hand side of previous inequality.
Bounding Ué,n: By definition of n{, and since 1 + x < ¢*,
. 3
Uy, <exp|—ao Y 7 UZ'Yn(g
k=ny+1

With the help of an integral test for convergence,

n
U, <exp <—aoc7/ t“"dt> UZ’Y?;;)
ny+1
(Tl + 1)lfac o (”/0 + 1)la>> 0'2’)/26

= eX —apc 1
= exp 0 'Yl
1 _
< oxp (~Jmer (w177 (1 +1)") ) @

—

Bounding U} ,: As in the proof of Lemma 3.1, we will consider two cases: ny < [n/2] — 1
and ny > [n/2] — 1.

17



Case where n, > [n/2] — 1: With calculus analogous to (13), one can obtain

u,, < U—Z 2 (23)
4n > ao’hn/zy

Case where 1, < [1n/2] —1: Asin Bach and Moulines (2013), forallm =ny +1,...,n,

n
Uy, < exp (—ao ) w) Z 027k+ vm

k=m+1 k=ngp+1

Taking m = [n/2] — 1 and with the help of an integral test for convergence, it comes

n [n/2]-1 ) 3 o2 )
Uy, <exp | —ap Z Yk Z o+ %’an/z}—l
2]

k=[n/ k=nop+1
1 12\ 23 3a o,
<exp (—ancwn > o C730c 1 + %7[;1/2}—1 (24)

Bounding u,: Thanks to inequalities (22),(23) and (24), we have

1y < exp <_%a067n1—zx> o max {exp (%awv (ng + 1)1—“> ,Yn/’ ggfi 1 } )

with
a2y if n < nj
o= Z_;’Y%n/ﬂ ifn>ny)>[n/2] -1
‘;—;'y%n J2]-1 else
which can be also writen as
o> if n < nj

1y < { e paeyn! phaey (1) 6203, ot S > > [n/2] -1

1 —a
agc,nt 2 3 3
ez Cyaa1 T aﬂ(n/z]fl else

or as

1 1
u, < exp <—§a0c7nl”‘> o? <exp < aocy, (ny + 1) “) 'yn + 073 Bi 1) + UzMocgrn’z”‘

— e/
=0,

(25)
. 4
with My = max {Za—o, cy}.
5.5 Proof of Theorem 3.2
If C; = 0, by definition of v/, (see equation (25)), one can rewrite inequality (19) as
E [Hen+l 6” } 1 - ’)/n+l)\mm) [Hen - GHZ] + ’Y%+1C1 + '/){n—&.-l L%U;. (26)
min

18



Let us denote nj = min {#, AminYn+1 > 1}. One can rewrite inequality (26) as

o < Y2, 1C+ I 2o if n < nf
1’l+l ~ min .
(1= Yns1Amin) Wn + 721 C1 + 22120, ifn > my

with E {H@n — GHZ] . We now focus on the case where n > n;. First, remark that with the

help of an induction, one can obtain

n

wy < H Amin"Yi) Wy + Z IT (0= Aminmi) <7kC1+;" L3v 1)
i= nl—i—l k= n1+1 i=k+1

/

—. Al —. Al
7'A1,n 7'A2,n

and we now bound each term on the right-hand side of previous inequality.
Bounding A} : By definition of 7] and with the help of an integral test for convergence,

one can check that

_ Tn!
A < exp (—Amincy ((n+1)17 = (w +1)' ™)) (ﬁp o L%U:%l) @7)

Bounding A} : As we did in previous calculus, since v, and v} are decreasing, one can
check thatif n} > [n/2] -1,

G L2
A.’z,nﬁm’m/ﬂ 2 Y/

min

and if n} < [n/2] —1,

Ay <exp | —Amin Y, 7| [ Cich o — Z V1 | + V21 /\2 = V22
k=[n/2] Amin = i min
Then,
/ - 2 /!
Ay, <exp| —Amin Y. Y| | Cic} = Z’kak 1]+ (28)
k=[n/2] Amin k=
with
p - r)/]'n/Z] 1 —|— |—1’l/2-‘ if ny < [n/Z} -1
= im Yiny2) + A2 Wz]fl if [n/2] —1<mandn >m
0 else
Let us denote c,;, := o? <exp ( age, (nh+1)" ) ’Vig) +c 3Sfl>, i.e one can bound v}, as

(with v}, defined in (25))

1
! 1—w 2 2 —2u
v, < C) €XP <—§aocyn + 0 Mocvn

19



Then, with the help of an integral test for convergence, one can check that

L zcn/ 1 23 30(
k; VKU1 < Cpy + Colig + M exp <—§a0c7> +0 c7M03“ —
Furthermore, one can check that
1 2
ry < (Cné exp (—1a0c7n1“> +c72c3rMon2“> /\2—‘5 + /\—(?lcwn*“. (29)
min min

