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Introduction

A usual problem in stochastic optimization and machine learning is, considering a random variable X, to estimate the minimizer of a convex function G of the form

G(h) = E [g(X, h)]
where h lies in a separable Hilbert space H. This problem is encountered when we estimate, for instance, the parameters of logistic regressions [START_REF] Bach | Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression[END_REF][START_REF] Cohen | On projected stochastic gradient descent algorithm with weighted averaging for least squares regression[END_REF], the geometric median and quantiles [START_REF] Cardot | Efficient and fast estimation of the geometric median in Hilbert spaces with an averaged stochastic gradient algorithm[END_REF][START_REF] Godichon-Baggioni | Estimating the geometric median in hilbert spaces with stochastic gradient algorithms: Lp and almost sure rates of convergence[END_REF][START_REF] Cardot | Online estimation of the geometric median in hilbert spaces: Nonasymptotic confidence balls[END_REF], or superquantiles [START_REF] Bercu | Stochastic approximation algorithms for superquantiles estimation[END_REF][START_REF] Costa | Non asymptotic controls on a recursive superquantile approximation[END_REF]. Since the gradient or the Hessian of G cannot be explicitly calculated, one cannot apply usual optimization methods such that gradient or Newton algorithms to approximate the minimizer. A solution to overcome this problem, considering n i.i.d copies X 1 , . . . , X n of X, is to approximate the solution of the empirical function

G n (h) = 1 n n ∑ k=1 g(X k , h).
Nevertheless, this often necessitates high computational costs when the dimension of H and the sample size are both large. In order to partially overcome this cost problem, one way is to focus on mini-batch gradient algorithms, i.e to consider iterative estimates of the form

m t+1 = m t -γ t ∑ i∈S t ∇ h g (X i , m t )
where S t ⊂ {1, . . . , n} is the mini-batch considered at time t (Konečn ỳ et al., 2015; Alfarra et al., 2020). Nevertheless, these kinds of methods necessitate to store all the data into memory and do not enable to easily update the estimates if the data arrive sequentially. In order to address these problems, the online stochastic gradient algorithm introduced by [START_REF] Robbins | A stochastic approximation method[END_REF] should be preferred. Nevertheless, as mentioned in [START_REF] Pelletier | On the almost sure asymptotic behaviour of stochastic algorithms[END_REF], the estimates obtained with this algorithm hardly ever attain the asymptotic efficiency. Fortunately, one can consider its averaged version introduced by [START_REF] Ruppert | Efficient estimations from a slowly convergent robbins-monro process[END_REF] and [START_REF] Polyak | Acceleration of stochastic approximation[END_REF] which is known to be asymptotically efficient [START_REF] Pelletier | Asymptotic almost sure efficiency of averaged stochastic algorithms[END_REF]. In this paper, we focus on non asymptotic analysis of such estimates.

Related works

The rate of convergence in quadratic mean of averaged stochastic gradient algorithms in the case where G is strongly convex was given in [START_REF] Bach | Non-strongly-convex smooth stochastic approximation with convergence rate o (1/n)[END_REF]. Nevertheless, the loss of strong convexity generates several technical problems and makes the obtaining of non asymptotic results much more difficult. In recent works, [START_REF] Bach | Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression[END_REF] and [START_REF] Gadat | Optimal non-asymptotic bound of the ruppert-polyak averaging without strong convexity[END_REF] succeeded in obtaining the L 2 rates of convergence of the estimates but supposed for this that the gradient of g is bounded, which can be considered as restrictive. For instance, this is not verified in most of regressions if the eplicative variable is not bounded, or in the case of the recursive estimation of p means with p ∈ (1, 2) (Godichon-Baggioni, 2019b). In Godichon-Baggioni (2019a), the gradient of g was not supposed to be bounded anymore, but it was assumed that it admits moments of any order.

Furthermore, the upper bounds of the quadratic mean errors of the estimates at time n were not explicitly given. In addition, in [START_REF] Cardot | Online estimation of the geometric median in hilbert spaces: Nonasymptotic confidence balls[END_REF], non asymptotic confidence balls were given in the case of the recursive estimation of the geometric median, but these balls where only available from a non calculated rank. Recently, [START_REF] Costa | Non asymptotic controls on a recursive superquantile approximation[END_REF] focus on the use of stochastic gradient algorithms for superquantiles estimation and give uniform bounds of the quadratic mean error of the estimates. Nevertheless, here again, the bound depends on non calculated constants. Finally, in a recent work, [START_REF] Défossez | A simple convergence proof of adam and adagrad[END_REF] give simple proof for obtaining convergence results for some adaptive stochastic gradient methods.

Contribution

In this work, the aim is to give a very weak framework for each we are able to obtain explicit L 2 rates of convergence of stochastic gradient estimates and their averaged version. First, we replace usual strong convexity assumption by strict (or locally strong) convexity. Second we do not assume that the gradient of g is bounded or admits moments of any order, but we only suppose that it admits a fourth order moment. Finally, under weak assumptions, we give explicit bounds of the quadratic mean errors of the estimates and prove that, up to a calculated rest term, the averaged estimates achieve the Cramer-Rao bound.

Notations

In this paper, we denote by . the euclidean norm on H, ., . the associated inner product, and . op the spectral norm of operators on H. Remark that given h, h ′ ∈ H, we will also write h, h ′ = h T h ′ . Furthermore, for all h ∈ H and r > 0, B(h, r)

:= {h ′ ∈ H, h -h ′ ≤ r}.
Finally, for any x ∈ R, ⌈x⌉ gives the superior integer part of x.

Paper organization

The paper is organized as follows: first the framework and assumptions are given and discussed in Section 2. The rate of convergence in quadratic mean of the stochastic gradient estimates are introduced in Section 3 while the ones for their averaged version are given in Section 4. Finally, the proofs of the convergence results for gradient estimates and their averaged version are respectively postponed in Sections 5 and 6.

Framework

In what follows, we consider a random variable X taking values in a measurable space X and let H be a separable Hilbert space (not necessarily of finite dimension). We focus on the estimation of the minimizer θ of the convex function G : H -→ R defined for all h ∈ H by

G(h) := E [g (X, h)]
with g : X × H -→ R. Throughout the suite, we will suppose that the following assumptions are fulfilled:

(A1) For almost every x ∈ X , the functional g(x, .) is differentiable on H and there are non-negative constants

C 1 , C ′ 1 , C 2 , C ′ 2 such that for all h ∈ H, E ∇ h g (X, h) 2 ≤ C 1 + C 2 (G(h) -G(θ)) , E ∇ h g (X, h) 4 ≤ C ′ 1 + C ′ 2 (G(h) -G(θ)) 2 (A2)
The functional G is twice continuously differentiable and λ min := λ min ∇ 2 G(θ) > 0.

(A3)

The Hessian of G is uniformly bounded on H, i.e there is a positive constant L ∇G such that for all h ∈ H, ∇ 2 G(h) op ≤ L ∇G .

(A4) There are positive constants λ 0 , r λ 0 and a non-negative constant C λ 0 such that ∀h ∈ B (θ, r λ 0 ),

λ min ∇ 2 G (h) ≥ λ 0 and ∇G(h) -∇ 2 G(θ) (h -θ) ≤ C λ 0 h -θ 2
Remark that Assumption (A1) ensures that the functional G is differentiable. One of the main difference with [START_REF] Bach | Non-strongly-convex smooth stochastic approximation with convergence rate o (1/n)[END_REF] and [START_REF] Gadat | Optimal non-asymptotic bound of the ruppert-polyak averaging without strong convexity[END_REF] is that they suppose that the gradient of g is uniformly bounded. Moreover, an important difference with Godichon-Baggioni (2019a) is that we only suppose that the moment of order four of the gradient exists instead of each moments. In addition, Assumption (A2) leads the functional G to be strictly convex, so that θ is its unique minimizer. Furthermore, Assumption (A3) ensures that the gradient of G is L ∇G -lipschitz. Finally, Assumption (A4) just means that there is a neighborhood of θ on each we have both locally strong convexity of G and a locally quadratic increasing of the rest term in the Taylor's expansion of the gradient (which is verified as soon as the Hessian of G is lipschitz on a neighborhood of θ). Remark that if H is a finite dimensional space, the local strong convexity was already given by (A2). As a conclusion, these assumptions can be considered as weak compare to the existing ones in the literature on non-asymptotic results.

The stochastic gradient algorithm

In what follows, let us consider X 1 , . . . , X n , X n+1 , . . . be i.i.d copies of X. The stochastic gradient algorithm is defined recursively for all n ≥ 0 by [START_REF] Robbins | A stochastic approximation method[END_REF])

θ n+1 = θ n -γ n+1 ∇ h g (X n+1 , θ) , (1) 
with θ 0 bounded. We consider from now a stepsequence (γ n ) of the form γ n = c γ n -α , where c γ > 0 and α ∈ (1/2, 1).

Case with unbounded gradient

In this section, we focus on the case where C 2 = 0 or C ′ 2 = 0. We first give the rate of convergence in quadratic mean of G (θ n ).

