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We have conducted an extensive study of the scaling properties of small scale turbulence
using both numerical and experimental data of a flow in the same von Kármán geometry.
We have computed the wavelet structure functions, and the structure functions of the
vortical part of the flow and of the local energy transfers. We find that the latter obeys
a generalized extended scaling, similar to that already observed for the wavelet structure
functions. We compute the multi-fractal spectra of all the structure functions and show
that they all coincide with each other, providing a local refined hypothesis. We find that
both areas of strong vorticity and strong local energy transfer are highly intermittent
and are correlated. For most cases, the location of local maximum of energy transfer is
shifted with respect to the location of local maximum of vorticity. We however observe a
much stronger correlation between vorticity and local energy transfer in the shear layer,
that may be an indication of a self-similar quasi-singular structure that may dominate
the scaling properties at large order structure functions.

Key words: Turbulent flows, intermittency, universality, von Kármán swirling flows.

1. Introduction

In 1949, Batchelor and Towsend (Batchelor & Townsend 1949) published the
first experimental account about inconsistencies in the original turbulence theory of
Kolmogorov (Kolmogorov 1941). Measuring various flatnesses of the distribution of

velocity derivatives, α(n) =

(
∂nu
∂xn

)4

/

[(
∂nu
∂xn

)2
]2

, they observed an increase of α both

with n and with the Reynolds number Re. Their interpretation was that ∂nu/∂xn
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fluctuates in a manner that is more markedly intermittent as n or Re increases, a fact
confirmed by oscillograms of the velocity field derivatives. The finding was summarized in
a remarkable concise but visionary paragraph stating that ”energy associated with large
wave-number is very unevenly distributed in space. There appear to be isolated regions
in which the large wave-numbers are ’activated’, separated by regions of comparative
quiescence. This spatial inhomogeneity becomes more marked with increase in the order
of the velocity derivative, i.e. with increase in the wave-number. It is suggested that
the spatial inhomogeneity is produced early in the history of the turbulence by an
intrinsic instability, in the way that a vortex sheet quickly rolls up into a number of
strong discrete vortices. Thereafter the inhomogeneity is maintained by the action of
the energy transfer.” As noted by Moffatt (2002), such finding describes precisely the
now well-admitted intermittency of the vorticity field. In the same time, it provides a
clear scenario of building of intermittency and inhomogeneity via first Kelvin-Helmholtz
instability (roll up of vorticity sheet), then breaking into discrete blobs of vorticity, and
finally action of the energy transfer, that allows to maintain resulting inhomogeneity
along scales.

The result of Batchelor and Townsend only concerns intermittency at the dissipative
scales. The Kolmogorov (1962) refined theory allows to connect intermittency of the local
energy dissipation with (intermittent) correction to scaling of the energy spectrum, or
of the velocity structure functions up to the inertial scales. In this picture, there is a
direct link between the ’active’ regions of intense local dissipation, and the intermittent
corrections to scaling. Because the areas of intense dissipation are observed to arise in the
vicinity of vorticity filaments (Vincent & Meneguzzi 1994), or sheets (Moisy & Jiménez
2004), there have been several attempts to link intermittency exponents, and vorticity
based coherent structures with sometimes conflicting conclusions. By computing wavelet-
based velocity and vorticity structure functions, Kestener & Arneodo (2004) found the
same intermittency in a 2563 numerical simulation at Rλ = 140. However, Nguyen et al.
(2019) found a different multifractal spectrum between the two fields in a numerical
simulation at the same Rλ but with a large resolution 7683 (see figures 7-8 of Nguyen
et al. (2019)). From the experimental side, Paret & Tabeling (1998) used a simultaneous
monitoring of local pressure and velocity in an experimental flow at large Reynolds
number to find that the intermittency is decreased when removing from the velocity
signal the portions corresponding to very low pressure events (presumably tracing vortex
cores). The procedure was improved using wavelet filtering by Chainais et al. (1999), to
conclude that the coherent structures do affect the intermittency by acting on the way
the cascade develops. Altogether, these results suggest that the vorticity is not the only
important ingredient of the intermittency, and that energy transfers should be somehow
taken into account, as first argued by Kraichnan (1975).

Indeed, a direct link between intermittent exponent and instantaneous partial local
energy transfer at the Kolmogorov scale was found in an experimental turbulent swirling
flow using conditional statistics (Debue et al. 2018; Dubrulle 2019). At this time,
only velocity measurements on a plane were available, meaning that a fraction of the
local energy transfer was missing, and that the vorticity field could not be computed,
preventing investigation of possible correlations in between them and with intermittent
corrections. Thanks to an outstanding experimental and numerical effort, we now have at
our disposal both 3D time and space resolved velocity measurements and numerical data
in the same geometry (Cappanera et al. 2020; Debue et al. 2020). The goal of the present
paper is thus to gather all results, and investigate how much local energy transfers and
vorticity are correlated in between them, and with intermittent corrections to scaling.
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2. Definitions

Here, we define the basic tools that we use in our analysis.The time dependence of the
velocity field has been removed in the notations for convenience.