Final bound of E [HGH — 9”2] : As a conclusion, thanks to inequalities (27), (28) and (29),

L e 12 2¢Cqc
B [, ~ 012] < Ao mscr 4 (et 4 2 @pg) Loy ECien

-
n
A%nm Amin

with

2¢,, 3
n , gy f%aocq 23M o
2“_1+cn0+c7u0+7a0(1_a)e +o°cy 03, -1/

17
Al = ehmincy (mf+1)'* (ch

6 Proofs of Section 4

In order to prove theorems of Section 4, let us first give some usual decompositions of the

estimates. First, remark that one can rewrite 6,,,1 as

Opt1—0=0,—0—7,1VG (Gn) + Yn+18n+1 (30)

where ;41 := VG (0,) — V3 (X,41,0) is a martingale difference adapted to F,,. Further-
more, denoting H = V2G(6) and linearizing the gradient, one has

9n+1 —0= (Id - ')’n+1H) (911 - 9) + ')’n—&-lén—&-l - 'Yn-i—l‘sn (31)

where 6, := VG (6,) — H (6, — 0) is the remainder term in the Taylor’s expansion of the

gradient. This inequality can be rewrite as

0, — 0
H(en—e):”Tj“JrgnH—(sn.

Summing these equalities, dividing by 7 4 1 and applying an Abel’s transform (see Pelletier

(2000) for more details), it comes

H(0,—0) = =0 _ Onn-6 | 1 i(e —9)<L—i>+ ! ié
! (n+1)  yup(n+1) n+l/7 ‘ Yee1 Yk n+l/4= o
1 n
— k) 32
n+1,§k 32

20



6.1 Proof of Theorem 4.1

In order to prove Theorem 4.1, let us bound each term on the right hand-side of equality
(32).

Bounding \/IE “ D)

2
On+1—0 H ] : Thanks to Theorem 3.1, one has

— 7_/\mmc J’Z - 2 L
E ' 79”“ f \/_e i 17 + vayals T exp < ! —agc,n'” "‘)
Yur1(n+1) cy(n+1)1-# AminCy(n + 1)1-2 16

2ltdag L 25 /G 1

+ + 33
VA0 Amin(n+1)  Agin (/G (n 4 1)172/2 (33)
2
Bounding R, := n+1 \/IE [HZZ_1 (6 —0) (7%“ — %) ‘ ] First remark that el % <
ac,, L1 < Yy Lga=1 go that, thanks to Minkowski’s inequality,
1 1 S ’
— 166 —O1°| | — — — 16 — 67| k!
L[ 2] S e
Denoting
= — Z e_SAmmCWn - and Dy := 7\/5\/5115 io 3_1_16“0%”1_%
€y n=o AminCy =
it comes
1+a
R, < Aw + Do n pARRL i 27°/C o« Z )21
- n+1 \/7/\mmn—}—1 = \/_\/ Amin 1+ 1 5
Aw+ Do 20 LiIn(n+1) 25V 1 31

+ +
n+1 VAoAmin 1 +1 \/Tym (n+1)1-4/2

Bounding R;, = - +l \/ E [H Yih—0 %k Hz] . First remark that thanks to Minkowski’s inequality
coupled with inequality (18), one has

K< g 2B [1007] < S50+ 220 5 e (G 0 - G0

Then, applying Lemma 3.1 and denoting

I 2 2 3 _3a 3
B., = e —dcymont= eu1c7m+azcwm \/_ + 0’C3/2 = 1
n=0 -

21



one has

Zg7%0
< n+1

Lsy/ug Ly & 1, pfie o2 30 L5212+ 205, 1
R/ < §C0 ac 20‘ 1+a2c 30‘ =1 3/2 Y ke
s B P B o Vit Y s ey

L;Bo  Ls2V/%*2%gc, 1

Sarl T Jmd—a) it D)F

Bounding M,, := +1 \/ E [H Yh—oCk+1 HZ] . Remark that by definition of ¢, and thanks to

Assumption (A1), one has

E |Gl 17| = E [IVig (Xus1,00) P 1Fa] = IV 00) > < B [1Vag (s, 00) > | 72
< C1+C (G (6,) —G(9))

Furthermore, since ({,+1) is a sequence of martingale differences adapted to the filtration
(Fn) and applying Holder inequality, one has

)’l

n+1\/2“5 [lgel’] < n+1\/f+2\/JE G(6))?].