Lemma 3.1. Suppose Assumptions (A1) to (A4) hold. Then,

E (G (θ n ) -G(θ)) 2 ≤ e -1 4 c γ a 0 n 1-α e 2a 1 c 2 γ 2α 2α-1 +2a 2 c 3 γ 3α 3α-1 u 0 + σ 2 c 3 γ 3α 3α -1 + 2 1+4α σ 2 c 2 γ a 0 n -2α with u 0 = E (G (θ 0 ) -G(θ)) 2 , a 0 = λ 2 0 min 1,r 2 λ 0 L ∇G , a 1 = max λ 4 0 4L 2 ∇G , C 2 (4L ∇G + 1) , a 2 = 1 2 L 2 ∇G C ′ 2 , and σ 2 = C 2 1 (4L ∇G +1) 2 L ∇G 12λ 2 0 min 1,r 2 λ 0 + c γ L 2 ∇G C ′ 1 2 .
In a simple way, this lemma ensures that we have the usual rate of convergence

E [G (θ n )] - G(θ) = O (n -α
). This result is crucial to give the following rate of convergence in quadratic mean of the estimates θ n . Theorem 3.1. Suppose assumptions (A1) to (A4) hold. Then,

E θ n -θ 2 ≤ Ae -1 4 λ min c γ n 1-α + c 1 2L 2 δ λ 2 min e -1 8 a 0 c γ n 1-α + 2 2+8α σ 2 c 2 γ a 0 L 2 δ λ 2 min n -2α + 2 1+α C 1 λ min c γ n -α with a 0 , a 1 , a 2 , σ 2 defined in Lemma 3.1, v 0 = E θ 0 -θ 2 ] , L δ = max 2C λ 0 λ 0 , 2L ∇G λ 0 r λ 0 , b 1 = L ∇G 2 max C 2 , λ 2 min 2L ∇G , c 1 = exp 2a 1 c 2 γ 2α 2α-1 + 2a 2 c 3 γ 3α 3α-1 v 0 + σ 2 c 3 γ 3α 3α-1 and A = e 2b 1 c 2 γ 2α 2α-1 v 0 + 2αc 2 γ C 1 2α -1 + 2 L 2 δ λ min u 0 c γ + c 1 + 4c 1 a 0 (1 -α) e -1 4 a 0 c γ + 2 1+4α σ 2 c 3 γ a 0 3α 3α -1 .
In other words, we get the usual rate of convergence E θ nθ 2 = O (n -α ) (Bach and Moulines, 2013; Gadat and Panloup, 2017; Godichon-Baggioni, 2019a) and so, with weak assumptions. Moreover, contrary to [START_REF] Gadat | Optimal non-asymptotic bound of the ruppert-polyak averaging without strong convexity[END_REF] and Godichon-Baggioni (2019a), we give an explicit boud of the quadratic mean error. Finally, note that for the main term, i.e 2 1+α C 1 λ min c γ n -α , we succeed in obtaining a term analogous to the one in the strongly convex case given by [START_REF] Bach | Non-strongly-convex smooth stochastic approximation with convergence rate o (1/n)[END_REF]. Let us now discuss about the rest terms.

The term Ae -1 4 λ min c γ n 1-α can be seen as a quantification of the error due to the initialization while the term c 1

2L 2 δ λ 2 min e -1 8 a 0 c γ n 1-α + 2 2+8α σ 2 c 2 γ a 0 L 2 δ λ 2 min n -2α comes from the error approximation of ∇ 2 G(θ) (θ n -θ) by ∇G (θ n ).
Remark that in the particular case of the linear regression, C λ 0 = 0 for any r λ 0 . Moreover, one can take r λ 0 = +∞ and λ 0 = λ min , which leads to L δ = 0 and to a bound analogous to the one in [START_REF] Bach | Non-strongly-convex smooth stochastic approximation with convergence rate o (1/n)[END_REF].

Case with ∇G(.) bounded

Since in several cases such as logistic regression, softmax regression or the estimation of the geometric median one has C 2 = C ′ 2 = 0, we now focus on this case to have more precise bounds. We first give the rate of convergence in quadratic mean of G (θ n ).

Lemma 3.2. Suppose assumptions (A1) to (A4) hold. Then, for all n ≥ 1,

E (G (θ n ) -G(θ)) 2 ≤ c n ′ 0 exp - 1 2 a 0 c γ n 1-α + σ 2 M 0 c 2 γ n -2α with n ′ 0 = inf {n, a 0 γ n+1 ≤ 1}, c n ′ 0 := σ 2 exp 1 2 a 0 c γ (n ′ 0 + 1) 1-α γ 3 n ′ 0 + c 3 γ 3α 3α-1 , M 0 := max 2 4α
a 0 , c γ and a 0 , σ 2 defined in Lemma 3.1.

We can now give the rate of convergence in quadratic mean of θ n in the particular case

where

C 2 = C ′ 2 = 0.
Theorem 3.2. Suppose Assumptions (A1) to (A4) hold. Then

E θ n -θ 2 ≤ A ′ e -λ min c γ n 1-α + c n ′ 0 L 2 δ λ 2 min e -1 4 a 0 c γ n 1-α + L 2 δ c 2 γ σ 2 λ 2 min M 0 n -2α + 2 α C 1 c γ λ min n -α
with n ′ 1 = min {n, λ min γ n+1 ≤ 1}, a 0 , σ 2 defined in Lemma 3.1, c n ′ 0 , M 0 defined in Lemma 3.2, and

A ′ = e λ min c γ (n ′ 1 +1) 1-α C 1 c 2 γ 2α 2α -1 + c n ′ 0 + c γ u 0 + 2c n ′ 0 a 0 (1 -α) e -1 2 a 0 c γ + σ 2 c 3 γ M 0 3α 3α -1 .
Remark that here again, without surprise, the main term

2 α C 1 c γ λ min n -α
is analogous to the one for the strongly convex case given by [START_REF] Bach | Non-strongly-convex smooth stochastic approximation with convergence rate o (1/n)[END_REF].

The averaged algorithm

Let us recall that the averaged algorithm introduced by [START_REF] Ruppert | Efficient estimations from a slowly convergent robbins-monro process[END_REF] and [START_REF] Polyak | Acceleration of stochastic approximation[END_REF] is defined for all n ≥ 0 by

θ n = 1 n + 1 n ∑ k=0 θ k ,
which can be written recursively as

θ n+1 = θ n + 1 n + 2 θ n+1 -θ n .

Case with unbounded gradient

In this section, we focus on the case where C 2 = 0 or C ′ 2 = 0. The following theorem gives a first rate of convergence of the averaged estimates.

Theorem 4.1. Suppose Assumptions (A1) to (A4) hold. Then

λ min E θ n -θ 2 ≤ √ C 1 √ n + 1 + L δ 2 1/2+2α σc γ √ a 0 (1 -α) 1 (n + 1) α + 2 1+α 2 5 √ C 1 √ c γ √ λ min 1 (n + 1) 1-α/2 + √ C 2 2 1/4+α √ σ √ c γ a 1/4 0 √ 1 -α(n + 1) 1/2+α/2 + 2 1+4α σL δ √ a 0 λ min ln(n + 1) n + 1 + A ∞ + D ∞ + L δ B ∞ + √ C 2 √ B ∞ + c -1/2 γ v 0 n + 1 + √ A c γ e -1 8 λ min c γ n 1-α (n + 1) 1-α + √ 2 √ c 1 L δ c γ λ min e -1 16 a 0 c γ n 1-α (n + 1) 1-α with A ∞ := √ A c γ ∑ +∞ n=0 e -1 8 λ min c γ n 1-α , B ∞ := ∑ +∞ n=0 e -1 8 c γ a 0 n 1-α e a 1 c 2 γ 2α 2α-1 +a 2 c 3 γ 3α 3α-1 √ u 0 + σc 3/2 γ 3α 3α-1 , and D ∞ := √ 2 √ c 1 L δ λ min c γ ∑ +∞ n=0 e -1 16 a 0 c γ n 1-α .
The main conclusion of this theorem is that we achieve the usual rate of convergence

√ C 1 √
n+1 while the two main rest terms converge at rates 1 (n+1) α and 1 (n+1) 1-α/2 which seems to suggest that the best choice of α could be α = 2/3. Nevertheless, in a recent work and in the special case where ∇g is uniformly bounded, [START_REF] Gadat | Optimal non-asymptotic bound of the ruppert-polyak averaging without strong convexity[END_REF] give upper bound for each the best rate of convergence should be achieve for α = 3/4. Furthermore, in the particular case of linear regression for which L δ can be chosen equal to 0 and the two main rest terms are so of order 1 (n+1) 1-α/2 and 1 (n+1) 1/2+α/2 which suggests to take α close to 1 2 . Nevertheless, our bounds as the ones given in [START_REF] Gadat | Optimal non-asymptotic bound of the ruppert-polyak averaging without strong convexity[END_REF] or [START_REF] Bach | Non-strongly-convex smooth stochastic approximation with convergence rate o (1/n)[END_REF] can be considered as quite rough, that complicates to answer definitely and generally on the best choice of α.