2.1. Vorticity

The vorticity is a well known object in turbulence. Its magnitude will be mostly used
here as

ω = ‖∇ × u‖. (2.1)

2.2. Increments and structure functions

The traditional basic tool to study intermittency is via scaling of the velocity structure
functions of order p, defined as:

Sp(`) = 〈(δ`u)
p〉‖`‖=`. (2.2)

Here, δ`u is the longitudinal velocity increment at scale `, defined as

δ`u = ˆ̀· (u(x + `)− u(x)) (2.3)

where ˆ̀ is the increment direction. Througout the paper, the notation h refers to the
local Hölder regularity of δ`u so that δ`u ∼ `h. In Muzy et al. (1991) it was argued that
wavelet based velocity increments δW` may provide more robust results, via the so-called
Wavelet Transform Modulus Maxima (WTMM) method. The use of wavelets (Farge 1992;
Schneider & Vasilyev 2010) allows to separate strong vorticity structures from the noise.
We use a wavelet such that the first moment vanishes. This allows to explore Hölder
exponents lower than 1. The velocity increments are defined via the wavelet transform
of the tensor ∂jui:

Gi,j(x, `) =

∫
∇jφ`(r)ui(x + r)dr, (2.4)

where φ`(x) = `−3φ(x/`) is a smooth non-negative function with unit integral. From
this, we get the wavelet velocity increments as

δW`(x) = `max
i,j
|Gi,j(x, `)|. (2.5)

The interest of such formulation is that it allows to define a velocity increment
connected with the scaling properties of the vorticity, by considering the wavelet velocity
increment built from the anti-symmetric part of the tensor ∂jui, so that:

δΩ`(x) =
`

2
max
i,j
|Gi,j −Gj,i|. (2.6)

2.3. Local energy transfer

As argued by Kraichnan (1975) and Meneveau (1991), the local energy transfer at scale
` may be important to understand the origin of intermittency. For example, consider the
local refined hypothesis of Kolmogorov (Kolmogorov (1962)) stating that (δu`)

3 ∼ ε``,
where ∼ means ”has the same statistical properties” and ε` is the energy dissipation over
a ball of scale `. It seems more logical in such formula to replace ε` by the local energy
transfer at scale `. This is the local refined hypothesis of Kraichnan. The latter can be
computed as:

D I
` =

1

4

∫
∇φ`(ξ) · δξu(δξu)2dξ, (2.7)
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where φ` is a smooth non-negative function with unit integral. In the sequel, we choose
the same function for computing δW`, δΩ` and D I

` , and take it as a Gaussian function
φ`(x) = 1

(`
√
2π)3

exp(−‖x‖2/2`2).

As discussed in Dubrulle (2019), these local energy transfers compete at each scale
with the local energy dissipation defined as:

Dν
` =

ν

2

∫
∇2φ`(ξ)(δξu)2dξ. (2.8)

The local refined hypothesis of Kraichnan (1975) can then be expressed in a more

general fashion following (Dubrulle 1994). Replacing ` by
〈δW 3

` 〉
ε and ε` by 〈DI

`〉 leads to
an extended self-similarity as proposed by Dubrulle (2019):

〈δW p
` 〉

〈δW 3
` 〉p/3

∝ 〈|D
I
` |p/3〉

〈|D I
` |〉p/3

. (2.9)

2.4. Scaling exponents

The scaling exponents of the velocity structure functions ζ(p) are defined so that
Sp(`) ∼ `ζ(p) in the inertial range. The latter is defined on the range of scales where the
Kolmogorov 4/5th law applies, namely:

S3(`) = −4

5
ε`, (2.10)

where ε is the energy dissipation rate per unit mass. By definition, we thus have ζ(3) = 1.
Intermittency corrections are thus encoded by τ(p) = ζ(p) − p/3, with τ(3) = 0. By
extension, we define the scaling exponents of δW`, δΩ` and D I

` via the compensated
structure functions as

S̃W (p) =
〈δW p

` 〉
〈δW 3

` 〉p/3
∝ `τW (p),

S̃Ω(p) =
〈δΩp` 〉
〈δΩ3

` 〉p/3
∝ `τΩ(p),

S̃D(p) =
〈|D I

` |p〉
〈|D I

` |〉p
∝ `τD(p), (2.11)

in the inertial range of scales. Note that in the sequel, we discriminate between the
structure functions and their compensated version by a tilde. By definition τW (3) =
τΩ(3) = τD(1) = 0. Note that the refined similarity hypothesis given by eq. (2.9) states
that τW (p) = τD(p/3).

2.5. Multi-fractal spectrum

The multi-fractal spectrum is defined as the Legendre transform of the scaling
exponents of the velocity structure functions ζ(p), so that

C(h) = min
p

(−ph+ ζ(p)) . (2.12)

Here is adopted the language of large deviations, where C(h) is the rate function of the
local scaling exponent. It corresponds to 3−D(h) where D(h) is the dimension of the set
of points with local exponent h in the Frisch & Parisi (1985) interpretation. By extension,
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we also define the multi-fractal spectra of δW`, δΩ` and D I
` as

CW (h) = min
p

(−ph+ τW (p)) ,

CΩ(h) = min
p

(−ph+ τΩ(p)) ,

CD(h) = min
p

(−ph+ τD(p)) . (2.13)

Due to properties of the Legendre transform, CW can be directly compared with C(h)
provided a shift:

CW

(
h− ζ(3)

3

)
= C(h). (2.14)

Moreover, if the refined similarity hypothesis (2.9) is satisfied, then CW (h) = CD(3h).

