
HAL Id: hal-03296937
https://hal.science/hal-03296937

Submitted on 7 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robotics for People: Perspectives on Interaction,
Learning and Safety

Amir Aly, Andrea Bajcsy, Angela Schoellig, David Fridovich-Keil, Filipa
Correia, Kim Baraka, Matthew Gombolay, Nakul Gopalan, Ransalu

Senanayake, Shreyas Kousik, et al.

To cite this version:
Amir Aly, Andrea Bajcsy, Angela Schoellig, David Fridovich-Keil, Filipa Correia, et al. (Dir.).
Robotics for People: Perspectives on Interaction, Learning and Safety. 2021, Proceedings of full-
day workshop at the RSS 2021 conference. �hal-03296937�

https://hal.science/hal-03296937
https://hal.archives-ouvertes.fr

Proceedings	of	the	Workshop	

Robotics	for	People	(R4P):	
Perspectives	on	Interaction,	

Learning	and	Safety	
	

in	Conjunction	with	the	Robotics:	
Science	and	Systems	(RSS)	
Conference	(July	15th,	2021)	

	

Amir	Aly,	Andrea	Bajcsy,	Angela	
Schoellig,	David	Fridovich-Keil,	
Filipa	Correia,	Kim	Baraka,	

Matthew	Gomboly,	Nakul	Gopalan,	
Ransalu	Senanayake,	Shreyas	

Kousik,	SiQi	Zhou,	Tesca	Fitzgerald	

Game-theoretic Model of Trust to Infer Human’s
Observation Strategy of Robot Behavior
Sailik Sengupta∗†

Amazon AI
sailiks@amazon.com

Zahra Zahedi∗
Arizona State University
zzahedi@asu.edu

Subbarao Kambhampati
Arizona State University

rao@asu.edu

Abstract—We consider scenarios where a worker robot has
incentive to deviate from a preferred plan when a human
supervisor is not monitoring it. We show that in such scenarios,
via human subject evaluation, human supervisors choose sub-
optimal observation strategies. To address this, we first consider
a game-theoretic framework of trust to formally model such
interaction. Then, we leverage this model to infer an optimal
supervision strategy that does not need the human to place their
trust on the robot. Using a task-planning domain example, we
showcase the efficacy of our inferred policies.

I. INTRODUCTION

We consider a multi-agent scenario where a robot R makes
and executes a plan and a human supervisor H is held
accountable for the robot’s behavior. In settings where R can
deviate from the supervisor’s expectation, a notion of trust
becomes a key factor. While it is possible to develop trust in
longitudinal setting [1, 15], in one-off interactions (where no
trust exists) conventional wisdom often guides the supervisor
to spend all their time in monitoring the robot’s behavior
to ensure it adheres to their expectations. In this work, we
challenge the latter belief and by modeling the interaction
in a game theoretic framework, show that H can consider
resource-efficient monitoring strategies.

There are cases when a robot’s expectation may deviate from
its supervisor’s expectations? First, a robot may have side-goals
that do not align with a supervisor’s expectation. For example,
an autonomous car ride-sharing (or, in general, robot-as-a-
)service may have certain expectations from its supervisor (eg.
travel on shortest routes) but may need to adhere to passenger’s
expectation (eg. avoid hilly roads) that are in conflict with one
another. Second, the robot may not be fully aware of the
human’s expectation of itself. In such scenarios, we formally
model the inference problem related to the finding a monitoring
strategy for the human supervisor.

Specifically, we present a notion of trust that a human
supervisor H places on a worker robot R when H chooses
to not observe R’s plan (or its execution) by modeling the
interaction in a game-theoretic framework of trust motivated by
[10]. To capture the aforementioned scenarios, we assume the
robot is unaware of the human’s model of itself MR

H , but has

∗Equal contribution
†Work done while at Arizona State University.

Presented at the RSS Workshop on Robotics for People– Perspectives on
Interaction, Learning, and Safety, 2021.

knowledge about all the possible models MR
H (or constraints)

the human may have; hence, MR
H ∈MR

H , MR
H is not known

to R, MR
H is. We leverage the game theoretic framework to

devise a probabilistic observation strategy for H that ensures
(1) R does not deviate away from executing a plan that respects
all constraints and in turn, (2) H’s saves valuable resources
such an monitoring time, effort, etc.

While we propose a novel type of assistance that can assist H
on when to supervise R to ensure expected behavior, we explore
if such assistance is required by performing human studies. We
show that without assistance, humans are either too risk-averse
(monitors R most of the time to ensure that R adheres to their
expectation) or too risk-taking (minimizes their observation
time even if the R deviates from expectation). In either case,
assumptions made in earlier works [8, 2], where humans are
expected to monitor the robot all the time fails to hold. Thus,
it makes sense to analyse the supervision scenario and propose
methods to suggest optimal monitoring strategies. Furthermore,
answers to subjective questions show that participants prefer
such automated assistance.

II. RELATED WORK

Our supervision scenario is situated in a specturm of
fully-cooperative settings to fully-adversarial ones. In fully-
cooperative settings, researchers argue that the robot should
only consider plans that adhere to the human’s expectation; then
these plans are said to be explicable [16], legible [2], adhering
to social norms [7]. The assumption that robots sole-objective
is to cater to a single human’s expectation (the supervisor)
may not be true in our case, and the supervisor’s monitoring
time may be costly. While some works suggest introducing
impreciseness in specification on the human’s expectation [3]
as a solution, other consider robot producing explanations [14]
to soothe the human; neither can guarantee behavior produced
by R adheres to human’s expectation. Other methods where
the supervisor communicates implicit constraints [5], or their
preferences [6] may not work in our scenario, as a two-way
channel is necessary for the robot to identify conflicting con-
straints, communicate back to the supervisor and convince H
the rational behind their behavior. In fully-adversarial settings,
related work seek to find monitoring strategies to catch a perpe-
trator in physical and cyber defense scenarios [13, 11, 12] by
framing the interaction in a game-theoretic manner. While our
modeling shares similarities, existing works do not consider a

OP,¬E O¬P,E NO-OB

πpr

−CH
P (πpr)−IHP (πpr),

−CR
P (πpr)−CR

Ẽ
(πpr)−CR

G̃

−CH
E (π̃pr)−IHE (π̂pr),

−CR
P (πpr)−CR

E (π̃pr)−CR
G̃

−VH
I (πpr),

−CR
P (πpr)−CR

E (πpr)

πs

−CH
P (πs)

0︷ ︸︸ ︷
−IHP (πs),

−CR
P (πs)−CR

E (πs)

−CH
E (πs)

0︷ ︸︸ ︷
−IHE (π̂H),

−CR
P (πs)−CR

E (πs)

0︷ ︸︸ ︷
−V HI (πs),

−CR
P (πs)−CR

E (πs)

TABLE I
NORMAL-FORM GAME MATRIX FOR MODELING THE ROBOT-MONITORING SCENARIO. R (H) IS THE ROW (COLUMN) PLAYER.

cooperative aspect between the players of the game. This makes
it difficult to use their framework for longitudinal interaction
where repeated interaction can build a sense of trust between
H and R. While we do not explore this aspect explicitly, our
framework keeps this at its core for future extension.

III. GAME THEORETIC FORMULATION

We formulate a two-player general-sum game between the
human supervisor H and the robot R. In this section, we
explain the components of this game shown in Table I.

A. Player Actions

R, the row-player, has two pure strategies– plans πpr and πs–
plans that are probably risky (does not adhere to all constraints)
and safe (one that does). H , the column player, has three
strategies– (1) to only observe the plan made by the robot
OP,¬E and decide whether to let it execute (or not), (2) to
only observe the execution O¬P,E and stop R from executing
at any point, and (3) not to monitor (or observe) the robot
at all (NO-OB). We make two inherent assumptions in this
formulation– (1) the robot cannot switch from a plan (or a
policy) it commits to in the planning phase during execution
phase and (2) the human only stops the robot from executing
the plan if they believe that the robot’s plan does not achieve
the goal G while satisfying their constraints.

B. Utilities

The values on the top, highlighted in blue, indicates the H’s
utilities and the ones at the bottom represent R’s utilities.
R’s Utility Values: The utilities are defined in terms of:
CR

P (π) Cost of making a plan π.
CR

E (π) Cost to robot for executing plan π.
CR

G̃
Penalty of not achieving the goal G.

We denote partial plans as π̂pr; partial plans arise when H
aborts execution of a probably risky plan. Note that depending
on where the human stops the robot, the cost for the partial
plans can be different. CR

G̃
that represents the cost of not

achieving the goal. The robustness r(∈ (0, 1]) of a plan
represents the fraction of models in MR

H where the plan
πpr is executable and can be obtained via model counting
approaches [9]. As a particular MR

H is sampled from MR
H ,

we model CR
G̃

as a random variable drawn from the Bernoulli
distribution s.t. it represents a non-zero penalty if the plan is

not robust in a sampled human model (Pr = 1− r) or zero
otherwise.

The cost incurred by the R when H chooses
to observe the plan πpr (before execution) is

CR
Ẽ
(πpr) =

{
CR

E (πpr) if CR
G̃

= 0

0 o.w.
. If H chooses

to monitor the execution directly, R’s utility is

Ci
E(π̃pr) =

{
Ci

E(πpr) if Ci
G̃
= 0 i ∈ {R,H}

Ci
E(π̂pr) o.w.

.For

execution costs, it is natural to assume CR
E (πpr) ≤ CR

E (πs),
i.e cost of executing the plan that satisfies all constraints
is greater than executing a plan that satisfies a sub-set of
constraints. Similarly, for planning, coming up with πpr will
be easy if the value of r is small while coming up with the
plan πs will take considerably longer. Hence, we also assume
CR

P (πpr) ≤ CR
P (πs).

H’s Utility Values: The utilities are defined in terms of:
CH

P (π) Cost of observing a plan π.
CH

E (π) Cost of observing the robot’s execution of π.
V H
I (π) Cost incurred by the supervisor when R violates

a constrain due to lapse in H’s monitoring
IHP (π) Inconvenience to H if R presents a plan π that

H cannot allow R to execute (note IHP (πs) = 0).
IHE (π) Inconvenience to H if R is stopped from execut-

ing π(note IHE (πs) = 0).
When R proposed πpr, it is only executable in a sub-set of
models in MR

H . As this sub-set may not contain the human’s
actual model MR

H , we need to factor in this uncertainty into
V H
I (π), IHP (π) and IHE (π). We leverage the robustness value
r and the Bernoulli distribution for this purpose. We assume
R violating a constraint due to lapse in H’s monitoring has
the highest penalty for (the supervisor) H; thus,

V H
I (πpr) > CH

P (πpr) + IHP (πpr) (1)
V H
I (πpr) > CH

E (π̃pr) + IHE (π̂pr) (2)

We also assume that (1) CH
E (π) > CH

P (π) (the cost of
observing and the a plan is less than observing the execution
of a plan) and (2) IHE (π̂pr) > IHP (πpr) (same assumption for
the inconvenience caused).

IV. GAME-THEORETIC NOTION OF TRUST

In our game, the amount of trust placed in R increases as
the H selects OP,¬E < O¬P,E <NO-OB. When H selects

NO-OB, it exposes itself to a vulnerability– R executes πpr
resulting in the high negative reward, V H

I , for H . On the
other hand, if H chooses (OP,¬E), H has the least amount of
risk– even before R can execute, the plan is verified by H .
There exists a trade-off due to this notion of trust– monitoring
depletes H’s resources (time, concentration etc.), but if R
cannot be fully trusted, H needs to monitor costs to ensure R
adheres to constraints.

The No-Trust Scenario: In this setting, H should never
play an action that exposes them to a risk of a high negative
utility. If a pure-strategy Nash Equilibrium exists, the players
should consider it as neither can deviate to get a better utility
[10]. Given we consider a Bayesian game where the rewards
represent random variable, the expected utility values need
to satisfy the following inequalities for a pure-strategy Nash
Equilibrium to exists,

(1− r)V H
I (πpr) < CH

P (πpr) + (1− r)IHP (πpr)

CR
P (πpr) + (1− r)CR

G̃
+ rCR

E (πpr) < CR
P (πs) + CR

E (πs) (3)

If r = 1, we can guarantee that (πpr, NO − OB) is the
Nash equilibrium. But, to reduce costs, r << 1 (otherwise,
πpr = πs), leading to the following proposition.

Proposition 1. The game defined in Table I has no pure
strategy Nash Equilibrium where πpr is not executable in
some of the models.

Absence of Pure Strategy Nash Equilibrium: The absence
of a pure-strategy Nash eq. makes it difficult to define a human’s
best course of action in this no-trust setting [10]. Thus, we
devise the notion of a trust boundary.

Consider a human chooses the mixed strategy ~q = [(1−qE−
qN), qE , qN)]T over the actions OP,¬E , O¬P,E and NO-OB
respectively. In order to ensure that the robot cannot deviate
away from making and executing πs, we have to ensure that
the expected utility (U) for the robot given ~q is greater for πs
than for πpr.

E~q[U(πs)] > E~q[U(πpr)]⇒ (4)

r −CRP (πs)− CRE (πs) > (−CRP (πpr)− CRG̃ − C
R
Ẽ (πpr))

×(1− qE − qN)

+(−CRP (πpr)− CRE (π̃pr)− CRG̃)× qE
+(−CRP (πpr)− CRE (πpr))× qN

where E~q[U(π)] denotes the expected utilities. This inequality
is linear w.r.t. the variables qN and qE . Thus, in the region on
one side of the linear boundary, the robot always executes πs.
Thus, we call this linear boundary the trust boundary.

V. EXPERIMENTAL SETUP AND EVALUATION

The aim of this section is to first describe a task-planning
scenario in which we can compute the trust boundary and
then, perform human subject studies in a simplified version of
this supervision scenario. To do so, we initially describe the
robot-delivery domain that we will use throughout the section.

A. Robot Delivery Domain

We used a robot delivery domain [8] in which the robot
can collect and deliver parcels (that may not be waterproof) or

0 1

0

1

q
E

+
q
N

=
1

ab Explicable plans [8]

Legible plans [2]

qN

qE

Fig. 1. An observation strategy in the trust region (shaded) ensures that the
robot sticks to πs. In contrast to observation strategies discussed in existing
works, one can reduce monitoring costs while ensuring explicable/legible/safe
behavior.

coffee by picking it from the reception desk and taking it to
a particular location. The robot in the PDDL domain has the
following actions: {pickup, putdown, stack, unstack, move}.

Problem Instance: The problem instance in our setting has
the initial setting where (1) the robot is standing at a position
equidistant to the reception and the kitchen, (2) there is a parcel
located at the reception that is intended for the employee, (3)
there is brewed coffee in the kitchen that needs to be delivered
in a tray to the employee. The goal for the robot is to collect
and deliver the coffee and the parcel to the employee.

Robot Plans: There are two plans in which the robot
achieves the goal of collecting coffee from the kitchen and
parcel from the reception desk and delivers them to an
employees’ desk. (a) πs, the robot (1) collects coffee, (2)
delivers it to the employee, (3) goes back along the long
corridor to collect the parcel from the reception desk and
finally (4) delivers it back to the same employee. (b) πpr, the
robot collects coffee from the kitchen, (2) collects parcel from
the reception desk and puts them on the same tray and finally,
(3) delivers both of them to the employee.1

B. Computing the Trust Boundary in a Task-Planning Scenario

In order to compute the trust boundary, we calculate the
utility values for our game leveraging Table I and the cost
incurred by R and H in this robot delivery domain.

In this example, if the robot makes πpr, it will be executable
(or safe) as per one of the two observers whose models make
up the set MR

H , because the coffee and parcel taken in the
same tray runs the risk of the coffee spilling, thereby ruining
the package. Thus, the robustness for πpr is r = 1

2 = 0.5. On
the other hand, the plan πs is executable (and thus, overall
safe) in both the models in MR

H .
We used the Fast Downward planner [4] on the robot delivery
domain [8] to find the costs for R and H and to compute them
we used a machine with an Intel Xeon CPU (clock speed 3.4
Ghz) and 128GB RAMv. Given the calculated costs, we can
define the utility matrix for the players (R,H). 2

1Given the (actual and the human’s) domain models and the problem instance,
these plans can simply be computed using available open-source software like
Fast-Downward or web-services like planning.domains.

2The details of each cost and the hasn’t been given due to page limit

Fig. 2. Participant’s monitoring strategies across multiple trials. Trust boundary
indicated using the black vertical line.

According to Proposition 1, this game does not have a pure
Nash Eq. strategy with probability 0.5. Therefore, we now find
the boundary in the space of mixed strategies for second type
of H who can choose to adopt which will ensure that the robot
always executes πs. To do so, we use the calculated values
plug them into equation 4 and obtain,

10× qN − 3× qE − 5.74 < 0 (5)

In Figure 1, we plot the trust boundary represented by the lines
in Eqn. 5. The three black lines (sides of the larger triangle)
represent the feasible region for the human’s mixed strategy ~q.
Monitoring strategy in the shaded region guarantees the robot,
being a rational agent, executes πs. The strategy that optimizes
H’s monitoring cost and yet ensures the robot adheres to πs
lies on the trust boundary indicated using the red line.

C. Human Studies

The human-subjects study was designed to evaluate whether
(1) the human can find a good strategy to cut-down the
monitoring time while they ensure the constraints structured
manner from the robot and (2) the humans tend to deviate to
more split-time strategies where some of the time, originally
meant for monitoring, can be used for other tasks. We designed
a user-interface to represent the robot-delivery scenario. The
participants in the study play the role of a student in a robotics
department who are asked to monitor the robot for an hour.
In order to make the monitoring action be associated with
a cost, we added a second task in which participants could
choose to grade exam papers (and get paid for it) instead of
just monitoring the robot and this represents the action to
not-monitor the robot. For simplicity, we combine the actions
to monitor the plan and monitor the execution as a single
‘monitor the robot’ action. We ask them to give us a time
slice for which they would choose a particular action (eg. 30
minutes to monitor the robot and 30 minutes to grade exam
papers). We let each participant do five trials and after each
trial, the overall utility based on the participant’s monitoring
strategy and the robot’s strategy is reported to them. The robot
does not adapt itself to the human’s strategy in the previous
trial (which intents to preserve the non-repeated nature of our
game). We collected data from 32 participants who were all
graduate students across various engineering departments at
our university.

Fig. 3. Average utility and its variance for each of the participants across
the five trials.

Aggregate Results – Changes in Monitoring Strategy
across Trials: Note that a participant, given the information on
the interface, can formulate a simplified version of the game-
theoretic model proposed in this paper and find the optimal
strategy for monitoring (which is to monitor the robot for
0.327 or 19.62 minutes of an hour and use the remaining time
to grade papers). The participants’ time slice allocated for
monitoring, across the five trials, are shown in Fig. 2. Given
that there are only two actions for the participant, the strategy
can be represented using a single variable (fraction to monitor
the robot) and thus, is plotted along the x-axis. The size of
each bubble is proportional to the number of participants who
selected a particular strategy. The optimal strategy is shown
using a black vertical line (i.e. x = 0.327). In the first trial, most
users (n = 18) choose a risk-averse strategy, i.e. monitored
the robot to ensure it performs a safe plan even if it meant
losing out on money that could be earned from grading. As
the trials progressed, participants started discarding extreme
strategies (i.e. only monitor or only grade papers) and started
considering strategies closer to the optimal. In Fig 2, note that
for the first two trials, the strategies are well spread out in the
range [0, 1] where as in the last two trials, the strategies are
clustered around the optimal decision boundary, with very few
data points below 0.25 and very few above 0.7. This shows
humans hardly can find an optimal monitoring strategy when
there is no prior interaction with the robot and finding an near
optimal monitoring strategy after many trial and error can cause
a lot of loss. So, a strategy suggestion is needed to provide an
assistant to the human to deal with unsafe robots.

Participant Types: In Figure 3, we plot the average utility of
each participant across five trials on the x-axis. The y-axis repre-
sents the variance. Highlighted in dark, at the bottom right, are
five participants that chose observation probabilities in the trust
region but not exactly at the trust boundary, i.e. sub-optimal
w.r.t. the optimal trust boundary strategy (at 0.327) that yields
a reward of 173.77. After that, they did behave in a greedy
fashion to reduce the observation time in the hope to make more
money by grading papers and stuck to the good policies they ini-
tially discovered. Towards the top-right corner, the set of points
circled in light gray, we saw a dense cluster of participants
(= 15) who obtained a high average utility but tried to tweak
their strategies significantly, sometimes observing less and
therefore, allowing the robot to choose the riskier plan. which

eventually lead to a large loss in reward. This implies that the
human often takes risk and deviates to more split-time strategies
since the time meant to monitoring can be used for other tasks.

VI. CONCLUSIONS AND FUTURE WORK

We model the notion of trust that a human supervisor places
on a worker robot by modeling this interaction as a Bayesian
Game. We show that existing notions of game-theoretic trust
break down in our setting when the worker robot cannot be
trusted due to the absence of pure strategy Nash Equilibrium.
Thus, we introduce a notion of trust boundary that optimizes
the supervisor’s monitoring cost while ensuring that the robot
workers stick to safe plans.

ACKNOWLEDGMENTS

This research is supported in part by ONR grants N00014-
16-1-2892, N00014-18-1- 2442, N00014-18-1-2840, N00014-9-
1-2119, AFOSR grant FA9550-18-1-0067, DARPA SAIL-ON
grant W911NF-19- 2-0006, NASA grant NNX17AD06G, and
a JP Morgan AI Faculty Research grant.

REFERENCES

[1] Min Chen, Stefanos Nikolaidis, Harold Soh, David
Hsu, and Siddhartha Srinivasa. Planning with trust for
human-robot collaboration. In Proceedings of the 2018
ACM/IEEE International Conference on Human-Robot
Interaction, pages 307–315, 2018.

[2] Anca D Dragan, Kenton CT Lee, and Siddhartha S
Srinivasa. Legibility and predictability of robot motion.
In Proceedings of the 8th ACM/IEEE international
conference on Human-robot interaction, pages 301–308.
IEEE Press, 2013.

[3] Dylan Hadfield-Menell, Anca Dragan, Pieter Abbeel, and
Stuart Russell. The off-switch game. 2017.

[4] Malte Helmert. The fast downward planning system.
Journal of Artificial Intelligence Research, 26:191–246,
2006.

[5] Emmanuel Johnson and Jonathan Gratch. The impact
of implicit information exchange in human-agent nego-
tiations. In Proceedings of the 20th ACM International
Conference on Intelligent Virtual Agents, pages 1–8, 2020.

[6] Joseph Kim, Christopher Banks, and Julie Shah. Col-
laborative planning with encoding of users’ high-level
strategies. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 31, 2017.

[9] Tuan Nguyen, Sarath Sreedharan, and Subbarao Kamb-
hampati. Robust planning with incomplete domain models.
Artificial Intelligence, 245:134–161, 2017.

[7] Uwe Köckemann, Federico Pecora, and Lars Karlsson.
Grandpa hates robots-interaction constraints for planning
in inhabited environments. In AAAI, pages 2293–2299,
2014.

[8] Anagha Kulkarni, Tathagata Chakraborti, Yantian Zha,
Satya Gautam Vadlamudi, Yu Zhang, and Subbarao
Kambhampati. Explicable robot planning as minimizing
distance from expected behavior. CoRR, abs/1611.05497,
2016.

[10] Vidyaraman Sankaranarayanan, Madhusudhanan Chan-
drasekaran, and Shambhu Upadhyaya. Towards modeling
trust based decisions: a game theoretic approach. In
European Symposium on Research in Computer Security,
pages 485–500. Springer, 2007.

[11] Sailik Sengupta, Satya Gautam Vadlamudi, Subbarao
Kambhampati, Adam Doupé, Ziming Zhao, Marthony
Taguinod, and Gail-Joon Ahn. A game theoretic approach
to strategy generation for moving target defense in web
applications. In Proceedings of the 16th Conference on
Autonomous Agents and MultiAgent Systems, pages 178–
186. International Foundation for Autonomous Agents
and Multiagent Systems, 2017.

[12] Sailik Sengupta, Ankur Chowdhary, Abdulhakim Sabur,
Adel Alshamrani, Dijiang Huang, and Subbarao Kamb-
hampati. A survey of moving target defenses for network
security. IEEE Communications Surveys & Tutorials, 22
(3):1909–1941, 2020.

[13] Arunesh Sinha, Thanh H Nguyen, Debarun Kar, Matthew
Brown, Milind Tambe, and Albert Xin Jiang. From phys-
ical security to cybersecurity. Journal of Cybersecurity,
1(1):19–35, 2015.

[14] Sarath Sreedharan, Subbarao Kambhampati, et al. Expla-
nations as model reconciliation—a multi-agent perspec-
tive. In 2017 AAAI Fall Symposium Series, 2017.

[15] Anqi Xu and Gregory Dudek. Optimo: Online proba-
bilistic trust inference model for asymmetric human-robot
collaborations. In 2015 10th ACM/IEEE International
Conference on Human-Robot Interaction (HRI), pages
221–228. IEEE, 2015.

[16] Yu Zhang, Sarath Sreedharan, Anagha Kulkarni, Tatha-
gata Chakraborti, Hankz Hankui Zhuo, and Subbarao
Kambhampati. Plan explicability and predictability for
robot task planning. In Robotics and Automation (ICRA),
2017 IEEE International Conference on, pages 1313–1320.
IEEE, 2017.

Leveraging Semantic Scene Graphs and Explainable
AI to Explain Robot Failures

Devleena Das
School of Interactive Computing
Georgia Institute of Technology

Atlanta, Georgia Email:ddas41@gatech.edu

Sonia Chernova
School of Interactive Computing
Georgia Institute of Technology

Atlanta, Georgia Email:chernova@gatech.edu

Abstract—When interacting in unstructured human environ-
ments, occasional robot failures are inevitable. When such fail-
ures occur, everyday people, rather than trained technicians, will
be the first to respond. The field of explainable AI has sought to
make complex-decision making systems more interpretable but
most existing techniques target domain experts. On the contrary,
in many failure cases, robots will require recovery assistance
from non-expert users. Existing natural language explanations
hand-annotate contextual information from an environment to
help everyday people understand robot failures. However, this
methodology lacks generalizability and scalability. In our work,
we introduce a more generalizable explanation framework that
autonomously captures the semantic information in a scene to
produce semantically descriptive explanations for everyday users.
To generate failure-focused, semantic explanations we leverage
both semantic scene graphs to extract spatial relations and
object attributes from an environment, as well as pairwise rank-
ing. Our results show that semantically grounded explanations
significantly improve everyday users’ ability to identify and
understand failures than the existing state-of-the-art context-
based explanations.

I. INTRODUCTION

Increasingly, robots are becoming deployed in everyday
environments – homes, hospitals, and offices – in which the
robot’s primary users are everyday people rather than trained
technicians [12]. Occasional robot failures are inevitable when
operating in unstructured human environments, as the robot
may be unable to find an object it requires, be unable to
reach an object, encounter a planning error, etc. When an
error occurs, everyday people in the robot’s environment are
typically the first to respond, but to effectively assist in failure
recovery users must have an understanding of the robot’s
behavior, decision making, and what went wrong [3].

Research on Explainable AI (XAI) focuses on the devel-
opment of techniques that increase the transparency and inter-
pretability of complex, black box systems [1]. The vast major-
ity of XAI techniques developed to date have been designed
for experts and system developers [1, 8, 9, 6], however XAI
systems also have the potential to explain the cause of a system
error to everyday users. In particular, recent work has shown
that natural language explanations are effective in improving
user confidence in an AI system [4], and in improving user
assistance in fault recovery [3]. In both of the above works, a
contributing factor to the effectiveness of their explanations is
the ability to incorporate situational, or environmental context

from the agent’s environment. However, these early works
lack generalizability and scalability as both techniques require
that contextual information from the environment be hand-
annotated a priori for explanation generation, preventing the
generalization of explanations to new scenarios.

In this work, we introduce a generalizable framework for
explaining robot pick errors to non-expert users shown in
Figure 1. Specifically, we focus on explaining pick errors
that occur amidst a robot’s task plan, causing a halt in the
robot’s task execution. The key innovation of our approach is
the use of scene graphs to produce semantically descriptive
explanations that communicate why a failure to pick up a
given object in the scene occurred. First, we adapt a state-
of-the art semantic scene graph (SSG), MOTIFNET [13], to
autonomously extract both inter-object spatial relations and
object attribute information as contextual reasoning for robot
failures in any scene. Second, we improve the semantically
descriptive explanations producible through scene graphs by
utilizing pairwise ranking. We show that pairwise ranking
can be utilized to autonomously place attention on parts of
a scene graph output that are truly relevant to a given failure.
As a result, our framework can produce failure focused,
semantically descriptive explanations which improve everyday
users’ understanding and identification of robot failures.

II. SCENE GRAPH MODEL

A scene graph, G, describes the semantic information con-
tained in a given image and is represented by a set of nodes, N ,
and edges, E, [13]. Each ni ∈ N is defined by a pair (bi, oi) in
which bi represents a detected bounding box, and oi represents
the associated object label. Similar to [2], we also provide
each ni with an object attribute, ai ∈ A, where A is the set
of object attributes. Additionally, each eij ∈ E is defined as a
predicate label between ni and nj . The predicate labels refer
to the inter-object relations in a scene (e.g., underneath, inside,
close to). Given these definitions, the output of a scene graph
is defined by a set of triples R = {r1, r2...rm} in which each
rk ∈ R is defined by < ni, eij , nj >.

We adapt the state-of-the-art scene graph model MO-
TIFNET [13]1 to predict spatial relationships and object at-
tributes in a given scene. Figure 2 depicts our model archi-

1We utilize the codebase provided by [11] to adapt our MOTIFNET.

Fig. 1: Semantic explanation framework used to generate SSG explanations and failure-focused, ranked SSG-R explanations.
The framework consists of three modules: (1) a scene graph network that autonomously extracts semantic information from a
scene, (2) pairwise algorithm that ranks semantic information based on relevancy to a failure scenario, and (3) an explanation
generation template that produces both variants of natural language explanations.

Fig. 2: Adapted MOTIFNET model architecture utilized to
evaluate predicate classification.

Fig. 3: Confusion Matrix of our SSG model’s performance
where the y-axis denote ground truth predicates and the x-
axis denote predicted predicates.

tecture. For the purposes of our application, we evaluate our
model on predicate classification, a form of SSG evaluation
that utilizes both ground truth bounding box regions and object
labels to predict predicate edge labels. As shown in Figure 2,
ground truth bounding box regions, {b1, b2..bj}, and object
labels, {o1, o2..oj}, are extracted from an image I and passed
into a bi-LSTM network structure with highway connections
[10]. To predict a triple rk, the contextualized states for two
objects, di and dj , are utilized in conjunction with the union

of corresponding bounding box information, bi and bj , to
determine the final predicate label eij .

A. Data Collection

To train our adapted MOTIFNET model, we collected
a dataset D consisting of 188 household images from the
AI2Thor simulator [7]. Images in D were taken from the per-
spective of the robot as it fails to pick up a desired object dobj
and capture the unstructured, cluttered environment of human
households. Our images capture scenes of major receptacles
such as kitchen counter tops or dining tables. On average, each
image in D includes 13 object with approximately 6 object
attributes and 30 inter-object spatial relations.

B. Training & Evaluation

We train our adapted MOTIFNET on ground truth bounding
box regions and object labels to predict predicate and attribute
labels. We utilize a 66%-17%-17% split in which we use 126
scenes for training, 32 for validation and 32 for evaluation.
Our model is trained with 2000 iterations and utilizes a Cross
Entropy loss that is optimized using stochastic gradient descent
with a learning rate of 0.01 and momentum of 0.9.

The confusion matrix in Figure 3 shows the average per-
formance of our predicate classification. Our adapted MO-
TIFNET can generalize the predicate labels with 84.9% ac-
curacy. While our model has low false positive labels for
most relations, we see that our model has a greater chal-
lenge differentiating labels that are semantically similar. For
example, “close to” is most erroneously classified as “near”.
Improvements on the SSG model architecture, as well as
additional training data, will likely lead to improvements in
the classification accuracies.

III. GENERATING EXPLANATIONS FROM SSGS

Given a failure type f , desired object dobj , an image of the
local environment I , and the corresponding scene graph G, our
goal is to produce semantically descriptive, natural language
explanations that reason about why a robot cannot pick up
dobj . Below, we detail how explanation variants SSG and

Fig. 4: Sample failure scenarios, where the red boxes indicate the bounding boxes of ground truth objects in the scene, and
the yellow box represents dobj . We illustrate model-generated explanations, comparing CB, SSG and SSG-R explanations.

SSG-R are generated in the context of three failure types:
single, compound, and attribute failures. Single failures repre-
sent failures caused by a single inter-object spatial relationship,
compound failures represent failures caused by multiple inter-
object spatial relationships, and attribute failures represent
failures related to the attribute of dobj . As reference, inter-
object spatial relations studied include {close to, far away,
underneath, inside, occluded}, whereas the list of attribute
failures include {heavy, large, hazardous, slippery, fragile}.

A. SSG Explanations

To develop SSG explanations, we follow a template-based
approach that traverses a scene graph, G, and extracts a
subgraph g containing all relations rk ∈ R which contain
dobj as a node in the triple. We describe g as the elements
of the scene that pertain to the object of interest. Specifically,
we format the explanation as The robot could not pick up the
< dobj > because < reasoning >, where < reasoning > is
a list of phrases that enumerates all object relations rk ∈ g.

In Figure 4 we showcase examples of SSG explanations
in the context of our failure types. In every scene, the SSG
explanations include all relationships associated with dobj . We
observe that SSG explanations are semantically richer, and
more detailed than their CB counterpart. However, we also
observe that SSG explanations include extraneous information
that hide the true cause of a failure. A drawback of these SSG
explanations is that there is no insight into which rk ∈ g are
relevant in describing the robot’s failure.

B. SSG-R Explanations via Pairwise Ranking

To provide only relevant relations as reasoning for a fail-
ure, we develop SSG-R explanations. In addition to extracting
a subgraph g, we utilize pairwise ranking to autonomously
determine the relevancy of each triple rk ∈ g. Pairwise
ranking is used to learn preferences between pairs of entities
when multiple available entities exist [5]. In our application,
a preference denotes how accurately a relationship describes
the true cause(s) of failure(s).