In order to get a (quasi) optimal rate of convergence, let us suppose from now that the variance of the gradient of g is lipschitz, i.e that the following assumption is fulfilled:

(A5) The functional Σ : h -→ Σ(h) = E ∇ h g (X, h) ∇ h g (X, h) T is L Σ lipschitz with
respect to the spectral norm.

Remark that this assumption is already present in Godichon-Baggioni (2019b) and is analogous to Assumption (H S ) in [START_REF] Gadat | Optimal non-asymptotic bound of the ruppert-polyak averaging without strong convexity[END_REF]. The following theorem ensures that, up to rest terms, the averaged estimates achieve the "Cramer-Rao bound".

Theorem 4.2. Suppose Assumptions (A1) to (A5) hold. Then,

E θ n -θ 2 ≤ Tr (H -1 ΣH -1 ) √ n + 1 + L δ 2 1/2+2α σc γ √ a 0 (1 -α) 1 λ min (n + 1) α + 2 1+α 2 5 √ C 1 √ c γ λ 3/2 min 1 (n + 1) 1-α/2 + 2 1/2+α/2 √ C 1 √ L Σ √ c γ λ 3/2 min √ 1 -α(n + 1) 1/2+α/2 + 2 1+4α σL δ √ a 0 λ 2 min ln(n + 1) n + 1 + A ∞ + D ∞ + L δ B ∞ + √ L Σ + c -1/2 γ √ v 0 + √ L Σ c γ A ∞ + √ L Σ c γ D ∞ + 2 1+4α √ L Σ σc γ L δ √ 2αa -1/2 0 λ min √ 2α-1 λ min (n + 1) + √ A c γ e -1 8 λ min c γ n 1-α λ min (n + 1) 1-α + √ 2 √ c 1 L δ c γ e -1 16 a 0 c γ n 1-α λ 2 min (n + 1) 1-α
Remark 4.1. Note that we speak about Cramer Rao bound in the sens that under regularity assumptions, any estimate θn should verify for almost any θ ∈ H,

lim inf n nE θn -θ 2 ≥ Tr H -1 Σ(θ)H -1

Case where ∇G is bounded

We now focus on the case where

C 2 = C ′ 2 = 0.
The following theorem gives the rate of convergence of averaged estimates in this case.

Theorem 4.3. Suppose Assumptions (A1) to (A4) hold and that C 2 = C ′ 2 = 0. Then,

λ min E θ n -θ 2 ≤ √ C 1 √ n + 1 + L δ σc γ √ M 0 (1 -α) 1 (n + 1) α + 2 α 2 5 √ C 1 √ c γ √ λ min 1 (n + 1) 1-α/2 + σL δ √ M 0 λ min (n + 1) ln(n + 1) n + 1 + σL δ √ M 0 λ -1 min + A ′ ∞ + D ′ ∞ + L δ B ′ ∞ n + 1 + √ A ′ c γ e -1 2 λ min c γ n 1-α (n + 1) 1-α + c n ′ 0 L δ c γ λ min e -1 8 a 0 c γ n 1-α (n + 1) 1-α with A ′ ∞ := √ A ′ c γ ∑ +∞ n=0 e -1 2 λ min c γ n 1-α , B ′ ∞ = c n ′ 0 + √ u 0 ∑ n≥0 exp -1 4 a 0 c γ n 1-α and D ′ ∞ := √ c n ′ 0 L δ λ min c γ ∑ +∞ n=0 e -1 8 a 0 c γ n 1-α .
Considering from now that Assumption (A5) is fulfilled, we can now prove that the averaged estimates also achieve, unsurprisingly, the "Cramer-Rao bound" in the case where the gradient of G is bounded.

Theorem 4.4. Suppose Assumptions (A1) to (A5) hold and that

C 2 = C ′ 2 = 0. Then, E θ n -θ 2 ≤ Tr (H -1 ΣH -1 ) √ n + 1 + L δ σc γ √ M 0 (1 -α) 1 λ min (n + 1) α + 2 α 2 5 √ C 1 √ c γ 1 λ 3/2 min (n + 1) 1-α/2 + √ L Σ 2 α/2 √ C 1 √ 1 -α 1 λ 3/2 min (n + 1) 1/2+α/2 + σL δ √ M 0 λ min (n + 1) ln(n + 1) (n + 1)λ min + σ + √ L Σ c γ 2α 2α-1 L δ √ M 0 λ -1 min + A ′ ∞ + D ′ ∞ + L δ B ′ ∞ + √ L Σ √ v 0 + √ L Σ c γ A ′ ∞ + √ L Σ c γ D ′ ∞ (n + 1)λ min + √ A ′ c γ e -1 2 λ min n 1-α λ min (n + 1) 1-α + c n ′ 0 L δ c γ e -1 8 a 0 c γ n 1-α λ 2 min (n + 1) 1-α

Conclusion

In this paper, we provide explicit upper bounds of the quadratic mean error of the online stochastic gradient estimates as well as of their averaged version, and so under very weak assumptions. A first extension of this work could be the obtaining of precise (via concentration inequalities) and calculable confidence balls or ellipse for θ with the help of averaged estimates. A second extension of this work could be to focus on the non-asymptotic rate of convergence of online adaptive stochastic gradient algorithms, such that Adagrad [START_REF] Duchi | Adaptive subgradient methods for online learning and stochastic optimization[END_REF], or stochastic Newton algorithms [START_REF] Boyer | On the asymptotic rate of convergence of stochastic newton algorithms and their weighted averaged versions[END_REF].

Finally since the averaged estimates are known to be sensitive to a bad initialization, a last perspective could be to extend this work to the Weighted Averaged Stochastic Gradient estimates [START_REF] Mokkadem | A generalization of the averaging procedure: The use of two-time-scale algorithms[END_REF].

5 Proofs of Section 3

Some properties on the functionnal G

First remark that with the help of a Taylor's expansion of G, for all h ∈ H,

G(h) = G(θ) + (h -θ) T 1 0 (1 -t)∇ 2 G(θ + t(h -θ))dt(h -θ).
Then, thanks to Assumption (A3),

G(h) -G(θ) ≤ 1 2 L ∇G h -θ 2 .
(2)

Furthermore, thanks to Assumption (A4), for all h ∈ B (θ,

r λ 0 ), (h -θ) T 1 0 (1 -t)∇ 2 G(θ + t(h -θ))dt(h -θ) T ≥ 1 2 λ 0 h -θ 2 . If h / ∈ B (θ, r λ 0 ), i.e if h -θ > r λ 0 , one has (h -θ) T 1 0 (1 -t)∇ 2 G(θ + t(h -θ))dt(h -θ) T ≥ (h -θ) T r λ 0 h-θ 0 (1 -t)∇ 2 G(θ + t(h -θ))dt(h -θ) ≥ 1 2 λ 0 r λ 0 h -θ .
Then,

G(h) -G(θ) ≥ λ 0 2 h -θ 2 1 h-θ ≤r λ 0 + λ 0 2 r λ 0 h -θ 1 h-θ >r λ 0 (3)

Proof of Lemma 3.1

First, thanks to a Taylor's decomposition of G coupled with assumption (A3), we have

G (θ n+1 ) -G(θ) = G (θ n ) -G(θ) + ∇G (θ n ) , θ n+1 -θ n + (θ n+1 -θ n ) T 1 0 (1 -t)∇ 2 G (θ n+1 + t (θ n -θ n+1 )) dt (θ n+1 -θ n ) ≤ G (θ n ) -G(θ) -γ n+1 ∇G (θ n ) , ∇ h g (X n+1 , θ n ) + 1 2 γ 2 n+1 L ∇G ∇ h g (X n+1 , θ n ) 2 . Denoting V n := G (θ n ) -G(θ) and g ′ n+1 = ∇ h g (X n+1
, θ n ), and thanks to Cauchy-Schwartz inequality, it comes

V 2 n+1 ≤ V 2 n + γ 2 n+1 ∇G (θ n ) 2 g ′ n+1 2 + 1 4 γ 4 n+1 L 2 ∇G g ′ n+1 4 + γ 3 n+1 L ∇G g ′ n+1 3 ∇G (θ n ) + γ 2 n+1 V n g ′ n+1 2 -2γ n+1 V n ∇G (θ n ) , g ′ n+1
Then, since

g ′ n+1 3 ∇G (θ n ) ≤ L ∇G γ n+1 4 g ′ n+1 4 + 1 L ∇G γ n+1 g ′ n+1 2 ∇G (θ n ) 2 it comes V 2 n+1 ≤ V 2 n + 2γ 2 n+1 ∇G (θ n ) 2 g ′ n+1 2 + 1 2 γ 4 n+1 L 2 ∇G g ′ n+1 4 + γ 2 n+1 V n g ′ n+1 2 -2γ n+1 V n ∇G (θ n ) , g ′ n+1 .
Taking the conditional expectation and thanks to assumption (A2),