3. Description of the von Kármán data sets

The framework of our investigation is turbulence in the von Kármán geometry. The
fluid of viscosity ν is confined in a cylinder of radius R =10 cm and height H = 1.8R,
and set into motion by two counter-rotating impellers, rotating at the same frequency F .
It is well known that the von Kármán flow is globally inhomogeneous and anisotropic.
Most of the measurements are performed in the center of the tank, where the flow is
more homogeneous and isotropic (Ouellette et al. 2006). In the sequel, we use R and
1/2πF as unit of length and time respectively, so that the global Reynolds number of
the flow is Re = 2πR2F/ν. The properties of the turbulence, such as global dissipation
and root-mean-square velocity, depend on the shape of the propeller. In the sequel, we
work with the so-called scooping TM87 propeller, described and discussed at length in
Debue (2019); Cappanera et al. (2020); Dubrulle (2019). In this case, the flow is fully
turbulent for Re > 6000 and the non-dimensional dissipation per unit mass is ε = 0.05
in the turbulent regime. This results in a Kolmogorov length and time of 3 10−4m and
4 10−2s at Re = 6000, which are accessible to both modern particle velocity measurements
and direct numerical simulations on a supercomputer. This allows us to combine both
numerics and experiments to explore the nature of intermittency in such a turbulent flow.

3.1. Experimental data sets

Experimental data were collected with Particle Image Velocimetry (PIV) technics.
Hereafter, data named by letters A-E refer to Stereoscopic PIV (SPIV) where the 3
components are deduced by 2D measurements on a plane using 2 cameras (2D-3C).
This data set is described in Dubrulle (2019), and corresponds either to global velocity
measurement in the whole tank (set A) or data taken in a small window zoomed in
the center region of the tank (cases B-E). In each case, either the frequency of the
impellers or the viscosity of the fluid were tuned to modify the Reynolds number and the
Kolmogorov scale. The corresponding parameters for each case are summarized in table
1. All the SPIV data were acquired at 15 Hz resulting in time uncorrelation between two
successive measurements.
Corresponding spatial resolution can be found in table 1. Data named by T-1 to T-4
refer to Tomographic PIV (TPIV) where the 3 components are deduced by tomographic
reconstruction (MART method) in a volume using 5 cameras (3D-3C).
This whole data set is acquired at the center of the tank in water by Ostovan et al.
(2019) and described in Debue (2019). Velocity fields corresponding to different
viscosity or different impeller frequency were measured, as summarized in table 1.
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In all experimental cases, time uncorrelation between two measurements is observed.
Tomographic reconstruction was done with 5 MART iterations keeping low value of
ghost ratio, less than 10%. ε and η are computed using global dissipation measured
by torque-meters while Rλ is deduced from PIV data. The measurement region and
PIV spatial resolution ∆x have an impact on the root-mean-square velocity and Taylor
microscale defining Rλ, therefore leading to different values of Rλ for given viscosity ν
and frequency F . As expressed in table 1, the experiment grid size is rather small, but
a very large number of snapshots of the order of 104 is available on each dataset. A
statistical convergence study for experimental quantities is presented in the appendix of
Debue et al. (2018).

3.2. Numerical data set

The numerical simulations are performed using the SFEMaNS code (Spectral/Finite
Elements code for Maxwell and Navier-Stokes equations). This code uses a hybrid spatial
discretization combining spectral and finite elements. In a nutshell the approximation
in space is done by using a Fourier decomposition in the azimuthal direction and the
continuous Hood-Taylor Lagrange finite element for (r, z) dependencies. The moving
counter-rotating impellers are accounted for by using a pseudo-penalty technique. The
performance of this technique is discussed in details in section 2.4 of Nore et al.
(2018) where shorter impellers are used. Visualizations of turbulent structures, global
quantities (such as kinetic energy or fluctuations level) and spatial spectra obtained
from hydrodynamical simulations are in agreement with experimental observations (see
section 3, Nore et al. (2018)) and thus validate the numerical method.

The rotation frequency is set to 1
2π and the viscosity is chosen so that the global

Reynolds number is 6 103. We use 250 complex modes for the Fourier decomposition and
the spatial resolution is between 1.3 10−3R ' η

3 and 4 10−3R ' η. This unstructured,
irregular, mesh is refined in the middle of the tank, where strongest turbulence takes
place, with no preferred direction for the mesh. Contrary to the experimental set-up
which requires a cooling system, the numerical simulations set the impellers external
disks in contact with the top and bottom lids of the tank.

The Reynolds number of the DNS may appear rather low. It was chosen so as to match
the lower Reynolds number Re = 6 103 of the experiments. This choice of Reynolds
number was originally made in experiments because 6 103 is the lowest Reynolds number
at which we know that the flow is fully turbulent, since it is the beginning of the plateau
of the dissipation anomaly (see discussion in fig 14 of (Dubrulle 2019)). On the other
hand, it is the flow with the largest Kolmogorov scale, enabling to match the highest
spatial resolution of our experimental PIV we could achieve. But once more, we stress
that it corresponds to a fully turbulent flow. The analysed dataset has 21 uncorrelated
snapshots. The high number of grid points 3 108 counter-balances a low number of
snapshots. A convergence study of computed statistical quantities is presented in the
appendix.