To formulate our pairwise ranking problem we let a pair of
relationship triples, rk and rm, be defined by feature vectors

fk = [eijk, aik, ajk] and fm = [eijm, aim, ajm]. Recall from
Section II that eij represents the predicate label between two
object nodes ni and nj , while ai and aj represent the predicted
object attributes for ni and nj .

Given our feature vectors, we adapt the pairwise algorithm
from Furnkranz et al. [5]. Given a comparison of two rela-
tionships, rk and rm, we establish three possible preference
labels {0, 1, 2}, where 0 denotes when rk better describes a
failure than rm, 1 denotes when rm better describes a failure
than rk, and 2 denotes when rk and rm equally describe the
cause of a failure. Associated feature vectors fk and fm are
classified through three binary classifiers (one for each label
pair), where the predicted label is one of the preference labels.
In our work, we utilize random forest classifiers, trained using
cross validation. Based on the predicted label, the rank of one
or both relations is incremented. At the end, we order the ranks
of all relationships r in a subgraph g.

To develop SSG-R explanations, we utilize the template
for SSG explanations but, replace reasoning with the top
ranked relationship(s). Figure 4 shows how pairwise ranking
eliminates extraneous relationships compared to SSG expla-
nations, while being semantically richer than CB explanations.

IV. ANALYSIS OF SEMANTIC EXPLANATIONS

We evaluate the efficacy of our model-generated SSG and
SSG-R explanations in improving users’ ability to identify
a failure. Furthermore, we observe the effectiveness of our
ranked SSG-R explanations in comparison to our unranked
SSG explanations. To do so, we conduct a six-way between
subjects study, with the following study conditions that differ
by the type of explanation participants received:

• None (Baseline): Participant receives no explanation de-
scribing the cause of error. As noted by [3], this is the
standard in currently deployed robotic systems.

• CB (Baseline): Participant receives a context-based ex-
planation from prior work [3].

• SSG∗: Participant receives a ground truth, unranked,
semantically descriptive explanation.

• SSG-R∗: Participant receives a ground truth, ranked,
semantically descriptive explanation.

(a) (b) (c) (d)

Fig. 5: Average F1 and Recall score for participants’ failure identification across all study conditions. Statistical significance
is reported as: * p < 0.05, ** p < 0.01, *** p< 0.001.

• SSG: Participant receives a model-generated, unranked
semantically descriptive explanation.

• SSG-R: Participant receives a model-generated, ranked,
semantically descriptive explanation.

A. User Study

Study Design. Similar to Das et al. [3], our user study con-
sisted of two stages, Pre-Test and Explanation. In both stages,
users were presented with images of the environment in which
the robot encountered a failure when tasked to pick up dobj .
In the Pre-Test stage, participants were shown 16 randomly
ordered failure scenarios and asked to identify the possible
cause(s) of failure. None of the participants were provided
explanations in this stage in order to establish their initial level
of error understanding. In the Explanation stage, participants
were shown another 16 different, failure scenarios. However,
participants were now provided an explanation depending on
their study condition. Similar to the Pre-Test stage, participants
were tasked to identify the cause(s) of robot failure.

To evaluate participant performance, we measure the differ-
ence between each participant’s Pre-Test and Explanation F1
score or Recall score using a metric from Das et al. [3], Failure
Identification (FId), which measures a participant’s ability to
accurately select the correct cause(s) of failure in a scene.
Since participants were allowed to select multiple answers
for each question, in the case of compound spatial failure
types, the quantity of false negatives is a better measure of a
participant’s performance. Therefore, Recall score is utilized
for compound failures and F1 score for all other failure types.
Participants. We recruited 93 participants from Amazon Me-
chanical Turk. Participants were required to be non-experts in
the domain of robotics, thus we removed three participants for
scoring a 100% accuracy on the Pre-Test stage. The remaining
90 participants, 15 for each study condition, included 53
males and 37 females, all whom were over the age of 18
(M=39.0, SD=10.8). The task took on average 20-30 minutes
and participants were compensated $2.50.

B. Quantitative Results

The participants’ failure identification (FId) scores follow a
normal distribution, thus we utilize a one-way ANOVA with
a Tukey HSD post-hoc test to evaluate statistical significance

between study conditions. In Figure 5, we examine the average
F1 score and Recall score for participants’ failure identification
(FId) across the aggregated failure types as well as across
each individual failure type. Overall, we see that SSG-R∗

and SSG∗ explanations have the highest improvement in FId
scores in comparison to the other study conditions. This indi-
cates the effectiveness of semantically descriptive explanations
in improving participants’ understanding of robot failures.

When looking at the FId scores for aggregate failures (Fig-
ure 5(a)), we see SSG-R∗ and SSG-R explanations lead to a
significant improvement in failure understanding compared to
None, CB, and both SSG and SSG∗ explanations (p < 0.001
for all). Similar trends are observed with single spatial failures
(Figure 5(b)), and attribute failures (Figure 5(d)), reiterating
the effectiveness of grounding explanations in the semantic
information present in a scene. Additionally, for compound
spatial failures (Figure 5(c)), we observe that only SSG-R∗

leads to significant improvement in FId scores. This high-
lights the importance of ranked semantic-based explanations
in significantly improving participants’ failure understanding,
as well as highlights an area of improvement for our SSG
model in detecting multiple failures in a scene. Furthermore,
Figure 5(d) presents the effectiveness of SSG and SSG∗

explanations. We observe that SSG and SSG∗ lead to sig-
nificantly improved failure understanding in comparison to
None (p < 0.05) and CB (p < 0.001). However, SSG-R and
SSG − R∗ show a significantly higher rate of improvement
than SSG and SSG∗ (p < 0.001).

V. CONCLUSION & FUTURE WORK

In this work we have introduced a generalizable framework
that autonomously captures the semantic information in a
scene to explain robot pick errors to everyday users. From our
results, we demonstrate that ranked, semantically descriptive
explanations quantifiably improve everyday users’ ability to
understand robot failures. In future work, we would like to ex-
amine the effects of these semantic explanations in the context
of other manipulation and navigation failures. Additionally,
future work, in the form of additional data collection and
model improvements, is required to further expand the scope
of relations needed to explain a wider range of robot failures.

REFERENCES

[1] Amina Adadi and Mohammed Berrada. Peeking inside
the black-box: a survey on explainable artificial intelli-
gence (xai). IEEE access, 6:52138–52160, 2018.

[2] Iro Armeni, Zhi-Yang He, JunYoung Gwak, Amir R Za-
mir, Martin Fischer, Jitendra Malik, and Silvio Savarese.
3d scene graph: A structure for unified semantics, 3d
space, and camera. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
5664–5673, 2019.

[3] Devleena Das, Siddhartha Banerjee, and Sonia Chernova.
Explainable ai for robot failures: Generating explanations
that improve user assistance in fault recovery. arXiv
preprint arXiv:2101.01625, 2021.

[4] Upol Ehsan, Pradyumna Tambwekar, Larry Chan, Brent
Harrison, and Mark O Riedl. Automated rationale
generation: a technique for explainable ai and its effects
on human perceptions. In Proceedings of the 24th
International Conference on Intelligent User Interfaces,
pages 263–274, 2019.

[5] Johannes Fürnkranz and Eyke Hüllermeier. Preference
learning and ranking by pairwise comparison. In Prefer-
ence learning, pages 65–82. Springer, 2010.

[6] Krishna Gade, Sahin Cem Geyik, Krishnaram Kentha-
padi, Varun Mithal, and Ankur Taly. Explainable ai in
industry. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, pages 3203–3204, 2019.

[7] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli Van-
derBilt, Luca Weihs, Alvaro Herrasti, Daniel Gordon,
Yuke Zhu, Abhinav Gupta, and Ali Farhadi. Ai2-thor: An
interactive 3d environment for visual ai. arXiv preprint
arXiv:1712.05474, 2017.

[8] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin.
” why should i trust you?” explaining the predictions of
any classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and
data mining, pages 1135–1144, 2016.

[9] Wojciech Samek, Grégoire Montavon, Andrea Vedaldi,
Lars Kai Hansen, and Klaus-Robert Müller. Explainable
AI: interpreting, explaining and visualizing deep learn-
ing, volume 11700. Springer Nature, 2019.

[10] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen
Schmidhuber. Training very deep networks. arXiv
preprint arXiv:1507.06228, 2015.

[11] Kaihua Tang. A scene graph generation code-
base in pytorch, 2020. https://github.com/KaihuaTang/
Scene-Graph-Benchmark.pytorch.

[12] Georgios A Zachiotis, George Andrikopoulos, Randy
Gornez, Keisuke Nakamura, and George Nikolakopoulos.
A survey on the application trends of home service
robotics. In 2018 IEEE International Conference on
Robotics and Biomimetics (ROBIO), pages 1999–2006.
IEEE, 2018.

[13] Rowan Zellers, Mark Yatskar, Sam Thomson, and Yejin

Choi. Neural motifs: Scene graph parsing with global
context. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 5831–
5840, 2018.

https://github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch
https://github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch

Human Action Nodes for Behavior Trees
Mohamed Behery

Knowledge-Based Systems Group (KBSG)
RWTH Aachen University, Germany
Email: behery@kbsg.rwth-aachen.de

Minh Trinh
Laboratory for Machine Tools

and Production Engineering (WZL)
RWTH Aachen University, Germany
Email: m.trinh@wzl.rwth-aachen.de

Gerhard Lakemeyer
Knowledge-Based Systems Group (KBSG)

RWTH Aachen University, Germany
Email: gerhard@kbsg.rwth-aachen.de

Abstract—Modern industrial scenarios often require robots to
share the work space with a human worker. Having a human
in the work space increases the complexity of the robot decision
making. Especially in cases where the human and the robot have
to handle the same work piece. In such cases, the decision process
of the robot must include not only safety of the human teammate,
but also factors that maintain the throughput of the whole system.
Behavior Trees (BTs) have shown great success as a task level
control framework in industrial situations due to their reactivity,
modularity, and reusability. However, not much research has gone
into their application in industrial Human-Robot Collaboration
(HRC) contexts. In this work, we introduce an extension to BTs
that exploits the modularity and reactivity to allow BT-based
robots to collaborate with human workers without compromising
safety or performance.

I. INTRODUCTION

Behavior Trees (BTs) have shown great success in the
field of game AI design due to their readability, modularity,
and reactivity. This led to their transition into the field of
robotics where they excelled in many applications [4]. BTs
were used in executing autonomous tasks by robots in both full
autonomy [5] and supervised control [2, 3] as well as multi-
agent systems [1]. However, there is still potential to exploit
the modularity and flexibility offered by BTs in Human-Robot
Collaboration (HRC) tasks. Supervisory control use-cases that
employ BTs such as the robot assisted surgery task discussed
in [2] require the human operator to either have access to
traditional interfaces with the robot (such as a keyboard and/or
touch screen) or to have an augmented reality interface that
facilitates the human-robot communication.

While some tasks can allow the use of such input -and
output- devices, the use of such communication schemes is
sometimes not feasible. For example, when the human team
member is occupied by achieving a task of her own, as
in the case of human-robot assembly tasks. Since humans
and robots have different capabilities (e.g., robotic precision
and reliability and human manipulation capabilities) and both
are working to achieve a common goal, it is crucial that
each teammate knows what the other is doing and when the
handover of the work piece should occur.

Current trends show a development towards customized
products with many variants as well as a reduction of the time
to market. Therefore, an increased flexibility and agility of
the production process is necessary. The assembly process, as
the last production step, is especially affected by fluctuations

in demand due to its market proximity. Humans show great
flexibility compared to robots, particularly when it comes to
handling non-rigid objects. Robots on the other hand, are more
precise and efficient. Robot-human collaboration combines
these advantages. Yet, programming of robots is mostly done
by robotics experts. Small and medium-sized business often
lack this expertise.

In this ongoing work we extend BTs to handle HRC tasks,
where human and robotic teammates collaborate to achieve a
common goal while sharing not only the work space, but also
the work piece. To this end, we make use of the modularity
and flexibility of BTs to allow the robot to start executing new
tasks -on different work pieces- instead of idly waiting for the
human to finish theirs.

This paper is organized as follows: Section II describes BTs
and the different node types. Next, Section III describes the
details of our extension. We conclude the paper in Section IV.

II. BEHAVIOR TREES

BTs have been considered a generalization of previous con-
trol architectures such as Teleo-Reactive systems and Decision
Trees, and have shown superiority to Finite state Machines [4].
As described by Iovino et al. [4], BTs follow a tree structure
where nodes can belong to two classes: execution and control
flow. Execution starts by activating (ticking) the root node,
which in turn starts ticking its children. After receiving a tick,
a node will become active and return its status S ∈ {S,R,F};
either Success, Running, or Failure respectively to its parent.
Execution nodes can be Action nodes, which execute an action
and return S or F depending on the action’s success, or R
while it executes the action. They can also be condition nodes
which return S or F depending on whether the condition holds
and never return R. Control flow nodes are divided into four
node types:

• Sequence: execute the children in order from left to right.
They return S iff all the children succeed, F iff at least
one fails, and R otherwise.

• Selector: They return S iff one child succeeds, F iff all
the children fail, and R otherwise.

• Parallel: execute the children in parallel. A node with N
children and m threshold returns S iff m children succeed
and F iff N −m+ 1 children fail, and R otherwise.

• Decorator: they can be used to implement custom be-
havior (e.g., repeat n times) and manipulate the returned

status of their child (e.g., negation).

III. HUMAN ACTION NODES

When the robot hands over the work piece to the human,
it should be able to start a new task instead of idling. Task
assignment is rather straightforward, the problem is resuming
the work after the human has finished her sub-task. By
augmenting the BT with a reasoning engine, the robot can
know how and when to resume its tasks. This work defines
a new execution node for BTs called Human Action Node
(H). Using this node, we can 1) mark a node as a task for
the human, and 2) allow the robot to continue working on
that work piece once the human has finished. The H-nodes
will return S after the human successfully ends her tasks and
F if the human failed. They do not need to return R during
execution because they stop the tree once they are reached.

We assume -without loss of generality- that these nodes
will be placed under memory-sequence or memory-selector
nodes, because assembly tasks do not require repeating the
same steps for the same part1. Algorithm 1 shows how a
sequence node will be changed to handle a child H-Node,
Selector and Parallel nodes can be modified analogously.

Algorithm 1: The tick procedure of a Sequence node

1 Function tick:
2 for c in children do
3 if type(c) = H then
4 CLIPS.addRule(
5 idle ∧ (c.effects ∨

¬c.preconditions)→ T .tick()
6)
7 save(T)
8 abort(T)
9 end

10 childStatus ← c.tick()
11 if childStatus 6= S then
12 return childStatus
13 end
14 end
15 return S

At design time, these nodes are treated as action nodes.
They do not have children (since the robot does not need
information about the sub-tasks performed by the human). The
only difference to traditional action nodes is that the robot
needs to know the preconditions and effects of a H-node in
order to know when -and how- to proceed working on its tasks
at run-time.

When these nodes are reached, the tree stops before ticking
them, As seen in Algorithm 1 Line 3 the agent stores the tree -
and the associated tree context- in a buffer. The robot will use
the action model later to decide whether the task execution

1using traditional control flow nodes will cause all tree nodes to receive
ticks every time the root is ticked causing sub-tasks to be repeated

has ended (i.e., the sub-tree is ready to resume execution).
For this, we will use an expert system, such as ‘C’ Language
Production System (CLIPS) [6]. CLIPS has three building
blocks: a knowledge base, a fact list, and an inference engine.
Before stopping the tree, we add a new CLIPS rule (seen in
Line 4) that ticks the tree whenever the robot is idle (between
trees) and either the effects hold or preconditions do not hold.
When the node is ticked, it returns S iff the effects hold and
false otherwise.

IV. CONCLUSION

We introduce the H-node, a new type of execution node for
BTs. This node stops the tree execution allowing a human
teammate to perform a sub-task while the robot picks up
another task. After the human has finished, the robot will
be able to continue working according to the outcome of the
human task. If the human finishes her task successfully, the
robot can continue working on it, otherwise the robot can do
some error handling (by adding this to a selector node) such as
discarding of the work piece. This addition is crucial to allow
behavior trees to handle HRC tasks. We plan to implement
and test the work presented here on the assembly use case
mentioned above and publish the results.

ACKNOWLEDGMENTS

Funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence
Strategy – EXC-2023 Internet of Production – 390621612.

REFERENCES

[1] Michele Colledanchise, Alejandro Marzinotto, Dimos V
Dimarogonas, and Petter Oegren. The advantages of using
behavior trees in mult-robot systems. In Proceedings
of ISR 2016: 47st International Symposium on Robotics,
pages 1–8. VDE, 2016.

[2] Blake Hannaford, Randall Bly, Ian Humphreys, and Mark
Whipple. Behavior trees as a representation for medical
procedures. arXiv preprint arXiv:1808.08954, 2018.

[3] Danying Hu, Yuanzheng Gong, Blake Hannaford, and
Eric J. Seibel. Semi-autonomous simulated brain tu-
mor ablation with ravenii surgical robot using behavior
tree. In 2015 IEEE International Conference on Robotics
and Automation (ICRA), pages 3868–3875, 2015. doi:
10.1109/ICRA.2015.7139738.

[4] Matteo Iovino, Edvards Scukins, Jonathan Styrud, Petter
Ögren, and Christian Smith. A survey of behavior trees
in robotics and AI. CoRR, abs/2005.05842, 2020. URL
https://arxiv.org/abs/2005.05842.

[5] Petter Ögren. Increasing modularity of uav control sys-
tems using computer game behavior trees. In AIAA
Guidance, Navigation, and Control Conference 2012 :,
2012. ISBN 978-160086938-9. QC 20130522.

[6] Robert M Wygant. Clips a powerful development and
delivery expert system tool. Computers & industrial
engineering, 17(1-4):546–549, 1989.

https://arxiv.org/abs/2005.05842

Sampling-Based Robust Control of Autonomous
Systems with Non-Gaussian Noise

Thom S. Badings, Alessandro Abate, Nils Jansen, David Parker, Hasan A. Poonawala, Marielle Stoelinga

Consider a so-called reach-avoid problem for an unmanned
aerial vehicle (UAV), where the goal is to reach a desirable
region within a given time horizon, while avoiding specific un-
safe regions. We model such an autonomous system formally
as a dynamical system, whose n-dimensional state xk ∈ Rn

reflects the position and velocity of the UAV at time k, and
whose control inputs uk ∈ U ⊂ Rp reflect choices that may
change the state over time [13, 16]. However, factors like
turbulence and human intervention cause uncertainty in the
outcome of control inputs. For example, a human decision
maker may overrule control decisions made autonomously by
the UAV. If the transition of the state is linear in the current
state and control input, the state at time k + 1 is given by

xk+1 = Axk +Buk + qk + wk, (1)

where A ∈ Rn×n, B ∈ Rn×p are matrices, and qk ∈ Rn is a
deterministic disturbance. The uncertainty is modeled by the
process noise wk ∈ Rn, which is an additive random variable
that affects the transition of the state. The problem is to
compute a controller, such that the state progresses safely (i.e.,
without entering unsafe regions) to its goal [2]. In particular,
controllers for autonomous systems that operate in safety-
critical settings like the UAV must account for uncertainty.

To ensure analytical tractability of the problem of comput-
ing a controller, it is widely assumed that the process noise is
Gaussian, for example in linear-quadratic-Gaussian control [1].
However, in many cases, like the UAV under turbulence or
with a human decision maker, this assumption yields a poor
approximation of the uncertainty [4]. Moreover, distributions
may even be unknown, meaning that it is not possible to derive
a set-bounded or stochastic representation of the noise. In such
cases, it is generally hard or even impossible to derive hard
guarantees on the probability that a given controller ensures
a safe progression of the system’s state to the objective.

In this work, we provide probably approximately correct
(PAC) guarantees on the performance of a controller for the
aforementioned reach-avoid problem. We assume an arbitrary
or even unknown distribution of the noise. We express the
objective of reaching a desirable goal in finite time, while
avoiding unsafe regions, as a so-called reachability prop-
erty [3, 8]. As such, we solve the following problem:

Given a linear dynamical system perturbed by additive
noise of unknown distribution, compute a controller un-
der which, with high confidence, the probability to satisfy
a reachability property is above a given threshold value.

Linear dynamical system
xk+1 = Axk +Buk +qk +wk

Abstract interval MDP
MI = (S,Act, sI ,P)

Probabilistic reachability
guarantees on iMDP

Continuous controller
Mapping states to controls

Partition Confidence level Reachability
property

Sample and
abstract

Compute robust
optimal policy

Guarantees insufficient? m

Obtain more noise samples

Guarantees
sufficient? ¢

Optimal policy

Apply
controller

Fig. 1: Our iterative abstraction scheme.

To solve this problem, we propose the iterative abstraction
scheme shown in Fig. 1, of which we highlight three key steps:

Abstraction as a Markov decision process
The fundamental concept of our approach is to compute a

finite-state abstraction of the dynamical system as a Markov
decision process (MDP) [18]. We obtain such a model from
a partition of the continuous state space into a set of convex
regions. Every discrete state of the MDP represents a single
region, and actions correspond to control inputs that induce
transitions between the regions, which are stochastic due to the
process noise. Efficient methods like value iteration compute
policies that are guaranteed to reach certain states of the MDP
with optimal probability [18]. Mature tool support exists, for
instance, via PRISM [14] or Storm [9].

Computing transition probability intervals via sampling
Since the distribution of the noise is unknown, it is not pos-

sible to compute the transition probabilities of the abstraction
exactly. Instead, we estimate the transition probabilities based
on a finite number of samples (also called scenarios) of the
noise, which may be obtained from a high fidelity (blackbox)
simulator or from experiments. However, depending on the
number of samples, the true transition probabilities may crit-
ically deviate from these estimates. To be robust against such
deviations, we employ a non-trivial sampling method known
as the scenario approach (also called scenario optimization),
which is a methodology to deal with stochastic convex op-
timization in a data-driven fashion [6, 7, 10]. Specifically,
we compute upper and lower bounds on every transition
probability P (s, a)(s′) from MDP state s to state s′ under
action a with a desired confidence level β ∈ (0, 1), which
we choose up front. For every transition, we use the scenario
approach [10] to compute a probability interval [

¯
p, p̄] such that

P
{

¯
p ≤ P (si, al)(sj) < p̄

}
≥ 1− β. (2)

These intervals are PAC, as they contain the true probabilities
with at least this confidence level. To formalize the abstraction,
we use so-called interval MDPs (iMDPs), which have transi-
tion probabilities as intervals instead of precise values [11].

Iteratively improving the abstraction quality
The tightness of the probability intervals of the iMDP can be

controlled through the number of samples. Hence, we propose
an iterative abstraction scheme, to iteratively improve the
probability intervals of the iMDP by using increasing sample
sizes. For the resulting iMDP, we compute a robust policy
that maximizes the probability to safely reach the goal states.
This policy can be derived by a variant of value iteration
or convex programming and has to robustly account for all
possible probabilities within these intervals [12, 17, 19]. If
the reachability probability is above the threshold, we use the
policy to compute a controller for the dynamical system. The
confidence level β reflects the likelihood that the guarantees
for the iMDP carry over to the dynamical system. This means
that we compute a controller, for which we guarantee with
high confidence that the probability to satisfy the objective
is above a known value. If the guarantees are unsatisfactory,
we collect additional samples to obtain an abstraction with a
reduced level of uncertainty in the transition probabilities.

SOLVING THE UAV MOTION CONTROL PROBLEM

We use our method to solve the UAV reach-avoid problem.
The problem is to compute a controller that guarantees (with
high confidence) that the probability to reach the goal (shown
in Fig. 2) within 64 time steps, while avoiding unsafe regions,
is above 75%. The 6D state encodes the position and velocity
of the UAV, and control inputs reflect actuators that change the
velocity components. The effect of turbulence on the state is
modelled as process noise, based on a Dryden gust model [5,
15]. The effect of a human operator that overrules a control
decision of the autonomous UAV could be modeled similarly.
We partition the state space into 42, 875 regions: 7 values per
position variable, and 5 values per velocity component.

We implement our method in Python, and tailor the model
checker PRISM [14] for iMDPs to compute robust optimal
policies. At every iteration, we feed the iMDP obtained for that
number of samples to PRISM, which computes the optimal
policy associated with the maximum reachability probability.
We apply our iterative scheme with up to 6400 noise samples.

Handling abstractions with millions of transitions
The time to compute the states and actions of the initial

abstraction is around 40 minutes. Thereafter, every iteration of
our scheme takes 4-18 minutes and yields an iMDP with 12-46
million transitions. Run times increase with the partition size,
but are almost unaffected by the time horizon of the problem.

Our iMDP abstractions yield safe controllers
As shown in Fig. 3, a reachability probability of at least

75% is guaranteed when using 3200 or more noise samples.

Fig. 2: UAV problem layout (goal in green; obstacles in red),
plus 8 trajectories under the optimal (iMDP-based) controller.

2
5

2
5
0

2
,5
0
0

0

0.25

0.5

0.75

1

Number of samples

R
ea

ch
ab

ili
ty

pr
ob

ab
ili

ty

Optimal iMDP reach.prob.
Empirical reach.prob.

Fig. 3: Probabilistic reachability guarantees on the iMDPs, vs.
empirical (simulated) performance on the dynamical system.

To validate this claim, we extract the optimal policy for every
number of samples, and use it to compute a controller for
the dynamical system. By simulating the system under the
derived controller for every sample size 10, 000 times, we
obtain the trajectories in Fig. 2 and values shown in Fig. 3.
Importantly, we observe that our robust iMDP approach yields
guarantees which are a strong lower bound on the actual
empirical (simulated) performance of the dynamical system.

More samples means less uncertainty
Our results confirm the intuition that better probabilistic

reachability guarantees are obtained when more samples are
used to compute the iMDP probability intervals. In particular,
the higher the number of samples, the lower the uncertainty
in the probability intervals (i.e. smaller difference between the
upper and lower bounds of the intervals).

CONCLUSION

We presented a novel sampling-based method for robust
control of autonomous systems with process noise of an
unknown distribution. Our experiment shows how our method
effectively solves a realistic UAV motion control problem, and
provides strong lower bound guarantees on the performance
of the computed controller. In the future, we plan to apply
our method to other control problems where human decision
makers are involved. Moreover, we wish to study adaptive
partitioning schemes and partial state observability.

REFERENCES

[1] Brian DO Anderson and John B Moore. Optimal control:
linear quadratic methods. Courier Corporation, 2007.

[2] Karl Johan Åström and Richard M Murray. Feedback
systems: an introduction for scientists and engineers.
Princeton university press, 2010.

[3] Christel Baier and Joost-Pieter Katoen. Principles of
model checking. MIT Press, 2008.

[4] Lars Blackmore, Masahiro Ono, Askar Bektassov, and
Brian C. Williams. A probabilistic particle-control ap-
proximation of chance-constrained stochastic predictive
control. IEEE Trans. Robotics, 26(3):502–517, 2010.

[5] Eivind Bøhn, Erlend M Coates, Signe Moe, and Tor Arne
Johansen. Deep reinforcement learning attitude control
of fixed-wing uavs using proximal policy optimization.
In 2019 International Conference on Unmanned Aircraft
Systems (ICUAS), pages 523–533. IEEE, 2019.

[6] Giuseppe Carlo Calafiore and Marco C. Campi. The
scenario approach to robust control design. IEEE Trans.
Autom. Control., 51(5):742–753, 2006.

[7] Marco C. Campi and Simone Garatti. The exact fea-
sibility of randomized solutions of uncertain convex
programs. SIAM J. Optim., 19(3):1211–1230, 2008.

[8] Edmund M. Clarke, E. Allen Emerson, and A. Prasad
Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Trans.
Program. Lang. Syst., 8(2):244–263, 1986.

[9] Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen,
and Matthias Volk. A storm is coming: A modern
probabilistic model checker. In CAV (2), volume 10427
of Lecture Notes in Computer Science, pages 592–600.
Springer, 2017.

[10] Simone Garatti and MC Campi. Risk and complexity
in scenario optimization. Mathematical Programming,
pages 1–37, 2019.

[11] Robert Givan, Sonia M. Leach, and Thomas L. Dean.
Bounded-parameter markov decision processes. Artif.
Intell., 122(1-2):71–109, 2000.

[12] Ernst Moritz Hahn, Vahid Hashemi, Holger Hermanns,
Morteza Lahijanian, and Andrea Turrini. Multi-objective
robust strategy synthesis for interval markov decision
processes. In QEST, volume 10503 of Lecture Notes
in Computer Science, pages 207–223. Springer, 2017.

[13] Bohdan T Kulakowski, John F Gardner, and J Lowen
Shearer. Dynamic modeling and control of engineering
systems. Cambridge University Press, 2007.

[14] Marta Z. Kwiatkowska, Gethin Norman, and David
Parker. PRISM 4.0: Verification of probabilistic real-
time systems. In CAV, volume 6806 of Lecture Notes in
Computer Science, pages 585–591. Springer, 2011.

[15] D Moorhouse and R Woodcock. US military specifica-
tion MIL-F-8785C. US Department of Defense, 1980.

[16] Jan Willem Polderman and Jan C Willems. Introduction
to the mathematical theory of systems and control. New
York, 434, 1998.

[17] Alberto Puggelli, Wenchao Li, Alberto L. Sangiovanni-
Vincentelli, and Sanjit A. Seshia. Polynomial-time
verification of PCTL properties of mdps with convex
uncertainties. In CAV, volume 8044 of Lecture Notes
in Computer Science, pages 527–542. Springer, 2013.

[18] Martin L. Puterman. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. Wiley Series in
Probability and Statistics. Wiley, 1994.

[19] Eric M. Wolff, Ufuk Topcu, and Richard M. Murray.
Robust control of uncertain markov decision processes
with temporal logic specifications. In CDC, pages 3372–
3379. IEEE, 2012.

Dialogue Object Search
Monica Roy*, Kaiyu Zheng*, Jason Liu, Stefanie Tellex

Department of Computer Science, Brown University

Abstract—We envision robots that can collaborate and commu-
nicate seamlessly with humans. It is necessary for such robots
to decide both what to say and how to act, while interacting
with humans. To this end, we introduce a new task, dialogue
object search: A robot is tasked to search for a target object (e.g.,
fork) in a human environment (e.g., kitchen), while engaging in a
“video call” with a remote human who has additional but inexact
knowledge about the target’s location. That is, the robot conducts
speech-based dialogue with the human, while sharing the image
from its mounted camera. This task is challenging at multiple
levels, from data collection, algorithm and system development,
to evaluation. Despite these challenges, we believe such a task
blocks the path towards more intelligent and collaborative robots.
In this extended abstract, we motivate and introduce the dialogue
object search task and analyze examples collected from a pilot
study. We then discuss our next steps and conclude with several
challenges on which we hope to receive feedback.

I. INTRODUCTION

Humans can act in the physical world (such as walking,
looking, or opening a cabinet) while having a conversation
with others. As robots enter homes and care centers, we
envision them to have such capability as well when collab-
orating and communicating with humans. To achieve this,
robots must decide both what to say and how to act towards a
goal. This involves combining task-oriented dialogue systems
with decision making under uncertainty for embodied agents.
Traditionally, dialogue systems have involved users interacting
with a virtual agent for tasks such as technical support [1],
personal assistance (e.g., Siri) and booking reservations [2, 3].
While recent works have proposed datasets that combine
dialogue and dynamic, embodied decision making [4, 5],
the investigated problems over these datasets are limited to
prediction tasks that bypass the challenges of evaluating a
conversational embodied agent. For example, the Navigation
from Dialog History Task [5] asks the agent to predict the
next navigation action, given a history of dialogue and past
navigation actions. The tourist localization task [4] asks the
system to predict a location given a language description.

Our goal is to enable robots to naturally engage in a dialogue
with a human while completing a task autonomously. We
believe a task that captures the sequential nature of both the
dialogue and physical decision making is necessary for in-
depth study towards this goal. We choose to focus on object
search, a useful and widely-studied problem [6, 7, 8, 9], and
introduce a new task: dialogue object search. Before providing
a detailed description in the next section, we note that we con-
sider speech-based dialogue in this task. From the pilot study
(Sec. III), we observed that participants produced language

*These authors contributed equally to this work.

and behavior that are more natural using speech, because text-
based dialogue requires users to decide whether to type or act
at every step. Although this creates more challenges in scalable
data collection and evaluation, we believe that overcoming
these challenges is essential towards our goal, and they are
our ongoing focus.

II. DIALOGUE OBJECT SEARCH

A robot is tasked to search for a target object in a human
environment (e.g., kitchen) while engaging in an audio dia-
logue with a remote human assistant, who possesses inexact
prior knowledge about the target object’s location. In our pilot
study, this is given in the form of a 2D scatter plot (Fig. 1).
The robot has a mounted RGB-D camera, and shares its view
with the human assistant. We assume the robot and the human
assistant have access to two different sequences of RGB-D
images of the scene, which represent their prior experiences
of living in that environment. Target objects are excluded from
these images. The robot must decide what to say and how to
act, in order to efficiently find the target object while naturally
interacting and collaborating with the human assistant.

Our inspiration for the above setting comes from the fol-
lowing scenario between two people living together (family
or friends). One person is searching for something, such as
a document or a key, but not sure where it is. They decide
to video call the other home member who is currently out of
the house but may have a better idea. They then engage in
a dialogue while the first person conducts the search for the
target object. We envision that in the future, this could happen
between a home assistant robot and a human user.

III. PILOT STUDY

To investigate the above task, we first attempted to under-
stand how a human would behave if they are in the robot’s
position. We designed and conducted a pilot study among
three pairs of people (authors’ lab members) using AI2-
THOR [10] as the simulated home environments. In this study,
we designate two roles according to the above problem setting.
The Assistant is the person assisting in the process as the robot
searches for a given target object. The Controller is the person
who is taking on the role of the robot. Due to the pandemic,
we used Zoom to record the audio and create transcripts of
the dialogue. We implemented a web-based data collection tool
where the Controller controls the agent in AI2-THOR through
the web interface, and the Assistant has access to a 2D scatter
plot of a subset of objects in the scene (Fig. 1). Each pair
of participants are assigned three object search trials in one
environment. They have 90 seconds to explore the environment

Fig. 1: We conducted a pilot study to understand desirable behavior for the dialogue object search task. Shown here is a screenshot of the
web interface (left) and the dialogue and actions organized onto a timeline (right), for an object search trial where the target object is Apple.
We classified the dialogue utterances into a preliminary set of parameterized intents, indicated by the colors.