E V 2 n+1 |F n ≤ V 2 n + 2γ 2 n+1 ∇G (θ n ) 2 (C 1 + C 2 V n ) + 1 2 γ 4 n+1 L 2 ∇G C ′ 1 + C ′ 2 V 2 n + γ 2 n+1 (C 1 + C 2 V n ) V n -2γ n+1 ∇G (θ n ) 2 V n (4)
Remark that thanks to Assumption (A3),

∇G (θ n ) 2 ≤ 2L ∇G (G (θ n ) -G(θ))
Then, one can rewrite inequality (4) as

E V 2 n+1 |F n ≤ 1 + C 2 (4L ∇G + 1) γ 2 n+1 + 1 2 γ 4 n+1 L 2 ∇G C ′ 2 V 2 n + C 1 (4L ∇G + 1) γ 2 n+1 V n -2γ n+1 ∇G (θ n ) 2 V n + 1 2 γ 4 n+1 L 2 ∇G C ′ 1 . (5) 
Let us now give a lower bound of ∇G (θ n ) 2 . Thanks to a Taylor's decomposition of the gradient,

∇G (θ n ) 2 ≥ 1 0 λ min ∇ 2 G (θ + t (θ n -θ)) dt 2 θ n -θ 2 Let us denote η n := 2 L ∇G G(θ n )-G(θ)
θ n -θ 2 min {1, r λ 0 }. Thanks to inequality (2), η n ≤ min {1, r λ 0 }, so that, with the help of Assumption (A4), it comes

∇G (θ n ) 2 ≥ η n 0 λ min ∇ 2 G (θ + t (θ n -θ)) dt 2 θ n -θ 2 ≥ 2λ 2 0 L ∇G min 1, r 2 λ 0 V n (6)
and one can rewrite inequality (5) as

E V 2 n+1 |F n ≤ 1 - 4λ 2 0 L ∇G min 1, r 2 λ 0 γ n+1 + C 2 (4L ∇G + 1) γ 2 n+1 + L 2 ∇G C ′ 2 2 γ 4 n+1 V 2 n + C 1 (4L ∇G + 1) γ 2 n+1 V n + 1 2 γ 4 n+1 L 2 ∇G C ′ 1 (7)
Finally, since

γ 2 n+1 C 1 (4L ∇G + 1) V n ≤ 3λ 2 0 L ∇G min 1, r 2 λ 0 γ n+1 V 2 n + γ 3 n+1 C 2 1 (4L ∇G + 1) 2 L ∇G 12λ 2 0 min 1, r 2 λ 0
, one can rewrite inequality (7) as

E V 2 n+1 |F n ≤ 1 -γ n+1 λ 2 0 L ∇G min 1, r 2 λ 0 + C 2 (4L ∇G + 1) γ 2 n+1 + L 2 ∇G C ′ 2 2 γ 4 n+1 V 2 n + γ 3 n+1 C 2 1 (4L ∇G + 1) 2 L ∇G 12λ 2 0 min 1, r 2 λ 0 + 1 2 γ 4 n+1 L 2 ∇G C ′ 1 (8)
Let us denote a 0 =

λ 2 0 min 1,r 2 λ 0 L ∇G , a 1 = max λ 4 0 4L 2 ∇G , C 2 (4L ∇G + 1) , a 2 = 1 2 L 2 ∇G C ′ 2 , σ 2 = C 2 1 (4L ∇G +1) 2 L ∇G 12λ 2 0 min 1,r 2 λ 0 + c γ L 2 ∇G C ′ 1 2
, and u n = E V 2 n , one can rewrite inequality (8) as

u n+1 ≤ 1 -a 0 γ n+1 + a 1 γ 2 n+1 + a 2 γ 3 n+1 u n + σ 2 γ 3 n+1 Let n 0 = inf n, a 0 ≥ 2a 1 γ n+1 + 2a 2 γ 2 n+1 .
Then, one can rewrite inequality (8) as

u n+1 = 1 + a 1 γ 2 n+1 + a 2 γ 3 n+1 u n + σ 2 γ 3 n+1 if n < n 0 1 -1 2 a 0 γ n+1 u n + σ 2 γ 3 n+1 if n ≥ n 0 Remark that if n ≥ n 0 , by definition of a 1 , 1 2 a 0 γ n+1 ≤ λ 4 0 4a 1 L 2 ∇G ≤ 1. (9) 
We now consider two distinct cases: n ≤ n 0 and n > n 0 .

Case where n ≤ n 0 : With the help of an induction, one can check that for all n ≤ n 0 ,

u n ≤ n ∏ i=1 1 + a 1 γ 2 i + a 2 γ 3 i u 0 =:U 1,n + n ∑ k=1 n ∏ i=k+1 1 + a 1 γ 2 i + a 2 γ 3 i σ 2 γ 3 n =:U 2,n
As in Bach and Moulines (2013), remark that by definition of n 0 and since 1 + x ≤ e x , for all n ≤ n 0 ,

U 1,n ≤ u 0 exp n ∑ k=1 a 1 γ 2 k + a 2 γ 3 k ≤ u 0 exp - 1 2 a 0 n ∑ k=1 γ k exp 2 n ∑ k=1 a 1 γ 2 k + a 2 γ 3 k (10)
In a same way, one can check that for all n ≤ n 0 ,

U 2,n ≤ n ∏ k=1 1 + a 1 γ 2 k + a 2 γ 3 k n ∑ k=1 σ 2 γ 3 k ≤ exp n ∑ k=1 a 1 γ 2 k + a 2 γ 2 k n ∑ k=1 σ 2 γ 3 k ≤ exp - 1 2 a 0 n ∑ k=1 γ k exp 2 n ∑ k=1 a 1 γ 2 k + a 2 γ 3 k n ∑ k=1 σ 2 γ 3 k (11)
Case where n > n 0 : With the help of an induction, one can check that for all n > n 0 ,

u n ≤ n ∏ i=n 0 +1 1 - 1 2 a 0 γ i u n 0 =:U 3,n + n ∑ k=n 0 +1 n ∏ i=k+1 1 - 1 2 a 0 γ i σ 2 γ 3 k =:U 4,n
Furthermore, since

u n 0 ≤ U 1,n 0 + U 2,n 0 ≤ exp - 1 2 n 0 ∑ k=1 γ k exp 2 n 0 ∑ k=1 a 1 γ 2 k + a 2 γ 3 k u 0 + σ 2 n 0 ∑ k=1 γ 3 k one can obtain U 3,n ≤ exp - 1 2 a 0 n ∑ k=1 γ k exp 2 n ∑ k=1 a 1 γ 2 k + a 2 γ 3 k u 0 + σ 2 n 0 ∑ k=1 γ 3 k (12)
Let us now bound U 4,n and differentiate two cases: n 0 < ⌈n/2⌉ -1 and n 0 ≥ ⌈n/2⌉ -1.

Case where n > n 0 ≥ ⌈n/2⌉ -1: Since γ k is decreasing,

U 4,n ≤ σ 2 γ 2 n 0 +1 n ∑ k=n 0 +1 n ∏ i=k+1 1 - 1 2 a 0 γ i γ k = 2σ 2 a 0 γ 2 n 0 +1 n ∑ k=n 0 +1 n ∏ i=k+1 1 - 1 2 a 0 γ i - n ∏ i=k 1 - 1 2 a 0 γ i ≤ 2σ 2 a 0 γ 2 n 0 +1 1 - n ∏ i=n 0 +1 1 - 1 2 a 0 γ i ( 13 
)
and thanks to inequality (9) and since γ k is decreasing,

U 4,n ≤ 2σ 2 a 0 γ 2 n 0 +1 ≤ 2σ 2 a 0 γ 2 ⌈n/2⌉
Case where n 0 < ⌈n/2⌉ -1: As in Bach and Moulines (2013), for all m = n 0 + 1, . . . , n, one has

U 4,n ≤ exp - 1 2 a 0 n ∑ k=m+1 γ k m ∑ k=n 0 +1 σ 2 γ 3 k + 2σ 2 a 0 γ 2 m .
Taking m = ⌈n/2⌉ -1, leads to

U 4,n ≤ exp - 1 2 a 0 n ∑ k=⌈n/2⌉ γ k ⌈n/2⌉ ∑ k=n 0 +1 σ 2 γ 3 k + 2σ 2 a 0 γ 2 ⌈n/2⌉-1 .
Final bound of U 4,n : Since γ k is decreasing,

U 4,n ≤ exp - 1 2 a 0 n ∑ k=⌈n/2⌉ γ k ⌈n/2⌉ ∑ k=n 0 +1 σ 2 γ 3 k + 2σ 2 a 0 γ 2 ⌈n/2⌉-1 . ( 14 
)
Lower bound of ∑ n k=1 γ k : Remark that since γ k is decreasing, for all n ≥ 1,

n ∑ k=1 γ k ≥ n ∑ k=⌈n/2⌉ γ k ≥ n 2 γ n = c γ 2 n 1-α .