Thanks to Lemma 3.1, it comes

SVBoo

vC vC a2 2y 32 |3«
M, < n+1 Ju —|-Ze §Cyaon ey i taxd) 5ty Ju 0+ ocy 30(—1

\/C_z \/Zn; 21/2+2o¢0-C

n+1

Finally, it comes

M. < /Cl N /C2 /Boo /C221/4+DL\/E\/§ 1
n

36
~Vn+1 n+1 T a(l)/4m (n+1)1/2+a/2 (36)

Conclusion: Thanks to inequalities (33) to (35), one has

\/C_l N L521/2+2“0’C«7 1 1“5\/_ 1
/n+1 \/%(1—06) (Tl+1) \/_\/ min (1’l—|—1)1 “/2
Ny NN . 21T In(n 4 1) . Aco + Deo + LsBeo + v/Co/Beo + ¢, 12 /10
a/ AT —a(n+1)1/2+/2 " \faghmin 1 +1 n+1

Amin [ 18— 0]] <

22



6.2 Proof of Theorem 4.2

In order to prove Theorem 4.2, we just have to give a better bound of the martingale term
1 Yi_o H g First, let us recall that

2
<
:| _k:0
n

<) E :Tr (Hilvhg<xk+lr9k) th<Xk+1,9k)TH71)}

1=
&5

n
Y H &

(v (XkH,ek)m
k=0 L

=Y E|Tr H’l]E[th(XkH,Gk)th(Xk+1,9k)T]]—"k] H1

=X(6k)

Since the functional X(.) is Ly-lipschitz and denoting ¥ = %(#), one has

2
1E } = (n+1)Tr (H—le—1> + kgolE [Tr <H‘1 ( () — = () H—lﬂ
< (n4+1)Tr (H*12H4> e kZ%)]E [||9k 9||2} (37)

Then, thanks to Theorem 3.1, it comes

7lgk+1 ] < /Tr -1y H-1 ‘/Tl-i- + VL \/7 /\\/ AZE_I)‘mmCWkl a
mm min
/ 1+4a /
mm \/_/\mm \l k=
21/2+0¢/2\/_\/_\/—
+ /\3/2 Zk ‘
min

Then, thanks to Minkovski’s inequality and by definition of A and Do,

2
1 g _ \/Tr(Hfle*1)+ VL0 N VIsc, A
n+1 S - vn+1 Amin(n+1)  Amin(n +1)

v Ls¢yDeo N 214 [Tsoc, Lsv/ 20

Amin(n+1) * \/agA2, V2a —1(n+1)
2124012 /O T\ /o5

/\i{iim<”+1)l/2+a/2’

_|_

which concludes the proof.
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6.3 Proof of Theorem 4.3

In order to prove Theorem 4.3, let us bound each term on the right hand-side of equality
(32).

Bounding \/IE “ D)

2
On+1—0 H ] : Thanks to Theorem 3.2, one has

E 'M o VAo ol <_1M nl_a>
a1 (n+1) GUFDT o Amn(n 1) T8

i oLsv/ My +2§\/C1 1
Amin(m+1) " \/Amin /Ty (n +1)1-4/2

Bounding R, := ,%H\/IE [Hz’g_l (6 — 0) (#1 - %) HZ} Recalling that

E [||o — 0]

Denoting
A/ = v A —lioe—%/\mmcwl"" and V C”()L‘) Z a0c7n1 *
* Cy n=0 )meC«y n=0
it comes
Rn < A;o + Déo + (TL(;\/ L \/ C] 1 i ktx/Z—l
n+1 /\mm(n+1 o] \/ mm\/_114—1
< Al + DI, cLsv/My In(n+1) 2143, /Cy 1

= n+1 Amin(n+1) n+1 &y Aminy/Cy (n+ 1)1-4/2

Bounding R, = n+l\/ [sz 0 k|| ] Let us recall that

R< g 2B 1] < S0 2y JE [0 -Gy

k=1

Furthermore, denoting

(W%— \/7> Y exp (—1a0c7n1 "‘>

n>0
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and with the help of Lemma 3.2, one has

SLJB{iQ
/ “ Ls V Eny _ 1—a a
R, < . + 1 ] Zexp aocvk +Lsocy /M oy 1 Zk

< L(sBéo + Lg(TC,Y\/ 0
“n+l1 (1—a)(n+1)*

Bounding M,;: Recalling that

M, < n+1\/\/_+2\/JE G(6))?.

and since C; = 0, one has

which concludes the proof.

6.4 Proof of Theorem 4.4

In order to prove Theorem 4.4, we just have to give a better bound of the martingale term
n%rl YioH ~1¢41. Thanks to inequality (37) couple with Theorem 3.2, it comes
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Then, by Minkowski’s inequality, it comes
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