(with target objects removed) and 180 seconds to complete
each trial. In addition to dialogue audio and transcripts, we
collected data about the scene per view, the action executed,
and the agent’s groundtruth pose as provided by the AI2-
THOR framework. We considered a discrete action space
of {MoveAhead(0.25m), RotateLeft(45◦), RotateRight(45◦),
LookUp(30◦), LookDown(30◦), Open, Close}.1.

Despite the small scale of our pilot dataset, we observed
some interesting behaviors shared between trials. For example,
at the beginning of the object search trials the Assistant
would specify the target object and the Controller would
confirm. Additionally, as the task progresses, both roles would
describe behaviors, beliefs about the environment and location
of objects, and visual observations. We codified these into a
set of preliminary intent types; some examples are given in
the figure above. Using this pilot dataset, we have started to
explore the development of an autonomous agent (Controller),
both modular and end-to-end that can plan actions for this task.

As mentioned in the introduction, we experimented with
both speech-based dialogue and text-based dialogue, using the
recording and chat features of Zoom. With speech, participants
typically engage in frequent back-and-forth, as the Controller
controls the agent. Such exchanges involve discussing, for
example, the scene and possible target locations. Participants
report that when using text, the Controller must decide be-
tween controlling the agent in AI2-THOR versus typing in
the chat. Consequently, they would try to search for the
object themselves without interacting with the Assistant, who,
as a result, finds it difficult to tell if their input is being

1We first experimented with a rotation angle of 90◦ following [11, 12],
but experienced sudden jumps that are unnatural as felt by the participants.
Therefore, we switch to 45◦, also used by some existing works [13, 14]

considered by the Controller. This suggests collecting dialogue
data through text is unnatural and misaligned with our goal.

IV. DISCUSSION & NEXT STEPS

Though truthful to the task, our pilot data collection proce-
dure is currently not scalable. We plan to implement a system
that can be deployed on the crowdsourcing platform Amazon
Mechanical Turk (AMT), to pair up Turkers to participate in
the task entirely through their web browsers for accessibility.
AMT a powerful platform, yet not designed for multi-user
tasks. Due to audio communication and running AI2-THOR
servers, we face a more difficult situation than Das et al.
[15] who had to implemented a live chatbot on AMT. We
also need solutions to scalable and accurate transcription
of the collected audio as well as intent labling. We seek
suggestions for strategies to collect such data at scale. In terms
of evaluation, we believe both experiment with simulated
assistants and real human assistants are necessary. For the
simulated assistant, we are considering an oracle agent that
communicates using template-based language. The goal of
this simulated agent is to facilitate efficient and repeatable
evaluations during algorithm development for the embodied
dialogue agent, which could be a long-term effort. Ultimately,
the agent should be deployed to perform the task with real
human subjects. We plan to consider objective metrics for both
object search performance (e.g., success rate and discounted
total return2) and dialogue quality [17], and, eventually, sub-
jective metrics such as naturalness [18]. We believe finding
solutions to scalable speech-based dialogue data collection for
embodied tasks and plausible evaluation protocol are daunting,
yet unavoidable challenges towards future collaborative robots.

2Because we consider open/close actions, the SPL metric [16] widely used
in the object-goal navigation task is not applicable.

REFERENCES

[1] D. Mouromtsev, L. Kovriguina, Y. Emelyanov, D. Pavlov, and A. Shipilo,
“From spoken language to ontology-driven dialogue management,” in
International Conference on Text, Speech, and Dialogue. Springer,
2015, pp. 542–550.

[2] T.-H. Wen, D. Vandyke, N. Mrkšić, M. Gašić, L. M. Rojas-Barahona,
P.-H. Su, S. Ultes, and S. Young, “A network-based end-to-end trainable
task-oriented dialogue system,” in Proceedings of the 15th Conference
of the European Chapter of the Association for Computational
Linguistics: Volume 1, Long Papers. Valencia, Spain: Association
for Computational Linguistics, Apr. 2017, pp. 438–449. [Online].
Available: https://aclanthology.org/E17-1042

[3] W. Wei, Q. Le, A. Dai, and J. Li, “Airdialogue: An environment for goal-
oriented dialogue research,” in Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, 2018, pp. 3844–
3854.

[4] H. de Vries, K. Shuster, D. Batra, D. Parikh, J. Weston, and D. Kiela,
“Talk the walk: Navigating new york city through grounded dialogue,”
arXiv preprint arXiv:1807.03367, 2018.

[5] J. Thomason, M. Murray, M. Cakmak, and L. Zettlemoyer, “Vision-and-
dialog navigation,” in Conference on Robot Learning. PMLR, 2020,
pp. 394–406.

[6] A. Aydemir, A. Pronobis, M. Göbelbecker, and P. Jensfelt, “Active visual
object search in unknown environments using uncertain semantics,”
IEEE Transactions on Robotics (T-RO), vol. 29, no. 4, pp. 986–1002,
Aug. 2013. [Online]. Available: http://www.pronobis.pro/publications/
aydemir2013tro

[7] T. Kollar and N. Roy, “Utilizing object-object and object-scene context
when planning to find things,” in 2009 IEEE International Conference
on Robotics and Automation. IEEE, 2009, pp. 2168–2173.

[8] K. Zheng, D. Bayazit, R. Mathew, E. Pavlick, and S. Tellex, “Spatial
language understanding for object search in partially observed cityscale
environments,” in 2021 IEEE International Conference on Robot and
Human Interactive Communication (RO-MAN). IEEE, 2021.

[9] K. Zheng, Y. Sung, G. Konidaris, and S. Tellex, “Multi-resolution
POMDP planning for multi-object search in 3D,” in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), 2021.

[10] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti,
D. Gordon, Y. Zhu, A. Gupta, and A. Farhadi, “Ai2-thor: An interactive
3d environment for visual ai,” arXiv preprint arXiv:1712.05474, 2017.

[11] D. Gordon, A. Kembhavi, M. Rastegari, J. Redmon, D. Fox, and
A. Farhadi, “Iqa: Visual question answering in interactive environments,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 4089–4098.

[12] X. Ye and Y. Yang, “Hierarchical and partially observable goal-driven
policy learning with goals relational graph,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
June 2021.

[13] M. Wortsman, K. Ehsani, M. Rastegari, A. Farhadi, and R. Mottaghi,
“Learning to learn how to learn: Self-adaptive visual navigation using
meta-learning,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2019, pp. 6750–6759.

[14] Y. Qiu, A. Pal, and H. I. Christensen, “Learning hierarchical relation-
ships for object-goal navigation,” in 2020 Conference on Robot Learning
(CoRL), 2020.

[15] A. Das, S. Kottur, K. Gupta, A. Singh, D. Yadav, J. M. Moura, D. Parikh,
and D. Batra, “Visual dialog,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 326–335.

[16] D. Batra, A. Gokaslan, A. Kembhavi, O. Maksymets, R. Mottaghi,
M. Savva, A. Toshev, and E. Wijmans, “Objectnav revisited: On
evaluation of embodied agents navigating to objects,” arXiv preprint
arXiv:2006.13171, 2020.

[17] A. Venkatesh, C. Khatri, A. Ram, F. Guo, R. Gabriel, A. Nagar,
R. Prasad, M. Cheng, B. Hedayatnia, A. Metallinou et al., “On eval-
uating and comparing conversational agents,” in Conference on Neural
Information Processing Systems (NeurIPS), 2018.

[18] V. Hung, M. Elvir, A. Gonzalez, and R. DeMara, “Towards a method for
evaluating naturalness in conversational dialog systems,” in 2009 IEEE
international conference on systems, man and cybernetics. IEEE, 2009,
pp. 1236–1241.

https://aclanthology.org/E17-1042
http://www.pronobis.pro/publications/aydemir2013tro
http://www.pronobis.pro/publications/aydemir2013tro

Leveraging Temporal Structure in Safety-Critical
Task Specifications for POMDP Planning

Jason Liu, Eric Rosen, Suchen Zheng, Stefanie Tellex, George Konidaris
Computer Science Department, Brown University

Abstract—Navigating a partially observable environment while
satisfying temporal and spatial constraints is an essential safety
feature of many robotic applications. For example, an au-
tonomous drone needs to understand the command “Find the
supermarket while avoiding the park” to avoid possible collisions
with trees. Previous approaches chose to sacrifice generality
for computational efficiency in large state spaces by designing
action heuristics that do not apply across different tasks or used
a value-iteration-based planner that does not scale well. Our
approach automatically extracts structured rewards from linear
temporal logic (LTL) task specifications to guide a sampling-
based POMDP planner, named LTL-POMCP. We augment a
partially observable Markov decision process (POMDP) with
an LTL task specification then use LTL-POMCP to solve the
resultant composite POMDP. Quantitative results from a classic
POMDP domain show that LTL-POMCP can generalize to
various LTL task specifications and scale to large state spaces. We
then demonstrate the first end-to-end system from temporally-
constrained natural language to robot policies in partially ob-
servable maps in simulation.

I. INTRODUCTION

Navigating partially observable environments by following
natural language commands that specify goals and path con-
straints is an essential safety feature of robots interacting with
humans. For example, in a search and rescue mission, first
responders can command an autonomous drone by saying
“Search for survivors while avoiding the explosion at location
A.” We can model this temporally constrained navigation
problem as a partially observable Markov decision process
(POMDP), whose reward is specified by a linear temporal
logic (LTL) expression [13].

Previous work [2] solved this problem with a value-
iteration-based planning algorithm and demonstrated its per-
formance in small environments. It could not scale because
full-width Bellman backups are intractable in large state and
action spaces due to the curse of dimensionality and the curse
of history. To overcome these challenges, Silver and Veness
[15] proposed POMCP, a sampling-based planner. Instead
of estimating the value function via iterative applications of
the Bellman equation using an exact model, sampling-based
methods use Monte-Carlo simulations to estimate action values
from interactions with a generative model of the environment.
However for different task specifications, POMCP requires
different hand-specified action priors to bias the exploration.
These heuristics use observations cached during simulations
to decide the best action to take next. Our approach does not
need domain experts to design heuristics to solve a task.

This work uses an LTL to specify a safety-critical navigation

Fig. 1: An illustration of object search in the OpenStreetMap
simulator. The natural language command is “Stay off the
2nd Street while looking for a bank.” Its corresponding LTL
formula is “G(!street2) & F(bank).” The agent has partial
observability of the target bank, demonstrated by the fog-of-
war effect, and perfect observation of the 2nd Street.

task and translates the LTL to a deterministic finite automaton
(DFA) [14] that encodes terminal and subgoal rewards. The
DFA and the environment POMDP are combined to construct
an LTL-POMDP problem. To solve it in large domains,
we propose LTL-POMCP, a sampling-based planner with an
additional term added to its action value estimates to bias the
sampling of actions that likely lead to subgoals specified by
the DFA. During Monte-Carlo simulations, besides keeping
track of action value estimates, visitation counts of states
and actions, LTL-POMCP caches all DFA transitions occurred
after taking an action in the current history state. It then uses
the augmented action value estimates to select the next action.

Results from a classic POMDP domain show that LTL-
POMCP is more generalizable across task specifications than
POMCP with hard-coded heuristics [15] and faster than a
planner based on value iteration [2] in solving LTL-POMDPs
with large state spaces. We then demonstrate the first end-to-
end system from temporally-constrained natural language to
robot behavior in partially observed maps [11].

The main contributions of this work are as follows.
• A POMDP formulation, LTL-POMDP, that automatically

extracts structured rewards from LTL task specifications.
• A sampling-based POMDP planner, LTL-POMCP, that

leverages the structured rewards, generalizes across tasks
and scales well.

• An end-to-end system from temporally-constrained nat-

NL command:
"Find a bank on the 1st Street"

LTL:
"G(street1) & F(bank)"Seq2Seq Spot

translator

Environment
POMDPLTL-POMDPLTL-POMCPPolicy

DFA

Constructor

Fig. 2: End-to-End System for PO-OSM. Natural language is translated to an LTL then a DFA. The DFA and the environment
POMDP are composed to construct an LTL-POMDP, which is solved by the LTL-POMCP online to produce a policy.

ural language to robot behavior in partially observed
OpenStreetMap (PO-OSM) domain.

II. RELATED WORK AND BACKGROUND

A large body of research has investigated the usage
of LTL task specifications in fully observable domains.
[7][9][10][1][12] studied navigation in fully observed envi-
ronments while enforcing temporal constraints. We consider
a more challenging partially observable setting, where an
agent must actively plan to gather information. [5] proposed
to learn LTL constraints from multi-step demonstrations to
facilitate robotic manipulation in fully observed domains.
[16] required domain experts to define reward machines that
specifies goals and temporal constraints. A reward machine is
a fully observable version of LTL-POMDP.

Bouton et al. [2] solved the same LTL-POMDP problem
with a value-iteration-based planner for small environments.
[3] requires perfect local perception to partition the environ-
ment into known and unknown areas and does not maintain a
probability distribution over states in the unknown area, thus
the planning is only done in a fully observable area to solve an
LTL task. Silver and Veness [15] solved large POMDPs with
a sampling-based planner and heuristics defined for specific
tasks. Our approach extracts subgoal rewards from LTLs
to guide the action selection of a sampling-based POMDP
planner. This work can be generalize to solve any LTL-
POMDP problem with a generative model of the environment
and noisy sensors.

Linear Temporal Logic (LTL): We use LTLs [13] to
specify tasks because they can represent both goals and
temporal constraints.

LTL has the following syntax:

φ := σ | ¬φ | φ ∧ ψ | φ ∨ ψ | Xφ | Fφ | Gφ | φUψ, (1)

where φ and ψ are LTL formulas; σ ∈ Σ is an atomic
proposition. ¬,∧,∨ are logic connectives negation, conjunc-
tion and disjunction. LTL extends propositional logic with
temporal operators, X (next), F (finally), G (globally or
always) and U (until), applying to future time steps. We
evaluate the satisfaction of an LTL formula on an infinite
sequence w = w0w1 . . . , where wi ∈ 2Σ. Xφ is satisfied by
w at step i if φ is satisfied at the next step i+ 1. Fφ is true at
step i if φ holds true at some future time j ≥ i. Gφ holds if φ
is true for the entire sequence. φUψ is satisfied if φ holds true
at least until ψ becomes true, which must happen at the current
or a future time. Table I shows examples of LTL formulas in

the PO-OSM domain. For example, to satisfy “G(street1) &
F(bank),” a robot needs to stay on the 1st Street while looking
for a bank.

Deterministic Finite Automaton (DFA): We use the Spot
library [6] to translate an LTL formula to an equivalent DFA
[4]. A DFA is a 5-tuple D = (Q,Σ, δ, q0, F), where Q is a
finite set of states; Σ is a finite set of atomic propositions;
δ : Q × 2Σ → Q is a deterministic transition function; q0 ∈
Q is the initial state; F = Fsuccess + Ffail ⊆ Q is a set of
success and failure terminal states. A run on a finite sequence
w = w0w1 . . . wn with wi ∈ 2Σ produces a sequence of states
q0q1 . . . qn with qt ∈ Q, where q0 is the initial state, qn ∈ F
is a final state and qt+1 = δ(qt, wt). Table I shows some
examples of LTL formulas and their corresponding DFAs.

Environment POMDP: We model the environment as a
Partially Observable Markov Decision Process (POMDP). A
POMDP is defined by a 7-tuple (S,A,O, T,O,R, γ). The
dynamics T (s, a, s′) = P (s′|s, a) and R(s, a) = E[r|s, a]
determine the distribution of the next state s′ ∈ S and the
immediate reward after taking action a ∈ A in state s ∈ S. In
POMDP, states cannot be fully observed. Instead the agent
receives an observation o ∈ O based on an observation
model O(a, s′, o) = P (o|a, s′). A policy of a POMDP is
define by π(h) = a, where h is a history of actions and
observations. Any POMDP has at least one optimal policy

π∗ that maximizes V π(h) = Eπ[
∞∑
t
γt−1rt|h]. A belief state

is a probability distribution over possible states given the
history, B(s, h) = P (s|h), and it is Markovian. We define
our environment POMDP to be generative such that given a
transition (s, a, s′), we can sample from models T,R and O
to get the next state, an immediate reward and an observation.
A belief state is represented by a set of particles.

III. TECHNICAL APPROACH

This section provides technical details on how we augment
an environment POMDP with a DFA to construct an LTL-
POMDP. We will also describe LTL-POMCP, a sampling-
based planner that leverages structured rewards provided by
the DFA, generalizes across LTL tasks and scales well.

LTL-POMDP: We augment an environment POMDP with
a DFA, so states of the resultant LTL-POMDP are Markovian
and encoding progressions in the DFA. LTL-POMDP =
(S̃, L,A,O, T̃ , Õ, R̃, γ), where S̃ = S × Q is a Cartesian
product of environment POMDP and DFA state spaces; L :
S → 2Σ is a labeling function that maps environment POMDP

TABLE I: Examples of LTL formulas and their corresponding DFAs.

Language Find a bank while staying on the 1st Street. Avoid the 2nd Street while looking for a bank.
LTL G(street1) & F (bank) G(!street2) & F (bank)

DFA

states to atomic propositions.
The transition probability of entering LTL-POMDP state

s̃′ = (s′, q′) after taking action a from state s̃ = (s, q) is

T̃ (s̃, a, s̃′) =

{
T (s, a, s′), if q′ = δ(q, L(s′))

0, otherwise
. (2)

As shown in the Table I, an example LTL-POMDP transition
can be that an agent takes an action in the environment to reach
a bank while avoiding the 2nd Street, which induces the DFA
transition from q = 1 to the goal q = 0.

The observation model of LTL-POMDP is

Õ(s̃, a, s̃′) = O(s, a, s′). (3)

The structured reward function is specified by the LTL
progression

R̃(s̃, a, s̃′) =

rgoal, if q′ ∈ Fsuccess

rfail, if q′ ∈ Ffail

rsubgoal, if q′ ∈ Q− F ∧ q′ 6= q

r, otherwise

(4)

where rgoal � 0, rfail � 0, rsubgoal > 0 and r < 0.
LTL-POMCP: LTL-POMDPs model POMDP planning

problems with temporally constrained task specifications. We
introduce LTL-POMCP, a sampling-based planner that can
solve LTL-POMDP problems in large environments.

We adopt the POMCP algorithm [15] with two modifica-
tions. In addition to the estimated Q-values Q̂(ha), visitation
counts N(h) and N(ha), LTL-POMCP caches the frequencies
of the DFA transitions occurred after taking action a in the
current history state h during the Monte-Carlo simulation. We
then augment the Q-value estimates with an additional third
term as follows,

Q(ha) = Q̂(ha) + α

√
logN(h)

N(ha)
+ β

√
logN(ea)

N(ha)
, (5)

where ea represents a DFA transition towards a final goal
state in the future trajectory after taking the action a from
the current history state h; α and β are coefficients. The LTL-
POMCP algorithm leverages high-level subgoals encoded in
the DFA and automatically favors the transitions leading to
the DFA goal state without explicitly constructing preferred
action sets for rollout as in [15]. Equation 5 balances exploring
less taken actions and exploiting actions that have led to a
DFA transitions and high rewards. The third term in Equation

5 diminishes to 0 asymptotically because logarithm grows
slower than linear, and N(e) ≤ N(ha).

Translating Natural Language to LTL: The language
model first uses a pretrained name entity recognizer (NER)
by [8] to replace all landmark names from a natural language
command by place holders, then feeds the masked language
into a sequence to sequence (Seq2Seq) model with LSTM
cells, and finally substitute the landmark names in the output
LTL expression. With the help of NER, the Seq2Seq model
only needs to memorize LTL templates, not landmark names.
Because NER was pretrained on a very large dataset of
landmark names, this language model can recognize places
unseen in the training set. It takes 118 seconds, 443 data points
and 10 epochs to train the Seq2Seq model to achieve 100%
accuracy on the test set.

IV. EXPERIMENTS

The aim of our experiments is to test the hypothesis that the
LTL-POMCP planner is more general than POMCP used with
hard-coded action heuristics [15] and more scalable than value-
iteration-based planners [2] in the RockSample domain. We
also show an end-to-end system from temporally-constrained
language to navigation policy in partially observed maps.

RockSample: A RockSample problem RS(n, k) has k
rocks randomly placed in an n × n grid, k + 5 actions (i.e.
4 move, 1 pick up and k sensing actions), 2 observations of
rock types (i.e. good, bad) and deterministic transitions. The
initial belief is uniformly distributed over rock types. Sensing
accuracy decreases exponentially in the distance to a rock.

To compare generality, we measure the success rate and total
reward of solving different tasks on the same RockSample
domains using LTL-POMCP and Silver POMCP [15]. The
first task requires the robot to pick up a good rock then go to
exit area while avoiding bad rocks. The second task requires
the robot to pick up a bad rock then exit while avoiding
good rocks. We use LTL expressions, “G(! bad) & F(good
& F(exit))” and “G(! good) & F(bad & F(exit))” representing
both tasks respectively. As shown in Figure 3, because the
action heuristics used by Silver POMCP are defined for the
first task, it achieves higher success rate and more rewards.
But for the second task, Silver POMCP performs even worse
than basic POMCP without heuristics because the same action
heuristics used to solve the first task direct the agent to pick
up unfavorable rocks. LTL-POMCP can sovle both LTL tasks
with comparable performance. This shows that LTL-POMCP
is generalizable across different LTL task specifications.

Fig. 3: The top row plots are the success rate and reward vs. the number of simulations for the LTL G(!bad) & F(good &
F(exit)). The bottom row plots are for G(!good) & F(bad & F(exit)). Each data point is average over 20 runs.

To compare scalability of LTL-POMCP and SARSOP
used in [2], we measure the planning time in large domain
RS(11, 11). An value-iteration-based-planner SARSOP pro-
vided with sparse LTL rewards [2] cannot produce a policy
within 96 hours. LTL-POMCP can solve the problems con-
stantly within 2 hours, and its speed can be further improved
by using a compiled language and parallelization.

Partially Observable OpenStreetMap (PO-OSM): In PO-
OSM, the locations of major landmarks, e.g. streets, are
known, and the locations of small landmarks, e.g. banks, are
unknown. It mimics the real world scenarios where some
landmarks, like a new construction site or disaster area, are not
stored in a map database, and an autonomous agent needs to
locate or avoid them by following natural language commands
from humans. We map landmarks from the OpenStreetMap
database to a 20×20 grid. The state contains the agent’s pose
and target landmark locations. The initial belief is uniformly
distributed over possible landmark locations. The agent can
rotate in 4 cardinal directions and move forward. Every step,
the agent receives a noisy observation of whether the target
landmark is within its fan-shaped sensing range. We use
a deterministic transition function and a non-deterministic
observation model for computational reasons. They are also
realistic assumptions of the drones because existing drones can
reliably move around the environment but have less reliable
sensors.

The end-to-end system from temporally-constrained natu-
ral language can consistently produce navigation policies to
complete different tasks as shown in Table II.

TABLE II: Examples of LTL tasks that LTL-POMCP can solve
and their corresponding natural language commands in PO-
OSM.

Language LTL
Find a bank. F (bank)
Find a store. F (store)
Find a cafe. F (cafe)
Stay on the 1st Street, and find a bank. G(st1)&F (bank)
Find a store while staying on the 2nd Street. G(st2)&F (store)
Stay on the 2nd Street while looking for a cafe. G(st2)&F (cafe)
Avoid the 2nd Street while looking for a bank. G(!st2)&F (bank)
Find a store and avoid the 1st Street. G(!st1)&F (store)
Look for a cafe while avoiding the 1st Street. G(!st1)&F (cafe)
Fly on the 1st Street until you find a bank. st1Ubank
Be on the 2nd Street until you find a store. st2Ustore
Stay on the 2nd Street until you find a cafe. st2Ucafe
Avoid the 2nd Street until you find a bank. (!st2)Ubank
Avoid the 1st Street until you find a store. (!st1)Ustore
Stay off the 1st Street until you find a cafe. (!st1)Ucafe

V. CONCLUSION

We introduced a generalizable planner that can solve LTL-
POMDP problems in large environments and demonstrated
an end-to-end system from temporally-constrained natural
language to robot behavior in the partially observed Open-
StreetMap domain.

The automatic extraction of structured rewards from LTLs
and the planner are generic, and they are are not limited to
solve only navigation tasks. One interesting future work is to
apply LTL-POMCP to mobile manipulation tasks specified by
LTL.

REFERENCES

[1] Matthew Berg, Deniz Bayazit, Rebecca Mathew, Ariel
Rotter-Aboyoun, Ellie Pavlick, and Stefanie Tellex.
Grounding Language to Landmarks in Arbitrary Outdoor
Environments. In IEEE International Conference on
Robotics and Automation (ICRA), 2020.

[2] Maxime Bouton, Jana Tumova, and Mykel J. Kochen-
derfer. Point-based methods for model checking in
partially observable Markov decision processes. 2020.
doi: https://doi.org/10.1609/aaai.v34i06.6563.

[3] Christopher Bradley, Adam Pacheck, Gregory Stein, Se-
bastian Castro, Hadas Kress-Gazit, and Nicholas Roy.
Learning and planning for temporally extended tasks in
unknown environments. IEEE International Conference
on Robotics and Automation (ICRA), 2021.

[4] J Richard Büchi. On a decision method in restricted
second order arithmetic. In The collected works of J.
Richard Büchi, pages 425–435. Springer, 1990.

[5] Glen Chou, Necmiye Ozay, and Dmitry Berenson. Ex-
plaining multi-stage tasks by learning temporal logic for-
mulas from suboptimal demonstrations. In Proceedings
of Robotics: Science and Systems (RSS) XVI, 2020.

[6] Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury
Fauchille, Thibaud Michaud, Etienne Renault, and Lau-
rent Xu. Spot 2.0 — a framework for LTL and ω-
automata manipulation. In Proceedings of the 14th Inter-
national Symposium on Automated Technology for Verifi-
cation and Analysis (ATVA’16), volume 9938 of Lecture
Notes in Computer Science, pages 122–129. Springer,
October 2016. doi: 10.1007/978-3-319-46520-3 8.

[7] Georgios E Fainekos, Hadas Kress-Gazit, and George J
Pappas. Temporal logic motion planning for mobile
robots. In Proceedings of the 2005 IEEE International
Conference on Robotics and Automation, pages 2020–
2025. IEEE, 2005.

[8] Matthew Honnibal, Ines Montani, Sofie Van Landeghem,
and Adriane Boyd. spaCy: Industrial-strength Natural
Language Processing in Python, 2020. URL https://doi.
org/10.5281/zenodo.1212303.

[9] Michael L Littman, Ufuk Topcu, Jie Fu, Charles Is-
bell, Min Wen, and James MacGlashan. Environment-
independent task specifications via gltl. arXiv preprint
arXiv:1704.04341, 2017.

[10] Yoonseon Oh, Roma Patel, Thao Nguyen, Baichuan
Huang, Ellie Pavlick, and Stefanie Tellex. Planning with
State Abstractions for Non-Markovian Task Specifica-
tions. In Proceedings of Robotics: Science and Systems,
Freiburg, Germany, June 2019.

[11] OpenStreetMap contributors. Planet dump retrieved from
https://planet.osm.org . https://www.openstreetmap.org,
2017.

[12] Roma Patel, Ellie Pavlick, and Stefanie Tellex. Ground-
ing language to non-markovian tasks with no supervision
of task specifications. In Proceedings of Robotics:
Science and Systems, June 2020.

[13] Amir Pnueli. The temporal logic of programs. In 18th
Annual Symposium on Foundations of Computer Science
(sfcs 1977), pages 46–57. IEEE.

[14] Michael O Rabin and Dana Scott. Finite automata and
their decision problems. IBM journal of research and
development, 3(2):114–125, 1959.

[15] David Silver and Joel Veness. Monte-carlo planning
in large pomdps. In Advances in neural information
processing systems, pages 2164–2172, 2010.

[16] Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Valen-
zano, and Sheila A. McIlraith. Using reward machines
for high-level task specification and decomposition in
reinforcement learning. In Proceedings of the 35th
International Conference on Machine Learning (ICML),
pages 2112–2121, 2018.

https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
 https://www.openstreetmap.org

Safe Human-Interactive Control via Shielding
Jeevana Priya Inala1, Yecheng Jason Ma2, Osbert Bastani2, Xin Zhang3, Armando Solar-Lezama1

Abstract—Ensuring safety for human-interactive robotics is

important due to the potential for human injury. The key

challenge is defining safety in a way that accounts for the complex

range of human behaviors. We propose an approach for ensuring

safety based on backup actions we believe the human always

considers taking to avoid an accident—e.g., braking to avoid rear-

ending the robot. Given a set of backup actions, our approach

guarantees safety as long as the human takes the appropriate

backup actions when necessary to ensure safety. We evaluate our

approach on real humans interacting with a simulated robot.
1

I. INTRODUCTION

Robots are increasingly operating in environments where
they must interact with humans, such as collaborative grasp-
ing [1, 2] and autonomous driving [3, 4, 5, 6]. Ensuring safety
for such robots is paramount due to the potential to inflict harm
on humans [7]. These challenges are particularly salient in
settings such as autonomous driving, where robots and humans
may have disjoint or conflicting goals—e.g., a self-driving car
making an unprotected left turn [5].

The key challenge is how to define safety for human-
interactive robots. Modeling the human as an adversary is one
approach, but is typically prohibitively conservative. Another
approach is to learn a model to predict human actions [8, 9,
10], and ensure safety with respect to this model. However,
different humans may exhibit very different behaviors—e.g.,
people in different regions may drive differently. If a human
behavior is not exhibited in the data used to train the model,
then the model may not account for it. Another alternative,
called responsibility sensitive safety (RSS) [11], is to manu-
ally specify the range of acceptable robot actions in various
scenarios. In this approach, the designer of the robot controller
is responsible for ensuring that acceptable actions only include
safe actions. However, manually defining acceptable robot
actions for all possible scenarios is challenging, especially for
robots operating in open-world environments.

We propose a novel approach for ensuring safety in human-
interactive robotics systems based on the following key ideas:

• Bounding human behavior via backup actions: The
controller designer specifies backup actions that they
believe the human always considers taking to avoid an
accident (e.g., braking while steering in some direction).
We assume the human may take any action in general,
take these actions when necessary to ensure safety.

• Ensuring safety: We use abstract interpretation [12] to
overapproximate the reachable set of the system for the
above model of human behavior, and then ensure safety
with respect to this overapproximation.

1Appendix and video are available at: https://osf.io/atbp4/?view only=
865b3796b5454594996bc5173ce75504.

Fig. 1. Trajectories showing a robot (red) and a human (blue) interacting at
an intersection (for 25 timesteps). Left: The robot passes before the human,
leveraging the fact that a responsible human would slightly brake to allow the
robot to cross safely. Right: Human arrives at the intersection first; the robot
triggers the shield to brake and allow the human to cross first.

First, our notion of backup actions captures the idea that we
reasonably believe the human will take a limited range of
evasive maneuvers to avoid an accident—e.g., if the robot
gradually slows to a stop, then we may expect the human
to slow down to avoid rear-ending it. If the robot is on a
highway, coming to a stop is more dangerous; in this case,
we might conservatively restrict to the case where the robot
pulls over to the shoulder before coming to a stop. Specifying
backup actions provides a way to define safety; we refer to
such a safety constraint as safety modulo fault. In particular,
to instantiate our framework, the controller designer provides:

• Robot backup action: An action that the human antici-
pates the robot may take to ensure safety (e.g., to brake
without changing directions), chosen based on intuitions
based on traffic rules and common sense.

• Human backup action set: A set of actions that includes
at least one action the human considers taking to ensure
safety (e.g., braking while steering in some direction),
chosen based on intuitions about human behavior.

Next, we propose an algorithm for ensuring safety modulo
fault. We build on model predictive shielding [13, 14], which
takes an arbitrary controller designed to reach the goal, but
then overrides it if needed to ensure safety. In particular, our al-
gorithm, called MPS modulo fault, uses on-the-fly verification
based on abstract interpretation to determine whether the goal-
reaching controller is safe; if so, it uses the given controller,
but otherwise, it switches to a safe backup controller. Figure 1
shows how our algorithm ensures safety while interacting with
a human driver without being overly cautious.

We empirically evaluate our approach on a real human in-
teracting with a simulated robot via keyboard. We demonstrate
that our algorithm enables the robot to avoid accidents, even
when combined with a naı̈ve controller that ignores the human.

https://osf.io/atbp4/?view_only=865b3796b5454594996bc5173ce75504
https://osf.io/atbp4/?view_only=865b3796b5454594996bc5173ce75504

II. PRELIMINARIES

a) Human-robot system: We consider a robot R and
a human H . As in prior work [5], we assume they act in
alternation, which is reasonable if the time steps are small.
For a state xt where R is acting, we have

x
0
t
= fR(xt, uR,t) and xt+1 = fH(x0

t
, uH,t),

where X ✓ RnX is the state space, UA ✓ RnU,A are the
actions for A 2 {R,H}, and fA : X ⇥ UA ! X are the
dynamics for A. Given initial state x0 2 X0 ✓ X where
R is acting, and actions ~uA = (uA,0, uA,1, ...) 2 U1

A
for

each A 2 {R,H}, we define the trajectory ⇣R(x0, ~uR, ~uH) =
(x0, x

0
0, x1, ...) 2 X1, where x

0
t
= fR(xt, uR,t) and xt+1 =

fH(x0
t
, uH,t). Similarly, given initial state x

0
0 2 X where H

is acting, we define ⇣H(x0
0, ~uH , ~uR) = (x0

0, x0, x
0
1, ...), where

xt = fH(x0
t
, uH,t) and x

0
t+1 = fR(xt, uR,t). We can replace

each ~uA by a policy ⇡A : X ! UA. Our goal is to ensure the
system stays in a given safe region Xsafe ✓ X .

Definition II.1. A trajectory ⇣ = (x0, x
0
0, x1, ...) (or ⇣ =

(x0
0, x0, x

0
1, ...)) is safe if xt, x

0
t
2 Xsafe for all t 2 N.