Conclusion:

Thanks to inequalities (10) to ( 14), it comes

u n ≤ exp - 1 2 a 0 n ∑ k=⌈n/2⌉ γ k exp 2 n ∑ k=1 a 1 γ 2 k + a 2 γ 3 k u 0 + n ∑ k=1 σ 2 γ 3 k + 2σ 2 a 0 γ ′ n (15) with γ ′ n =        γ 2 ⌈n/2⌉-1 if ⌈n/2⌉ > n 0 + 1 γ 2 ⌈n/2⌉ if ⌈n/2⌉ ≤ n 0 + 1 and n ≥ n 0 + 1 0 else
Then, using integral tests for convergence,

u n ≤ exp - 1 4 c γ a 0 n 1-α exp 2a 1 c 2 γ 2α 2α -1 + 2a 2 c 3 γ 3α 3α -1 u 0 + σ 2 c 3 γ 3α 3α -1 + 2 1+4α σ 2 c 2 γ a 0 n -2α =:v n (16)

Proof of Theorem 3.1

We have, since θ n is F n -measurable,

E θ n+1 -θ 2 |F n = θ n -θ 2 -2γ n+1 θ n -θ, ∇G (θ n ) + γ 2 n+1 E ∇ h g (X n+1 , θ n ) 2 |F n .
Then, linearizing the gradient, we obtain

E θ n+1 -θ 2 |F n = θ n -θ 2 -2γ n+1 θ n -θ, H (θ n -θ) + 2γ n+1 θ n -θ, δ n + γ 2 n+1 E ∇ h g (X n+1 , θ n ) 2 |F n .
with δ n = H (θ nθ) -∇G (θ n ). Thanks to Assumption (A1) and (A2) as well as Cauchy- Schwarz inequality,

E θ n+1 -θ 2 |F n ≤ (1 -γ n+1 λ min ) θ n -θ 2 + γ 2 n+1 C 1 + γ n+1 λ min δ n 2 + γ 2 n+1 C 2 (G (θ n ) -G(θ))
leading, thanks to inequality (2), to

E θ n+1 -θ 2 ≤ 1 -γ n+1 λ min + 1 2 γ 2 n+1 C 2 L ∇G E θ n -θ 2 + γ 2 n+1 C 1 + γ n+1 λ min E δ n 2 (17)
Remark that in order to have a usual induction relation on the quadratic mean error, we need to have a rate of convergence of E δ n 2 . Here is the main difference with Godichon-Baggioni (2019a): remarking that thanks to assumption (A3), δ n ≤ L ∇G θ nθ , with the help of (A4), it comes

δ n = δ n 1 θ n -θ ≤r λ 0 + δ n 1 θ n -θ >r λ 0 ≤ C λ 0 θ n -θ 2 1 θ n -θ ≤r λ 0 + L ∇G θ n -θ 1 θ n -θ >r λ 0
Then, thanks to inequality (3), it comes

δ n ≤ 2C λ 0 λ 0 (G (θ n ) -G(θ)) 1 θ n -θ ≤r λ 0 + 2L ∇G λ 0 r λ 0 (G (θ n ) -G(θ)) 1 θ n -θ >r λ 0 ≤ L δ (G (θ n ) -G(θ)) (18) with L δ = max 2C λ 0 λ 0 , 2L ∇G λ 0 r λ 0
. Then, one can rewrite inequality ( 17) as

E θ n+1 -θ 2 ≤ 1 -γ n+1 λ min + 1 2 γ 2 n+1 C 2 L ∇G E θ n -θ 2 + γ 2 n+1 C 1 + γ n+1 λ min L 2 δ v n ( 19 
)
with v n defined in equation ( 16). Let us denote b 1 = L ∇G 2 max C 2 , λ 2 min 2L ∇G , and let n 1 = inf {n, λ min ≥ 2γ n+1 b 1 }. Then, denoting w n = E θ nθ 2 , one can rewrite inequality (19) as

w n+1 ≤ 1 + b 1 γ 2 n+1 w n + C 1 γ 2 n+1 + γ n+1 λ min L 2 δ v n if n < n 1 1 -1 2 λ min γ n+1 w n + C 1 γ 2 n+1 + γ n+1 λ min L 2 δ v n if n ≥ n 1 Furthermore, by definition of b 1 , remark that for all n ≥ n 1 , 1 2 λ min γ n+1 ≤ λ 2 min 4b 1 ≤ 1. ( 20 
)
Case where n ≤ n 1 : With the help of an induction, one can check that for all n ≤ n 1 ,

w n ≤ n ∏ i=1 1 + γ 2 i b 1 =:A 1,n w 0 + n ∑ k=1 n ∏ i=k+1 1 + b 1 γ 2 i C 1 γ k + L 2 δ λ min γ k v k-1 =:B 1,n
Remark that by definition of n 1 and since 1

+ x ≤ e x , A 1,n ≤ exp n ∑ k=1 b 1 γ 2 k ≤ exp - 1 2 λ min n ∑ k=1 γ k exp 2b 1 n ∑ k=1 γ 2 k
Furthermore, by definition of n 1 , one can check that

B 1,n ≤ n ∏ k=1 1 + b 1 γ 2 k n ∑ k=1 C 1 γ 2 k + L 2 δ λ min γ k v k-1 ≤ exp b 1 n ∑ k=1 γ 2 k n ∑ k=1 C 1 γ 2 k + L 2 δ λ min γ k v k-1 ≤ exp - 1 2 λ min n ∑ k=1 γ k exp 2b 1 n ∑ k=1 γ 2 k n ∑ k=1 C 1 γ 2 k + L 2 δ λ min γ k v k-1
Then, if n ≤ n 1 , one have

w n ≤ exp - 1 2 λ min n ∑ k=1 γ k exp 2b 1 n ∑ k=1 γ 2 k w 0 + n ∑ k=1 C 1 γ 2 k + L 2 δ λ min γ k v k-1 (21)
Case where n > n 1 : With the help of an induction, one can check that for all n > n 1 ,

w n = n ∏ i=n 1 +1 1 - 1 2 λ min γ i w n 1 =:A 2,n + n ∑ k=n 1 +1 n ∏ i=k+1 1 - 1 2 λ min γ i γ 2 k C 1 + L 2 δ λ min γ k v k-1 =:B 2,n
Thanks to inequality ( 20), one has

∏ n i=n 1 +1 1 -1 2 λ min γ i ≤ exp -1 2 λ min ∑ n i=n 1 +1 γ i ,

and with the help of inequality (21), it comes

A 2,n ≤ exp - 1 2 λ min n ∑ k=1 γ k exp 2b 1 n 1 ∑ k=1 γ 2 k w 0 + n 1 ∑ k=1 γ 2 k C 1 + L 2 δ λ min γ k v k-1
Let us now bound B 2,n and differentiate two cases: ⌈n/2⌉ -1 > n 1 and ⌈n/2⌉ -1 ≤ n 1 .

Case where n > n 1 ≥ ⌈n/2⌉ -1: Since γ k and v k are decreasing, and since

B 2,n ≤ γ n 1 +1 C 1 + L 2 δ λ min v n 1 n ∑ k=n 1 +1 n ∏ i=k+1 1 - 1 2 λ min γ i γ k = γ n 1 +1 C 1 + L 2 δ λ min v n 1 2 λ min n ∑ k=n 1 +1 n ∏ i=k+1 1 - 1 2 λ min γ i - n ∏ i=k 1 - 1 2 λ min γ i
With the help of inequality (20) and since γ k and v k are decreasing,

B 2,n ≤ γ n 1 +1 C 1 + L 2 δ λ min v n 1 2 λ min 1 - n ∏ i=n 1 +1 1 - 1 2 λ min γ i ≤ γ ⌈n/2⌉ C 1 + L 2 δ λ min v ⌈n/2⌉-1 2 λ min
Case where n 1 < ⌈n/2⌉ -1: As in Bach and Moulines (2013), since γ k and v k are decreasing, one can check that for all m

= n 1 + 1, . . . , n B 2,n ≤ exp - 1 2 λ min n ∑ k=m+1 γ k m ∑ k=n 1 +1 γ 2 k C 1 + L 2 δ λ min γ k v k-1 + γ m 2C 1 λ min + 2L 2 δ λ 2 min v m-1
Taking m = ⌈n/2⌉ -1, it comes by definition of n 1 ,