4. Comparison between local energy transfer and vorticity

4.1. Fields

Figure 1 compares typical instantaneous experimental snapshots of vorticity amplitude
with the local energy transfer. This figure corresponds to a slice of an experimental
measurement at scale ` = 3.2η in the case T-4, while figure 2 comes from DNS data. As
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Case F (Hz) Grid Points Re Rλ ε(adim) η(mm) ∆x(mm) Symbol

A 5 89× 65 3.1 105 610 0.045 0.016 2.1 •
B 5 77× 79 3.1 105 920 0.045 0.016 0.49 �
C 5 162× 157 3.1 105 890 0.045 0.016 0.24 �
D 1 77× 80 4.1 104 300 0.045 0.073 0.49 N
E 1.2 151× 174 5.8 103 72 0.045 0.32 0.24 ?
T-1 5 149× 103× 20 3.1 105 890 0.045 0.016 0.35 ◦
T-2 1 139× 101× 20 6.3 104 390 0.045 0.054 0.35 �
T-3 0.5 148× 103× 20 3.1 104 250 0.045 0.09 0.35 ♦
T-4 0.1 149× 100× 20 6.3 103 80 0.045 0.3 0.35 M
DNS 1

2π
400× 800× 509 6 103 72 0.045 0.37 0.1-0.4 ◦

Table 1. Parameters describing the main data sets used in this paper. F is the rotation
frequency of the impellers in Hz; Re is the Reynolds number based on F and the radius
of the tank; Rλ is the Taylor-microscale Reynolds number; ε is the global dimensionless
energy dissipation; η is the Kolmogorov dissipation length scale; and ∆x represents the spatial
resolution in the measurements and the DNS. The last column shows the symbols used to
represent the experimental data sets. SPIV stands for stereoscopic Particle Image Velocimetry
(3 components measurements of the velocity on a plane), while TPIV is Tomographic Particle
Image Velocimetry (3 components measurements of the velocity in a cuboid). Since DNS is
dimensionless (the cylinder radius is 1), we express ∆x and F in terms of the experimental
cylinder radius (R =10 cm) and DNS advection time-scale (T = 1) for a better comparison.

table 1 shows, these two cases share the same Reynolds number and resolution.

Despite a higher level of noise in the local energy transfer fields, one observes a clear
but not exact spatial correlation between location of high vorticity amplitude and high
values of D I

` , as already noted in Saw et al. (2016). In figure 2, we show an equivalent
comparison between an instantaneous vorticity field and the local energy transfer, in a
mid-height plane perpendicular to the rotation axis. Like in the experimental case, we
observe a spatial correlation between local maxima of vorticity and local energy transfer,
but the correlation is not exact. To quantify further such correlation, we perform in the
next section a detailed statistical analysis.

4.2. Joint statistics

Figure 3 (resp. 4) shows the joint probability distribution function (PDF) between the
amplitude of the vorticity ω and the local energy transfer D I

` at different scales, in the
experiment T-4 (resp. in the DNS). Each PDF is computed over the available data-set
which corresponds to the experimental cuboid for the experiment T-4, and to the entire
tank excluding the impellers for DNS. Except for very large values of ω/〈ω〉 and D I

`/ε, all
cases display a pyramidal correlation, similar to what was observed in Debue (2019) for
the joint PDF between the local dissipation and the local energy transfer D I

` . This is not
surprising, since dissipation and enstrophy are known to be correlated. The joint PDF of(DI

`

ε ,
ω
〈ω〉
)

shows that for every scale, strong events of inter-scale transfer are associated

with strong vorticity. In the inertial range (see figure 3-b, resp. 4-b) , ` � η, the PDF
is tilted towards positive energy transfers, indicating that the energy is going down the
scales. In the viscous range (see figure 3-a, resp. 4-a), the PDF seems to be symmetric with
respect to the line D I

` = 0. A marked discrepancy appears between numerical results and
experiments when looking at high values of ω/〈ω〉, since the joint PDF computed from
the DNS exhibits a well defined elongated feature, tracing a high degree of correlation
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Figure 1. Visualization of the vorticity amplitude ω (left panel) and D I
` (right panel) for

` = 3.2η for the case T-4 of table 1 in a plane containing the cylinder’s axis.

(a)
(b)

Figure 2. Visualization of the vorticity amplitude of ω (a) and D I
` (b) for ` = 8η on a plane

containing the center perpendicular to the cylinder’s axis from the DNS of table 1.

between ω/〈ω〉 and D I
`/ε. We have investigated the spatial distribution of the events

corresponding to this tail in an instantaneous snapshot. It is displayed in figure 5. We see
that these events are organized into coherent structures, with three favoured locations: i)
at the blade forefront, in the impeller region, where each blade strongly pushes the flow;
ii) at the outer edge of the disk supporting the impeller; iii) in two blobs that are lying
near the cylinder edge, and just above or just below the middle shear layer. While the
first two types of events can be associated to local gradient sources due to the impellers
that are difficult to measure experimentally, the last category corresponds to the location
of the strong vortices of the shear layer. The latter are known to be present in the von
Kármán geometry (Ravelet et al. 2008) and they are the locus of strong energy transfers
(Marie & Daviaud 2004; Kuzzay et al. 2015). This explains why such events have both
strong vorticity, and strong local energy transfer. The absence of strong correlated events

in the middle of the tank may explain why joint PDF P
(DI

`

ε ,
ω
〈ω〉
)

based on experiment



On the nature of intermittency in a turbulent von Kármán flow 9

(a) (b)

Figure 3. Joint-PDF of P
(DI

`
ε
, ω
〈ω〉

)
for different scales from experimental measurements in

table 1 computed over several uncorrelated snapshots. Here ω refers to the norm of the vorticity,
and D I

` is the energy transfer. a) T-4: ` = 3.2η (3 104 snapshots) b) T-2: ` = 17.9η (1.02 104

snapshots). White color corresponds to lack of events in the data-set.

(a) (b)

Figure 4. Joint-PDF of P
(DI

`
ε
, ω
〈ω〉

)
for different scales from the DNS in table 1 computed over

21 uncorrelated snapshots. ω refers to the norm of the vorticity, and D I
` is the energy transfer.