III. SAFETY MODULO FAULT

Here, we formalize our assumptions and safety notion.
a) Human objective: We assume the human acts accord-

ing to a maximin objective, where the “min” is the worst-case
over actions the human anticipates the robot may take, and the
“max” is over the human’s own actions. That is, the human
plans optimally while conservatively accounting for actions
they anticipate the robot might take. In particular, at state x

0,
the human takes an action ⇡H(x0) = u

⇤
H,0 such that

~u
⇤
H
2 argmax

~uH2U1
H

JH(x0
, ~uH), (1)

where the argmax denotes the set of all optimal values, and

JH(~uH) = min
~uR2Û1

R

JH(⇣H(x0
, ~uH , ~uR))

JH((x0
0, x0, x1, ...)) =

1X

t=0

�
t
rH(x0

t
, uH,t, xt),

where ÛR ✓ RnU,R is the set of actions the human anticipates
the robot may take, rH : X ⇥ UH ⇥ X ! R [{�1} is the
human reward function, and � 2 (0, 1) is a discount factor.

The key challenge for the robot to plan safely is that it does
not know the human reward function rH , the human action set
UH or the human-anticipated robot action set ÛR. Assuming
we know these values exactly is implausible. Instead, we
assume access to minimal knowledge about each of these
objects, which we formalize in the next section.

b) Assumption on human objective: First, we assume that
the human reward for reaching an unsafe state is �1.

Assumption III.1. For any x
0
, x 2 X and uH 2 UH , we have

rH(x0
, uH , x) = �1 if x0 62 Xsafe or x 62 Xsafe.

That is, the human driver always acts to avoid an accident.
Other than Assumption III.1, rH can be arbitrary.

With this assumption, there are two reasons accidents may
happen: (i) there was a safe action sequence ~uH 2 U1

H
that

the human driver failed to take, or (ii) if the robot takes an
action uR 62 ÛR that the human driver failed to anticipate.
Thus, we can always conservatively take ÛR to be smaller
than it actually is. Conversely, we can always take U0

H
to be

larger than it actually is. Thus, we make minimal assumptions
about what actions are contained in ÛR and UH .

First, we make the following assumption on the set of
actions ~UR that the human anticipates the robot may take:

Assumption III.2. We are given a robot backup action u
0
R
2

UR that is anticipated by the human—i.e., u0
R
2 ÛR.

That is, the human always accounts for the possibility that
the robot might take action u

0
R

. For example, we might assume
that u0

R
is gradually braking and coming to a stop.

Next, we make the following assumption about the human:

Assumption III.3. We are given a human backup action set
U0
H
✓ UH such that if max~uH2U1

H
JH(~uH) = �1, then the

human takes an action ⇡H(x0) 2 U0
H

.

That is, if the human is unable to guarantee safety (i.e., their
objective value is �1), then they take some action in U0

H
. For

example, U0
H

may contain all actions where the human driver
decelerates by at least some rate; this choice allows them to
slow down more quickly or steer in any direction.

c) Problem formulation: Our goal is to ensure that the
robot acts in a way that ensures safety for an infinite horizon
for any human that satisfies our assumptions.

Definition III.4. A robot policy ⇡R : X ! UR is safe modulo
fault for initial states X0 ✓ X if for any human policy ⇡H

satisfying Assumptions III.1, III.2, & III.3, and any x0 2 X0,
the trajectory ⇣R(x0,⇡R,⇡H) 2 X1 is safe.

That is, ⇡R that ensures safety as long as the human acts
in a way that satisfies our assumptions. Our goal is to design
a policy ⇡R that is safe modulo fault.

Finally, we cannot guarantee safety starting from an arbi-
trary state x0. For instance, if the robot is about to crash into
a wall, no action can ensure safety. We assume that the initial
states X0 are ones where we can guarantee safety.

Definition III.5. A safe equilibrium state x 2 X satisfies (i)
x 2 Xsafe, and (ii) x = f(x, u0

R
, uH) for all uH 2 U0

H
.

We denote the set of safe equilibrium states by Xeq. At a
state x 2 Xeq, the robot and human can together ensure safety
for an infinite horizon by taking actions u

0
R

and uH for any
uH 2 U0

H
. In our driving example, Xeq contains states where

both agents are at rest (i.e., their velocity is zero).

Assumption III.6. We have X0 ✓ Xeq.

In other words, the system starts at a safe equilibrium state
where we can ensure safety for an infinite horizon.

Algorithm 1 Model predictive shielding modulo fault.
procedure ⇡R(x)

x
0 fR(x, ⇡̂R(x))

return if ISREC(x0) then ⇡̂R(x) else u
0
R

end if

end procedure

procedure ISREC(x0)
X

0
0 {x0}

for t 2 {0, ..., k � 1} do

if X
0
t
6✓ Xsafe then return false end if

UR,t if t = 0 then {uR} else {u0
R
} end if

UH,t U0
H

X
0
t+1 F (Xt, UR,t, UH,t)

end for

return if Xk ✓ Xeq then true else false end if

end procedure

IV. MODEL PREDICTIVE SHIELDING MODULO FAULT

We describe our algorithm for constructing a robot con-
troller ⇡R : X ! UR that is safe modulo fault. Our approach
is based on model predictive shielding (MPS) [13, 14], which
converts an arbitrary controller ⇡̂R : X ! UR into a controller
⇡R that uses ⇡̂R but overrides it when it cannot ensure it is
safe. The challenge is checking whether it is safe to use ⇡̂R.
The idea is to maintain the invariant that the current state is
recoverable—i.e., that there is some sequence of actions each
agent can take that safely brings the system to a stop.

Definition IV.1. Given k 2 N, a state x
0 2 X is recoverable

(denoted x
0 2 Xrec) if for ~uR = (u0

R
, u

0
R
, ...) 2 U1

R
and any

~uH 2 (U0
H
)1, ⇣H(x0

, ~uH , ~uR) = (x0
0, x0, x

0
1, ...) satisfies (i)

x
0
t
, xt 2 Xsafe for all t 2 {0, ..., k}, and (ii) xk 2 Xeq.

Now, our MPS modulo fault algorithm for computing
⇡R is shown in Algorithm 1. Here, ISREC checks whether
x
0 = fR(x, ⇡̂R(x)) is recoverable. If so, ⇡R returns ⇡̂R(x);

otherwise, it returns u
0
R

. To check recoverability, ISREC
overapproximates the reachable set of states after t steps as a
set Xt ✓ X . It assumes given a dynamics overapproximation
F : 2X⇥2UR⇥2UH ! 2X mapping sets of states X ✓ X , sets
of robot actions UR ✓ UR, and sets human action UH ✓ UH

to sets of states F (X,UR, UH) ✓ 2X , that satisfies

f(x, uR, uH) 2 F (X,UR, UH) (2)

for all x 2 X , uR 2 UR, and uH 2 UH . Then, ISREC checks
whether (i) safety holds for every state xt 2 Xt (i.e., Xt ✓
Xsafe), and (ii) every state xk 2 Xk is a safe equilibrium state
(i.e., Xk ✓ Xeq). If both hold, then x is recoverable. We have
the following (see Appendix A for a proof):

Theorem IV.2. Assuming (2) holds, then our policy ⇡R is safe
modulo fault (i.e., it satisfies Definition III.4).

V. EVALUATION

We have implemented our approach in a simulation for three
robotics tasks. We consider an aggressive robot controller with
and without the shield as well as a cross entropy method

(a) merge (b) cross

(c) turn (d) two lanes (e) turn (no stop)
Fig. 2. Visualizations of the different tasks along with the initial positions
and the goals for the robot and the human. The red box is the robot and the
blue box is the human.

controller (CEM) designed to avoid humans. Also, we consider
real humans interacting with the simulation via keyboard.

We focus on understanding whether our approach can ensure
safety in aggressive driving scenarios; our approach can easily
be tailored to drive more conservatively, which would further
improve safety (but may reduce performance). We focus on
settings where the human and the robot must compete to reach
their goals. We tune the parameters of our MPS modulo fault
algorithm (i.e., the robot backup action u

0
R

and the human
backup action set U0

H
) to be as aggressive as possible while

still ensuring safety on the simulated humans. Furthermore,
for our experiments with real-world humans, we strongly
encourage them to try and reach their goal before the robot,
albeit keeping safety as the top priority. Then, our results are
designed to answer the following questions:

• Can MPS modulo fault can be used to ensure safety?
• Can MPS modulo fault outperform a handcrafted MPC

based on CEM in terms of performance?

A. Experimental Setup
a) Robotics tasks: We consider three non-cooperative

tasks (see Figure 2): (i) “merge”: there are two lanes that
merge—i.e., the robot is coming in from one lane and the
humans from another; both their goals are to navigate the
merge and reach their goal, (ii) “cross”: both agents are
moving towards an intersection from different directions—i.e.,
the robot is moving horizontally and the human is moving
vertically; both their goals are to get to the other side of
the intersection, (iii) “turn”: an unprotected left turn—i.e., the
human is driving without turning and the robot needs to make
a left turn that crosses the human path.

b) Safety property: We assume the robot and human are
each a rectangle; then, the safety property is that the the robot
and human rectangles should not intersect.

Fig. 3. Results with real humans, for the aggressive controller (red), the
CEM MPC (blue), and our shielded aggressive policy (green). Left: Fraction
of unsafe runs. Right: Time the robot takes to reach its goal in seconds.

c) Robot dynamics: The robot dynamics are the ones in
our running example—i.e., its state is (x, y, v, ✓), where (x, y)
is position, v is velocity, and ✓ is orientation, and its actions
are (a,�), where a is acceleration and � is steering angle.

d) Humans: We consider real human users interacting
with the simulation via keyboard. They control the human
using the up/down arrows to control acceleration and the
left/right arrows to control steering angle. We asked the human
users to prioritize safety first, but to drive aggressively to try
and reach their goal before the robot. We also considered sim-
ulated humans, including multiple humans; see Appendix B.

e) Controllers: We consider three controllers for the
robot: (i) an aggressive controller, (ii) a handcrafted MPC
based on the cross-entropy method (CEM) designed to ensure
safety without a shield, and (iii) our MPS modulo fault
algorithm used in conjunction with the aggressive controller.
We give details in Appendix B.

B. Experimental Results
We describe our experimental results, based on 18 users.

a) MPS modulo fault ensures safety for real humans:
Next, we had real human users interact with our simulated
robot via keyboard input. we show both the fraction of unsafe
runs (left), and the time taken by the robot to reach the goal
(right), including the aggressive controller (red), the MPC
based on CEM (blue), and our shielded aggressive controller
(green). As can be seen, for the aggressive controller, the
robot gets to its goal the fastest, but is frequently unsafe. The
MPC based on CEM is significantly safer; in this case, it is
somewhat safer than our shielded aggressive controller. On the
other hand, our shield controller reaches its goal significantly
faster than the MPC, while being almost as safe as the
MPC CEM. As described above, we set the shield parameters
aggressively based on the simulated humans to ensure it could
reach its goal; in practice, we could further improve safety by
setting these parameters more conservatively and by tuning
them to the real human driver data.

b) Alternative robot backup actions: A key feature of
our approach is that we can flexibly design the robot backup
action to ensure safety. To demonstrate this flexibility, we
design an alternative backup action that pulls the robot over
to the shoulder of a highway. Note that this backup policy is
time varying—i.e., the robot steering depends on the current
state. We test this backup policy with simulated humans on
the task in Figure 2 (d), where there are two lanes on the

Fig. 4. Results for alternative robot backup actions with simulated humans.
For the “pull over” backup action, we show the fraction of unsafe runs
(leftmost) and the time the robot takes to reach its goal in seconds (second
from the left), for the aggressive controller (red), the CEM MPC (blue), and
our shielded aggressive controller (green). For the “no-stop zone” backup
action, we show the number of stops in the intersection (second from the
right) and the time the robot takes to reach its goal in seconds (rightmost),
for the original (green, “shield”) and the new (brown, “shield++”) shielded
controllers; both controllers are always safe.

highway and an on-ramp that merges onto the highway. The
human is on the on-ramp and the robot is on the highway. To
avoid collisions, the robot can pull over to the right-most lane.
Figure 4 shows the fraction of the unsafe runs (leftmost), and
the time the robot takes to reach its goal (second from left)
for all three controllers—aggressive (red), the MPC based on
CEM (blue), and our shielded aggressive controller with the
pull over backup policy (green). Our shielded controller is
always safe and is significantly faster than the MPC.

We also design a robot backup action that avoids stopping
in the middle of an intersection and blocking it, which is often
illegal. To this end, we modify the turn task to include a no-
stop zone (shown in Figure 2 (e)) where the robot is prohibited
from stopping. In this zone, the robot backup action does not
come to a stop immediately; instead, it drives through the zone
until it crosses the intersection, and only brakes once it has
fully cleared the intersection. The results for this experiment
using simulated humans are shown in Figure 4 (right). We
compare the original shielded controller (“shield”) that may
stop in the intersection with the new one that adheres to the
no-stop zone in Figure 2 (e) (“shield++”). In this case, both the
controllers were always safe; instead, we show the fraction of
runs where the robot stops in the intersection (second from the
right), and the time the robot takes to reach its goal (rightmost).
The new shielded controller takes slightly longer to reach the
goal, but never stops in the intersection.

VI. CONCLUSION

We have proposed an approach for ensuring safety in
human-interactive robotics systems. We define a notion of
safety that models human behavior by specifying their backup
behaviors, and propose our MPS modulo fault algorithm for
ensuring our safety with respect to this model. Finally, we
validate our approach on both real and simulated humans.

REFERENCES

[1] K. Strabala, M. K. Lee, A. Dragan, J. Forlizzi, S. S.
Srinivasa, M. Cakmak, and V. Micelli, “Toward seam-

less human-robot handovers,” Journal of Human-Robot
Interaction, vol. 2, no. 1, pp. 112–132, 2013.

[2] A. D. Dragan, K. C. Lee, and S. S. Srinivasa, “Legibility
and predictability of robot motion,” in 8th ACM/IEEE
International Conference on Human-Robot Interaction
(HRI). IEEE, 2013, pp. 301–308.

[3] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp,
D. Dolgov, S. Ettinger, D. Haehnel, T. Hilden, G. Hoff-
mann, B. Huhnke, et al., “Junior: The stanford entry in
the urban challenge,” Journal of field Robotics, vol. 25,
no. 9, pp. 569–597, 2008.

[4] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held,
S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt,
et al., “Towards fully autonomous driving: Systems and
algorithms,” in Intelligent Vehicles Symposium (IV), 2011
IEEE. IEEE, 2011, pp. 163–168.

[5] D. Sadigh, S. Sastry, S. A. Seshia, and A. D. Dragan,
“Planning for autonomous cars that leverage effects on
human actions.” in Robotics: Science and Systems, vol. 2.
Ann Arbor, MI, USA, 2016.

[6] D. Sadigh, S. S. Sastry, S. A. Seshia, and A. Dragan, “In-
formation gathering actions over human internal state,” in
2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2016, pp. 66–73.

[7] K. Eder, C. Harper, and U. Leonards, “Towards the safety
of human-in-the-loop robotics: Challenges and opportu-
nities for safety assurance of robotic co-workers’,” in
The 23rd IEEE International Symposium on Robot and
Human Interactive Communication. IEEE, 2014, pp.
660–665.

[8] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey,
“Maximum entropy inverse reinforcement learning.” in
Aaai, vol. 8. Chicago, IL, USA, 2008, pp. 1433–1438.

[9] J. F. Fisac, A. Bajcsy, S. L. Herbert, D. Fridovich-Keil,
S. Wang, C. J. Tomlin, and A. D. Dragan, “Probabilisti-
cally safe robot planning with confidence-based human
predictions,” in RSS, 2018.

[10] D. Sadigh, S. S. Sastry, S. A. Seshia, and U. Berkeley,
“Verifying robustness of human-aware autonomous cars,”
IFAC-PapersOnLine, vol. 51, no. 34, pp. 131–138, 2019.

[11] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On
a formal model of safe and scalable self-driving cars,”
arXiv preprint arXiv:1708.06374, 2017.

[12] P. Cousot, “Abstract interpretation,” in In POPL. Cite-
seer, 1977.

[13] K. P. Wabersich and M. N. Zeilinger, “Linear model
predictive safety certification for learning-based control,”
in 2018 IEEE Conference on Decision and Control
(CDC). IEEE, 2018, pp. 7130–7135.

[14] S. Li and O. Bastani, “Robust model predictive shielding
for safe reinforcement learning with stochastic dynam-
ics,” in ICRA, 2019.

[15] D. Helbing and P. Molnar, “Social force model for
pedestrian dynamics,” Physical review E, vol. 51, no. 5,
p. 4282, 1995.

Simultaneously Learning Human Preferences and
Environment Dynamics Parameters

Adam Allevato
The University of Texas at Austin

Austin, Texas, USA
Email: allevato@utexas.edu

Elaine Schaertl Short
Tufts University

Medford, MA, USA

Andrea L. Thomaz
The University of Texas at Austin

Austin, Texas, USA

Abstract—Learning and respecting human preferences is an
important step towards creating robots that can effectively
operate in human-centric environments and social contexts.
We consider the specific problem of learning preferences from
a human while also learning unknown dynamics parameters
in order to optimize a robot controller. We develop a novel
Bayesian Optimization technique that uses two linked models
to estimate the human preferences and environment parameters
as it alternates between collecting preference input and testing
different parameter hypotheses. Our approach uses a simulator
to collect off-policy human input and a novel preference-weighted
acquisition function to guide exploration in the presence of both
model/dynamics uncertainty and preference uncertainty. Our
method violates the true human preferences up to 75% less often
than existing parameter optimization algorithms while learning
a simulated controller with similar performance. We also present
preliminary results on a real robotics task, enabling a robot to
learn about and avoid an undetectable hazard using human input
during controller optimization in a new environment.

I. INTRODUCTION

A robot learning a new task in an unfamiliar environment
may need to learn from human feedback in order to develop
an appropriate control methodology for that task, even before
it has adequate knowledge of its environment’s dynamics.
Much existing human-robot interaction research focuses on
learning either the human preferences or how to complete a
task, but not both simultaneously. However real human-robot
interaction scenarios (such as collaborative manufacturing and
shared autonomy) have uncertainty in both domains.

This paper introduces Preference-based, Uncertainty-aware
Model Adaptation (PUMA), a new interactive machine learn-
ing algorithm that uses Bayesian Optimization [5] to learn
unknown human preferences while also optimizing a con-
trol scheme to account for unknown environment dynamics.
PUMA allows learning from human feedback while a robot’s
knowledge of environment dynamics are still incomplete by
1) considering both types of uncertainty using two linked
Gaussian processes, 2) alternating between sampling human
feedback and exploring the environment, and 3) using a simu-
lator as a predictive model for off-policy feedback collection.

In experiments, PUMA has significantly fewer preference
violations during learning even with a single human feed-
back sample per iteration, and allows optimizing a simulated
controller with 35-75% fewer violations compared to existing
methods. We also validate the approach on a real-world

robotics task, learning the dynamics of a new environment
while avoiding an undetectable hazard using human input.

II. RELATED WORK

Researchers have developed numerous techniques for learn-
ing from simple human feedback on robot actions [15, 19,
11, 7] . Our work also guides learning with human input,
but rather than using on-policy feedback collection on robot
state-action pairs, we use a simulator to collect feedback on
hypothetical (off-policy) states. This is similar to two existing
works [24, 22], but our robot also has to learn about its
environment on the fly. These existing approaches are also
model-free interactive machine learning techniques, whereas
PUMA is model-based.

PUMA uses a probabilistic formulation, instead of a
constraint-based approach often used in safe reinforcement
learning (RL) research [9]. Probabilistic preferences allow
compatibility with sparse, arbitrary, or noisy human feedback.
Other works have explored probabilistic safety in learning
[21, 14], including SafeOpt [3], which we compare with
PUMA in this paper. In other recent works that combine
human feedback with exploration strategies [12, 18, 4, 20],
the environment parameters are well-characterized and fixed
beforehand, rather than being learned, or the queries do not
use data-efficient active learning.

III. BACKGROUND: BAYESIAN OPTIMIZATION

Bayesian optimization [5] is a core component of PUMA.
It is a technique to optimize an expensive-to-evaluate objec-
tive function f(x) efficiently, and has been used for many
simulated and real-world robotics optimization tasks [10, 23],
including tuning cart-pole balancing controllers [2].

Bayesian optimization maintains a hypothesis, P (f), of the
objective function, as well as its uncertainty. Given P (f) and
an evidence dataset D = {(x0, f(x0)), . . . (xn, f(xn))}, the
hypothesis is updated at each step of the optimization via
Bayes’ rule: P (f | D) ∝ P (D | f)P (f). In this paper, the
evidence is based on a hypothetical state of a robot system
and the scalar-valued human preference input associated with
that state. A Gaussian Process (GP) is commonly used to ap-
proximate f(x) probabilistically. We use the notation GPf (x)
to represent the GP hypothesis of f(x), and the notation

FITGP(D) to denote any method for fitting a GP to evidence
(ex: Rasmussen [17]).

To determine x, the next point sample from the objective
function, Bayesian optimization maximizes an acquisition
function, a(x): x = arg maxx′ a(x′ | D), which is designed
to be fast to evaluate. One of the most common acquisition
functions is the expected improvement, or EI [16].

IV. PROBLEM STATEMENT

Our formal goal is to find a controller that minimizes a cost
function J(xt, u(xt)) for a dynamical system over multiple
timesteps, where xt ∈ X is the state at time t and u(xt)
is the resulting control input. The control inputs u and some
bounded set of system parameters θ ∈ Θ determine transitions:
xt+1 = fθ(xt, u(xt)). We make the assumption that for some
true and proposed sets of system parameters θ∗ and θ, we
can develop an appropriate control law uθ(x). This is reason-
able for many systems—we can use existing, well-understood
methods to generate a controller via techniques such as linear-
quadratic-Gaussian control (for our purposes, the controller
need not be optimal). We define a total cost function J (θ)
over a τ -step horizon as J (θ) =

∑τ
t=0 J(xt, uθ(xt)).

We seek a controller which minimizes this total cost func-
tion. This problem reduces to finding a θ that maximizes
−J (θ). (θ may not equal θ∗ because of model mismatch or
unidentifiable sets of parameters.)

We also want to avoid violating human preferences, repre-
sented by a preference function h(x) that maps from states
to scores in the range [0,1], where 1 is most preferable. h(x)
may encode actual or perceived safety or any other criteria
and is initially unknown to the robot. Minimizing preference
violations is equivalent to maximizing the cumulative value of
h(x) over some time horizon. We can sample h(x) by querying
a human about the preference of a specific system state, but
seek to minimize these queries for data efficiency. Preferences
are assumed to be a function of states, rather than actions or
parameters, allowing the robot to collect preferences without
demonstrations or corrections.

We define a preference score g(θ) over a period of time as
the fraction of preferred states visited during an episode on
the real system while deploying a controller uθ (Eq. (1)).

g(θ) =
1

τ

τ∑
t=1

h(xt)

xt+1 = fθ∗(xt, uθ(xt))

(1)

A preference score of 1 implies no preference violation; a
score of 0 means that all states in a trajectory fully violated
the preferences. Note that the real system evolves based on
the true system parameters θ∗ but the controller is based on
the current parameter hypothesis θ.

V. MODEL ADAPTATION WITH PREFERENCES

Our approach, Preference-based Uncertainty-aware Model
Adaptation (PUMA) (Algorithm 1), uses Bayesian Optimiza-
tion and two separate Gaussian Processes (GPs) to estimate

Algorithm 1 The PUMA algorithm

Input
X ,Θ State and parameter spaces
N optimization rounds
M # of human pref. samples per iteration

Dh ← {},DJ ← {}
for n ∈ 1 . . . N do

for m ∈ 1 . . .M do
xn,m ← arg maxx∈X aEI(GPh, x)
Dh ← Dh ∪ {(xn,m, h(xn,m))}
GPh(x)← FITGP(Dh)

θ̂ ← arg maxθ′∈Θ GPJ (θ′)

θn ← arg maxθ∈Θ aPEI(θ̂, θ)
DJ ← DJ ∪ {(xn,m,−J (θn))}
GPJ ← FITGP(DJ)

h(x) and −J (θ) and iteratively optimize the two estimates,
seeking a better controller while avoiding preference viola-
tions.

Each PUMA iteration begins with M Bayesian optimization
steps to improve the estimate of the human preference function
h(x). At each step m = 1 . . .M , we choose the next query
state xn,m to sample by maximizing the standard EI acquisi-
tion function [16]. We set the exploration hyperparameter ξ to
1.0 to encourage state exploration. Then, using our simulator,
we render the system at the query state xn,m and collect
a preference value h(xn,m) from a human evaluator. The
preference feedback (xn,m, h(xn,m)) enters the preference
dataset Dh, which the algorithm uses to update h(x).

After M rounds of preference learning, PUMA performs
one round of Bayesian optimization on GPJ (θ), the estimate
of the total negative cost −J (θ). To avoid violating human
preferences while selecting θn, the next parameter value to
sample, we develop a new acquisition function, the preference-
weighted expected improvement (PEI). PEI combines the stan-
dard EI acquisition function with a preference term, which
gives the estimated preference score that will result from
testing a new set of system parameters.

Because the preferences h(x) are defined over states,
not parameters, we must predict the states that will oc-
cur for a parameter hypothesis. To predict, PUMA uses
the maximum a posteriori MAP parameter estimate, θ̂ =
arg maxθ′∈Θ GPJ (θ′). The algorithm then estimates the pref-
erence score given by Eq. (1) for different hypothetical param-
eter values θ ∈ Θ; θ 6= θ̂. This estimate, g̃(θ̂, θ) and shown
in Eq. (2), is based on a state rollout of τ timesteps using
the current preference estimate GPh, the estimated underlying
dynamics model θ̂, and the associated controller, uθ(x).

g̃(θ̂, θ) =
1

τ

τ∑
t=1

GPh(x̃t)

x̃t+1 = fθ̂(x̃t, uθ(x̃t))

(2)

A higher predicted score implies that a controller is more

SafeOpt ADOBO PUMA
0.0

0.1

0.2

0.3

C
um

ul
at

iv
e

pr
ef

er
en

ce
vi

ol
at

io
ns

M=0 (no preferences)

SafeOpt ADOBO PUMA
0.0

0.1

0.2

0.3

*
*

M=2, aggressive

SafeOpt ADOBO PUMA
0.0

0.2

0.4 *

*

M=10, aggressive

SafeOpt ADOBO PUMA
0.0

0.1

0.2

0.3

*
*

M=2, conservative

SafeOpt ADOBO PUMA
0.0

0.1

0.2

0.3

*

*

M=10, conservative

0 5 10
2.00

2.25

2.50

2.75

3.00

C
on

tro
lle

r c
os

t

0 5 10
2.00

2.25

2.50

2.75

3.00

0 5 10
Iterations, n

2.00

2.25

2.50

2.75

3.00

0 5 10
2.00

2.25

2.50

2.75

3.00

0 5 10
2.00

2.25

2.50

2.75

3.00

Figure 1: Experiment 1 results comparing PUMA (our method) to baselines. In all plots, lower is better. The top row shows
the final error after n=10 rounds of tuning averaged over 40 runs of each algorithm. The bottom row shows the corresponding
controller cost evolution (arbitrary units). See the text for details on the different cases. * denotes significance (p < 0.01).

(a) (b)

Figure 2: (a): The simulator, preferred region, and human
preference function for Experiment 1. (b): The simulator used
for Experiment 2.

preferred given the current best estimate of the model pa-
rameters. The PEI is then found by adding the predicted
preference score to the standard EI acquisition function value:
aPEI(θ̂, θ) = aEI(θ) + γg̃(θ̂, θ). PEI also provides γ as a
scaling factor to control how PEI balances between preferred
vs. potentially improved parameters. θn, the final choice for
the next parameter to use for controller evaluation, is then
calculated as θn = arg maxθ aPEI(θ̂, θ).

VI. EXPERIMENTS

We compare PUMA to two baselines in our experiments.
The first baseline is Dynamics Optimization via Bayesian Op-
timization (aDOBO) [2], which directly optimizes controller
parameters using Bayesian Optimization. We include prefer-
ences by adding a weighted adjustment term: JaDOBO(θ) =
Jcontroller(θ) − ζg′(θ). The second baseline is SafeOpt [3],
a parameter optimization technique which avoids violating
arbitrary safety functions. We use the human preferences as
one of SafeOpt’s safety functions, and vary the lower bound
on the admissible preference score to balance preference and
controller optimization. We calculate g′(θ) for the baselines
by sampling Eq. (1) M times at regularly-spaced intervals
throughout the episode.For all methods, we used a GP radial
basis function kernel with a length scale of 0.1, variance of 0.2,

and α = 1e−5. For PUMA, we set the parameter γ = 10 for
all experiments, chosen empirically from the range [0.1, 1000].

A. Experiment 1: Cartpole Optimization

In our first experiment, we deploy PUMA on a simulated
cartpole system (Fig. 2a) based on the open-source imple-
mentation provided in OpenAI Gym [6], where the length
of the pendulum is unknown. The goal is to generate a
controller that keeps the pendulum upright and minimizes
control effort, as given by J(x, u) =

∑τ
t=0 x

T
t Qxt + uTt Rut.

In this experiment, we simulate the human preferences using
an oracle, H(x) = clamp(1.25−x/4, 0, 1) (see Fig. 2a). This
represents a human’s preference to avoid nearing the end of
the cartpole rail or other unknown hazard.

Optimization occurs in a series of episodes, between which
the cart position and pole angle are set to 0 and π/8 radians
respectively. For small angles, we can calculate a (linear)
control law to keep the pendulum upright, u(x) = −Kx,
where K is the linear quadratic regulator (LQR) solution [13]
to the cost function. As is common practice, we set the Q
and R matrices to diag(0.1, 1, 100, 1) and [0.1] to emphasize
keeping the pendulum upright. The pendulum length was set
to 0.5 m. The exploration bounds were Θ = [0.1, 0.9] and
X = [−5 m, 5 m]. In each run, the initial model hypothesis
was sampled uniformly from the parameter space: θ0 ∼ U(Θ).

We report both the cumulative preference violation, as well
as the controller cost at each iteration. We measure these
metrics for each algorithm for M = 0 (no preferences),
M = 2 and M = 10. We also test an aggressive case
and conservative case. For the aggressive case, The SafeOpt
preference fmin= 0.8 and the aDOBO preference weight
α = 10; for conservative, SafeOpt fmin= 0.9 and aDOBO
α = 100. PUMA is unchanged across cases. We conducted
40 independent runs of each algorithm.

The results in Fig. 1 show that in the M = 0 case, the
algorithms behave similarly, but with feedback (M > 0),
PUMA incurred significantly less (p < 0.01) cumulative pref-
erence violation than the baselines with near-equal controller

Setup GPJ (θ′) GPh(x) Visualization

Figure 3: Visualization of the setup and learned GP estimates for Experiment 2.

PUMA-10 PUMA-0
0

1

2

3

4

Ac
tio

ns
 b

ef
or

e
vi

ol
at

io
n

(a) (b)

Figure 4: Results on ball manipulation task (Experiment 2).

performance. SafeOpt was highly sensitive to the initial θ
guess and it had the highest variance in all experiments. The
aggressive SafeOpt case found a marginally better controller,
but had high preference violation. In the conservative case and
with more preference information (M = 10), the algorithm
had less violations, but often failed to find a good controller.
aDOBO developed similar controllers to PUMA, but had
significantly more preference violations. The largest PUMA-
to-baseline difference was in the M = 10 aggressive case,
where PUMA reduced the amount of preference violation by
74.6% compared to SafeOpt, and the smallest difference was
a 38.5% reduction from aDOBO to PUMA in the M = 10
conservative case.

B. Experiment 2: Manipulation Task

Next, we deployed PUMA on a real robot (Fig. 3) to
jointly learn the mass and rolling friction (µroll) coefficient
of a previously unseen ball while learning to roll the ball
between two points in a robot’s workspace. The robot must
keep the ball between two paint spills that are undetectable
by the robot’s vision system during the learning process. We
compared PUMA-0 (no preference input) and PUMA-10 in
this experiment.

The environment state was the (x, y) position of the ball on
the table, and the robot’s controller pushed the ball in a straight
line towards the goal point, with trajectory length proportional
to the estimated rolling friction of the object. The cost function
J (θ) for each rollout was the mean squared error between
the ball’s final position and the target. We used a PyBullet1

environment (see Fig. 2b) as fθ̂ for generating rollouts and

1https://pybullet.org

rendering images to use for eliciting human preferences. One
of the authors provided the human feedback manually for this
experiment, giving a binary score (H(x) ∈ {0, 1}) for whether
or not the rendered ball position shown on a computer screen
appeared to be clear of the hazard. Collecting 10 preferences
at each iteration took approximately 30 seconds.

The robot detected the ball position with an overhead
camera. The exploration spaces were [0.01 kg, 0.15 kg] and
[1e−4, 1e−2] for mass and rolling friction respectively, and
the state space was a 0.4 m x 0.4 m workspace area, with the
robot at one edge. We conducted 5 trials for each algorithm
with up to 5 iterations in each trial, stopping early if the ball
was pushed into the paint spills. We recorded the number of
robot actions before a preference violation as well as the error
between the goal and the final ball position after each action.

Fig. 4a shows that PUMA-10 completed more actions (3.4
± 1.2) before violating the preferences compared to PUMA-0
(2.0 ± 1.3), although the sample size for this experiment was
too small for statistical significance. PUMA-10 also achieved
a slightly lower tracking error than PUMA-0 on average
(0.012 ± 0.004 vs. 0.015 ± 0.005). Fig. 4b provides more
detail on each trial, showing that 60% of PUMA-0 trials
violated preferences on the first exploration action, and no
trial completed all 5 actions. In contrast, all PUMA-10 trials
completed the first iteration and one trial completed all actions
without preference violations.

VII. DISCUSSION

By modeling human preferences separately from environ-
ment uncertainty, but linking the two models using the PEI,
PUMA allows information sharing and ensures that the two
optimizations do not proceed completely independently. In
comparison, the baseline algorithms take preference feedback
and exploration actions, but apply both directly to a single
underlying model.

Using a simulator inside the learning loop is becoming an
increasingly common way to give a robot physical intuition
[8, 1]. Our work extends this idea, using the simulation
to augment a robot’s prediction skills and allow fast and
informative human-robot communication. In the future, we
plan to conduct additional robot experiments to continue to
validate PUMA in realistic human-robot interaction scenarios.

https://pybullet.org

REFERENCES

[1] Adam David Allevato, Elaine Schaertl Short, Mitch
Pryor, and Andrea L Thomaz. Iterative residual tuning
for system identification and sim-to-real robot learning.
Autonomous Robots, pages 1–16, 2020.