B 2,n ≤ exp - 1 2 λ min n ∑ k=⌈n/2⌉ γ k ⌈n/2⌉ ∑ k=n 1 +1 γ 2 k C 1 + L 2 δ λ min γ k v k-1 + γ ⌈n/2⌉-1 2C 1 λ min + 2L 2 δ λ 2 min v ⌈n/2⌉-2 Final bound of B 2,n : For all n ≥ n 1 , B 2,n ≤ exp - 1 2 λ min n ∑ k=⌈n/2⌉ γ k ⌈n/2⌉ ∑ k=n 1 +1 γ 2 k C 1 + L 2 δ λ min γ k v k-1 + r n with r n =          γ ⌈n/2⌉-1 2C 1 λ min + 2L 2 δ λ 2 min v ⌈n/2⌉-2 if n 1 < ⌈n/2⌉ -1 γ ⌈n/2⌉ 2C 1 λ min + 2L 2 δ λ 2 min v ⌈n/2⌉-1 if ⌈n/2⌉ -1 ≤ n 1 and n > n 1 0 else Final bound of w n : Let us recall that ∑ n k=1 γ k ≥ ∑ n k=⌈n/2⌉ γ k ≥ n 2 γ n = c γ
2 n 1-α , so that, with the help of integral tests for convergence,

w n ≤ exp - 1 4 λ min c γ n 1-α exp 2b 1 c 2 γ 2α 2α -1 w 0 + c 2 γ C 1 2α 2α -1 + 2 L 2 δ λ min n ∑ k=1 γ k v k-1 + r n
Let us recall that for all n ≥ 1,

v n ≤ exp - 1 4 a 0 c γ n 1-α exp 2a 1 c 2 γ 2α 2α -1 + 2a 2 c 3 γ 3α 3α -1 v 0 + σ 2 c 3 γ 3α 3α -1 =:c 1 + 2 1+4α σ 2 c 2 γ a 0 n -2α
With the help of integral tests for convergence,

n ∑ k=1 γ k v k-1 ≤ u 0 c γ + c 1 + c 1 n 1 c γ t -α exp - 1 4 a 0 c γ t 1-α dt + 2 1+4α σ 2 c 3 γ a 0 3α 3α -1 ≤ u 0 c γ + c 1 - 4c 1 a 0 (1 -α) exp - 1 4 a 0 c γ t 1-α n 1 + 2 1+4α σ 2 c 3 γ a 0 3α 3α -1 ≤ u 0 c γ + c 1 + 4c 1 a 0 (1 -α) exp - 1 4 a 0 c γ + 2 1+4α σ 2 c 3 γ a 0 3α 3α -1
Finally, thanks to inequality (15)

r n ≤ c 1 exp - 1 8 a 0 c γ n 1-α + 2 1+8α σ 2 c 2 γ a 0 n -2α 2L 2 δ λ 2 min + 2 1+α C 1 λ min c γ n -α it comes w n ≤ e -1 4 λ min c γ n 1-α e 2b 1 c 2 γ 2α 2α-1 w 0 + c 2 γ C 1 2α 2α -1 + 2L 2 δ λ min u 0 c γ + c 1 + 4c 1 a 0 (1 -α) e -1 4 a 0 c γ + 2 1+4α σ 2 c 2 γ a 0 3α 3α -1 + c 1 exp - 1 8 a 0 c γ n 1-α + 2 1+8α σ 2 c 2 γ a 0 n -2α 2L 2 δ λ 2 min + 2 1+α C 1 λ min c γ n -α i.e E θ n -θ 2 ≤ Ae -1 4 λ min c γ n 1-α + c 1 e -1 8 a 0 c γ n 1-α + 2 1+8α σ 2 c 2 γ a 0 n -2α 2L 2 δ λ 2 min + 2 1+α C 1 λ min c γ n -α with A = e 2b 1 c 2 γ 2α 2α-1 w 0 + 2αc 2 γ C 1 2α -1 + 2 L 2 δ λ min u 0 c γ + c 1 + 4c 1 a 0 (1 -α) e -1 4 a 0 c γ + 2 1+4α σ 2 c 3 γ a 0 3α 3α -1 5.4 Proof of Lemma 3.2 If C 2 = C ′ 2 = 0, one can rewrite inequality (8) as u n+1 ≤ (1 -a 0 γ n+1 ) u n + σ 2 γ 3 n+1 with u n = E V 2 n , a 0 = λ 2 0 min 1,r 2 λ 0 L ∇G
, and

σ 2 = C 2 1 (4L ∇G +1) 2 L ∇G 12λ 2 0 min 1,r 2 λ 0 + c γ L 2 ∇G C ′ 1 2 . Let n ′ 0 = inf {n, a 0 γ n+1 ≤ 1}.
One can rewrite previous inequality as

u n+1 ≤ σ 2 γ 3 n+1 if n < n ′ 0 (1 -a 0 γ n+1 ) u n + σ 2 γ 3 n+1 if n ≥ n ′ 0 .
Then, we just have to study the case where n > n ′ 0 . With the help of an induction, one has

u n ≤ n ∏ i=n ′ 0 +1 (1 -a 0 γ i ) u n 0 =:U ′ 3,n + n ∑ k=n ′ 0 +1 n ∏ i=k+1 (1 -a 0 γ i ) σ 2 γ 3 k =:U ′ 4,n
We now bound each term on the right-hand side of previous inequality.

Bounding U ′ 3,n : By definition of n ′ 0 , and since 1

+ x ≤ e x , U ′ 3,n ≤ exp   -a 0 n ∑ k=n ′ 0 +1 γ k   σ 2 γ 3 n ′ 0
With the help of an integral test for convergence,

U ′ 3,n ≤ exp -a 0 c γ n n ′ 0 +1 t -α dt σ 2 γ 3 n ′ 0 = exp -a 0 c γ 1 1 -α n + 1) 1-α -n ′ 0 + 1 1-α σ 2 γ 3 n ′ 0 ≤ exp - 1 2 a 0 c γ n + 1) 1-α -n ′ 0 + 1 1-α σ 2 γ 3 n ′ 0 ( 22 
)
Bounding U ′ 4,n : As in the proof of Lemma 3.1, we will consider two cases:

n ′ 0 < ⌈n/2⌉ -1 and n ′ 0 ≥ ⌈n/2⌉ -1.
Case where n ′ 0 ≥ ⌈n/2⌉ -1: With calculus analogous to (13), one can obtain

U ′ 4,n ≤ σ 2 a 0 γ 2 ⌈n/2⌉ . ( 23 
)
Case where n ′ 0 < ⌈n/2⌉ -1: As in [START_REF] Bach | Non-strongly-convex smooth stochastic approximation with convergence rate o (1/n)[END_REF], for all m = n ′ 0 + 1, . . . , n,

U ′ 4,n ≤ exp -a 0 n ∑ k=m+1 γ k m ∑ k=n 0 +1 σ 2 γ 3 k + σ 2 a 0 γ 2 m .
Taking m = ⌈n/2⌉ -1 and with the help of an integral test for convergence, it comes

U ′ 4,n ≤ exp -a 0 n ∑ k=⌈n/2⌉ γ k ⌈n/2⌉-1 ∑ k=n 0 +1 σ 2 γ 3 k + σ 2 a 0 γ 2 ⌈n/2⌉-1 ≤ exp - 1 2 a 0 c γ n 1-α σ 2 c 3 γ 3α 3α -1 + σ 2 a 0 γ 2 ⌈n/2⌉-1 (24) 
Bounding u n : Thanks to inequalities ( 22),( 23) and ( 24), we have

u n ≤ exp - 1 2 a 0 c γ n 1-α σ 2 max exp 1 2 a 0 c γ n ′ 0 + 1 1-α γ 3 n ′ 0 , c 3 γ 3α 3α -1 + r ′ n with r ′ n =        σ 2 γ 3 n if n ≤ n ′ 0 σ 2 a 0 γ 2 ⌈n/2⌉ if n > n ′ 0 ≥ ⌈n/2⌉ -1 σ 2 a 0 γ 2 ⌈n/2⌉-1
else which can be also writen as

u n ≤        σ 2 γ 3 n if n ≤ n ′ 0 e -1 2 a 0 c γ n 1-α e 1 2 a 0 c γ (n ′ 0 +1) 1-α σ 2 γ 3 n ′ 0 + σ 2 a 0 γ ⌈n/2⌉ if n > n ′ 0 ≥ ⌈n/2⌉ -1 e -1 2 a 0 c γ n 1-α σ 2 c 3 γ 3α 3α-1 + σ 2 a 0 γ 2 ⌈n/2⌉-1 else or as u n ≤ exp - 1 2 a 0 c γ n 1-α σ 2 exp 1 2 a 0 c γ n ′ 0 + 1 1-α γ 3 n ′ 0 + c 3 γ 3α 3α -1 + σ 2 M 0 c 2 γ n -2α =:v ′ n ( 25 
)
with M 0 = max 2 4α a 0 , c γ .