A zoom on the central region is presented on each panel to compare with figure 3. a) ` = 1.06η
b) ` = 26.5η. White color corresponds to lack of events in the data-set.

T-4 do not exhibit the tail, since the corresponding data were only taken in a small cube
at the center of the tank.

Using the joint PDF, we have computed the conditional average E
(DI

`

ε |
ω
〈ω〉
)

as the

average of
DI
`

ε over the points where ω
〈ω〉 is fixed. It is plotted on figure 6 as a function

of
(
ω
〈ω〉
)2

both in the numerical and experimental cases. For ` ∼ η, the conditional

average E
(DI

`

ε |
ω
〈ω〉
)

increases almost linearly with
(
ω
〈ω〉
)2

. For large `� η the conditional

averages seem to reach a plateau where the local energy transfers do not depend anymore
on the vorticity, meaning that there is no correlation at large scales. This feature is more
pronounced on the DNS than in the experiment. This shows that local energy transfers
and vorticity are only correlated at small scales.

In order to investigate the link between the energy transfers and velocity increments,
the joint PDF of D I

` with the full (δW`) and anti-symmetric (δΩ`) components of the
velocity increments are plotted in figures 7 and 8. It appears that positive values of D I

`

are promoted for both quantities. In the inertial range, it seems that the large D I
` are
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Figure 5. Positions of DNS points in the tail of figure 4-b where D I
` > ε and ω > 5〈ω〉 for

` = 26.5η. The colors correspond to the z values of the points, indicating that most of them are
close to the impellers (0.7 < |z| < 1.02), or at the tank mid-height. This plots shows positions
for one single snapshot.

(a) (b)

Figure 6. Conditional average E
(
D I
` |ω

)
/ε as a function of (ω/〈ω〉)2for different scales `. They

are computed from joint PDFs as the ones in figures 3 and 4 from datasets of the DNS and
cases T-1 to T-4 in table 1. Symbols are coded according to table 1.

more correlated with strong events of δΩ` than with δW`, since the PDF of
(
D I
` , δΩ`

)
is

more tilted to the right hand side, and most of the positive energy transfers are associated
with increments of the order of several times the mean value.

4.3. Local energy transfers

We now focus on the scale behaviour of the statistical average of the local energy
transfer D I

` , and the local energy dissipation Dν
` . The comparison between numerical

and experimental data is performed in figure 9-a. For each experimental dataset, a
filtering process is applied to the data giving a range of accessible ` scaling from ∆x
to approximately 10∆x depending on the size of the PIV grid. Combining all datasets
with accessible Rλ, ε and η allows to cover a wide range of scales in terms of `

η . They all

behave according to the K41 phenomenology (Dubrulle 2019): the local energy transfer
is much lower than the local energy dissipation for `/η < 10 and saturates beyond to
a constant value, while the local energy dissipation decreases from the dissipative range
to the large scales following a `−4/3 law. The agreement between experimental data
and numerical data is very good for Dν

` , but poor for D I
` . We assign such mismatch to
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(a) (b)

Figure 7. Joint-pdf of P
(DI

`
ε
, δW`
〈δW`〉

)
for different scales from the DNS in table 1 computed over

21 uncorrelated snapshots. a) ` = 1.06η b) ` = 26.5η. White color corresponds to lack of events
in the data-set.

(a) (b)

Figure 8. Joint-pdf of P
(DI

`
ε
, δΩ`
〈δΩ`〉

)
for different scales from the DNS in table 1 computed over

21 uncorrelated snapshots. a) ` = 1.06η b) ` = 26.5η. White color corresponds to lack of events
in the data-set.

convergence effects: indeed, even if our statistical samples are quite large, the presence of
very large events in the local transfer that can be both positive or negative renders the
statistics very difficult to converge. Note that Dν` is mainly positive, so that the plots in
figure 9-a of 〈Dν` 〉 and figure 9-b of 〈|Dν` |〉 are almost the same. These plots show that
the agreement is excellent between experimental and DNS data. In contrast, DI

` takes
extreme positive and negative values. We suspect that it is the reason why the statistics
of 〈DI

`〉 in figure 9-a are less well converged. To test this idea, we plot in figure 9-b 〈|DI
`|〉

which shows that statistics are indeed improved. This issue is linked to the presence of
rare events of extreme values of DI

`, that is discussed in the appendix of Debue et al.
(2018) for experimental points. A convergence study of the DNS statistics is presented in
the appendix (figure 15). On the other hand, the local dissipation, that is always positive,
does not suffer from such drawback. To check such hypothesis, we plot in figure 9-b the
average of absolute value of D I

` and Dν
` . Indeed, we see that the data are less scattered,

and that data points corresponding to different experiments follow a clear trend. The
numerical data is closer to the TPIV data than the SPIV data. This might be due to
the fact that SPIV data are 2D-3C, meaning that some components of D I

` are missing.
These plots show that the ”inertial range” (location where D I

` is constant), extends from
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Figure 9. Scale variation of the non-dimensional the local energy transfer (red) and dissipation
(green) for SPIV experiments A to E (filled symbol), TPIV experiments (open symbols) and

the DNS (filled symbols with black line). Dotted lines correspond to `−
4
3 . a) for D I

` and Dν
`

non-dimensionalized by the total energy dissipation in the observational box; b) Same for
absolute values. The symbols are coded according to table 1.

`/η = 20 to `/η = 100 for the numerical data. Such observation will be used to compute
the scaling exponents in section 4.6.