[2] Somil Bansal, Roberto Calandra, Ted Xiao, Sergey
Levine, and Claire J Tomlin. Goal-driven dynamics
learning via Bayesian optimization. In 2017 IEEE 56th
Annual Conference on Decision and Control (CDC),
pages 5168–5173. IEEE, 2017.

[3] Felix Berkenkamp, Andreas Krause, and Angela P
Schoellig. Bayesian optimization with safety constraints:
safe and automatic parameter tuning in robotics. arXiv
preprint arXiv:1602.04450, 2016.

[4] Erdem Biyik and Dorsa Sadigh. Batch Active Preference-
Based Learning of Reward Functions. In Conference on
Robot Learning, pages 519–528, 2018.

[5] Eric Brochu, Vlad M Cora, and Nando De Freitas.
A tutorial on Bayesian optimization of expensive cost
functions, with application to active user modeling and
hierarchical reinforcement learning. arXiv preprint
arXiv:1012.2599, 2010.

[6] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas
Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. OpenAI Gym. CoRR, 6 2016. URL http:
//arxiv.org/abs/1606.01540.

[7] Carlos Celemin and Javier Ruiz-del Solar. COACH:
learning continuous actions from corrective advice com-
municated by humans. In 2015 International Conference
on Advanced Robotics (ICAR), pages 581–586. IEEE,
2015.

[8] Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk,
Miles Macklin, Jan Issac, Nathan Ratliff, and Dieter
Fox. Closing the Sim-to-Real Loop: Adapting Simulation
Randomization with Real World Experience. CoRR, 10
2018. URL http://arxiv.org/abs/1810.05687.

[9] Javier Garcı́a and Fernando Fernández. A comprehen-
sive survey on safe reinforcement learning. Journal of
Machine Learning Research, 16(1):1437–1480, 2015.

[10] Javier González, Zhenwen Dai, Andreas Damianou, and
Neil D Lawrence. Preferential bayesian optimization.
In Proceedings of the 34th International Conference on
Machine Learning, pages 1282–1291. JMLR. org, 2017.

[11] Shane Griffith, Kaushik Subramanian, Jonathan Scholz,
Charles L. Isbell, and Andrea L. Thomaz. Policy Shap-
ing: Integrating Human Feedback with Reinforcement
Learning. In C J C Burges, L Bottou, M Welling,
Z Ghahramani, and K Q Weinberger, editors, Advances
in Neural Information Processing Systems, pages 2625–
2633. Curran Associates, Inc., 2013.

[12] Michael Herman, Tobias Gindele, Jörg Wagner, Felix
Schmitt, and Wolfram Burgard. Inverse reinforcement
learning with simultaneous estimation of rewards and
dynamics. In Artificial Intelligence and Statistics, pages
102–110, 2016.

[13] Rudolf Emil Kalman. Contributions to the theory of
optimal control. Boletin de la Sociedad Matematica
Mexicana, 5(2):102–119, 1960.

[14] Johannes Kirschner, Mojmir Mutny, Nicole Hiller, Ras-
mus Ischebeck, and Andreas Krause. Adaptive and Safe
Bayesian Optimization in High Dimensions via One-
Dimensional Subspaces. In International Conference on
Machine Learning, pages 3429–3438, 2019.

[15] W Bradley Knox and Peter Stone. Interactively shaping
agents via human reinforcement: The TAMER frame-
work. In Proceedings of the 5th Intl. Conf. on Knowledge
Capture, pages 9–16. ACM, 2009.

[16] Daniel James Lizotte. Practical bayesian optimization.
University of Alberta, 2008.

[17] Carl Edward Rasmussen. Gaussian processes in machine
learning. In Summer School on Machine Learning, pages
63–71. Springer, 2003.

[18] Yanan Sui, Vincent Zhuang, Joel W Burdick, and Yisong
Yue. Stagewise Safe Bayesian Optimization with Gaus-
sian Processes. Proceedings of Machine Learning Re-
search, 80:4781–4789, 2018.

[19] Ana C Tenorio-Gonzalez, Eduardo F Morales, and Luis
Villaseñor-Pineda. Dynamic reward shaping: training
a robot by voice. In Ibero-American conference on
artificial intelligence, pages 483–492. Springer, 2010.

[20] Sanjay Thakur, Herke van Hoof, Juan Camilo Gamboa
Higuera, Doina Precup, and David Meger. Uncertainty
Aware Learning from Demonstrations in Multiple Con-
texts using Bayesian Neural Networks. arXiv preprint
arXiv:1903.05697, 2019.

[21] Akifumi Wachi, Yanan Sui, Yisong Yue, and Masahiro
Ono. Safe Exploration and Optimization of Constrained
MDPs using Gaussian Processes. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[22] Christian Wirth and Johannes Furnkranz. On Learning
From Game Annotations. IEEE Transactions on Compu-
tational Intelligence and AI in Games, 7:304–316, 2015.

[23] S Zhu, D Surovik, K E Bekris, and A Boularias. Closing
the Reality Gap of Robotic Simulators through Task-
oriented Bayesian Optimization. Journal of Machine
Learning Research, 2019.

[24] Matt Zucker, J Andrew Bagnell, Christopher G Atkeson,
and James Kuffner. An optimization approach to rough
terrain locomotion. In 2010 IEEE International Con-
ference on Robotics and Automation, pages 3589–3595.
IEEE, 2010.

http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1810.05687

Towards Interactively Improving Human Users’
Understanding of Robot Behavior

Peizhu P. Qian and Vaibhav V. Unhelkar
Department of Computer Science

Rice University, Houston, Texas USA
{pqian, vaibhav.unhelkar}@rice.edu

Abstract—Humans increasingly use embodied AI systems
(such as service robots and autonomous vehicles) in a
variety of complex domains. Despite this impressive trend,
however, users often have little understanding of behavior
of robots – leading to misplaced trust and unintended
consequences during robot use. Human-interpretable
instructions regarding robot behavior provide a way to
improve user understanding and alleviate aforementioned
concerns. In this short article, we briefly discuss challenges
of arriving at these instructions and formalize the problem
computationally. In our discussion, we highlight the essential
role of interactivity in improving user’s understanding and
discuss mechanisms to leverage it to generate user-specific
instructions.

I. Introduction
Robots provide services to a broad array of end-users

in homes, offices, and beyond. They collaborate with
people on complex tasks such as disaster response,
manufacturing, and transportation. While these robots
typically behave according to preprogrammed policies or
plans, their behavior may not be intuitive to end-users.
For example, a fire fighter working with a rescue robot
might wonder how the robot plans its route to rescue
victims: will it go through uneven terrain if that provides
the shortest path, or will it circumvent said terrain
to avoid the risk of falling? Knowing the answers to
questions such as these is essential for human end-users
to truly realize the benefits of robots, ensure safety, and
avoid unintended side effects [8, 14].

Robot behaviors can be designed or learned using
a variety of methods (such as hand-crafted policies,
reinforcement learning, or planning algorithms), which
might not prioritize interpretability. Irrespective of the
method used to design robot behavior, however, humans
can make informative inferences about robot behavior
provided they have a faithful understanding (mental
model) of the robot [6, 12]. While humans naturally
create mental models of entities they interact with, this
process might be slow and inaccurate [4, 10]. To ensure
safe use of robots, thus, the onus of establishing accurate
mental models regarding robots lies on us – robotics
researchers and designers. Towards this call to action,
our vision is to create an AI Teacher that can assist
end-users in establishing accurate understanding of
robots that they work with.

Recognizing the need for teaching users about
robots, multiple formative approaches have been
proposed in recent years [9, 16, 17, 18]. Existing
work has primarily focused on first computing
human-interpretable instructions (typically, explanations
or examples) of robot behavior and then communicating
the precomputed instructions to end-users. These
precomputed instructions help users acquire models
of robots. However, in absence of interactivity, the
instructions may not be tailored to specific end-users.

To address the needs and preferences of diverse
stakeholders that interact with robots, we posit that
interactivity between the AI Teacher and users will be
critical. Hence, our ongoing work explores the design
of human-in-the-loop algorithms to generate instructions
and improve user understanding of robot behavior.
In this short article, we briefly discuss the challenges
of generating human-interpretable instructions using a
robot’s policy and formulate the problem of designing
an interactive AI Teacher.

II. Research Challenges
Explaining robot behavior presents several research

challenges. Here, we focus on the computational
challenges, which primarily arise due to the need to
• model and assess how users model robots; and
• effectively select user-specific instructions.

We touch upon on these challenges next, which span
across disciplines including human-robot interaction
(HRI), psychology, education, and cognitive science.

A. Estimating Users’ Perception, Understanding, and Belief
Theory of Mind (ToM) refers to humans’ ability to

interpret and predict behavior of other humans by
attributing mental states (e.g., belief, desire, intent) to
oneself or others [2, 3]. Recent work in HRI indicates that
humans also attribute ToM to robots that they observe
or interact with [6, 12]. Consequently, this characteristic
of human mind has been utilized to develop methods
that generate explanations of robot behavior [9].

To generate instructions tailored to specific users,
it is essential for the AI Teacher to estimate human
users’ mental model of robots. A reliable estimate
of the mental model is required to evaluate utility

of different instructions. However, estimating users’
mental models are challenging as they depend on latent
and user-specific features (such as prior knowledge,
experience, and attention during the teaching process).
For instance, in our ongoing research, we observe that
participants interacting with our AI Teacher arrive at
mental models of robots differently based on their prior
experience; a participant with background in economics
adopted a utilitarian perspective, while a participant
who loves solving puzzles treated the robot modeling
process as a mathematical puzzle.

Computational techniques (such as Bayesian inference)
offer a mechanism to estimate human’s mental models,
but may require prohibitive amounts of data to generate
user-specific estimates [1, 7]. Interactivity during the
teaching process can augment these techniques and help
ease the inference of mental models. For instance, user
evaluations can help the AI Teacher estimate mental
models both before and during the teaching process.

B. Designing Human-Centered Pedagogical Methods
In addition to the mental model estimates, algorithms

are needed to decide the type, content, and sequence
of the most-effective instructions. As effectiveness of
instructions depends on a user’s prior knowledge and
learning style, resolution of this challenge can also
benefit from an interactive and user-centered approach.

Researchers in pedagogy have examined a variety
of teaching strategies in the human-to-human teaching
setting [11, 13, 15]. One categorization of these strategies
is based on the use of direct or indirect instructions.
Teaching strategies utilizing direct instructions are
teacher-centered, involve clear teaching objectives, and
consistent classroom organizations. In contrast, strategies
involving indirect instructions are student-centered
and encourage independent learning. Human-to-human
teaching, in practice, typically involves a combination of
the two perspectives.

Similarly, an AI Teacher explaining robot behavior to
users (i.e., its students) can utilize a combination of
the two perspectives. However, existing approaches to
explaining robot behavior are primarily teacher-centered,
where the teacher decides the appropriate instructions
using domain knowledge (e.g., [18]) and by modeling the
user’s mental model (e.g., [9]). An interactive AI Teacher
can help achieve a hybrid approach, where based on the
needs and preferences of the user some explanations are
teacher-centric and others user-centric. In the remainder
of the paper, we summarize our ongoing effort to realize
such an interactive AI Teacher.

III. Towards an Interactive AI Teacher
To discuss the design of the AI Teacher (depicted

in Fig. 1), we begin by mathematically formulating the
problem of interactively improving a user’s understanding of
a robot’s behavior. We assume that the robot behavior can

Fig. 1. Schematic of the interactive AI Teacher.

be summarized by its (potentially, stochastic) policy �',
which maps robot states B to actions 0. The AI Teacher
has complete knowledge of the robot policy and aims
to maximize user knowledge regarding robot policy
using a budget of 1 instructions �1:1 .

Instruction Set. In general, the instructions can be
disseminated using a variety of modalities (such as
natural language and augmented reality). In our initial
formulation, however, we limit instructions to either
context-specific examples or user assessments of robot
behavior, i.e., (B, 0)-tuples. The choice of instruction set
enables the design of domain-agnostic techniques for the
AI Teacher, provided the robot policy is known.

Modeling Interactivity. Our formulation includes two
avenues for interactivity: user assessments during the
teaching process and user-centered instructions. User
assessments allow the AI Teacher to interactively assess
a user’s understanding (mental model) during the
teaching process. Further, in our framework the user
can additionally design a subset of the instructions, by
requesting context-specific examples of robot behavior
(i.e., requesting knowledge 0 for a given B). Inclusion of
this degree of freedom enables our approach to be as
interactive as desired by the user.

Representing User Knowledge. We capture user’s
knowledge of the robot using the variable , which
describes the ratio of robot states B for which the user
knows the robot’s policy �'(B) to the total number of
states. Formally, the objective of the AI Teacher is to
generate a sequence of 1 instructions given policy �':

5 (�') = argmax
�1:1

%A(= 1|�1:1 ,�'). (1)

We highlight that the AI Teacher needs to select not
only the instructions but also their sequence, as some
instructions might be more effective initially. A subset of
the 1 instructions may be selected by the user, making
the decision-making further challenging.

Solution Overview. To tackle this problem, our design
of the AI Teacher includes an approach to estimate
the user’s mental model, a planning algorithm to
select salient instructions, and an interactive interface
for teaching. We mathematically represent the user’s
mental model based on Griffiths’ probabilistic model of
cognition [5]. The effect of instructions on the evolution
of mental model is captured using Bayesian theory of
mind [1].

Given this representation, we pose the
instruction-generation problem as a planning problem
and use a modified Monte Carlo Tree Search (MCTS)
algorithm to select salient examples of robot behavior.
The search algorithm selects the instructions and
sequences them by evaluating their effect on a user’s
knowledge of a robot’s policy. Finally, our AI Teacher
includes an interactive user interface that allows a
user to self-explore a robot’s behavior. To evaluate our
approach and the effect of interactivity, we are actively
conducting a user study to explaining robot behavior
in two simulated domains, inspired by recycling and
search-and-rescue.

References
[1] Chris Baker, Rebecca Saxe, and Joshua Tenenbaum.

Bayesian theory of mind: Modeling joint
belief-desire attribution. In Proceedings of the
annual meeting of the cognitive science society,
volume 33, 2011.

[2] S. Baron-Cohen. Precursors to a theory of mind:
Understanding attention in others. Whiten, Andrew
(ed.), Natural theories of mind, pages 233–251, 1991.

[3] G. S. Becker. The economic approach to human behavior.
University of Chicago press, 1976.

[4] Ruth Byrne and P.N. Johnson-Laird. ‘If’ and
the problems of conditional reasoning. Trends in
cognitive sciences, 13:282–7, 07 2009. doi: 10.1016/j.
tics.2009.04.003.

[5] Thomas Griffiths, Nick Chater, Charles Kemp, Amy
Perfors, and Joshua Tenenbaum. Probabilistic
models of cognition: Exploring representations and
inductive biases. Trends in cognitive sciences, 14:
357–64, 08 2010.

[6] Thomas Hellström and Suna Bensch.
Understandable robots. Paladyn, Journal of
Behavioral Robotics, 9:110–123, 07 2018. doi:
10.1515/pjbr-2018-0009.

[7] Laura M Hiatt, Cody Narber, Esube Bekele,
Sangeet S Khemlani, and J Gregory Trafton. Human
modeling for human–robot collaboration. The
International Journal of Robotics Research, 36(5-7):
580–596, 2017.

[8] Ayanna Howard and Jason Borenstein. The ugly
truth about ourselves and our robot creations: the
problem of bias and social inequity. Science and
engineering ethics, 24(5):1521–1536, 2018.

[9] Sandy H. Huang, David Held, Pieter Abbeel, and
Anca D. Dragan. Enabling robots to communicate
their objectives. Autonomous Robots, 43(2), February
2019.

[10] Philip Johnson-Laird. Mental models and human
reasoning. Proceedings of the National Academy of
Sciences of the United States of America, 107:18243–50,
10 2010. doi: 10.1073/pnas.1012933107.

[11] Lynn Julien-Schultz, Nancy Maynes, and Cilla
Dunn. Managing direct and indirect instruction:
A visual model to support lesson planning in
pre-service programs. The International Journal of
Learning: Annual Review, 17:125–140, 2010.

[12] Sau lai Lee, Ivy Yee man Lau, S. Kiesler, and Chi-Yue
Chiu. Human mental models of humanoid robots.
In 2005 IEEE International Conference on Robotics and
Automation, pages 2762–2772, 2005.

[13] Kevin A. Nguyen, Jenefer Husman, M. A. Trujillo
Borrego, Prateek Shekhar, Michael J. Prince, Matt
DeMonbrun, Cynthia J. Finelli, Charles Henderson,
and Cindy K. Waters. Students’ expectations, types
of instruction, and instructor strategies predicting
student response to active learning. International
Journal of Engineering Education, 33:2–18, 2017.

[14] Raja Parasuraman and Victor Riley. Humans and
automation: Use, misuse, disuse, abuse. Human
factors, 39(2):230–253, 1997.

[15] Tiia Ruutmann and Hants Kipper. Teaching
strategies for direct and indirect instruction in
teaching engineering. In 2011 14th International
Conference on Interactive Collaborative Learning, pages
107–114, 2011.

[16] Roykrong Sukkerd, Reid Simmons, and David
Garlan. Tradeoff-focused contrastive explanation for
mdp planning. arXiv preprint arXiv:2004.12960, 2020.

[17] Aaquib Tabrez, Shivendra Agrawal, and Bradley
Hayes. Explanation-based reward coaching to
improve human performance via reinforcement
learning. In 2019 14th ACM/IEEE International
Conference on Human-Robot Interaction (HRI), pages
249 – 257. IEEE, 2019.

[18] Yusen Zhan, Anestis Fachantidis, Ioannis Vlahavas,
and Matthew E. Taylor. Agents teaching humans
in reinforcement learning tasks. In International
Conference on Autonomous Agents and Multiagent
Systems, 2014.

Constrained Feedforward Neural Network Training
via Reachability Analysis

Long Kiu Chung*, Adam Dai*, Derek Knowles, Shreyas Kousik, and Grace X. Gao

Abstract— Neural networks have recently become popular
for a wide variety of uses, but have seen limited application
in safety-critical domains such as robotics near and around
humans. This is because it remains an open challenge to train
a neural network to obey safety constraints. Most existing
safety-related methods only seek to verify that already-trained
networks obey constraints, requiring alternating training and
verification. Instead, this work proposes a constrained method to
simultaneously train and verify a feedforward neural network
with rectified linear unit (ReLU) nonlinearities. Constraints are
enforced by computing the network’s output-space reachable
set and ensuring that it does not intersect with unsafe sets;
training is achieved by formulating a novel collision-check loss
function between the reachable set and unsafe portions of the
output space. The reachable and unsafe sets are represented by
constrained zonotopes, a convex polytope representation that
enables differentiable collision checking. The proposed method
is demonstrated successfully on a network with one nonlinearity
layer and ≈ 50 parameters.

I. INTRODUCTION

Neural networks are a popular method for approximating
nonlinear functions, with increasing applications in the field
of human-robot interactions. For example, the kinematics
of many elder-care robots [1], [2], rehabilitation robots
[3], [4], industrial robot manipulators [5], and automated
driving systems [6], [7] are controlled by neural networks.
Thus, verifying the safety of the neural networks in these
systems, before deployment near humans, is crucial in avoid-
ing injuries and accidents. However, it remains an active
area of research to ensure the output of a neural network
satisfies user-specified constraints and requirements. In this
short paper, we take preliminary steps towards safety via
constrained training by representing constraints as a collision
check between the reachable set of a neural network and
unsafe sets in its output space.

A. Related Work

Many different solutions have been proposed for the
verification problem, with set-based reachability analysis
being the most common for an uncertain set of inputs [8].
Depending on one’s choice of representation, the predicted
output is either exact (e.g. star set [6], [9], ImageStar [10])
or an over-approximation (e.g. zonotope [11]) of the actual
output set. Reachability is most commonly computed layer-
by-layer, though methods have been proposed that speed up

* indicates equal contribution. All authors are with Stanford University,
Stanford, CA. L.K. Chung is with the Department of Mechanical Engineer-
ing. A. Dai is with the Department of Electrical Engineering. D. Knowles,
S. Kousik, and G.X. Gao are with the Department of Aeronautics and
Astronautics. Corresponding author: gracegao@stanford.edu.

verification by, e.g., using an anytime algorithm to return
unsafe cells while enumerating polyhedral cells in the input
space [12], or recursively partitioning the input set via
shadow prices [13].

Verification techniques have several drawbacks. First, they
do not provide feedback about constraints during training,
so one must alternate training and verification until desired
properties have been achieved. Furthermore, verification by
over-approximation can often be inconclusive, while exact
verification can be expensive to compute.

Several alternative approaches have therefore been pro-
posed. For example, [14] employs a constrained optimiza-
tion layer to use the output of the network as a poten-
tial function for optimization while enforcing constraints.
Similarly, [15], [16] adds a constraint violation penalty to
the objective loss function and penalizes violation of the
constraint. These methods augment their networks with con-
strained optimization, but are unable to guarantee constraint
satisfaction upon convergence of the training. Alternatively,
[17] uses a systematic process of small changes to con-
form a “mostly-correct” network to constraints. However
the method only works for networks with a Two-Level
Lattice (TLL) architecture, requires an already-trained net-
work, and again does not guarantee a provably safe solution.
Finally, [18] attempts to learn the optimal cost-to-go for the
Hamilton–Jacobi–Bellman (HJB) equation, while subjected
to constraints on the output of the neural network controller.
Yet, it does not actually involve any network training and is
unable to handle uncertain input sets.

Recently, constrained zonotopes have been introduced
as a set-based representation that is closed under linear
transformations and can exactly represent any convex poly-
tope [19], [20]. Importantly, these sets are well-suited for
reachability analysis due to analytical, efficient methods
for computing Minkowski sums, intersections, and collision
checks; in particular, collision-checking only requires solving
a linear program. We leverage these properties to enable our
contributions.

B. Contributions

We propose a method to compute the output of a neu-
ral network with rectified linear unit (ReLU) activations
given an input set represented as constrained zonotopes. We
then enforce performance by training under a differentiable
zonotope intersection constraint, which guarantees safety
upon convergence. Our method is demonstrated on a small
numerical example, and illustrated in Fig. 1.

1

Fig. 1. An example safe training result with the proposed method. The
color gradient illustrates corresponding input and output points. With our
method, the trained output does not intersect the unsafe set (red box).

II. PRELIMINARIES

We now introduce our notation for neural networks and
define constrained zonotopes.

In this work, we consider a fully-connected, ReLU-
activated feedforward neural network n(·) : X (0) → Rn(d) ,
with output x(d) = n

(
x(0)
)

given an input x(0) ∈X (0)⊂Rn(0) .

We call X (0) the input set. We denote by d ∈N the depth of
the network and by n(i) the width of the ith layer. For each
layer k = 1, · · · ,d−1, the hidden state of the neural network
is given by

x(k) = ρ

(
L
(

x(k−1),W(k−1),w(k−1)
))

, (1)

where W(k−1) ∈ Rn(k−1)×n(k) , x(k) and w(k−1) ∈ Rn(k) , and

L(x,W,w) = Wx+w, (2)
ρ(x) = max{0,x}, (3)

where L(·) is a linear layer operation, and ρ(·) is the ReLU
nonlinearity with the max taken elementwise. We do not
apply the ReLU activation for the final output layer:

x(d) = L
(

x(d),W(d),w(d)
)
. (4)

The reachable set of the neural network is

X (d) = n
(

X (0)
)
⊂ Rn(d) . (5)

We represent the reachable set as a union of constrained
zonotopes. A constrained zonotope CZ(c,G,A,b) ⊂ Rn is
a set parameterized by a center c ∈ Rn, generator matrix
G ∈Rn×ngen , linear constraints A ∈Rncon×ngen , b ∈Rncon , and
coefficients z ∈ Rngen as follows:

CZ(c,G,A,b) = {c+Gz | ‖z‖
∞
≤ 1, Az = b} . (6)

Importantly, the intersection of constrained zonotopes is
also a constrained zonotope [19, Proposition 1]. Let Z1 =
CZ(c1,G1,A1,b1) and Z2 = CZ(c2,G2,A2,b2). Then Z1∩Z2
is given by

Z1∩Z2 = CZ

c1, [G1,0],

A1 0
0 A2

G1 −G2

 ,
 b1

b2
c2− c1

 . (7)

We leverage this property to evaluate constraints on the
forward reachable set of our neural network.

III. METHOD

In this section, we first explain how to pass a constrained
zonotope exactly through a ReLU nonlinearity; that is, we
compute the reachable set of a ReLU activation given a
constrained zonotope as the input. We then discuss how to
train a neural network using the reachable set to enforce
constraints. Finally, we explain how to compute the gradient
of the constraint for backpropagation.

Before proceeding, we briefly mention that we can pass
an input constrained zonotope Z = CZ(c,G,A,b) through a
linear layer as

L(Z,W,w) = CZ(Wc+w,WG,A,b) . (8)

This follows from the definition in (6).

A. Constrained Zonotope ReLU Activation

Proposition 1. The ReLU activation of a constrained zono-
tope Z ⊂ Rn is:

ρ(Z) =
2n⋃

i=1

CZ
(

c(i),G(i),A(i),b(i)
)
, (9)

where each output constrained zonotopes is given by:

G(i) = [diag(ui)G, 0n×n], (10a)

A(i) =

[
A 0ncon×n

diag(1n×1−2ui)G diag
(

d(i)
)]

, (10b)

c(i) = diag(ui)c, (10c)

b(i) =

[
b

−diag(1n×1−2ui)c−d(i)

]
,and (10d)

d(i) = 1
2

(
G+1ngen×1−diag(1n×1−2ui)c

)
, (10e)

where G+ ∈ Rn×ngen is a matrix containing the elementwise
absolute value of G and ui ∈Rn×1 is the ith combination of
the 2n possible n-tuples defined over the set {0,1}n.

Proof. The formulation in (10) follows from treating the
max operation applied to all negative elements of the input
zonotope as a sequence of two operations. First, we intersect
the input constrained zonotope with the halfspace defined by
the vector ui in the codomain of ρ(·); this is why the linear
operator diag(ui) is applied to each G(i) and c(i), as given
by the analytical intersection of a constrained zonotope with
a halfspace [20, Eq. 10]. Second, we zero out the dimension
corresponding to that halfspace/unit vector (i.e., project all
negative points to zero). Since the max is taken elementwise,
there are 2n possible intersection/zeroings when considering
each dimension as either activated or not.

Proposition 1 is illustrated in Fig. 2.
Per Proposition 1, passing a constrained zonotope through

a ReLU nonlinearity produces a set of 2n constrained zono-
topes. A similar phenomenon is found in ReLU activations
of other set representations [10], with exponential growth in
the computational time and memory required as a function
of layer width and number of layers. To mitigate this
growth, empty constrained zonotopes can be pruned after
each activation, hence our next discussion.

2

Fig. 2. An illustration of passing a constrained zonotope (blue) through a
2-D ReLU nonlinearity, resulting in the green output set, which is the union
of 4 constrained zonotopes.

B. Constrained Zonotope Emptiness Check

To check if Z = CZ(c,G,A,b) is empty, we solve a linear
program (LP) [19, Proposition 2]:

min
z,v
{v | Az = b and ‖z‖

∞
≤ v} . (11)

Then, Z is empty if and only if v > 1. Importantly, by
construction, as long as there exist feasible z (for which
Az=b), then (III-B) is always feasible. Since the intersection
of constrained zonotopes is also a constrained zonotope as
in (7), we can use this emptiness check to enforce collision-
avoidance (i.e., non-intersection) constraints. This is the basis
of our constrained training method.

C. Constrained Neural Network Training

The main goal of this paper is constrained neural network
training. For robotics in particular, as future work, our goal
is to train a robust controller. In this work, we consider an
unsafe output set which could represent, e.g., actuator limits
or obstacles in a robot’s workspace (in which case the output
of the neural network is passed through a robot’s dynamics).

1) Generic Formulation: Consider an input set X (0) ⊂
Rn(0) represented by a constrained zonotope, an unsafe
set Xunsf ⊂ Rn(d) , a training dataset (x(0)j ,y j), j = 1, · · · ,m,

y j ∈ Rn(d) of training examples x(0)j and labels y j, and

an objective loss function `obj

(
x(0)1 , · · · ,x(0)m ,y1, · · · ,ym

)
. Let

W= {W(0), · · · ,W(d)} be the collection of all of the neural
network weights and B= {w(0), · · · ,w(d)} all the biases. We
formulate the training problem as:

min
W,B

`obj

(
x(0)1 , · · · ,x(0)m ,y1, · · · ,ym

)
, (12a)

s.t. X (d)∩Xunsf = /0, (12b)

where X (d) is the reachable set as in (5). We write the loss
as a function of all of the input/output data (as opposed to
batching the data) for ease of presentation.

2) Set and Constraint Representations: We represent the
input set and unsafe set as constrained zonotopes, X (0) = Z(0)

and Xunsf = Zunsf. Similarly, it follows from Proposition 1 that
the output set X (d) can be exactly represented as a union of

constrained zonotopes:

X (d) =
nout⋃
i=1

Z(d)
i , (13)

where nout depends on the layer widths and network depth.
Recall that Z(d)

i ∩Zunsf is a constrained zonotope as in (7).
So, to compute the constraint loss, we evaluate X (d)∩Xunsf

by solving (III-B) for each constrained zonotope Z(d)
i ∩Zunsf

with i = 1, · · · . Then, denoting v∗i as the output of (III-B) for
each Z(d)

i ∩Zunsf, we represent the constraint X (d)∩Xunsf = /0
as a function `con(·) for which

`con

(
Z(d)

i ,Zunsf

)
= 1− v∗i , (14)

which is negative when feasible as is standard in constrained
optimization [21]. Using (14), we ensure the neural network
obeys constraints by checking `con

(
Z(d)

i ,Zunsf

)
< 0 for each

i = 1, · · · ,nout.

D. Differentiating the Collision Check Loss

To train using backpropagation, we must differentiate the
constraint loss `con(·). This means we must compute the
gradient of (III-B) with respect to the problem parameters
A and b, which are defined by the centers, generators, and
constraints of the output constrained zonotope set. To do
so, we leverage techniques from [22], which can be applied
because (III-B) is always feasible.

Consider the Lagrangian of (III-B):

J(z,v,m,n) = q>(z,v)+A>n+m>(G(z,v)−g), (15)

where m is the dual variable for the inequality constraint
and n is the dual variable for the equality constraint. For
any optimizer (z∗,v∗,m∗,n∗), the optimality conditions are

q>(z∗,v∗)+A>n∗+G>m∗ = 0, (16a)
A(z∗,v∗)∗−b = 0, and (16b)

diag(m∗)G(z∗,v∗)∗ = 0, (16c)

where we have used the fact that g= 0. Taking the differential
(denoted by d) of (16), we get 0 G> A>

diag(m∗) diag(G(z∗,v∗)∗) 0
A 0 0

d(z∗,v∗)
dm
dn

=

 −dq−dA>n∗
−diag(m∗)dG(z∗,v∗)
−dA(z∗,v∗)∗+db

 ,
(17)

We can then solve (17) for the Jacobian of v∗ with respect to
any entry of the zonotope centers or generators by setting the
right-hand side appropriately (see [22] for details). That is,
we can now differentiate (14) with respect to the elements
of c1, G1, c2, or G2. In practice, we differentiate (III-B)
automatically using the cvxpylayers library [23].

3

IV. NUMERICAL EXAMPLE

We test our method by training a 2-layer feedforward
ReLU network with input dimension 2, hidden layer size
of 10, and output dimension of 2. We chose this network
with only one ReLU nonlinearity layer, as recent results have
shown that a shallow ReLU network performs similarly to a
deep ReLU network with the same amount of neurons [24].
However, note that our method (in particular Proposition 1)
does generalize to deeper networks. We pose this preliminary
example as a first effort towards this novel style of training.

Problem Setup. We seek to approximate the function

f (x1,x2) =

[
x2

1 + sinx2
x2

2 + sinx1

]
, (18)

with X (0) = CZ(02×1,I2, /0, /0). We create an unsafe set in the
output space as

Xunsf = CZ

([
1.5
1.5

]
,0.5I2, /0, /0

)
. (19)

The training dataset was generated as ndata = 104 random
input/output pairs (x(0)j ,y j) with y j = f (x(0)j) by sampling

uniformly in X (0). The unsafe set Xunsf and each x(0)j and y j
are plotted in Figs. 3 and 4. The objective loss is

`obj(·) =
1

ndata

ndata

∑
j=1

∥∥∥n
(

x(0)j

)
−y j

∥∥∥2

2
(20)

where we use · for concision in place of the training data.
Implementation. We implemented our method1 in PyTorch

[25] with optim.SGD as our optimizer on a desktop com-
puter with 6 cores, 32 GB RAM, and an RTX 2060 GPU.

We trained the network for 103 iterations with and without
the constraints enforced. To enforce hard constraints as in
(12), in each iteration, we compute the objective loss function
across the entire dataset, then backpropagate the objective
gradient; then, we compute the constraint loss as in (14) for
all active constraints, then backpropagate. For future work
we will apply more sophisticated constrained optimization
techniques (e.g., an active set method) [21, Ch. 15].

With our current naı̈ve implementation, constrained train-
ing took approximately 5 hours, whereas the unconstrained
training took 0.5 s. Our method is slower due to the need
to compute an exponentially-growing number of constrained
zonotopes as in Proposition 1. However, we notice that the
GPU utilization is only 1-5% (the reachability propagation
is not fully parallelized), indicating significant room for
increased parallelization and speed.

Results and Discussion. Results for unconstrained and
constrained training are shown in Fig. 3 and Fig. 4. Our
proposed method avoids the unsafe set. Note the output con-
strained zonotopes (computed for both networks) contain the
colored output points, verifying our exact set representation
in Proposition 1.

Table I shows results for unconstrained and constrained
training; importantly, our method obeys the constraints. As

1Our code is available online: https://github.com/
Stanford-NavLab/constrained-nn-training

Fig. 3. Unconstrained training, with X (d) plotted on the left and each
n
(

x(0)j

)
plotted on the right. The output approximates the function well but

does not avoid the unsafe space.

Fig. 4. Constrained training. The output approximates the function while
avoiding the unsafe space.

expected for nonlinear constrained optimization, the network
converged to a local minimum while obeying the constraints.
The key challenge is that the constrained training is several
orders of magnitude slower than unconstrained training. We
plan to address in future work by increased parallelization,
by pruning of our reachable sets [6], and by using anytime
verification techniques [12].