Proof of Theorem 3.2

If C 2 = 0, by definition of v ′ n (see equation ( 25)), one can rewrite inequality ( 19) as

E θ n+1 -θ 2 ≤ (1 -γ n+1 λ min ) E θ n -θ 2 + γ 2 n+1 C 1 + γ n+1 λ min L 2 δ v ′ n . ( 26 
)
Let us denote n ′ 1 = min {n, λ min γ n+1 ≥ 1}. One can rewrite inequality (26) as

w n+1 ≤ γ 2 n+1 C 1 + γ n+1 λ min L 2 δ v ′ n if n < n ′ 1 (1 -γ n+1 λ min ) w n + γ 2 n+1 C 1 + γ n+1 λ min L 2 δ v ′ n if n ≥ n 1 with E θ n -θ 2 .
We now focus on the case where n > n 1 . First, remark that with the help of an induction, one can obtain

w n ≤ n ∏ i=n ′ 1 +1 (1 -λ min γ i ) w n ′ 1 =:A ′ 1,n + n ∑ k=n ′ 1 +1 n ∏ i=k+1 (1 -λ min γ i ) γ 2 k C 1 + γ k λ min L 2 δ v ′ k-1 =:A ′ 2,n
and we now bound each term on the right-hand side of previous inequality.

Bounding A ′ 1,n : By definition of n ′ 1 and with the help of an integral test for convergence, one can check that

A ′ 1,n ≤ exp -λ min c γ (n + 1) 1-α -n ′ 1 + 1 1-α γ 2 n ′ 1 C 1 + γ n ′ 1 λ min L 2 δ v ′ n ′ 1 -1 (27) Bounding A ′ 2,n : As we did in previous calculus, since γ k and v ′ k are decreasing, one can check that if n ′ 1 ≥ ⌈n/2⌉ -1, A ′ 2,n ≤ C 1 λ min γ ⌈n/2⌉ + L 2 δ λ 2 min v ′ ⌈n/2⌉-1 and if n ′ 1 < ⌈n/2⌉ -1, A ′ 2,n ≤ exp -λ min n ∑ k=⌈n/2⌉ γ k C 1 c 2 γ 2α 2α -1 + L 2 δ λ min n ∑ k=1 γ k v ′ k-1 + C 1 λ min γ ⌈n/2⌉-1 + L 2 δ λ 2 min v ′ ⌈n/2⌉-2
Then,

A ′ 2,n ≤ exp -λ min n ∑ k=⌈n/2⌉ γ k C 1 c 2 γ 2α 2α -1 + L 2 δ λ min n ∑ k=1 γ k v ′ k-1 + r ′′ n (28) with r ′′ n =          C 1 λ min γ ⌈n/2⌉-1 + L 2 δ λ 2 min v ′ ⌈n/2⌉-2 if n 1 ′ < ⌈n/2⌉ -1 C 1 λ min γ ⌈n/2⌉ + L 2 δ λ 2 min v ′ ⌈n/2⌉-1 if ⌈n/2⌉ -1 ≤ n 1 and n > n 1 0 else Let us denote c n ′ 0 := σ 2 exp 1 2 a 0 c γ (n ′ 0 + 1) 1-α γ 3 n ′ 0 + c 3 γ 3α 3α-1 , i.e one can bound v ′ n as (with v ′ n defined in (25)) v ′ n ≤ c n ′ 0 exp - 1 2 a 0 c γ n 1-α + σ 2 M 0 c 2 γ n -2α
Then, with the help of an integral test for convergence, one can check that

n ∑ k=1 γ k v ′ k-1 ≤ c n ′ 0 + c γ u 0 + 2c n ′ 0 a 0 (1 -α) exp - 1 2 a 0 c γ + σ 2 c 3 γ M 0 3α 3α -1 Furthermore, one can check that r ′′ n ≤ c n ′ 0 exp - 1 4 a 0 c γ n 1-α + σ 2 c 2 γ M 0 n -2α L 2 δ λ 2 min + 2 α C 1 λ min c γ n -α . ( 29 
)
Final bound of E θ nθ 2 : As a conclusion, thanks to inequalities ( 27), ( 28) and ( 29),

E θ n -θ 2 ≤ A ′ e -λ min c γ n 1-α + c n ′ 0 e -1 4 a 0 c γ n 1-α + σ 2 c 2 γ M 0 n -2α L 2 δ λ 2 min + 2 α C 1 c γ λ min n -α with A ′ = e λ min c γ (n ′ 1 +1) 1-α C 1 c 2 γ 2α 2α -1 + c n ′ 0 + c γ u 0 + 2c n ′ 0 a 0 (1 -α) e -1 2 a 0 c γ + σ 2 c 3 γ M 0 3α 3α -1 .

Proofs of Section 4

In order to prove theorems of Section 4, let us first give some usual decompositions of the estimates. First, remark that one can rewrite θ n+1 as

θ n+1 -θ = θ n -θ -γ n+1 ∇G (θ n ) + γ n+1 ξ n+1 ( 30 
)
where ξ n+1 := ∇G (θ n ) -∇ h g (X n+1 , θ) is a martingale difference adapted to F n . Furthermore, denoting H = ∇ 2 G(θ) and linearizing the gradient, one has

θ n+1 -θ = (I d -γ n+1 H) (θ n -θ) + γ n+1 ξ n+1 -γ n+1 δ n (31)
where δ n := ∇G (θ n ) -H (θ nθ) is the remainder term in the Taylor's expansion of the gradient. This inequality can be rewrite as

H (θ n -θ) = θ n -θ n+1 γ n+1 + ξ n+1 -δ n .
Summing these equalities, dividing by n + 1 and applying an Abel's transform (see [START_REF] Pelletier | Asymptotic almost sure efficiency of averaged stochastic algorithms[END_REF] for more details), it comes

H θ n -θ = θ 0 -θ γ 1 (n + 1) - θ n+1 -θ γ n+1 (n + 1) + 1 n + 1 n ∑ k=1 (θ k -θ) 1 γ k+1 - 1 γ k + 1 n + 1 n ∑ k=0 ξ k+1 - 1 n + 1 n ∑ k=0 δ k (32)

Proof of Theorem 4.1

In order to prove Theorem 4.1, let us bound each term on the right hand-side of equality (32).

Bounding E θ n+1 -θ γ n+1 (n+1) 2 : Thanks to Theorem 3.1, one has E θ n+1 -θ γ n+1 (n + 1) 2 ≤ √ Ae -1 8 λ min c γ n 1-α c γ (n + 1) 1-α + √ 2 √ c 1 L δ λ min c γ (n + 1) 1-α exp - 1 16 a 0 c γ n 1-α + 2 1+4α σ √ a 0 L δ λ min (n + 1) + 2 1+α 2 √ C 1 √ λ min 1 √ c γ (n + 1) 1-α/2 (33) Bounding R n := 1 n+1 E ∑ n k=1 (θ k -θ) 1 γ k+1 -1 γ k 2 . First remark that 1 γ k+1 -1 γ k ≤ αc -1 γ k α-1 ≤ c -1 γ k α-1 , so that, thanks to Minkowski's inequality, R n ≤ 1 n + 1 n ∑ k=1 E θ k -θ 2 1 γ k+1 - 1 γ k ≤ αc -1 γ n + 1 n ∑ k=1 E θ k -θ 2 k α-1 Denoting A ∞ := √ A c γ +∞ ∑ n=0 e -1 8 λ min c γ n 1-α and D ∞ := √ 2 √ c 1 L δ λ min c γ +∞ ∑ n=0 e -1 16 a 0 c γ n 1-α it comes R n ≤ A ∞ + D ∞ n + 1 + 2 1+4α σL δ √ a 0 λ min 1 n + 1 n ∑ k=1 k -1 + 2 1+α 2 √ C 1 √ c γ √ λ min α n + 1 n ∑ k=1 k α/2-1 ≤ A ∞ + D ∞ n + 1 + 2 1+4α σL δ √ a 0 λ min ln(n + 1) n + 1 + 2 3+α 2 √ C 1 √ c γ √ λ min 1 (n + 1) 1-α/2 (34) Bounding R ′ n = 1 n+1 E ∑ n k=0 δ k 2 .
First remark that thanks to Minkowski's inequality coupled with inequality (18), one has

R ′ n ≤ 1 n + 1 n ∑ k=0 E δ n 2 ≤ L δ √ u 0 n + 1 + L δ n + 1 n ∑ k=1 E (G (θ n ) -G(θ)) 2
Then, applying Lemma 3.1 and denoting

B ∞ := +∞ ∑ n=0 e -1 8 c γ a 0 n 1-α e a 1 c 2 γ 2α 2α-1 +a 2 c 3 γ 3α 3α-1 √ u 0 + σc 3/2 γ 3α 3α -1 , one has R ′ n ≤ ≤ L δ B∞ n+1 L δ √ u 0 n + 1 + L δ n + 1 n ∑ k=1 e -1 8 c γ a 0 k 1-α e a 1 c 2 γ 2α 2α-1 +a 2 c 3 γ 3α 3α-1 √ u 0 + σc 3/2 γ 3α 3α -1 + L δ 2 1/2+2α σc γ √ a 0 1 n + 1 n ∑ k=1 k -α ≤ L δ B ∞ n + 1 + L δ 2 1/2+2α σc γ √ a 0 (1 -α) 1 (n + 1) α (35) Bounding M n := 1 n+1 E ∑ n k=0 ξ k+1 2 .
Remark that by definition of ξ n+1 and thanks to Assumption (A1), one has