4.4. Structure functions

Longitudinal and wavelet velocity structure functions, as well as non-dimensional
moments of D I

` , have been previously computed and discussed in Saw et al. (2018);
Debue et al. (2018); Dubrulle (2019) from the experimental SPIV data sets A to E of
table 1, with the drawback that the velocity field is only 2D-3C. Here, we repeat their
computation with experimental and numerical 3D-3C data, with focus on the wavelet
velocity structure functions that are more appropriate for our purpose, see Section 2.2.
Figure 10-a shows the comparison of the compensated wavelet velocity structure functions
S̃W (p) = 〈δW p

` 〉/〈δW 3
` 〉p/3 of order 1 to 6 for numerical and experimental SPIV data.

One sees that they are in good agreement for p = 1 to 4, and that the agreement
deteriorates at large scales for higher p. This is probably due to a lack of convergence for
the numerical data because of limited sampling. The same comparison has been done for
the anti-symmetric wavelet velocity structure functions in figure 10-b, leading to similar
conclusion.

Finally, we compare the compensated moments of the local energy transfer D I
` for

numerical and experimental data in figure 11-a. There is good agreement between
numerical data and experiments in the inertial range, but not in the dissipative range or
at large scales.

4.5. Test of log-universality

In figure (11)-a, we compare structure functions of the local energy transfer using data
at different Reynolds numbers (see table 1). In agreement with Kolmogorov self-similarity
hypothesis, we can expect, and we indeed observe that they have a universal behaviour
in the inertial range, but not outside. As first discussed by Frisch & Vergassola (1991)
and Castaing et al. (1990), a more general log-universality property can be expected
using the multi-fractal hypothesis, if one works with variables that are rescaled by a
factor proportional to log(Rλ), where Rλ is the Taylor Reynolds number. In Geneste
et al. (2019), we have indeed shown that such rescaling enables a better collapse of
the velocity structure functions SW , and linked such log-universality with extensivity of
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(a) (b)

Figure 10. Scale variation of the normalized non-dimensional wavelet structure functions of
order p = 1 to p = 6 for SPIV experiments A to E (filled symbol) and the DNS (filled symbols
with black line) The structure functions have been shifted by arbitrary factors for clarity and
are coded by color: p = 1: blue symbols; p = 2: orange symbols; p = 3: yellow symbols; p = 4:
magenta symbols; p = 5: green symbols; p = 6: light blue symbols. a) Structure functions S̃W (p).

b) Structure functions for the anti-symmetric component S̃Ω(p). The dashed lines are power laws
with exponents τW and τΩ shown in figure 13-a. The symbols are coded according to table 1.
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Figure 11. a) Scale variation of the compensated structure functions of the local energy transfer

S̃D(p/3) of order p = 1 to 6 for SPIV experiments A to E (filled symbol), TPIV experiments
(open symbols) and the DNS (filled symbols with black line). The structure functions have been
shifted by arbitrary factors for clarity and are coded by color: p = 1: blue symbols; p = 2: orange
symbols; p = 3: yellow symbols; p = 4: magenta symbols; p = 5: green symbols; p = 6: light blue
symbols. The dashed lines are power laws with exponents τD shown in figure 13-a. The symbols
are coded according to table 1. b) Parameter β given in eq. (4.1). Names are taken accordingly
to table 1. The dotted line follows the equation 1/β = 4

3
log(Rλ).

the large deviation function of the multi-fractal measure δW 3
` /〈δW 3

` 〉. If the local refined
similarity hypothesis (2.9) holds true, one can expect that the log-universality also applies
to the measure |D I

` |/〈|D I
` |〉, so that:

β(Re)

(
ln(S̃D(p)/S0p)

ln(L0/η)

)
= F

(
p, β(Re)

ln(`/η)

ln(L0/η)

)
. (4.1)

We take the DNS at Rλ = 72 as the reference case, and find, for both DNS and
experiments, values of β(Re) and S0p that best collapse the curves. The corresponding
collapses are provided in figure 12. The collapse is good for any value, except for the
TPIV at the lowest Reynolds number, which does not collapse in the dissipative range.
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Order p=1 Order p=2 Order p=3

Order p=4 Order p=5 Order p=6

Figure 12. Computation of eq. (4.1) from order p = 1 to order p = 6. Collapse is made for all
experiments presented in table 1, using DNS (orange circle) as the reference and the β parameter
taken from figure 11-b

The collapsing curves display three different scaling regimes. At low `/η, a saturation can
only be seen on the DNS, which corresponds to the far viscous range, where the velocity
field becomes regular, so that 〈|D I

` |p〉 ∼ `2p (Dubrulle 2019), and SD(p) ∼ cte. In the
inertial range, we observe a scaling SD(p) ∼ `τD(p) and in between, an intermediate range
due to the random character of the dissipative scale, corresponding to the coexistence
of regions of flow with different Hölder exponents, with areas where the flow has been
relaminarized due to the action of viscosity (Geneste et al. 2019).

The values of β(Re) are shown in figure 11-b. In agreement with previous results
(Geneste et al. 2019), they collapse on a curve 1

β ∼
1
β0

log(Rλ), with β0 ∼ 3
4 over the

whole range of Reynolds number, and we do not observe the saturation of 1/β at low
Reynolds numbers that is observed in the jet experiment of Castaing et al. (1993).