Unconstrained Constrained
final objective loss 0.0039 0.0127
final constraint loss 0.0575 0.0000

TABLE I

V. CONCLUSION AND FUTURE WORK

This work proposes a constrained training method for
feedforward ReLU neural networks. We demonstrated the
method successfully on a small example of nonlinear func-
tion approximation. Given the ability to enforce output
constraints, the technique can potentially be applied to offline
training for safety-critical neural networks.

Our current implementation has several drawbacks to
be addressed in future work. First, the method suffers an
exponential blowup of constrained zonotopes through a
ReLU. We hope to improve the forward pass step by using
techniques such as [12] instead of layer-by-layer evaluation
to compute the output set, and by conservatively estimating
the reachable set similar to [13]. We also plan to apply
the method on larger networks, such as for autonomous
driving in [6] or the ACAS Xu network [26]–[28] for aircraft
collision avoidance. In general, our goal is to train robust
controllers where the output of a neural network must obey
actuator limits and obstacle avoidance (for which the network
output is passed through dynamics).

4

https://github.com/Stanford-NavLab/constrained-nn-training
https://github.com/Stanford-NavLab/constrained-nn-training

REFERENCES

[1] G. Xiong, J. Gong, T. Zhuang, T. Zhao, D. Liu, and X. Chen,
“Development of assistant robot with standing-up devices for para-
plegic patients and elderly people,” in 2007 IEEE/ICME Interna-
tional Conference on Complex Medical Engineering, IEEE, 2007,
pp. 62–67.

[2] B. Ko, H.-J. Choi, C. Hong, J.-H. Kim, O. C. Kwon, and C. D.
Yoo, “Neural network-based autonomous navigation for a homecare
mobile robot,” in 2017 IEEE International Conference on Big Data
and Smart Computing (BigComp), IEEE, 2017, pp. 403–406.

[3] G. Xu and A. Song, “Adaptive impedance control based on dynamic
recurrent fuzzy neural network for upper-limb rehabilitation robot,”
in 2009 IEEE International Conference on Control and Automation,
IEEE, 2009, pp. 1376–1381.

[4] S. Hussain, S. Q. Xie, and P. K. Jamwal, “Adaptive impedance con-
trol of a robotic orthosis for gait rehabilitation,” IEEE transactions
on cybernetics, vol. 43, no. 3, pp. 1025–1034, 2013.

[5] E. Gribovskaya, A. Kheddar, and A. Billard, “Motion learning and
adaptive impedance for robot control during physical interaction
with humans,” in 2011 IEEE International Conference on Robotics
and Automation, IEEE, 2011, pp. 4326–4332.

[6] H.-D. Tran, X. Yang, D. M. Lopez, P. Musau, L. V. Nguyen,
W. Xiang, S. Bak, and T. T. Johnson, “NNV: The neural network
verification tool for deep neural networks and learning-enabled
cyber-physical systems,” in International Conference on Computer
Aided Verification, Springer, 2020, pp. 3–17.

[7] L. Shengbo, G. Yang, H. Lian, G. Hongbo, D. Jingliang, L. Shuang,
W. Yu, C. Bo, L. Keqiang, R. Wei, et al., “Key technique of deep
neural network and its applications in autonomous driving,” Journal
of Automotive Safety and Energy, vol. 10, no. 2, p. 119, 2019.

[8] C. Liu, T. Arnon, C. Lazarus, C. Strong, C. Barrett, and M. J.
Kochenderfer, “Algorithms for verifying deep neural networks,”
arXiv preprint arXiv:1903.06758, 2019.

[9] H.-D. Tran, D. M. Lopez, P. Musau, X. Yang, L. V. Nguyen, W.
Xiang, and T. T. Johnson, “Star-based reachability analysis of deep
neural networks,” in International Symposium on Formal Methods,
Springer, 2019, pp. 670–686.

[10] H.-D. Tran, S. Bak, W. Xiang, and T. T. Johnson, “Verification of
deep convolutional neural networks using imagestars,” in Interna-
tional Conference on Computer Aided Verification, Springer, 2020,
pp. 18–42.

[11] M. Althoff, “Reachability analysis and its application to the safety
assessment of autonomous cars,” Ph.D. dissertation, Technische
Universität München, 2010.

[12] J. A. Vincent and M. Schwager, “Reachable Polyhedral March-
ing (RPM): A Safety Verification Algorithm for Robotic Sys-
tems with Deep Neural Network Components,” arXiv preprint
arXiv:2011.11609, 2020.

[13] V. Rubies-Royo, R. Calandra, D. M. Stipanovic, and C. Tomlin,
“Fast neural network verification via shadow prices,” arXiv preprint
arXiv:1902.07247, 2019.

[14] Z. Huang, W. Xu, and K. Yu, “Bidirectional LSTM-CRF models
for sequence tagging,” arXiv preprint arXiv:1508.01991, 2015.

[15] R. Stewart and S. Ermon, “Label-free supervision of neural net-
works with physics and domain knowledge,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 31, 2017.

[16] J. Xu, Z. Zhang, T. Friedman, Y. Liang, and G. Broeck, “A
semantic loss function for deep learning with symbolic knowledge,”
in International Conference on Machine Learning, PMLR, 2018,
pp. 5502–5511.

[17] U. S. Cruz, J. Ferlez, and Y. Shoukry, “Safe-by-Repair: A Convex
Optimization Approach for Repairing Unsafe Two-Level Lattice
Neural Network Controllers,” arXiv preprint arXiv:2104.02788,
2021.

[18] L. Markolf and O. Stursberg, “Polytopic Input Constraints in
Learning-Based Optimal Control Using Neural Networks,” arXiv
preprint arXiv:2105.03376, 2021.

[19] J. K. Scott, D. M. Raimondo, G. R. Marseglia, and R. D. Braatz,
“Constrained zonotopes: A new tool for set-based estimation and
fault detection,” Automatica, vol. 69, pp. 126–136, 2016.

[20] V. Raghuraman and J. P. Koeln, “Set operations and order reductions
for constrained zonotopes,” arXiv preprint arXiv:2009.06039, 2020.

[21] J. Nocedal and S. Wright, Numerical optimization. Springer Science
& Business Media, 2006.

[22] B. Amos and J. Z. Kolter, “Optnet: Differentiable optimization as a
layer in neural networks,” in International Conference on Machine
Learning, PMLR, 2017, pp. 136–145.

[23] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and Z.
Kolter, “Differentiable convex optimization layers,” arXiv preprint
arXiv:1910.12430, 2019.

[24] B. Hanin and D. Rolnick, “Deep relu networks have surprisingly
few activation patterns,” arXiv preprint arXiv:1906.00904, 2019.

[25] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch: An
imperative style, high-performance deep learning library,” arXiv
preprint arXiv:1912.01703, 2019.

[26] M. J. Kochenderfer and J. Chryssanthacopoulos, “Robust airborne
collision avoidance through dynamic programming,” Massachusetts
Institute of Technology, Lincoln Laboratory, Project Report ATC-
371, vol. 130, 2011.

[27] M. J. Kochenderfer, J. E. Holland, and J. P. Chryssanthacopou-
los, “Next-generation airborne collision avoidance system,” Mas-
sachusetts Institute of Technology-Lincoln Laboratory Lexington
United States, Tech. Rep., 2012.

[28] M. J. Kochenderfer, C. Amato, G. Chowdhary, J. P. How, H. J. D.
Reynolds, J. R. Thornton, P. A. Torres-Carrasquillo, N. K. Ure, and
J. Vian, “Optimized airborne collision avoidance,” Decision Making
under Uncertainty, p. 251, 2015.

5

https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1007/978-3-030-53288-8_1
https://arxiv.org/abs/1903.06758
https://doi.org/10.1007/978-3-030-30942-8_39
https://doi.org/10.1007/978-3-030-30942-8_39
https://arxiv.org/abs/2004.05511
https://arxiv.org/abs/2004.05511
https://mediatum.ub.tum.de/doc/1287517/
https://mediatum.ub.tum.de/doc/1287517/
https://arxiv.org/abs/2011.11609
https://arxiv.org/abs/2011.11609
https://arxiv.org/abs/2011.11609
https://arxiv.org/abs/1902.07247
https://arxiv.org/abs/1508.01991
https://arxiv.org/abs/1508.01991
https://arxiv.org/abs/1609.05566
https://arxiv.org/abs/1609.05566
https://arxiv.org/abs/1711.11157
https://arxiv.org/abs/1711.11157
https://arxiv.org/abs/2104.02788
https://arxiv.org/abs/2104.02788
https://arxiv.org/abs/2104.02788
https://arxiv.org/abs/2105.03376
https://arxiv.org/abs/2105.03376
https://doi.org/10.1016/j.automatica.2016.02.036
https://doi.org/10.1016/j.automatica.2016.02.036
https://arxiv.org/abs/2009.06039
https://arxiv.org/abs/2009.06039
http://proceedings.mlr.press/v70/amos17a.html
http://proceedings.mlr.press/v70/amos17a.html
https://arxiv.org/abs/1910.12430
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.207.7337&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.207.7337&rep=rep1&type=pdf
https://www.ll.mit.edu/sites/default/files/page/doc/2018-05/19_1_1_Kochenderfer.pdf
https://ieeexplore.ieee.org/document/7288641

Reactive Synthesis for Human-aware Robotic
Manipulation using Regret Games

Karan Muvvala and Morteza Lahijanian
University of Colorado Boulder

Email: karan.muvvala@colorado.edu, morteza.lahijanian@colordo.edu

Abstract—This paper proposes a regret-based reactive syn-
thesis framework for robotic manipulators with complex tasks
operating in the presence of a human. The framework uses
temporal logic for task specification and generates strategies that
are guaranteed to complete the task while exploring possible
cooperation with the human. The method is based on a two-
player game formulation and uses the notion of regret to reason
about the players’ actions. This approach relaxes the conservative
assumption that the human is always adversarial and allows
exploration for collaboration. We discuss the efficacy of this
framework through case studies.

I. INTRODUCTION

From factories to households, robots are rapidly leaving
behind their robot-centric environments and entering our so-
ciety. To be successful in our human-centric world, they must
develop the ability to interact with dynamic environments. This
includes performing complex tasks in presence of humans,
who may interfere with the task, and seeking collaboration
when possible. Achieving such capabilities is challenging,
especially in the robotic manipulation domain, where tasks
are complex and crucially require interaction with humans.
This work addresses some of these challenges by providing a
reactive synthesis framework that guarantees task completion
and at the same time enables efficient collaboration.

As an example, consider the scenario in Fig. 1, where the
robot is tasked with building an arch either on the left or the
right side of the table with the black boxes as the supports
and the white box on top. In this workspace, there is a human
(not shown), who can reach and manipulate the boxes placed
on the right side but not the ones on the left. To operate in the
region on the left, the robot has to spend more energy than
the one closer to the human. To solve this problem, classical
planning methods that compute a fixed sequence of actions are
not sufficient. Instead, the robot needs a plan (strategy) that
chooses motions in reaction to the actions of the human.

Previous work [4, 5, 6] addresses this problem through a
reactive synthesis approach [7, 8, 10]. Their framework uses
Linear Temporal Logic over finite traces (LTLf) [1] for task
specification and views the interaction between the human and
the robot as a game. The framework first constructs a discrete
abstraction of the continuous planning problem in the form of
a turn-based two-player game and then synthesizes a winning
strategy on this abstraction for the robot to achieve the task by
assuming the human to be purely adversarial. While this ap-
proach guarantees task completion, the adversarial assumption
is conservative and eliminates the possibility of collaboration

(a) Adversarial Behavior (b) Probabilistic Behavior

Fig. 1: Arch building: Adversarial vs Probabilistic human

with the human, which may lead to higher energy spending
by the robot. In the scenario in Fig. 1, the strategy obtained
by this framework leads the robot to build an arch away from
the human and spending more energy as shown in Fig. 1a.

Recent work [9] relaxes this assumption by modelling the
human as a probabilistic agent. This leads to an abstraction
in the form of a Markov Decision Process (MDP) and the
objective reduces to synthesize an optimal policy that max-
imizes the probability of satisfying the specification on this
MDP. This approach optimizes the robot’s actions according
to the expected behavior of the human instead of assuming the
human to be adversarial. In the scenario in Fig. 1, the policy
obtained by this method leads the robot to build the arch near
the human (as shown in Fig. 1b) if the expected behavior of
the human is to be cooperative; otherwise, the robot builds the
arch away from the human. While cooperation can be achieved
using this probabilistic framework, it requires prior knowledge
on the human, which is generally hard to obtain. Also, the
method fails to capture the human as a strategic player.

In this work, we propose a framework that relaxes the
assumption that the human is purely adversarial while also
capturing the human’s objective as a strategic agent without
requiring a priori knowledge. Similar to [5], we model the
interaction as a two-player game, but we use the notion of
regret to reason about the human’s actions. Intuitively, regret
can be defined as a measure of how good an action is. Thus,
the objective for the robot is to choose an action (strategy)
that minimizes its regret.

II. PROBLEM FORMULATION AND APPROACH

Problem Formulation: Similar to [5, 6], we use a discrete
abstraction of a robotic manipulator and a human operating
in a shared workspace as a two-player game. This game
abstraction of a manipulation domain is a tuple a tuple

G = (V, v0, As, Ae, F, δ,Π, L) where V = Vs ∪ Ve is the
set of states partitioned into robot states Vs and human states
Ve, As and Ae are the sets of finite actions for the robot and
human, respectively, F : As → R≥0 is the cost function that
maps each robot action to the energy required for that action,
δ : V × (As ∪ Ae) → V is the transition function, Π is a
set of task related atomic propositions, and L : V → 2Π

is a labeling function that indicates the property of each state
relative to the task. To evolve over this game, each player picks
a strategy, which chooses the next action given the sequence
of states taken so far. We denote by σ : V ∗ · Vs → As and
τ : V ∗ · Ve → Ae the strategies associated with the robot and
the human respectively.

We employ LTLf (see [1] for syntax and semantics) to
express the task of the robot. It is an expressive language
that combines Boolean connectives with temporal operators,
allowing the expression of complex tasks such as the one
in Fig. 1. An LTLf formula is defined over Π and can be
translated to a deterministic finite automaton (DFA) with
alphabet 2Π using existing tools [2].

Problem: Given abstraction G, LTLf task specification
φ, and a user-defined energy budget B, compute a strategy σ∗

for the robot that not only guarantees completion of task φ
but also explores possible cooperation with the human while
keeping the total energy consumption less than or equal to B.

Approach: Our proposed approach first converts the LTLf
formula φ to a DFA Aφ and then composes it with the two-
player game G to construct the DFA game P = Aφ × G (see
[5, 6] for details). The DFA Aφ only reasons over the task φ,
and the abstraction G captures the constraints of the physical
world. By composing the two structures, we obtain a new game
P = (S, Sf , s0, As, Ae, F, δP) that captures all the possible
ways in which φ can be accomplished for the manipulation
domain captured by G. Here, S is the set of states, which
represent the current configuration of the physical world (V) as
well as how much of the task φ has been accomplished, s0 ∈ S
is the initial state, Sf ⊆ S is the set of accepting states that
correspond to the task being successfully accomplished, δP is
the transition function, and As, Ae, and F are inherited from
G. Thus, the objective of our problem reduces to synthesizing
a strategy σ∗ for the robot on P that assures reachability of
Sf under all strategies of the human. We call σ∗ a winning
strategy on P if, not only it guarantees reaching a state in Sf ,
but also ensures that the robot does not spend more than B
amount of energy under all human strategies.

A winning strategy σ∗ can be computed by assuming the
human is always adversarial [5], which is a conservative
approach as discussed in Sec. I. To relax this assumption,
we use the notion of regret as a quality measure. Informally,
regret can be defined as the difference between what the robot
actually spends and what it could have spent if it had known
how the human would react beforehand. Mathematically,

regσ,τ (s) := Vals(σ, τ)−min
σ′

Vals(σ′, τ), (1)

where Vals(σ, τ) is the total energy (cumulative payoff)
associated with the run (path) of P induced by strategies

Fig. 2: The regret minimizing strategy for the robot is to give
the human a chance to be cooperative.

σ and τ starting from state s. We use best-responses -
minσ′ Vals(σ′, τ) as yardstick to compare the quality of each
robot action for a fixed response τ by the human. To also
ensure satisfaction of φ, we specifically design Val so that it
returns infinity if the induced run does not end in Sf . Hence,
our goal is now to compute a regret minimizing strategy

σ∗ = arg min
σ

(max
τ

regσ,τ (s0)). (2)

To synthesize winning strategy σ∗, we employ a two-step
process based on [3]. First, we unroll P to construct a graph of
utility Gu, which in essence captures all the possible scenarios
that can be accomplished by the human and the robot. We then
augment the nodes in Gu with the the total energy spent by the
robot in executing that strategy σ for a fixed human strategy
τ . We then compute the best-response for each path induced
by σ and τ to construct the graph of best-responses Gbr.
Finally, we compute the regret regσ,τ (s0) associated with each
path and employ a value iteration algorithm to compute the
optimal regret minimizing winning strategy σ∗. This algorithm
is pseudo-polynomial in the size of the graph P and largest
energy cost in P .

III. CASE STUDY

We illustrate the efficacy of our framework on the arch
building example in Fig. 1. Under the regret-minimizing
strategy, the robot starts to build the arch near the human as
shown in Fig. 2. If the human does not intervene, the robot
completes the arch by spending a small amount of energy.
However, if the human does intervene adversarially, based
on the energy budget provided by the user, the robot gives
the human more opportunities to be collaborative. As soon
as it reaches close to the energy budget and the human still
refuses to cooperate, it switches to a conservative behavior and
builds the arch away from the human. In all our case studies,
which we could not present here due to space constraints, we
observe this cooperation-seeking behavior. Thus, using regret,
we can model the human as a strategic agent with its own
objectives that may not be necessarily adversarial, allowing
robot to explore cooperation.

IV. CONCLUSION

In this work, we propose a regret-based reactive synthesis
framework to synthesize a regret minimizing strategy for a
robotic manipulator operating in presence of a human. Our
approach relaxes the adversarial assumption and allows the
robot to explore possible collaboration with the human while
spending no more than B amount of energy.

REFERENCES

[1] Giuseppe De Giacomo and Moshe Y. Vardi. Linear
temporal logic and linear dynamic logic on finite traces.
In Proceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence, IJCAI ’13, page
854–860. AAAI Press, 2013. ISBN 9781577356332.

[2] Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury
Fauchille, Thibaud Michaud, Etienne Renault, and Lau-
rent Xu. Spot 2.0 — a framework for LTL and ω-
automata manipulation. In Proceedings of the 14th Inter-
national Symposium on Automated Technology for Verifi-
cation and Analysis (ATVA’16), volume 9938 of Lecture
Notes in Computer Science, pages 122–129. Springer,
October 2016. doi: 10.1007/978-3-319-46520-3 8.

[3] Emmanuel Filiot, Tristan Le Gall, and Jean-François
Raskin. Iterated regret minimization in game graphs. In
International Symposium on Mathematical Foundations
of Computer Science, pages 342–354. Springer, 2010.

[4] Keliang He, Morteza Lahijanian, Lydia E Kavraki, and
Moshe Y Vardi. Towards manipulation planning with
temporal logic specifications. In IEEE international
conference on robotics and automation, pages 346–352.
IEEE, 2015.

[5] Keliang He, Morteza Lahijanian, Lydia E Kavraki, and
Moshe Y Vardi. Reactive synthesis for finite tasks
under resource constraints. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages
5326–5332. IEEE, 2017.

[6] Keliang He, Morteza Lahijanian, Lydia E. Kavraki, and
Moshe Y. Vardi. Automated abstraction of manipulation
domains for cost-based reactive synthesis. IEEE Robotics
and Automation Letters, 4(2):285–292, 2019. doi: 10.
1109/LRA.2018.2889191.

[7] Hadas Kress-Gazit, Georgios E. Fainekos, and George J.
Pappas. Temporal-logic-based reactive mission and mo-
tion planning. IEEE Transactions on Robotics, 25(6):
1370–1381, 2009. doi: 10.1109/TRO.2009.2030225.

[8] Cristian Ioan Vasile and Calin Belta. Reactive sampling-
based temporal logic path planning. In 2014 IEEE
International Conference on Robotics and Automation
(ICRA), pages 4310–4315, 2014. doi: 10.1109/ICRA.
2014.6907486.

[9] Andrew M. Wells, Zachary Kingston, Morteza Lahija-
nian, Lydia E Kavraki, and Moshe Y. Vardi. Finite-
horizon synthesis for probabilistic manipulation domains.
In IEEE International Conference on Robotics and Au-
tomation. IEEE, 2021. (to appear).

[10] Eric M. Wolff, Ufuk Topcu, and Richard M. Murray.
Efficient reactive controller synthesis for a fragment
of linear temporal logic. In 2013 IEEE International
Conference on Robotics and Automation, pages 5033–
5040, 2013. doi: 10.1109/ICRA.2013.6631296.

DULA: A Differentiable Ergonomics Model for
Postural Optimization in Physical HRI
Amir Yazdani∗, Roya Sabbagh Novin∗, Andrew Merryweather∗, Tucker Hermans∗†

∗University of Utah Robotics Center, Salt Lake City, UT, †NVIDIA, Seattle, WA
Email: amir.yazdani@utah.edu

Abstract—Ergonomics and human comfort are essential con-
cerns in physical human-robot interaction applications. Defin-
ing an accurate and easy-to-use ergonomic assessment model
stands as an important step in providing feedback for postural
correction to improve operator health and comfort. In order
to enable efficient computation, previously proposed automated
ergonomic assessment and correction tools make approximations
or simplifications to gold-standard assessment tools used by
ergonomists in practice. In order to retain assessment quality,
while improving computational considerations, we introduce
DULA, a differentiable and continuous ergonomics model learned
to replicate the popular and scientifically validated RULA as-
sessment. We show that DULA provides assessment comparable
to RULA while providing computational benefits. We highlight
DULA’s strength in a demonstration of gradient-based postural
optimization for a simulated teleoperation task.

I. INTRODUCTION

Autonomous Postural Optimization has received substantial
attention in research with the new technologies around humans
such as collaborative robots [18], smart personal trainers [4],
and VR systems [8]. In these systems, the interacting agent
should consider human comfort and ergonomics in its be-
haviour and motion planning [24]. For example, in a phys-
ical human-robot interaction (pHRI) application such as co-
manipulation, one of the objectives in motion planning of the
collaborative robot must be satisfying ergonomic safety for the
human.

Developing a model of human comfort lies at the heart of
effective postural optimization. pHRI researchers have pro-
posed several computational models for assessing ergonomics
and human comfort in terms of peripersonal space [3], mus-
cle fatigue [17], and joint overloading [13]. In contrast er-
gonomists have provided simpler models which are easier
for human experts to calculate by hand and as such are
more common in practice. These models include the NASA
TLX [6], RULA [15], REBA [7], strain index [22] and ACGIH
TLV [11]. Importantly these models are supported by extensive
human subject studies that validate their effectiveness on
reducing ergonomic risk factors [9, 12].

Among all risk assessment tools, RULA and REBA depend
most on human posture and provide quantitative scores, mak-
ing them good choices for postural optimization applications.
However, the discrete scores and the presence of plateaus in
RULA and REBA [1] create challenges when using them in
gradient-based postural optimization. Based on our experience,
using the risk assessment models directly in gradient-free

. . .

. . .

. . .

. . .

Posture Risk Score

10×1

124×1 124×1 124×1
7×1

Input

Layer ReLU ReLU ReLU ReLU

Fig. 1: The structure of the DULA neural network.

optimization is time-expensive and the plateaus often prevent
progress toward the global optimal solution in postural opti-
mization. Thus, researchers in pHRI often use approximations
of ergonomic assessment models in gradient-based postural
optimizations; quadratic approximations [20, 1, 2] being the
standard approach in the literature. However, these approxima-
tions deviate far from the scientifically validated assessments,
causing doubt that they can reliably provide the same level of
ergonomic benefit.

To overcome these issues, we introduce the Differentiable
Upper Limb Assessment (DULA), a differentiable and con-
tinuous risk assessment model that is learned using a neural
network to replicate the popular RULA survey tool (Fig. 1).
Instead of discrete scores from 1 to 7, DULA reports the risk
score as a continuous real number from 1 to 7. Furthermore,
it provides the gradient of the risk with respect to each joint
enabling efficient use in optimization. We compare the predic-
tion of risk scores of DULA with RULA and provide an open-
source package demonstrating how to use DULA in a gradient-
based postural optimization in a simulated teleoperation.

II. RELATED WORK

Although human postural optimization has received signifi-
cant attention in pHRI, only a few studies [20, 19] investigate
postural improvement in teleoperation. Table I summarizes the
relevant literature for postural optimization in both areas.

Researchers have examined ergonomics and postural op-
timization in three different types of physical human-robot
interaction scenarios: (1) Assistive Holding (e.g. [14, 21, 3]),
(2) object handover (e.g. [1, 2, 17]), and (3) Co-Manipulation
(e.g. [23, 18, 17, 13]). In the first two tasks the postural
optimization provides optimized posture for the human and
joint configurations for the robot while maintaining contact
with the object at the interaction interface. For the case of co-

Ergonomics Model Analytical Models Learned Models Risk Assessment Tools
Approximation Method Quadratic No Approximation

O
pt

im
iz

at
io

n

gradient-based

■ Peternel 2018 [18] ◇ Rahal 2020 [20]
■ ■ Peternel 2017 [17] ■ Busch 2017 [1]
□ Chen 2018 [3] ■ Busch 2018 [2]
◆ Peternel 2020 [19]
■ Kim 2017 [13]

gradient-free □ Marin 2018 [14] ■ van der Spaa 2020 [23]
Non-optimization □ Shafti et al. [21]

Legend □ physical HRI: Assistive Holding, ■ physical HRI: Handover, ■ physical HRI: Co-Manipulation
◆ Teleop: Goal-Constrained with Repositioning Postural Correction, ◇ Teleop: Goal-Constrained with Online Postural Correction

TABLE I: State of the art of postural optimization in pHRI and teleoperation.

manipulation, the postural optimization outputs a trajectory of
optimal postures for the human and an optimal joint-space
trajectory for the robot to perform the co-manipulation task.

Ergonomic assessment models provide the primary cost
in postural optimization objectives. pHRI researchers have
proposed many computational models to assess ergonomics
and human comfort of users including peripersonal space [3],
muscle fatigue [17], and joint overloading [13]. To make
the optimization simpler, Marin et al. suggested the idea of
a contextual ergonomics model which is a set of Gaussian
process models including joint angles, moments, reaction,
load and muscle activation, trained with the musculoskeletal
simulation task contexts [14]. Using Gaussian process models
enables search in a 2D latent space while their cost function
is defined in the high-dimensional musculoskeletal space.

Some literature use approximations of the ergonomics risk
assessment tools. Busch et al. proposed a differentiable surro-
gate of the REBA score by fitting a weighted combination of
quadratic functions plus a constant for the task payload [2].
Rahal et al. suggested a quadratic approximation for RULA
which is the summation of the quadratic norm of the deviation
from the human neutral posture for shoulder, elbow and wrist
joints angles [20]. Their approximation conceptually agrees
with the qualitative idea behind RULA in which the risk
score goes higher when the human deviates more from the
neutral posture. Van der Spaa et al. provide the only study of
directly using risk assessment tools in derivative-free postural
optimization [23]. They add the REBA score to the transition
cost function in an A* optimization for task and motion
planning of a robot in a co-manipulation task.

III. DIFFERENTIABLE HUMAN ERGONOMICS MODEL

To build a differentiable RULA, we developed a dataset of
7.5 million upper body postures of a human model consisting
of 3 joints in the torso and 7 joints in the arm. We additionally
define task parameters based on the RULA worksheet—the
frequency of the arm and body motions; type and maximum
load on the arm and body; neck angle; and whether any legs,
feet, or arms are supported. As the human range of motion
is pose dependant, to ensure the validity of the postures, we
used the learned pose-dependant model of posture validity
provided by [10]. We developed a script for automatic RULA
assessment based on the posture and tasks parameters and
verified it with several ergonomists. We used this script to
label the posture dataset. Since postures with labels 1, 2, 6,
and 7 are not frequent in the full range of human motion, we

DULA Score (Predicted Label)

R
U

L
A

 S
co

re
 (

T
ru

e
L
a
b
el

)

Confusion Matrix for DULA

Fig. 2: Confusion matrix (accuracy %) for DULA vs RULA.

balanced the dataset by forcing the data generation scripts to
generate enough data points with those labels. We split the
dataset into 80% training and 20% testing sets.

Moreover, to learn a continuous and differentiable function
for RULA, we designed a fully-connected regression-based
neural network. While RULA provides discrete integer scores
from 1 to 7, we choose to predict continuous labels. If we
had instead performed multi-class classification based on the
discrete labels the resulting model would be less useful in
optimization as there is no natural choice of smooth objective
to minimize or constrain ergonomic cost. This would negate
our desire for a computationally useful model. Hence, we
perform regression to the multi-class labels.

The structure of the neural network is shown in Fig. 1. It
includes 4 hidden layers with ReLU activation function. We
found that a network with 124 units for the first three layers
and 7 units for the last hidden layer worked best. We train the
network using the standard mean squared error loss function
for 2000 epochs using a learning rate of 0.001. We used 5-
fold cross-validation to find the optimal network parameters.
This results in a model with 99.73% accuracy. We round
our continuous output to the nearest integer when reporting
accuracy. Figure 2 shows the confusion matrix for the learned
DULA model. The lowest diagonal element is 99.38% which

Fig. 3: Postural optimization categories in teleoperation.

Fig. 4: Teleoperation simulation environment in ROS. The green
skeleton visualizes the suggested optimal posture and the white
skeleton shows the simulated human.

shows the high accuracy of the learned model across all ranges.

IV. POSTURAL OPTIMIZATION USING DULA

We use the learned DULA model in a gradient-based postu-
ral optimization for a simple teleoperation scenario in which
a human interacts with a leader robot to remotely control a
follower robot. As the human performs the task, the intelligent
teleoperation system estimates the human posture using e.g.
marker-based or markerless posture estimation, or directly
from the leader robot using the method proposed in [25]. Then,
it performs risk assessment to obtain the ergonomics risk score
using the standard RULA model. The postural optimization
algorithm uses DULA to find the optimal posture that results
in the same hand pose at the interaction point between the
human and the leader robot, while having the minimum risk
of injuries and then provides the user with the online optimal
postural correction to move towards while completing the task.

The human operator can correct the posture while perform-
ing the task without pausing. This approach is beneficial for
goal-constrained teleoperation tasks such as pick-and-place in
which the goal position for placing the object is defined, but,
the path toward the goal point is not constrained.

We define online postural optimization for teleoperation as:

q
∗
t = argmin

qt

DULA(qt) (1)

s.t. ∣∣xt − Φ(qt)∣∣2Σ < ε

qt ∈ Range of Motion

where q
∗
t and qt are optimal posture and posture at time t,

respectively, xt is the observed pose of the hand measured by
the leader robot, Φ is the forward kinematics of the human, and
Σ is the weight vector for position and orientation elements.

It is important to note that the optimal posture q
∗
t from

Eq. (1) for each time step is then suggested to the human to

Motion Planner
Teleoperator

Follower Robot
IK Solver

Motion
Scaling

Desired Task

Risk Assessment
Current Posture

Risk Assessment Model

Posture Optimization

Postural Correction

Simulated Teleoperation

Leader Robot

Follower Robot

q
d
h

z
h

z
l

= d

q
l

d

z
f

q
?

l: leader f: follower
h: human d: desired

q
h

q
f

d

IK Solver

Leader Robot

z
f

dz
l

Teleoperator

Fig. 5: Overview of teleoperation simulation.

move towards. The human can refuse or accept, and try to
apply it as much as possible while completing the task.

In addition to goal-constrained teleoperation, we also de-
fined and formulated the use of DULA in postural optimization
for path-constrained teleoperation (e.g. turning a valve where
the path to follow is constrained based on the diameter of
the valve) and trajectory-constrained teleoperation (e.g. arc
welding where the operator should follow a velocity profile
in addition to the welding path). Figure 3 summarizes our
formulation for different types of teleoperation tasks and their
corresponding postural optimization approaches. We focus on
online postural correction in this paper; analyzing the other
problem formulations is ongoing work.

We used a sequential quadratic programming (SQP) [16]
solver from SciPy, bounded on the range of motion, to solve
the nonlinear optimization in Eq. (1), and calculated DULA
gradients using automatic differentiation in PyTorch.

V. SIMULATED TELEOPERATION ENVIRONMENT

We developed an open-source simulator for postural correc-
tion in teleoperation using ROS. It includes a human seated on
a stool, and two 7-DOF KUKA LWR-4 robots as leader and
follower robots as shown in Fig. 4. We model our simulated
human operator to behave like a human in two ways: (1)
physically controlling the teleoperation task and (2) accepting
or rejecting the recommended postural corrections.

We model this as an optimal motion planning framework
with re-planning that finds a human joint trajectory that
controls the follower robot for the desired task while moving
toward the optimal ergonomic posture:

τ
h
t→H

∗
= argmin

τh
t→H

H

∑
t=t

∣∣xfg − x
f
t ∣∣

2
Σ + α∣∣qht − q

h∗

t ∣∣
2
2 (2)

where τft→H is the trajectory of human posture from time t to
the time of the horizon H , xfg is the goal pose of the follower
robot, and f

xt is the pose of the follower robot at time t.

A. Gradient-free postural optimization

B. Gradient-based postural optimization

Fig. 6: Comparison of gradient-free and gradient-based postural
correction on a teleoperation task. Lower scores are better.

qt and q
∗
t are the current posture and optimal posture of the

human from the postural optimization at time t, respectively.
Here, 0 ≤ α ≤ 1 is a scalar number that models the postural
correction acceptance and the effort of the human operator
towards applying the postural correction. Details of the motion
planning for the human and the robots are presented in Fig. 5.
We note that this model is likely a simplification of true human
teleoperation behavior. We do not advocate for its use over
human subject studies. Instead, we propose it as a useful tool
for systematically exploring new algorithms in human safety
assessment and improvement.