E ξ n+1 2 |F n = E ∇ h g (X n+1 , θ n ) 2 |F n -∇G (θ n ) 2 ≤ E ∇ h g (X n+1 , θ n ) 2 |F n ≤ C 1 + C 2 (G (θ n ) -G(θ))
Furthermore, since (ξ n+1 ) is a sequence of martingale differences adapted to the filtration (F n ) and applying Hölder inequality, one has

M n = 1 n + 1 n ∑ k=0 E ξ k+1 2 ≤ √ C 1 √ n + 1 + √ C 2 n + 1 √ u 0 + n ∑ k=1 E [(G (θ n ) -G(θ)) 2 ].
Thanks to Lemma 3.1, it comes

M n ≤ √ C 1 √ n + 1 + √ C 2 n + 1 ≤ √ B ∞ √ u 0 + n ∑ k=1 e -1 8 c γ a 0 n 1-α e a 1 c 2 γ 2α 2α-1 +a 2 c 3 γ 3α 3α-1 √ u 0 + σc 3/2 γ 3α 3α -1 + √ C 2 n + 1 n ∑ k=1 2 1/2+2α σc γ √ a 0 k -α
Finally, it comes

M n ≤ √ C 1 √ n + 1 + √ C 2 √ B ∞ n + 1 + √ C 2 2 1/4+α √ σ √ c γ a 1/4 0 √ 1 -α 1 (n + 1) 1/2+α/2
(36)

Conclusion: Thanks to inequalities (33) to ( 35), one has

λ min E θ n -θ 2 ≤ √ C 1 √ n + 1 + L δ 2 1/2+2α σc γ √ a 0 (1 -α) 1 (n + 1) α + 2 1+α 2 5 √ C 1 √ c γ √ λ min 1 (n + 1) 1-α/2 + √ C 2 2 1/4+α √ σ √ c γ a 1/4 0 √ 1 -α(n + 1) 1/2+α/2 + 2 1+4α σL δ √ a 0 λ min ln(n + 1) n + 1 + A ∞ + D ∞ + L δ B ∞ + √ C 2 √ B ∞ + c -1/2 γ √ v 0 n + 1

Proof of Theorem 4.2

In order to prove Theorem 4.2, we just have to give a better bound of the martingale term

1 n+1 ∑ n k=0 H -1 ξ k . First, let us recall that E   n ∑ k=0 H -1 ξ k+1 2   ≤ n ∑ k=0 E H -1 ∇ h g (X k+1 , θ k ) 2 ≤ n ∑ k=0 E Tr H -1 ∇ h g (X k+1 , θ k ) ∇ h g (X k+1 , θ k ) T H -1 = n ∑ k=0 E     Tr     H -1 E ∇ h g (X k+1 , θ k ) ∇ h g (X k+1 , θ k ) T |F k =Σ(θ k ) H -1        
Since the functional Σ(.) is L Σ -lipschitz and denoting Σ = Σ(θ), one has

E   n ∑ k=0 H -1 ξ k+1 2   = (n + 1)Tr H -1 ΣH -1 + n ∑ k=0 E Tr H -1 (Σ (θ k ) -Σ (θ)) H -1 ≤ (n + 1)Tr H -1 ΣH -1 + L Σ λ 2 min n ∑ k=0 E θ k -θ 2 (37) 
Then, thanks to Theorem 3.1, it comes

E   n ∑ k=0 H -1 ξ k+1 2   ≤ Tr (H -1 ΣH -1 ) √ n + 1 + √ L Σ √ v 0 λ min + √ L Σ λ min A n ∑ k=1 e -1 4 λ min c γ k 1-α + √ 2 √ L Σ √ c 1 L δ λ 2 min n ∑ k=1 exp - 1 8 a 0 c γ k 1-α + 2 1+4α √ L Σ σc γ L δ √ a 0 λ 2 min n ∑ k=1 k -2α + 2 1/2+α/2 √ C 1 √ L Σ √ c γ λ 3/2 min n ∑ k=1 k -α
Then, thanks to Minkovski's inequality and by definition of A ∞ and D ∞ ,

1 n + 1 E   n ∑ k=0 H -1 ξ k+1 2   ≤ Tr (H -1 ΣH -1 ) √ n + 1 + √ L Σ √ v 0 λ min (n + 1) + √ L Σ c γ A ∞ λ min (n + 1) + √ L Σ c γ D ∞ λ min (n + 1) + 2 1+4α √ L Σ σc γ L δ √ 2α √ a 0 λ 2 min √ 2α -1(n + 1) + 2 1/2+α/2 √ C 1 √ L Σ √ c γ λ 3/2 min √ 1 -α(n + 1) 1/2+α/2 ,
which concludes the proof.

Proof of Theorem 4.3

In order to prove Theorem 4.3, let us bound each term on the right hand-side of equality (32).

Bounding E

θ n+1 -θ γ n+1 (n+1) 2 : Thanks to Theorem 3.2, one has

E θ n+1 -θ γ n+1 (n + 1) 2 ≤ √ A ′ e -1 2 λ min c γ n 1-α c γ (n + 1) 1-α + c n ′ 0 L δ c γ λ min (n + 1) 1-α exp - 1 8 a 0 c γ n 1-α + σL δ √ M 0 λ min (n + 1) + 2 α 2 √ C 1 √ λ min 1 √ c γ (n + 1) 1-α/2 Bounding R n := 1 n+1 E ∑ n k=1 (θ k -θ) 1 γ k+1 -1 γ k 2 . Recalling that R n ≤ c -1 γ n + 1 n ∑ k=1 E θ k -θ 2 k α-1 Denoting A ′ ∞ := √ A ′ c γ +∞ ∑ n=0 e -1 2 λ min c γ n 1-α and D ′ ∞ := c n ′ 0 L δ λ min c γ +∞ ∑ n=0 e -1 8 a 0 c γ n 1-α it comes R n ≤ A ′ ∞ + D ′ ∞ n + 1 + σL δ √ M 0 λ min (n + 1) n ∑ k=1 k -1 + 2 α 2 √ C 1 √ λ min √ c γ 1 n + 1 n ∑ k=1 k α/2-1 ≤ A ′ ∞ + D ′ ∞ n + 1 + σL δ √ M 0 λ min (n + 1) ln(n + 1) n + 1 + 2 1+ α 2 √ C 1 α √ λ min √ c γ 1 (n + 1) 1-α/2 Bounding R ′ n = 1 n+1 E ∑ n k=0 δ k 2 . Let us recall that R ′ n ≤ 1 n + 1 n ∑ k=0 E δ n 2 ≤ L δ √ u 0 n + 1 + L δ n + 1 n ∑ k=1 E (G (θ n ) -G(θ)) 2 .
Furthermore, denoting

B ′ ∞ = c n ′ 0 + √ u 0 ∑ n≥0 exp - 1 4 a 0 c γ n 1-α
and with the help of Lemma 3.2, one has

R ′ n ≤ ≤ L δ B ′ ∞ n+1 L δ √ u 0 n + 1 + L δ c n ′ 0 n + 1 n ∑ k=1 exp - 1 4 a 0 c γ k 1-α +L δ σc γ M 0 1 n + 1 n ∑ k=1 k -α ≤ L δ B ′ ∞ n + 1 + L δ σc γ √ M 0 (1 -α)(n + 1) α Bounding M n : Recalling that M n ≤ √ C 1 √ n + 1 + √ C 2 n + 1 √ u 0 + n ∑ k=1 E [(G (θ n ) -G(θ)) 2 ].
and since C 2 = 0, one has

M n ≤ √ C 1 √ n + 1
which concludes the proof.

Proof of Theorem 4.4

In order to prove Theorem 4.4, we just have to give a better bound of the martingale term 1 n+1 ∑ n k=0 H -1 ξ k+1 . Thanks to inequality (37) couple with Theorem 3.2, it comes

E   n ∑ k=0 H -1 ξ k+1 2   ≤ Tr (H -1 ΣH -1 ) √ n + 1 + √ L Σ √ v 0 λ min + √ L Σ λ min A ′ n ∑ k=1 e -λ min c γ n 1-α + √ L Σ c n ′ 0 L δ λ 2 min n ∑ k=1 e -1 8 a 0 c γ n 1-α + √ L Σ L δ c γ λ 2 min M 0 n ∑ k=1 k -2α + √ L Σ 2 α 2 √ C 1 λ 3/2 min n ∑ k=1 k -α .
Then, by Minkowski's inequality, it comes

E   n ∑ k=0 H -1 ξ k+1 2   ≤ Tr (H -1 ΣH -1 ) √ n + 1 + √ L Σ √ v 0 λ min + √ L Σ λ min c γ A ′ ∞ + √ L Σ λ min c γ D ′ ∞ + √ L Σ L δ c γ λ 2 min M 0 2α 2α -1 + √ L Σ 2 α 2 √ C 1 λ 3/2 min 1 √ 1 -α (n + 1) 1-α 2 .
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