4.6. Scaling Exponents and Multi-fractal spectrum

Using the identification of the inertial range based on the local energy transfer (see
Section 4.3), we compute from figures 10 and 11 the scaling exponents τW (p), τΩ(p)
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Figure 13. a) Scaling exponents as a function of order for DNS (filled symbols with black
outside) and SPIV (filled symbol): τW : blue circle; τΩ : red square; τD: yellow diamond. (b)
Corresponding multi-fractal spectrum C(h) for the DNS scaling exponents. The spectrum has
been obtained by taking the inverse Legendre transform of the scaling exponents τ(p) shown in
figure 13-a. The dotted line curves are parabolic fit C(h) = ah2 + bh+ c with a = 8 (resp. 9.5),
b = −1.4 (resp. −1.2) and c = 0.064 (resp. 0.075) for CW (resp CΩ).

and τD(p/3) for the numerical data. They are shown in figure (13)-a. We see that
τW (p) and τΩ(p) overlap in the range p ∈ [−5, 5], and overlap both with τD(p/3) in the
range p ∈ [0, 5], thereby validating the refined similarity hypothesis expressed by eq.
(2.9) (Dubrulle 2019). These overlapping values computed from numerical data compare
very well with the value τW (p) computed on the SPIV data by Debue et al. (2018);
Dubrulle (2019). We checked that the values of τD(p/3) coincide with the values obtained
using figure (12). We also completed our measurements by computing more positive and
negative moments, so as to be able to better estimate the multi-fractal spectra CW (h),
CΩ(h) and CD(h) by Legendre transforms (see eq. (2.13)). The resulting spectra are
shown in figure 13-b. The two spectra CW (h) and CΩ(h) are parabolic, with a minimum
shifted from 0 by about δh = 0.08. They are very close to each other for h < 0 but differ
more markedly for h > 0, implying a different topology of regular regions. The value
CW (h) = 3 or CΩ(h) = 3 extrapolated from the parabolic fit results in hmin ≈ −0.53.
Using the shift property (2.14) and the measurement of ζW (3) = 0.8 (Dubrulle 2019), we
can then estimate the most probable exponent for ζW and ζΩ as 0.35, very close to the
Kolmogorov value 0.33. The minimum exponent for C(h) is then hmin = −0.26. Note that
the multi-fractal spectrum of the local energy transfer CD(3h) deviates strongly from the
parabolic fit of CW (h), and displays a milder intermittency, as it is more peaked around
the most probable value. This is not caused by insufficient statistics as the values of
τD(p/3) are not converged (see appendix) but could be caused by finite resolution (the
finer scale is not small enough), meaning that we missed some very large energy transfers
(Dubrulle 2019), or due to a genuine difference between intermittency at very small scales
caused by vorticity and the local energy transfer. To try understanding further the origin
of intermittency, we then attempt another approach, based on conditional statistics.

4.7. Conditioned Scaling Exponents

To understand further the origin of intermittency, it is natural to condition the
structure functions to areas of different values of the local energy transfer. An earlier
attempt in that direction has been done in Debue et al. (2018), for the SPIV data, with
the limitation that the conditioning could only be done on the local energy transfer at



16 H. Faller et al.

10
-1

5 5

0

0

1

0-5

2

(a)

10
-1

0.5 5

0

0
-0.5

1

0

2

(b)

Figure 14. (a) Scaling exponent of the non-compensated wavelet structure functions SW
computed using the joint PDF of the centred and reduced value of D I

η and δW` at various
scales `, and then a fit in the inertial range. The dotted lines have a slope of −0.1 for large
positive values of centred and reduced value of D I

η, 1/3 for small values of centred and reduced

value of D I
η, and 0.1 for large negative values of centred and reduced value of D I

η. (b) Same as

a), using the joint PDF of the centred and reduced value of D I
η and δΩ`. The dotted lines have

a slope of 0 for large positive values of centred and reduced value of D I
η, 1/3 for small values of

centred and reduced value of D I
η, and 0.1 for large negative values of centred and reduced value

of D I
η.

the smallest available scale of the data set. Therefore, the conditioning was performed at
the Kolmogorov scale only for the data set E. The conclusion of such conditioning was
that the intermittency was higher for areas corresponding to a larger (in absolute value)
local energy transfer.

Using the data from the DNS, we can improve the procedure, by conditioning the
structure functions at all scales by the local energy transfer at the Kolmogorov scale
D I
η. Here, we enlarge the discussion by considering positive and negative values of the

local energy transfer, as they may correspond to different dynamics. Because of the
conditioning, we have less statistics so we have to restrict ourselves to smaller values of
p than for unconditioned values. Once the structure functions have been conditioned, we
can compute the corresponding conditioned scaling exponent by fitting power laws in the
inertial range. The results for SW are shown in figure 14-a, for p ranging from 0 to 6 and
for centred reduced values of D I

η ranging from −5 to 5. One sees that for values D I
η close to

the mean, the scaling exponents are positive, and close to the Kolmogorov value p/3. For
large negative D I

η, the scaling exponents are positive, but increase linearly with a small

exponent h− ∼ 0.1. For large positive D I
η, the scaling exponents decrease quasi linearly

with a small exponent h+ ∼ −0.1. This shows that negative local energy transfers are
less intermittent than positive local energy transfers. The corresponding values of h are
close to 0, reminiscent of shock like structures. Exploring more singular structures closer
to h = −0.26 (the minimum exponent of C(h)) would require a much larger number of
statistics. We have repeated the analyses for the structure functions of the vortical part
SΩ in figure 14-b. We observe a similar trend for large negative and positive values of
D I
η, where we see that the scaling exponents are much more intermittent than for D I