As a comparison to DULA, we directly use the standard
RULA in a gradient-free postural optimization using the cross-
entropy method [5]. Figure 6(A) shows the postural correction
using this approach in a simple teleoperation task. It presents
the RULA scores for calculated optimal posture (green),
human posture without postural correction (orange), and the
human posture after applying the postural correction (blue)
according to the human control and acceptance model during
the task. The plot shows that the risk is reduced after the simu-
lated human applies the suggested optimal postural correction.
Also the task completion time increases without a significant
decrease in risk.

Figure 6(B) shows the postural correction for the same task
using gradient-based optimization with DULA. We can see
that gradient-based approach provides a smoother motion with
respect to the RULA risk score and avoids going through
postures with risk higher than 4. It also results in shorter task

Fig. 7: comparing the optimal posture and corrected posture be-
tween gradient-free optimization using RULA and gradient-based
optimization using DULA. Lower scores are better. An iteration of
the gradient-free method takes 2.7 minutes, where the gradient-based
method takes only tenths of a second.

completion time than the gradient-free approach.
Figure 7 provides more information on comparing gradient-

free and gradient-based postural optimization. It shows that
the median risk scores of target optimal postures from the
gradient-free approach is lower. However, the postures of the
simulated human are more comfortable after applying the op-
timal posture calculated from the gradient-based optimization.
We believe it is due to the smoother optimal postures that
has been suggested to the simulated human from the gradient-
based method. Moreover, the gradient-based approach is much
faster. Each iteration of the gradient-free approach using 10000
samples takes 2.7 minutes to solve, while the gradient-based
approach takes only tenths of a second.

VI. CONCLUSION AND FUTURE DIRECTIONS

We introduced DULA, a differentiable and continuous er-
gonomics model to assess human upper body posture. DULA
learned to replicate the non-differentiable RULA using a neu-
ral network. The proposed model is 99.73% accurate and com-
putationally designed for effecient use in postural optimization
for pHRI and other related applications. We also introduced
a framework for postural optimization in teleportation using
DULA and presented a demo task. The results reveal postural
optimization using DULA lowers the risk score for goal-
constrained teleop. The trained DULA model, data, algorithm,
and demo are available as an open-source package1.

There are several directions for future work. As a fist step,
we plan to follow the same procedure for REBA a whole
body assessment tool. Additionally, we intend to conduct a
human subject study to evaluate our postural optimization and
correction approach. We wish to compare different means of
feedback for the posture correction to the human operator
including visual, auditory, and haptic feedback.

VII. AKNOWLEDMENT

This work is supported by DARPA under grant N66001-19-
2-4035.

1https://sites.google.com/view/differentiable-ergonomics

https://sites.google.com/view/differentiable-ergonomics

REFERENCES

[1] Baptiste Busch, Guilherme Maeda, Yoan Mollard, Marie
Demangeat, and Manuel Lopes. Postural optimization for
an ergonomic human-robot interaction. In Intl. Conf. on
Intelligent Robots and Systems, pages 2778–2785, 2017.

[2] Baptiste Busch, Marc Toussaint, and Manuel Lopes.
Planning ergonomic sequences of actions in human-robot
interaction. In Intl. Conf. on Robotics and Automation,
pages 1916–1923, 2018.

[3] Lipeng Chen, Luis FC Figueredo, and Mehmet R Dogar.
Planning for muscular and peripersonal-space comfort
during human-robot forceful collaboration. In IEEE-RAS
Intl. Conf. on Humanoid Robotics, pages 1–8, 2018.

[4] Steven Chen and Richard R Yang. Pose trainer: correct-
ing exercise posture using pose estimation. arXiv preprint
arXiv:2006.11718, 2020.

[5] Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and
Reuven Y Rubinstein. A tutorial on the cross-entropy
method. Annals of operations research, 134(1):19–67,
2005.

[6] Sandra G Hart and Lowell E Staveland. Development
of NASA-TLX (Task Load Index): Results of empirical
and theoretical research. In Advances in psychology,
volume 52, pages 139–183, 1988.

[7] Sue Hignett and Lynn McAtamney. Rapid entire body
assessment (REBA). Applied ergonomics, 31(2):201–
205, 2000.

[8] Thuong N Hoang, Martin Reinoso, Frank Vetere, and
Egemen Tanin. Onebody: remote posture guidance
system using first person view in virtual environment.
In Proceedings of the 9th Nordic Conf. on Human-
Computer Interaction, pages 1–10, 2016.

[9] Syazwan Aizat Ismail, Shamsul Bahri Mohd Tamrin,
Mohd Rafee Baharudin, Mohamad Azhar Mohd Noor,
Muhamad Hanafiah Juni, Juliana Jalaludin, and Zailina
Hashim. Evaluation of two ergonomics intervention
programs in reducing ergonomic risk factors of muscu-
loskeletal disorder among school children. Res J Med
Sci, 4(1):1–10, 2010.

[10] Yifeng Jiang and C Karen Liu. Data-driven approach to
simulating realistic human joint constraints. In Intl. Conf.
on Robotics and Automation, pages 1098–1103, 2018.

[11] Jay M Kapellusch, Arun Garg, Kurt T Hegmann,
Matthew S Thiese, and Elizabeth J Malloy. The Strain
Index and ACGIH TLV for HAL: risk of trigger digit in
the WISTAH prospective cohort. Human factors, 56(1):
98–111, 2014.

[12] Zahra Khodabakhshi, Seyed Amin Saadatmand, Mehrdad
Anbarian, and Rashid Heydari Moghadam. An er-
gonomic assessment of musculoskeletal disorders risk
among the computer users by rula technique and ef-
fects of an eight-week corrective exercises program on
reduction of musculoskeletal pain. Iranian Journal of
Ergonomics, 2(3):44–56, 2014.

[13] Wansoo Kim, Jinoh Lee, Luka Peternel, Nikos

Tsagarakis, and Arash Ajoudani. Anticipatory robot
assistance for the prevention of human static joint over-
loading in human–robot collaboration. IEEE Robotics
and Automation Letters, 3(1):68–75, 2017.

[14] Antonio Gonzales Marin, Mohammad S Shourijeh,
Pavel E Galibarov, Michael Damsgaard, Lars Fritzsch,
and Freek Stulp. Optimizing contextual ergonomics
models in human-robot interaction. In Intl. Conf. on
Intelligent Robots and Systems, pages 1–9, 2018.

[15] L. McAtamney and E. N. Corlett. RULA: a survey
method for the investigation of work-related upper limb
disorders. Applied ergonomics, 24(2):91–99, 1993.

[16] Jorge Nocedal and Stephen Wright. Numerical optimiza-
tion. Springer, 2006.

[17] L. Peternel, W. Kim, J. Babič, and A. Ajoudani. Towards
ergonomic control of human-robot co-manipulation and
handover. In IEEE-RAS Intl. Conf. on Humanoid
Robotics, pages 55–60, 2017.

[18] L. Peternel, N. Tsagarakis, D. Caldwell, and A. Ajoudani.
Robot adaptation to human physical fatigue in human-
robot co-manipulation. Autonomous Robots, pages 1–11,
2018.

[19] Luka Peternel, Cheng Fang, Marco Laghi, Antonio Bic-
chi, Nikos Tsagarakis, and Arash Ajoudani. Human arm
posture optimisation in bilateral teleoperation through
interface reconfiguration. In IEEE RAS/EMBS Intl. Conf.
for Biomedical Robotics and Biomechatronics, 2020.

[20] Rahaf Rahal, Giulia Matarese, Marco Gabiccini, Alessio
Artoni, Domenico Prattichizzo, Paolo Robuffo Giordano,
and Claudio Pacchierotti. Caring about the human
operator: haptic shared control for enhanced user comfort
in robotic telemanipulation. IEEE Tran. on Haptics, 13
(1):197–203, 2020.

[21] Ali Shafti, Ahmad Ataka, B Urbistondo Lazpita, Ali
Shiva, Helge A Wurdemann, and Kaspar Althoefer. Real-
time robot-assisted ergonomics. In Intl. Conf. on Robotics
and Automation, pages 1975–1981, 2019.

[22] J Steven Moore and Arun Garg. The strain index:
a proposed method to analyze jobs for risk of distal
upper extremity disorders. American Industrial Hygiene
Association Journal, 56(5):443–458, 1995.

[23] Linda van der Spaa, Michael Gienger, Tamas Bates, and
Jens Kober. Predicting and Optimizing Ergonomics in
Physical Human-Robot Cooperation Tasks. In Intl. Conf.
on Robotics and Automation, pages 1799–1805. IEEE,
2020.

[24] Amir Yazdani and Roya Sabbagh Novin. Posture estima-
tion and optimization in ergonomically intelligent teleop-
eration systems. In Companion of the 2021 ACM/IEEE
International Conference on Human-Robot Interaction,
pages 604–606, 2021.

[25] Amir Yazdani, Roya Sabbagh Novin, Andrew Merry-
weather, and Tucker Hermans. Is The Leader Robot an
Adequate Sensor for Posture Estimation and Ergonomic
Assessment of A Human Teleoperator? In IEEE Intl.
Conf. on Automation Science and Engineering, 2021.

https://ieeexplore.ieee.org/abstract/document/8206107
https://ieeexplore.ieee.org/abstract/document/8206107
https://ieeexplore.ieee.org/abstract/document/8462927
https://ieeexplore.ieee.org/abstract/document/8462927
https://ieeexplore.ieee.org/abstract/document/8624978
https://ieeexplore.ieee.org/abstract/document/8624978
https://link.springer.com/article/10.1007%252Fs10479-005-5724-z
https://link.springer.com/article/10.1007%252Fs10479-005-5724-z
https://www.sciencedirect.com/science/article/pii/S0166411508623869
https://www.sciencedirect.com/science/article/pii/S0166411508623869
https://www.sciencedirect.com/science/article/pii/S0166411508623869
https://www.sciencedirect.com/science/article/pii/S0003687099000393
https://www.sciencedirect.com/science/article/pii/S0003687099000393
http://docsdrive.com/pdfs/medwelljournals/rjmsci/2010/1-10.pdf
http://docsdrive.com/pdfs/medwelljournals/rjmsci/2010/1-10.pdf
http://docsdrive.com/pdfs/medwelljournals/rjmsci/2010/1-10.pdf
https://ieeexplore.ieee.org/abstract/document/8461010
https://ieeexplore.ieee.org/abstract/document/8461010
https://journals.sagepub.com/doi/full/10.1177/0018720813493115
https://journals.sagepub.com/doi/full/10.1177/0018720813493115
https://journals.sagepub.com/doi/full/10.1177/0018720813493115
https://ieeexplore.ieee.org/abstract/document/7987084
https://ieeexplore.ieee.org/abstract/document/7987084
https://ieeexplore.ieee.org/abstract/document/7987084
https://ieeexplore.ieee.org/abstract/document/8594132
https://ieeexplore.ieee.org/abstract/document/8594132
https://www.sciencedirect.com/science/article/abs/pii/000368709390080S
https://www.sciencedirect.com/science/article/abs/pii/000368709390080S
https://www.sciencedirect.com/science/article/abs/pii/000368709390080S
https://ieeexplore.ieee.org/abstract/document/8239537
https://ieeexplore.ieee.org/abstract/document/8239537
https://ieeexplore.ieee.org/abstract/document/8239537
https://link.springer.com/article/10.1007/s10514-017-9678-1
https://link.springer.com/article/10.1007/s10514-017-9678-1
https://ieeexplore.ieee.org/abstract/document/8970329/
https://ieeexplore.ieee.org/abstract/document/8970329/
https://ieeexplore.ieee.org/abstract/document/8970329/
https://ieeexplore.ieee.org/abstract/document/8793739
https://ieeexplore.ieee.org/abstract/document/8793739
https://oeh.tandfonline.com/doi/abs/10.1080/15428119591016863#.X3NjD3XYrmE
https://oeh.tandfonline.com/doi/abs/10.1080/15428119591016863#.X3NjD3XYrmE
https://oeh.tandfonline.com/doi/abs/10.1080/15428119591016863#.X3NjD3XYrmE
https://ieeexplore.ieee.org/abstract/document/9197296
https://ieeexplore.ieee.org/abstract/document/9197296
http://arxiv.org/abs/2002.10586
http://arxiv.org/abs/2002.10586
http://arxiv.org/abs/2002.10586

Information-Theoretic Based Target Search with
Multiple Agents

Minkyu Kim Department of Mechanical Engineering
The University of Texas at Austin

Austin, Texas 78705
Email: steveminq@utexas.edu

Ryan Gupta Department of Aerospace Engineering
Austin, Texas 78705

Email: ryan.gupta@utexas.edu

Luis Sentis Department of Aerospace Engineering
Austin, Texas 78705

Email: lsentis@austin.utexas.edu

Abstract—This paper proposes an online path planning and
motion generation algorithm for heterogeneous robot teams
performing target search in a real-world environment. Path
selection for each robot is optimized using an information-
theoretic formulation and is computed sequentially for each
agent. First, we generate candidate trajectories sampled from
both global waypoints derived from vertical cell decomposition
and local frontier points. From this set, we choose the path
with maximum information gain. We demonstrate that the
hierarchical sequential decision-making structure provided by the
algorithm is scalable to multiple agents in a simulation setup. We
also validate our framework in a real-world apartment setting
using a two robot team comprised of the Unitree A1 quadruped
and the Toyota HSR mobile manipulator searching for a person.
The agents leverage an efficient leader-follower communication
structure where only critical information is shared.

I. INTRODUCTION

There has been tremendous attention for search behaviors
using single and multiple agent systems. These studies can be
classified into various categories, such as offline(1; 2; 3; 4)
and online (5; 6; 7; 8; 9) coverage path planning, exploration
and mapping (10; 11; 12; 13; 14; 15; 16; 17), and search
itself (18; 19; 20; 21; 22; 23; 24). With improvements to
robot mobility, sensing and computing power there have been
many successful applications (8; 25; 26; 27; 28; 29; 30) in
real-world settings like moon exploration, search and rescue,
and unmanned surveillance with teams of robots made up of
UAVs, legged systems and mobile robots. Several of these
groups have ongoing work focusing on using multiple agents
to improve the performance of their system.

This study attempts to solve the problem of target search
with a single robot or multiple robots within a given search
boundary in real-time fashion. The contribution of this paper is
an online search algorithm which can be scaled to n heteroge-
neous agents for performing a probabilistically optimal search
in real-world environments. Because the target search problem
can be formulated in varying ways, we first discuss a set of
assumptions for which we are solving. Such conditions are
prior knowledge of the search region, the presence of a target
prediction model, and characteristics of the target (i.e., the
target being static or dynamic). Our online planning algorithm

Fig. 1. The proposed architecture for Multi-Agent-System

accounts for changes to the environment and uses sensor
observations to perform a probabilistically optimal continuous
search of the region.

This work proposes the use of multiple agents to perform
the search task defined above for settings in which robot speed
and sensor coverage are heterogeneous. The most significant
challenge for multi-agent systems in real-world cooperation
tasks such as search is robust, quick and efficient communica-
tion. A key characteristic of a successful design is minimizing
information shared between the agents to maintain efficiency
and reduce computational time. This is imperative to ensure
that agents receive action commands in real-time.

II. METHODS

A. Problem Definition

We define a cooperative multi-agent target search problem
with a hierarchical knowledge structure. This problem aims to
find a control policy (sensing action) for multi-agent system
(MAS) search in a known area for a target with known
probability distribution in the predefined search region. Each
agent’s control policy is supposed to find control inputs that
maximize target information (or reduce target uncertainty).

Assuming a heterogeneous robots setup, we denote the index
of the agent in each equation.

B. Target Estimation

We use Bayesian Inference to recursively estimate target
state, x, through sequential observations, ys. Bayesian infer-
ence is a commonly used framework used to estimate a target
state in a probabilistic manner. This inference model aims to
predict the posterior distribution of target position at time k,
namely, p(xk). Bayesian filtering includes a prediction step
and a correction step using incoming sensing information.
Assuming that the prior distribution p(xk−1) is available at
time k−1, the prediction step attempts to estimate P(xk|y1:n

1:k−1)
– where n is the number of agents – from previous observations
as follows.

p(xk|y1:n
1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:n

1:k−1)dxk−1, (1)

where p(xk|xk−1) is the target’s motion model based on a first
order Markov process. Then, when the measurement y1:n

k is
available, the estimated state can be updated as

p(xk|y1:n
k) =

p(y1:n
k |xk)p(xk|y1:n

1:k−1)

p(y1:n
k |y1:n

1:k−1)
(2)

where p(y1:n
k |y1:n

1:k−1) =
∫

p(y1:n
k |xk)p(xk|y1:n

k−1)dxk and p(yi:n
k |xk)

is a sensing model for multi agent system, which can also be
decomposed to each agent’s sensing model p(yi|x). For the
correction stage, the measurement of all agents are used to
modify the prior estimate, leading to the target belief. If a static
target is assumed the target motion model can be described
as p(xk|xk−1) = N (xk−1;xk,Σ), only containing a noise term
with the previous target state. Instead if a dynamic target is
assumed to have some constant velocity, we can represent the
target model as p(xk|xk−1) = N (xk−1;xk +V ∆,Σ).

C. Hierarchical Bayesian Model

We propose a leader-follow hierarchy setting in which we
assume that the first agent is the leader and the second is the
sub-leader, consisting of sequentially lower-class followers.
Assuming that decisions (desired paths) can be mapped into
the expected sensing outputs, within the proposed hierarchy
structure, our decision-making process can be generalized to
n-multi agent systems, estimating target state xt with expected
observations of all agents, [y1

t:t+h,y
2
t:t+h, · · · ,yn

t:t+h] with time
horizon h. To be more specific, given the target state probabil-
ity p(x) and the expected sensing outputs ŷ from the agents,
the belief state variable π̂ i

t = p(x|Ŷ i) can be written as

π̂
1
t = p(xt |y1

t:t+h) s1
t = γ(π̂1

t)

π̂
2
t = p(xt |y1

t:t+h,y
2
t:t+h) s2

t = γ(π̂2
t)

� = � � � �

π̂
n
t = p(xt |y1

t:t+h, · · · ,yn
t:t+h) sn

t = γ(π̂n
t)

, (3)

where Ŷ i denotes the set of expected outputs up to the i-th
agent. In this way, the expected belief state can be updated
sequentially based on the decisions of each agent, and can be

Algorithm 1 Multi-Agent Search()
Input: Y , M, C

(Robot poses, Entropy Map, Sensing Capabilities (speed,
coverage))

Output: S∗ = {s∗1,s∗2, · · · ,s∗N} (A set of paths)
wg← SampleWaypoints() . Vertical Cell Decomposition
wl ← GetFrontiers()
for n← 1 to N do . for each agent

sg← SampleGlobalPaths(yi,wg) . A∗

sl ← SampleLocalPaths(yi,wl) . A∗

Si = {sg,sl}
Ŝi = reparameterize(Si,Ci) . speed and coverage
for k← 1 to |Si| do

IG(sk) =CalculateIG(sk,S∗1:n−1) . Equation (7)
. Use S∗1:n−1 from higher hierarchy

U(sk) = IG(sk)− c(sk)
end for
s∗ = sk← argmaxU(sk) . Get the best path
S∗.append(s∗)

end for
return S∗

used as known information for the i+ 1 agent. Here, γ(∗) is
a decision making function given a target belief state whose
output is desired path for each agent.

D. Information-Theoretic Objective Path planning

Our strategy is to maximize the information gain regarding
the target belief state in a greedy fashion. Given each robot’s
expected information gains and travel costs, we obtain paths
for all agents that maximize the overall utility.

max
γ1:n

E[Ũ(xt |y1,y2, · · · ,yn)] (4)

where E[Ũ] refer to the expected value of the utility function
given the target belief and the sensing outputs. This utility
function can be calculated based on the path candidates for
each agent in order to select the best path (or sequence of
control inputs). Given a target belief at time t, obtaining the
desired path for each agent allows MAS to gather information
as quickly as possible. Our method aims to find the optimal
path using a sampling-based optimization problem over a time
horizon with an information-theoretic utility function. The
utility function is described as

E[Ũ(xt |y1,y2, · · · ,yn)] =
n

∑
i
(IG(si)− c(si)) (5)

1) Path Selection: To obtain the best path for each agent,
we use a sampling-based optimization approach. The proposed
strategy is to create global and local candidate paths. The
goal points of paths can be sampled from waypoints within
a search map boundary, sampled based on the entropy map
M, which considers the target estimation model being updated
by local measurements. Precisely, the global candidate points
are sampled from a vertical cell decomposition of sub-regions

Fig. 2. Simulation results using increasing number of agents. (a) 2 agents in a 13x13 grid. (b) 3 agents in a 13x13 grid. (c) 5 agents searching a 25x25 grid
space. (d) 10 agents searching a 35x35 grid space.

whose occupancy grid type is unknown, M[m=0.5]. Cells with
the value 0.5 are unknown while cells that are occupied or
unoccupied are given 1.0 and 0.0, respectively. Local goal
points are sampled from the cluster of frontiers (31), which
is defined as the boundary between known (occupied or free)
and unknown areas, which are potentially informative. The
frontiers can be obtained from the current entropy map.

p(x) = uniform over M[m=0.5] (6)

Given the next viewpoint candidates and the current robot
position, we use an A* planner to generate an obstacle-free
path, s, for each agent. We note that any other planner like
RRT or PRM could be used in its place. The set of paths to
each global target point and a local target point are of different
lengths and therefore must be re-parameterized. The reason
for this re-parameterization is that the optimization problem
should consider path length based on the robot’s speed and the
time horizon. In order to consider the difference in the speed
of robots, the interval between the sampling points along the
generated path is set accordingly. For example, if the path
length |s| is 10 and ds = 2, we can sample five points along
the trajectory. In order to avoid overlap between the computed
FOV area, we sparsely sample points along a path to calculate
the expected amount of information. Based on the number
of sampled points along a path, we compute the Information
Gain, denoted IG(s), by the following equation:

IG(s)≈
Ns

∑
i=1

H(FOV (si))

=
Ns

∑
i=1

[
Nc

∑
j=1

(p(mi, j)log(p(mi, j))+(1− p(mi, j))log(1− p(mi, j)))

]
(7)

, where si denotes the i-th sampled point and p(m) is the
occupancy probability, while Ns and Nc are the number of
sampling points and the number of cells in the FOV given the
sampled points, respectively. Thus, The IG(s) is calculated
by summing over the FOV regions defined by sampled points
through the trajectory. When calculating the information gain,
the paths of the robots do not overlap as much as possible by
not calculating the information gain corresponding to the path

Fig. 3. Simulation results with different conditions. (a) One time search (static
target) (b) Continuous search (dynamic target).

120

1 2 3

42

26

Fig. 4. Average search time with varying number of agents.

selected from the agent in the upper hierarchy. The proposed
search algorithm is described in the Algorithm 1.

III. RESULTS

A. Simulation Results

In this section we present python-based simulation results
of our proposed approach for a multi-agent search behavior
and demonstrate the scalability of the algorithm. It is assumed
that the simulation environment (search region) and all the
static obstacles have a rectangular shape and obstacles are not
known in advance. Each agent is equipped with a simulated
ray sensor, which has a square field of view with limited
range, F(x,y), determined by the 2D position of the agent.

Fig. 5. (a) Experimental validation for a two robot search in the Anna Hiss Gymnasium apartment area. In the top left figure, the yellow regions are those
which have been explored, while the white areas are regions of uncertainty. The target location is described as a red box and is unknown to the robots. The
red and black markers represent the next waypoints for each agent. (b) The completion of the experimental validation with both agents converging to the
target of interest. The object recognition is performed using the well-known YOLO algorithm to detect people (shown in the green box).

Fig. 6. Trajectories for each agent in the AHG apartment setup with different
sets of initial conditions

Given the resolution of the map, the entire environment can
be decomposed into square-type grid cells. To achieve robust
collision avoidance, we use a dynamic window approach to
generate the control input to navigate towards goal points.

1) Single Search vs Continuous Search: In order to test
the search performance, simulations were conducted under
various initial conditions. Depending on how the search map is
updated (time-varying condition), we can implement one time
search (similar to the exploration and mapping problem) and
a continuous search. As shown in Fig 3, in the case of three
agents, we can prove that the agents were able to effectively
search for the target over the search region.

2) n-Agent Case: To validate the scalability of the proposed
method, we test the exploration with n agents. As the number
of agents increases, we enlarge the search space. Fig. 2
demonstrates the trajectories of each agent in the case number
of agents equals to 2,3,5, and 10. Each color represents the
trajectory of a different agent. These results demonstrate that
our algorithm is scalable and can be extended to a general
multi-agent system and still perform in real-time.

3) Search Time: The search time varies depending on
the initial condition or the dimension of the search space.
Therefore, for accurate comparison, given a fixed size of the

search map(13x13), fixed maximum moving speed (1m/s), the
search time was compared. Fig. 4 shows the average search
time (the entropy reduction rate) for three cases. By adding an
additional agent, the time to completion is reduced by more
than half.

B. Experimental Results

We used the Unitree A1 quadruped and the Toyota HSR
mobile manipulation robot for experimentation of multiple
agent target search. The A1 is equipped with a Velodyne
VLP-16 3D Lidar and a RealSense D435 camera. On-board
computing is performed in an Intel NUC Mini PC, which
communicates with the low-level control systems. The HSR
is equipped with a Hokuyo 2D Lidar, a RGB-D camera, and
an on-board Jetson TK1 GPU. We assume that both robots
have perfect localization, although in practice we provide
it via Episodic non-Markov Localization (32). The use of
such different systems demonstrates that our algorithm is
well suited to perform with a heterogeneous team, each with
varying motion models.

Experiments were performed in the Anna Hiss Gymnasium
apartment at the University of Texas. Fig. 5 shows two
different moments in the search. The search map is 20(m)
x 10(m) and the maximum velocity of each agent are 0.3(m/s)
and 1.0(m/s) for the HSR and A1, respectively. In the top
left of Fig. 5 (a) and (b) is the global entropy map. Regions in
yellow indicate that they have been explored (known to be free
or occupied), while regions in white have high uncertainty. In
the lower-left of each figure (a) and (b), the target is found in
the hallway along the left side of the apartment setup. The red
and black markers indicate the next waypoints for each agent,
which is determined by using the search server. In (b), the
object detection feed is shown as the two agents approach the
target of interest. Finally, Fig. 6 shows resulting trajectories
for the two agents for one of experimental trials. The video
demo can be found at https://youtu.be/7WMqG7EiUVY.

IV. CONCLUSION

This paper addresses online search for a heterogeneous
multi-agent system. We employ an information-theoretic util-
ity function and sampling-based optimization to obtain each
agent’s path. A hierarchical decision-making structure allows
us to reduce computational burden and perform the search in
real-time. Simulation results show that our proposed algorithm
proves its scalability and that it can be extended to the general
case of multiple agents. We further validate this algorithm by
implementing it in a real-world environment. Overall results
validate the effectiveness and robustness of the proposed
method.

ACKNOWLEDGMENTS

The authors would like to thank the members of the Human
Centered Robotics Laboratory at The University of Texas
at Austin for their great help and support. This work was
supported by the Army Futures Command and the Office of
Naval Research, ONR Grant #N000141512507.

REFERENCES

[1] E. I. Grotli and T. A. Johansen, “Path planning for uavs
under communication constraints using splat! and milp,”
pp. 265–282, 2012.

[2] T. I. F. Erik J. Forsmo, Esten I. Grotli and T. A. Johansen,
“Optimal search mission with unmanned aerial vehicles
using mixed integer linear programming,” 2013.

[3] N. Agmon, N. Hazon, and G. A. Kaminka, “Constructing
spanning trees for efficient multi-robot coverage,” in
Proceedings 2006 IEEE International Conference on
Robotics and Automation, 2006. ICRA 2006. IEEE,
2006, pp. 1698–1703.

[4] J. H. Richard Bormann, Florian Jordan and M. Hagele,
“Indoor coverage path planning: Survey, implementation,
analysis,” 2018.

[5] J. Song and S. Gupta, “Epsilon*: An online coverage
path planning algorithm,” pp. 526–533, 2018.

[6] ——, “Care: Cooperative autonomy for resilience and
efficiency of robot teams for complete coverage of un-
known environments under robot failure,” 2019.

[7] A. Khan, I. Noreen, H. Ryu, N. L. Doh, and Z. Habib,
“Online complete coverage path planning using two-way
proximity search,” pp. 229–240, 2017.

[8] X. Kan, H. Teng, and K. Kayrdis, “Online exploration
and coverage planning in unknown obstacle-cluttered
environments,” 2020.

[9] E. Gonzalez, O. Alvarez, Y. Diaz, C. Parra, and C. Bus-
tacara, “Bsa: a complete coverage algorithm,” in Pro-
ceedings of the 2005 IEEE International Conference on
Robotics and Automation. IEEE, 2005, pp. 2040–2044.

[10] F. Amigoni and V. Caglioti, “An information-based ex-
ploration strategy for environment mapping with mobile
robots,” Robotics and Autonomous Systems, vol. 58,
no. 5, pp. 684–699, 2010.

[11] A. Dai, S. Papatheodorou, N. Funk, D. Tzoumanikas, and
S. Leutenegger, “Fast frontier-based information-driven

autonomous exploration with an mav,” arXiv preprint
arXiv:2002.04440, 2020.

[12] B. Charrow, G. Kahn, S. Patil, S. Liu, K. Goldberg,
P. Abbeel, N. Michael, and V. Kumar, “Information-
theoretic planning with trajectory optimization for dense
3d mapping.” in Robotics: Science and Systems, vol. 11,
2015.

[13] B. Charrow, S. Liu, V. Kumar, and N. Michael,
“Information-theoretic mapping using cauchy-schwarz
quadratic mutual information,” in 2015 IEEE Interna-
tional Conference on Robotics and Automation (ICRA).
IEEE, 2015, pp. 4791–4798.

[14] M. Kontitsis, E. A. Theodorou, and E. Todorov, “Multi-
robot active slam with relative entropy optimization,” in
2013 American Control Conference. IEEE, 2013, pp.
2757–2764.

[15] K. Krinkin, A. Filatov, and A. Filatov, “Modern multi-
agent slam approaches survey,” in Proceedings of
the XXth Conference of Open Innovations Association
FRUCT, vol. 776, 2017, pp. 617–623.

[16] S. Lee, H. Kim, and B. Lee, “An efficient rescue sys-
tem with online multi-agent slam framework,” Sensors,
vol. 20, no. 1, p. 235, 2020.

[17] A. Filatov and K. Krinkin, “A simplistic approach for
lightweight multi-agent slam algorithm,” International
Journal of Embedded and Real-Time Communication
Systems (IJERTCS), vol. 11, no. 3, pp. 67–83, 2020.

[18] Y. Ye and J. K. Tsotsos, “Sensor planning for 3d object
search,” Computer Vision and Image Understanding,
vol. 73, no. 2, pp. 145–168, 1999.

[19] K. Shubina and J. K. Tsotsos, “Visual search for an object
in a 3d environment using a mobile robot,” Computer
Vision and Image Understanding, vol. 114, no. 5, pp.
535–547, 2010.

[20] M. Göbelbecker, A. Aydemir, A. Pronobis, K. Sjöö, and
P. Jensfelt, “A planning approach to active visual search
in large environments.” in Automated Action Planning
for Autonomous Mobile Robots, 2011.

[21] A. Rasouli and J. K. Tsotsos, “Sensor planning for 3d
visual search with task constraints,” in 2016 13th Con-
ference on Computer and Robot Vision (CRV). IEEE,
2016, pp. 37–44.

[22] A. Aydemir, A. Pronobis, M. Göbelbecker, and P. Jens-
felt, “Active visual object search in unknown environ-
ments using uncertain semantics,” IEEE Transactions on
Robotics, vol. 29, no. 4, pp. 986–1002, 2013.

[23] A. Aydemir, K. Sjöö, J. Folkesson, A. Pronobis, and
P. Jensfelt, “Search in the real world: Active visual
object search based on spatial relations,” in 2011 IEEE
International Conference on Robotics and Automation.
IEEE, 2011, pp. 2818–2824.

[24] S. Zhang and M. Sridharan, “Active visual sensing
and collaboration on mobile robots using hierarchical
POMDPs,” in Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems-
Volume 1. International Foundation for Autonomous

Agents and Multiagent Systems, 2012, pp. 181–188.
[25] P. Schmuck and M. Chli, “Multi-uav collaborative

monocular slam,” in 2017 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2017, pp.
3863–3870.

[26] T.-m. Wang, Y.-c. Zhang, J.-h. Liang, Y. Chen, and C.-
l. Wang, “Multi-uav collaborative system with a feature
fast matching algorithm,” Frontiers of Information Tech-
nology & Electronic Engineering, pp. 1–18, 2020.

[27] J. Scherer, S. Yahyanejad, S. Hayat, E. Yanmaz, T. Andre,
A. Khan, V. Vukadinovic, C. Bettstetter, H. Hellwagner,
and B. Rinner, “An autonomous multi-uav system for
search and rescue,” in Proceedings of the First Work-
shop on Micro Aerial Vehicle Networks, Systems, and
Applications for Civilian Use, 2015, pp. 33–38.

[28] B. Woosley, P. Dasgupta, J. G. Rogers, and J. Twigg,
“Multi-robot information driven path planning un-
der communication constraints,” Autonomous Robots,
vol. 44, no. 5, pp. 721–737, 2020.

[29] C. D. Bellicoso, M. Bjelonic, L. Wellhausen, K. Holt-
mann, F. Günther, M. Tranzatto, P. Fankhauser, and
M. Hutter, “Advances in real-world applications for
legged robots,” Journal of Field Robotics, vol. 35, no. 8,
pp. 1311–1326, 2018.

[30] T. Dang, M. Tranzatto, S. Khattak, F. Mascarich,
K. Alexis, and M. Hutter, “Graph-based subterranean
exploration path planning using aerial and legged robots,”
Journal of Field Robotics, vol. 37, no. 8, pp. 1363–1388,
2020.

[31] B. Yamauchi, “A frontier-based approach for autonomous
exploration,” in Computational Intelligence in Robotics
and Automation, 1997. CIRA’97., Proceedings., 1997
IEEE International Symposium on. IEEE, 1997, pp.
146–151.

[32] J. Biswas and M. M. Veloso, “Episodic non-markov
localization,” Robotics and Autonomous Systems, vol. 87,
pp. 162–176, 2017.