η

around its mean value. In both cases, the conditioned exponent displays linear trends
with h− ∼ 0.1 and h+ ∼ 0, exponents that are close to their counterpart using SW .
Such a linear trend might be an indication that only one type of very singular structure
is responsible for the scaling behaviour of SW or SΩ for large positive or negative local
energy transfers.
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5. Discussion

We have conducted an extensive study of the scaling properties of small scale
turbulence using both numerical and experimental data of a flow in the von Kármán
geometry. Our investigations validate both Kraichnan intuition, and Batchelor early
observation: areas of strong vorticity are correlated to areas of strong local energy
transfer; both are highly intermittent, and responsible for deviations of the structure
functions from the Kolmogorov 1941 simple mono-fractal picture. Such findings are
not surprising given the already known link between intermittency and dissipation
(Kolmogorov 1962), from the one hand, and dissipation and enstrophy and dissipation
and local energy transfer (Dubrulle 2019) on the other hand. These results show once
more the necessity to deal with very small scales of turbulence when it comes to the
modelling of realistic velocity fluctuations, a problematic issue when considering very
high Reynolds number flows, in which the ratio of the integral to the dissipative scale
goes like Re3/4.

On the other hand, the correlation we find between vorticity and local energy transfer is
not perfect: in the joint PDF, we observe in figure 4 a stretched diamond shape for values
of ω that are not too high, demonstrating that large value of local energy transfers are
correlated to medium values of ω, while areas of large ω are independent of local energy
transfer. This is an indication that the location of local maxima of energy transfer is
shifted with respect to the location of the local maxima of vorticity, a fact already
observed in our experiment (Debue 2019; Debue et al. 2020) and in numerical simulations
(Nguyen et al. 2019). This points out the complex dynamics of the small scale structures
of turbulence, and calls for further investigation, to determine the role of local energy
transfer in the formation of high vorticity zone, or the reverse.

Quite interestingly, we have nevertheless gathered several indications that in the von
Kármán flow the most intermittent structures might have an interesting simple structure:
first, the linear trend between the conditional average of |D I

` | versus ω2 for scales small
enough; second, the linear trend of the conditional scaling exponent of SW or SΩ , observed
for high negative or positive values of the local energy transfer in our numerical data in
figure 14 ; finally, the linear tails observed in the joint PDF between the vorticity and the
local energy transfer in our numerical data (figure 4), that corresponds partly to strong
vortices of the shear layer. This location corresponds obviously to areas where the shear,
hence the dissipation and the fluctuations, are maximum. In Marie & Daviaud (2004), it
was indeed found that most of the angular momentum transfer occurs in such zone via
correlated azimuthal and vertical velocity fluctuations. Such location (near the cylinder
boundary, at the mid-height) is also the location where Luo & Hou (2014) detected a
potential singularity in an Euler axisymmetric flow with a geometry similar to the shear
layer geometry. The blowing up solution was furthermore shown to develop a self-similar
structure near the point of the singularity, as the singularity time is approached.

Whether the vortices of the von Kármán shear layer we evidenced in figure 5 correspond
to self-similar quasi-singularities of the Euler equations, that could dominate the scaling
properties at large orders, is an interesting issue that is worth investigating further with
time correlated snapshots. Indeed, they could act as the counter-part of the self-similar
blowing solution of inviscid Burgers equation or shell models that have been found
recently to control the intermittency in such systems (Mailybaev 2015). To explore
such interesting connection, we need to follow in space and time the dynamics of
such structures, which is both an experimental and numerical challenge, for different
reasons (noise issue in the first case, numerical burden in the second). Such studies are
nevertheless underway.
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Finally, it would also be interesting to perform a similar analysis of the link between
area of high energy transfers and large vorticities in other geometries, so as to explore
whether our findings are due to the peculiar geometry of the von Kármán flow (with a
shear layer and a stagnation point in the middle) or are linked with universal features of
turbulent flows.
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Figure 15. Convergence of mean DNS quantities for the 8 scales (`1 < `2 < ... < `8) presented
in figure 9-a computed on 6, 11, 16 or 21 snapshots. a) 〈D I

`〉 b) 〈Dν
` 〉
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Figure 16. Moments of |D I
` | computed on 6, 11, 16 or 21 snapshots. a) ` = 1.06η b) ` = 26.5η

Appendix

DNS statistical convergence study

DNS data cover 21 uncorrelated snapshots of 3 108 grid points. To evaluate the
convergence of the DNS data, we present here the empirical moments and mean values
computed on an increasing number of snapshots. First of all, the averages 〈D I

`〉 and 〈Dν
` 〉

used in figure 9-a are converged as figure 15 shows. We can then focus on the moments
of the statistical quantities. In the viscous range, for ` = 1.06η (figures 16-a, 17-a and
18-a), the convergence is good for all p since the statistics on 16 or 21 snapshots agree,
and the 21-snapshots results lay between the 11-snapshots and 16-snapshots ones. In the
inertial range, for ` = 26.5η (figures 16-b, 17-b and 18-b), the moments are converged for
the same reasons up to p = 5, but not totally converged for p > 5 since the results do not
coincide and decrease monotonically for velocity increments δW` and δΩ` as the dataset-
size increases. Since the moments are used to compute the exponents τ(p), figure 13 only
shows velocity and energy transfers intermittency exponents up to p = 5 for DNS.
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Figure 17. Moments of δW` computed on 6, 11, 16 or 21 snapshots. a) ` = 1.06η b) ` = 26.5η
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Figure 18. Moments of δΩ` computed on 6, 11, 16 or 21 snapshots. a) ` = 1.06η b) ` = 26.5η