Robust Policies for Uncertain POMDPs
Marnix Suilen∗, Murat Cubuktepe†, Nils Jansen∗, Sebastian Junges‡, Ahmadreza Marandi§ and Ufuk Topcu†

∗Department of Software Science, Radboud University, The Netherlands
†Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, USA
‡Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, USA

§Department of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology, The Netherlands

Many real-world problems exhibit a combination of non-
deterministic choice, uncertain outcomes, and partial informa-
tion. As a concrete example, consider the problem of aircraft
collision avoidance [14], in which a computer system advises
a pilot on what actions to take to avoid a collision with an
intruding aircraft.
Here, the non-deterministic choice is given by all the actions
the pilot can take, the uncertain outcomes are, among others,
the pilot’s response time to a given advice and the behavior
of the intruder, and there is only partial information about the
intruder’s position.

Partially observable Markov decision processes (POMDPs)
are the standard class of models to reason about such decision-
making problems under partial information [13]. The likeli-
hood of uncertain events, such as human response, message
loss, or adversary behavior, enters a POMDP in the form of a
concrete probability. Yet, such probabilities are often derived
from (finite, historic) data and are thus an estimate at best.
POMDPs, however, require the probabilities to be exact.

Uncertain POMDPs (uPOMDPs) overcome this requirement
by introducing so-called uncertainty sets [9, 21]. These sets
allow, for instance, to account for incomplete data, sensor im-
precisions, or human behavior in the decision-making. Instead
of an exact probability, the transition or observation functions
of an uPOMDP now map to such an uncertainty set, for
example intervals of probabilities or likelihood functions. In
particular, uncertainty sets are able to faithfully capture epis-
temic uncertainty, which can be reduced by collecting more
data. Standard POMDPs cannot deal with such uncertainty.

Given the wide range of important applications of POMDPs,
such as the aircraft collision avoidance problem, spacecraft
motion planning [10, 12], robotics [17, 20], humanitarian relief
aid [5], treatment of heart disease [11], ecology [7, 16], and
many more [6]; accounting for such uncertainties may result
in more reliable and safer decision-making.

We consider reachability and expected reward specifica-
tions. These optimize or constrain (by some bound) the
probability or expected reward of reaching a given set of target
states. Such specifications can be defined on a finite, indefinite,
or infinite horizon. For infinite horizons, this problem is unde-
cidable [15]. For finite horizons it is PSPACE-complete [18].

The goal for a (u)POMDP and a specification is to resolve
the non-determinism in such a way that the specification is
satisfied while taking the partial information, in the form of
observations, into account. This is done by computing an

observation-based policy, which maps observations to choices.
If the policy only considers the current observation, it is
memoryless, and if it considers a finite sequence of successive
observations, it is a finite-memory policy. For uPOMDPs, a
policy is robust if it satisfies the specification under the worst-
case instance of the uncertainty in the model. The aim of this
work is to compute robust finite-memory policies provably
satisfying specifications for uPOMDPs.

PROBLEM FORMULATION

The robust policy computation problem is defined as follows:
Given a uPOMDP and a reachability or expected re-
ward specification, compute a robust memoryless or
finite-memory policy that satisfies the specification.

We define a uPOMDP as a tuple (S, sI , A, I,P, Z,O,R), with
S the finite set of states, sI ∈ S the initial state, A the finite set
of actions, I a set of probability intervals, and Z the finite set
of observations. The uncertain transition function is defined
as P : S ×A× S → I and the uncertain observation function
is given by O : S × Z → I. Finally, R : S × A→ R≥0 is the
(standard) reward function.

We consider reachability and expected reward specifications
of the following form. For a set of target states T , the goal is to
compute a policy such that the probability (expected reward)
of reaching T is less than (greater than) some λ, or optimized.

A randomized finite-memory observation-based policy is a
function σ : (Z × A)∗ × Z → Dist(A). It maps a finite
sequence of observations and actions to a distribution over
actions. A policy successfully resolves the decision-making in
a (u)POMDP if the policy applied to the model satisfies the
constraint, which can be checked via linear programming or
value iteration [1, 3, 19]. This is also called robust verification.

SOLUTION OUTLINE

We first formulate a semi-infinite nonconvex optimization
problem with a finite number of variables and an infinite
number of constraints that precisely captures the robust policy
computation problem. The number of constraints is infinite
because we have an infinite number of possible distribu-
tions given by the uncertain transition function. Optimization
problems like the one we have are NP-hard and in practice
intractable to solve [4]. To overcome this, we apply the
following iterative approach. Full details on each step can be
found in [9].

0 500 1,000 1,500
0.6
0.7
0.8
0.9
1

Time elapsed (s)

Pr
ob

ab
ili

ty

S1 S2
S3 S4

(a) Obtained probability of avoiding
close encounters between the spacecraft
and other objects in the orbit.

0 200 400
0

0.5

1

Time elapsed (s)

Pr
ob

ab
ili

ty

S1N
S2N
S3N
S4N

(b) The performance of the policies ob-
tained from the nominal model applied
to the uncertain model (dashed lines).

0 500 1,000 1,500
102

102.5
103

Time elapsed (s)

E
xp

ec
te

d
co

st

S1 S2

(c) The obtained expected cost of suc-
cessfully finishing an orbit.

Fig. 1: Computational effort versus the performance of the different policies for the spacecraft motion planning case study.

(a) Satellite example with
memoryless policy.

(b) Satellite example with
five-memory-node policy.

Fig. 2: Case study on spacecraft motion planning. The red line
shows the spacecraft trajectory based on a computed policy,
other lines are the orbits used. The policy without memory
(a) needs to switch orbit more often than the policy with five
memory nodes (b), and thus consumes more fuel.

Dualize: Via dualization we derive a finite nonconvex
optimization problem that is only polynomially larger than
the original optimization problem, while still accounting for
all the uncertainty from the uPOMDP [2].

Linearize and solve: We linearize the finite nonconvex
optimization problem into a finite linear program (LP), which
can be solved in polynomial time [8]. The linearization is done
around a previous solution, hence an iterative approach. In the
first iteration we linearize around a randomly generated point.

Robust verification: We apply the computed policy to the
uPOMDP and use robust verification to check if it satisfies
the specification. If the result is positive, we have found a
robust policy and we terminate the procedure. If not, we use
the solution from the LP we just solved as new initial values
for the next iteration.

Iterate: We continue iterating until we have found a robust
policy satisfying the specification or have converged to a
local optimum. Globally optimal solutions, however, cannot
be guaranteed due to the linearization step.

EXPERIMENTAL RESULTS

We highlight some of our results on the spacecraft motion
planning and aircraft collision avoidance problems.

Spacecraft motion planning: In this model, a satellite has
to switch between orbits while avoiding collisions with other
objects. We consider two instances of this model, one (S1)
with 36 048 states and 65 263 transitions, and one (S3) with
108 000 states and 195 573 transitions. We extend both models

500 1,000 1,500

0.6

0.8

1

Time elapsed (s)

Pr
ob

ab
ili

ty

A1 A2 A3

Fig. 3: Probability of successfully avoiding collisions in the
aircraft collision avoidance case study.

to finite-memory policies. Model (S2) is the same as (S1), but
now with five memory nodes, enlarging the model to 349 480
states and 698 960 transitions. Model (S4) is the same as
(S3), but now with two memory nodes, resulting in 342 750
states and 665 073 transitions. In all of these, the uncertain
probability of successfully switching orbit is given by the
interval [0.50, 0.95]. Figures 1a and 1c show the convergence
towards local optima for the various instances of the model.

Aircraft collision avoidance: In Figure 3 we maximize the
probability of avoiding a collision with an intruder aircraft. All
three instances of the model have 476 009 states and 866 889
transitions, and the uncertain pilot response is given by the
interval [0.7, 0.9]. The three instances differ in the level of
uncertainty on the behavior of the intruder aircraft. A1 uses
intervals [0.2, 0.8], A2 has [0.3, 0.7], and A3 [0.4, 0.6]. As seen
in the figure, more uncertainty leads to a lower maximum,
while it does not affect the computation time.

Robust policies are more robust: Figure 1b compares robust
policies with non-robust policies. We compute a policy for
a standard POMDP and apply this policy to the uPOMDP.
Robust verification on this model then gives a worst-case
performance of this policy under the uncertainty. We see
that the computed policy performs significantly worse on the
uncertain model for all four instances.

Finite-memory yields better decisions: Finally, in Figure 2
we compare the trajectories of computed policies for (S1) and
(S2). Both models yield policies that avoid a collision, but the
finite-memory policy requires fewer orbit switches, resulting
in a lower fuel consumption.

CONCLUSION AND FUTURE WORK

We presented a novel way to compute robust finite-memory
policies for uncertain POMDPs. Future work will apply learn-
ing methods to derive uncertainty sets from data.

REFERENCES

[1] Christel Baier and Joost-Pieter Katoen. Principles of
model checking. MIT Press, 2008.

[2] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Ne-
mirovski. Robust Optimization, volume 28 of Princeton
Series in Applied Mathematics. Princeton University
Press, 2009.

[3] Michael Benedikt, Rastislav Lenhardt, and James Wor-
rell. LTL model checking of interval markov chains.
In TACAS, volume 7795 of Lecture Notes in Computer
Science, pages 32–46. Springer, 2013.

[4] Stephen P. Boyd and Lieven Vandenberghe. Convex
Optimization. Cambridge University Press, 2014.

[5] Raissa Zurli Bittencourt Bravo, Adriana Leiras, and
Fernando Luiz Cyrino Oliveira. The use of uav s
in humanitarian relief: An application of pomdp-based
methodology for finding victims. Production and Oper-
ations Management, 28(2):421–440, 2019.

[6] Anthony R Cassandra. A survey of pomdp applica-
tions. In Working notes of AAAI 1998 fall symposium
on planning with partially observable Markov decision
processes, volume 1724, 1998.

[7] Iadine Chadès, Eve McDonald-Madden, Michael A Mc-
Carthy, Brendan Wintle, Matthew Linkie, and Hugh P
Possingham. When to stop managing or surveying
cryptic threatened species. Proceedings of the National
Academy of Sciences, 105(37):13936–13940, 2008.

[8] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algorithms,
3rd Edition. MIT Press, 2009.

[9] Murat Cubuktepe, Nils Jansen, Sebastian Junges, Ah-
madreza Marandi, Marnix Suilen, and Ufuk Topcu. Ro-
bust finite-state controllers for uncertain pomdps. In
AAAI. AAAI Press, 2021 (to appear).

[10] Gregory R Frey, Christopher D Petersen, Frederick A
Leve, Ilya V Kolmanovsky, and Anouck R Girard. Con-
strained spacecraft relative motion planning exploiting
periodic natural motion trajectories and invariance. Jour-
nal of Guidance, Control, and Dynamics, 40(12):3100–
3115, 2017.

[11] Milos Hauskrecht and Hamish Fraser. Planning treat-
ment of ischemic heart disease with partially observable
markov decision processes. Artificial Intelligence in
Medicine, 18(3):221–244, 2000.

[12] Kerianne L Hobbs and Eric M Feron. A taxonomy
for aerospace collision avoidance with implications for
automation in space traffic management. In AIAA Scitech
2020 Forum, page 0877, 2020.

[13] Leslie Pack Kaelbling, Michael L. Littman, and An-
thony R. Cassandra. Planning and acting in partially
observable stochastic domains. Artif. Intell., 101(1-2):
99–134, 1998.

[14] Mykel J Kochenderfer. Decision making under uncer-
tainty: theory and application. MIT press, 2015.

[15] Omid Madani, Steve Hanks, and Anne Condon. On

the undecidability of probabilistic planning and infinite-
horizon partially observable markov decision problems.
In AAAI/IAAI, pages 541–548. AAAI Press / The MIT
Press, 1999.

[16] Marc Mangel and Colin Whitcomb Clark. Dynamic
Modeling in Behavioral Ecology. Princeton University
Press, 2019.

[17] Sylvie C. W. Ong, Shao Wei Png, David Hsu, and
Wee Sun Lee. Pomdps for robotic tasks with mixed
observability. In Robotics: Science and Systems. The
MIT Press, 2009.

[18] Christos H. Papadimitriou and John N. Tsitsiklis. The
complexity of markov decision processes. Math. Oper.
Res., 12(3):441–450, 1987.

[19] Koushik Sen, Mahesh Viswanathan, and Gul Agha.
Model-checking markov chains in the presence of un-
certainties. In TACAS, volume 3920 of Lecture Notes in
Computer Science, pages 394–410. Springer, 2006.

[20] Matthijs T. J. Spaan and Nikos A. Vlassis. A point-based
POMDP algorithm for robot planning. In ICRA, pages
2399–2404. IEEE, 2004.

[21] Marnix Suilen, Nils Jansen, Murat Cubuktepe, and Ufuk
Topcu. Robust policy synthesis for uncertain pomdps
via convex optimization. In IJCAI, pages 4113–4120.
ijcai.org, 2020.

Towards Explainable Multi-robot Motion Planning
Justin Kottinger∗, Shaull Almagor†, and Morteza Lahijanian∗

∗Aerospace Engineering Sciences, University of Colorado, Boulder, USA
Email: {justin.kottinger, morteza.lahijanian}@colorado.edu

†Computer Science, Technion, Haifa, Israel
Email: shaull@cs.technion.ac.il

I. INTRODUCTION

Multi-agent Motion Planning (MMP) is a fundamental prob-
lem in robotics and artificial intelligence (AI) where the goal is
to determine trajectories for multiple agents to their respective
goal regions such that, every vehicle safely completes their
plan when all plans are executed simultaneously. Applications
include warehouse robots, rendezvous and proximity opera-
tions, autonomous cars, etc. There are many works both in
the discrete domain (e.g., [13, 12]) and continuous domain
(e.g., [4, 3, 16, 11]) that solve the MMP problem. Yet, one
limitation of those methods is their inability to explain their
plans to human users [15]. For this reason, in safety-critical
applications, such as air-traffic control, MMP is not employed
since a human cannot verify them. The focus of this study is
to develop explainable MMP algorithms.

Significant effort has been dedicated to explainable AI and
machine learning. For example, [2] gives explanations by
analyzing alternative plans with some user-defined properties.
Work [6] explains plans via a minimal set of differences
between the actual and the proposed plan. Rather, work [8]
explains algorithms through visualization. Our work is similar
in that we base explanations on the simplicity of visual human
verification. Specifically, work [5, 14] showed recognizing
line intersections occurs very early in the cognitive process
(namely in the primary visual cortex). Thus, MMP can be
explained using a collection of non-intersecting path segments.
An example of such a decomposition is shown in Fig. 1a-1d.

This paper presents our progress on explainable MMP.
Previous work [1], defined an explanation to be the separation
of an MMP solution into a set of disjoint path segments
and provided examples of its use for MMP problems over
a discrete graph. The paper showed that as the number of
disjoint segments required to explain the path decreases, the
ease of explainability increases and proved finding optimal
explanations for existing plans takes polynomial time, whereas
generating plans for explainability is, at best, NP-Complete.
We are interested in realistic robotic systems in continuous
space with the goal of designing computationally-tractable
MMP algorithms that generate sound and easily explainable
plans. This problem is challenging because the dimensionality
of the state space grows exponentially based on the number of
agents, and kinodynamical constraints complicates planning.
We propose two approaches to this problem: centralized tree-
based search and abstraction-based decentralized graph search.

(a) Full Plan (b) Part 1 : [0−2]

(c) Part 2 : [2−4] (d) Part 3 : [4−7]

Fig. 1: An explanation for four agents in a 9× 6 grid. The
circles and stars mark the initial and goal regions, respectively.

II. PROBLEM STATEMENT

We consider k ∈ N robotic agents in a shared workspace
W ⊆ R2 containing a finite set of obstacles O ⊂ W . Each
agent i∈{1,2, . . . ,k} is constrained to the following dynamics:
ẋi = fi(xi,ui), xi ∈ Xi, ui ∈Ui, where Xi and Ui are the ith

agent’s state and input spaces, respectively, and fi : Xi×Ui→
Xi is an integrable, possibly nonlinear, function. A trajectory
segment xt1:t2

i for agent i is formed by integrating fi for a given
control input and non-zero time interval. Given m ∈ N non-
zero time-intervals, a trajectory Ti = {xt0:t1

i ,xt1:t2
i , . . . ,xtm−1:tm

i },
is a set of m trajectory segments that take agent i from an
initial state xi,0 to a desired goal region XG

i ⊂ Xi.
Note the state space of a robotic agent is generally of

higher dimension than the workspace. Thus, we define PROJ
Xi
W :

Xi→W as a function to project trajectory segment xt1:t2
i onto

workspace W . Two trajectory segments xt1:t2
i and xt1:t2

j are

disjoint if PROJ
Xi
W (xt1:t2

i (t)) 6= PROJ
X j
W (xt1:t2

j (t ′)) ∀t, t ′ ∈ [t1, t2].
We now present the following explainable MMP problem.
Problem 1 (Explainable MMP): Given k robotic agents

with continuous dynamics, initial states x1,0, . . . ,xk,0, goal
regions XG

1 , . . . ,XG
k , and a bound r ∈ N on the number of

segments, find a controller ui : [t0, t f]→ Ui for every agent
i ∈ {1, . . . ,k} and time points t1, . . . , tm, where m ≤ r and
t0 < t1 < .. . < tm−1 < tm = t f , such that the obtained trajectory
Ti takes agent i safely from xi,0 to xi(t f) ∈ XG

i , and the set of
trajectories T = {T1, . . . ,Tk} is segment-disjoint.

(a) 2 agent MMP (b) ∆t1 = [0,12.7]s

(c) ∆t1 = [12.7,20.6]s (d) ∆t1 = [20.6,81.5]s

Fig. 2: An explanation using MAPS-RRT

III. APPROACH

We present two algorithms to solve Problem 1. We start with
a recently proposed meta-planner known as multi-agent plan
segmenting X (MAPS-X), where X can be any centralized
tree-based motion planner. It computes satisfactory motion
plans based on a user defined explanation bound but suffers
from state space blow-up due to the centralized nature of X.
Next, we propose a decentralized and scalable explainable
planner building on conflict based search (CBS) [10].

Centralized Explainable MMP: Recall that centralized
sampling-based tree planners work by combining each agent
into a single meta-agent, and then growing a dynamically
feasible tree in the composed state space through repeated
sampling and propagation procedures. They output a valid
trajectory T for the meta-agent and individual trajectories
are extracted. Out-of-the-box centralized sampling based tree
planners are ill-equipped for solving Problem 1 due to their
inability to control the explainability of the plan.

Recently developed MAPS-X [7] gives such planners the
ability to overcome these shortcomings. As planner X grows
the tree, each node is given a cost that is equivalent to the
number of disjoint segments required to explain the plan up
to that node. The node is only added if it can satisfactorily
be explained (m ≤ r). Plans become easier to explain as r
decreases. The result is a trajectory T that solves Problem 1.
Because only satisfiable nodes are added to tree, MAPS-X
guarantees the number of disjoint segments that exists in its
solution is less than or equal to r. Furthermore, segmentation
information is already embedded in the solution, and no further
computation is needed. We refer the reader to [7] for details.

Decentralized Explainable MAPF: We now propose an
on-going decentralized approach that mitigates state space
explosion. As a first attempt, we reduce the problem to a
graph G. This is done by abstracting the workspace W into
a finite set of discrete vertices V and assuming control laws
that guarantee the realization of edges E with a fixed time
duration in the continuous domain. The solution is a valid
plan P = {P1, . . . ,Pk}, where Pi is the plan for agent i, such
that each Pi safely directs agent i from initial vertex vi,0 to goal

(a) Full Plan (b) Part 1 : [0−4] (c) Part 2 : [4−9]

Fig. 3: An explanation via exp-CBS where r = 2.

region vi,G and P can be decomposed into m≤ r vertex-disjoint
segments.

Work [1] solves this problem using centralized graph search.
We propose a more-scalable approach by extending a well-
known decentralized MAPF planner known as conflict-based
search (CBS) [10] to plan with explanations. CBS works by
individually planning for each agent in a k agent system using
graph search (e.g. A∗). It then checks the plans for conflicts
(e.g. collisions). If any conflicts occur, CBS resolves them by
adding constraints in the form of time-dependent obstacles and
re-plans for each conflicting agent to resolve such constraints.
This process repeats until a solution is found or until the search
is exhausted.

We extend CBS to enable planning for explainability. We
call the planner explainable-CBS (exp-CBS). Each time an
agent must re-plan, our A∗ search algorithm calculates the
segmentation cost of each node as it plans. The result of the
low-level search is a plan for agent i that minimizes segmenta-
tion given a plan for all other agents. The conflict search and
resolution phases operate identical to that found in CBS. The
result is a decentralized means of determining a satisfactory
plan P consisting of m≤ r vertex-disjoint segments.

IV. CASE STUDIES

We present results of both approaches here. We begin with
a case study in the continuous domain using MAPS-X (see [7]
for more examples). We use MAPS-X with RRT [9] as planner
X. We consider two agents with second-order car dynamics
operating in the environment shown in Fig. 2a. The small dots
represent xi,0 while the larger circles represent XG

i . The planner
found a solution in 30 seconds, which can be explained in 3
images as shown in Fig. 2b- 2d.

We now use our proposed exp-CBS planner for the problem
of four agents in Fig. 1a. By setting r = 3, a solution was
calculated in 0.05 seconds with segmentations 1b-1d. By
lowering the explanation bound to r = 2, we receive a solution
that is much easier to explain (Fig. 3b-3c) at the cost of a
higher computation time of 0.3 seconds. This case study shows
planning difficulty increases as segmentation bounds decrease.

V. CONCLUSION

This work proposes to leverage humans’ cognitive process
to explain MMP solutions using vertex-disjoint segments
within a 2D workspace. The continuous MMP problem ex-
ploits the framework developed in [7], resulting in a cen-
tralized planner. Alternatively, our abstraction-based exp-CBS
planner is decentralized and can produce plans with satisfac-
tory explanation schemes for systems with higher number of
agents than that is obtainable using centralized methods.

REFERENCES

[1] Shaull Almagor and Morteza Lahijanian. Explainable
multi agent path finding. In To appear in Int’l Con-
ference on Autonomous Agents and Multi-agent Systems
(AAMAS), 2020.

[2] Rebecca Eifler, Michael Cashmore, Hoffmann Jorg,
Danielle Magazzeni, and Marcel Steinmetz. Explaining
the space of plans through plan-property dependencies.
Proceedings of the 2nd Workshop on Explainable Plan-
ning (XAIP), 2019.

[3] Mokhtar Gharbi, Juan Cortés, and Thierry Siméon.
Roadmap composition for multi-arm systems path plan-
ning. In 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 2471–2476. IEEE,
2009.

[4] Fabien Gravot and Rachid Alami. A method for handling
multiple roadmaps and its use for complex manipulation
planning. In 2003 IEEE International Conference on
Robotics and Automation (Cat. No. 03CH37422), vol-
ume 3, pages 2914–2919. IEEE, 2003.

[5] David H. Hubel and Torsten N. Wiesel. Receptive fields
of single neurones in the cat’s striate cortex. The Journal
of Physiology, 148(3), 1959. doi: 10.1113/jphysiol.1959.
sp006308.

[6] Subbarao Kambhampati. Synthesizing explainable be-
havior for human-ai collaboration. In Proceedings of
the 18th International Conference on Autonomous Agents
and MultiAgent Systems, page 1–2, Richland, SC, 2019.
International Foundation for Autonomous Agents and
Multiagent Systems. ISBN 9781450363099.

[7] Justin Kottinger, Shaull Almagor, and Morteza Lahija-
nian. Maps-x: Explainable multi-robot motion planning
via segmentation. arXiv preprint arXiv:2010.16106,
2020.

[8] Sebastian Lapuschkin, Stephan Wäldchen, Alexander
Binder, Grégoire Montavon, Wojciech Samek, and Klaus-
Robert Müller. Unmasking clever hans predictors and
assessing what machines really learn. Nature Commu-
nications, 10(1), Mar 2019. ISSN 2041-1723. doi:
10.1038/s41467-019-08987-4. URL http://dx.doi.org/10.
1038/s41467-019-08987-4.

[9] Steven M. Lavalle. Rapidly-exploring random trees: A
new tool for path planning. Technical report, 1998.

[10] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R.
Sturtevant. Conflict-based search for optimal multi-
agent pathfinding. Artificial Intelligence, 219:40–66,
2015. ISSN 0004-3702. doi: https://doi.org/10.1016/j.
artint.2014.11.006. URL https://www.sciencedirect.com/
science/article/pii/S0004370214001386.

[11] Rahul Shome, Kiril Solovey, Andrew Dobson, Dan
Halperin, and Kostas E Bekris. drrt*: Scalable and in-
formed asymptotically-optimal multi-robot motion plan-
ning. Autonomous Robots, 44(3):443–467, 2020.

[12] Trevor Scott Standley. Finding optimal solutions to co-
operative pathfinding problems. In Twenty-Fourth AAAI

Conference on Artificial Intelligence, 2010.
[13] Roni Stern, Nathan R. Sturtevant, Dor Atzmon, Thayne

Walker, Jiaoyang Li, Liron Cohen, Hang Ma, T. K. Satish
Kumar, Ariel Felner, and Sven Koenig. Multi-agent
pathfinding: Definitions, variants, and benchmarks. Sym-
posium on Combinatorial Search (SoCS), pages 151–158,
2019.

[14] Shiming Tang, Tai Sing Lee, Ming Li, Yimeng Zhang,
Yue Xu, Fang Liu, Benjamin Teo, and Hongfei Jiang.
Complex pattern selectivity in macaque primary visual
cortex revealed by large-scale two-photon imaging. 2018.

[15] Matt Turek. Explainable artificial intelligence,
2018. URL https://www.darpa.mil/program/
explainable-artificial-intelligence.

[16] Glenn Wagner and Howie Choset. Subdimensional
expansion for multirobot path planning. Artificial Intel-
ligence, 219:1–24, 2015.

http://dx.doi.org/10.1038/s41467-019-08987-4
http://dx.doi.org/10.1038/s41467-019-08987-4
https://www.sciencedirect.com/science/article/pii/S0004370214001386
https://www.sciencedirect.com/science/article/pii/S0004370214001386
https://www.darpa.mil/program/explainable-artificial-intelligence
https://www.darpa.mil/program/explainable-artificial-intelligence

Safe Control with Neural Network Dynamic Models
Tianhao Wei

Robotics Institute
Carnegie Mellon University

Email: twei2@andrew.cmu.edu

Changliu Liu
Robotics Institute

Carnegie Mellon University
Email: cliu6@andrew.cmu.edu

Abstract—Safety is critical in autonomous robotic systems. A
safe control law is a control law that ensures forward invariance
of a safe set (a subset in the state space). It has been extensively
studied regarding how to derive a safe control law with a
control-affine analytical dynamic model. However, in complex
environments and tasks, it is challenging and time-consuming
to obtain a principled analytical model of the system. In these
situations, data-driven learning is extensively used and the
learned models are encoded in neural networks. How to formally
derive a safe control law with Neural Network Dynamic Models
(NNDM) remains unclear due to the lack of computationally
tractable methods to deal with these black-box functions. In
this work, we propose MIND-SIS (Mixed Integer for Neural
Dynamics with Safety Index Synthesis), the first method to derive
safe control laws for NNDM. The method includes two parts:
1) SIS: an algorithm for the offline synthesis of the safety index
(also called as barrier function), which uses evolutionary methods
and 2) MIND: an algorithm for online computation of the safe
control signal, which solves a constrained optimization using a
computationally efficient encoding of neural networks. It has
been theoretically proved that MIND-SIS guarantees forward
invariance and finite convergence. And it has been numerically
validated that MIND-SIS achieves safe and optimal control of
NNDM. From our experiments, the optimality gap is less than
10−8, and the safety constraint violation is 0.

I. INTRODUCTION

Safety is a major concern of autonomous robotic systems,
which can usually be posed as constraint satisfaction problems,
such as collision avoidance for vehicles and speed limitation of
robot arms. Robot safety depends on the correct functioning
of all system components, such as accurate perception, safe
motion planning, and safe control. Safe control, as the last de-
fense of system safety, has been widely studied in the context
of dynamical systems [10, 2]. A safe control law is a control
law that ensures the forward invariance of a subset inside
the safety constraint. That means, once the state entered that
subset, it will never leave. If we have a control-affine analytical
dynamic model of the system, there are many methods to
derive the corresponding safe control laws [15, 6, 1]. However,
constructing such an analytical dynamic model for complex
systems can be difficult, time-consuming, and sometimes
impossible [11]. Recent works adopt data-driven approaches
to learn these dynamic models, and most of the learned models
are encoded in neural networks.

Examples of these neural network dynamic models
(NNDM) include virtual world models in video games or
dynamic models of a complicated integrated robot, etc [9, 4].
Although NNDMs can greatly alleviate human efforts in

modeling, they are less interpretable than analytical models.
It is more challenging to derive control laws, especially safe
control laws, for these NNDMs than for analytical models.

This paper focuses on safe tracking tasks with NNDMs,
which is formulated as a constrained optimization that mini-
mizes the state tracking error given the safety constraint and
the NNDM constraint. Even without the safety constraint, the
tracking control with NNDMs is already challenging. Existing
control-theoretical methods usually use model inverse [14] to
compute the desired control inputs to track a state trajectory.
Since NNDMs are complex and highly nonlinear, there is no
computationally efficient method to compute its model inverse.
A widely used method to control NNDMs in practice is the
shooting method, which randomly generates many candidate
controls and rolls out corresponding future states, then chooses
the control leads to the closest state to the reference state.
But the shooting method is both incomplete and sub-optimal.
That means, it is not guaranteed to find a solution when the
problem is feasible, and even if it finds a solution, the solution
may not be the best one that optimizes the control objective.
Moreover, the safety constraint adds another layer of difficulty
to the problem. The robot should not only select an action
that satisfies the safety constraint now but also ensure that
its current action will not end up in any future state that no
action is safe. This property is called persistent feasibility. To
ensure persistent feasibility, we need to compute the control
invariant set inside the original safety constraint and constrain
the robot motion in this more restrictive control invariant set.
For an analytical model, we can manually craft this control
invariant set to meet the requirement [6]. But this becomes
difficult for NNDM due to its poor interpretability.

In this work, we address these challenges by introducing an
integrated method MIND-SIS to handle both the offline syn-
thesis of the control invariant set and the online computation of
the constrained optimization with NNDM constraints as shown
in fig. 1. Inspired from neural network verification algorithms
[8, 13], we use mixed integer programming (MIP) to encode
the NNDMs in the constraint, which makes the constrained
optimization much easier to solve. Most importantly, the MIP
method is complete and guarantees optimality, i.e. it can
always find the optimal control that minimizes the control
objective under constraints. To synthesize the control invariant
set, we first parameterize a safety index whose zero sub-
level set should be the control invariant set and then use
evolutionary algorithms to learn the parameters of the safety

How to find the optimal control?

How to find an invariant set that
guarantees safety?

MIND (Mixed Integer for Neural Dynamics)

SIS (Safety Index Synthesis)
NNDM

Fig. 1: Overview of MIND-SIS.

index. By substituting the original safety constraint with the
new constraint from the learned safety index, the resulting
control inputs from the constrained optimization will ensure
forward invariance inside the safety constraint.

II. FORMULATION

Dynamic model: Consider a dynamical system with mx

state and mu controls.

ẋk = f(xk,uk), xk+1 = xk + ẋkdt (1)

where k is the time step, xk ∈ X ⊂ Rmx is the state vector,
uk ∈ U ⊂ Rmu is the control vector, ẋk ∈ Rmx is the time
derivative of state vector, and f : Rmx 7→ Rmu is the dynamic
model. We assume the legal state set X and control set U are
both defined by linear constraints, which covers most cases in
practice. In the NNDM case, the dynamic model f is encoded
by a n-layer feedforward neural network.

Safety constraint: We consider the safety specification as
a requirement that the system state should be constrained in a
connected and closed set X ⊆ Rmx which is called the safe
set. X should be a zero-sublevel set of a safety index function
φ0 : X 7→ R, i.e.

X = {x | φ0(x) ≤ 0}. (2)

There can be many different definitions of φ0 for a given
X . Ideally, a safe control law should guarantee forward
invariance, i.e. φ0(xk) ≤ 0 =⇒ φ0(xk+1) ≤ 0. And
when the state is unsafe, a safe control law should drive
the system back to the safe set X . One way is to make
X the region of attraction (ROA) of the whole space [1]:
φ0(xk) > 0 =⇒ φ̇0(xk) ≤ −γ where γ > 0. These two
conditions form the safety constraint in the discrete time:

φ0(xk+1) ≤ 0 or φ̇0(xk) ≤ −γ, (3)

However, not all xk ∈ X has a safe control uk ∈ U that
satisfies eq. (3). We define the collection of these inevitable
states as Xd:

Xd(φ0) = {x | φ0(xk+1) > 0 and φ̇0(xk) > −γ,∀u ∈ U}.
(4)

The set Xd can be nonempty when the relative degree from
φ0 to u is greater than one or when the control inputs are
bounded. In these cases, X may not be forward invariant or
globally attractive. To address this problem, we want to find a
subset Xs ⊆ X and choose a control law to make the subset
forward invariant and have finite time convergence. This subset
is called a control invariant set.

When we use analytical models, we can manually craft a
Xs by designing a safety index φ that minimizes the size of
Xd(φ) [6]. However, it is challenging to manually design Xs
for NNDM due to the poor interpretability of neural networks.

(a) (b) (c) (d)

Fig. 2: MIND-SIS in collision avoidance. (a) shows the trajectory
with φ0. The vehicle collides with the obstacle because of infeasibility
(too late to break). (b) (c) (d) show the trajectories with a synthesized
safety index φ in different scenarios. The synthesized safety index is
general enough so that it can be directly applied to scenarios with
multiple obstacles without any modification.

The safe tracking problem: This paper considers the
following constrained optimization for safe tracking:

min
uk,xk+1

‖xk+1 − xrk+1‖p

s.t. xk+1 = xk + f(xk,uk)dt, uk ∈ U
φ0(xk+1) ≤ 0 or φ̇0(xk) ≤ −γ

(5)

where ‖ · ‖p can be either `1-norm or `2-norm. This for-
mulation is essentially a one-step model predictive control
(MPC). The extension to multi-step MPC is straightforward,
which we leave for future work. At a given step k, (5) is a
nonlinear programming problem. However, existing nonlinear
solvers have poor performance on neural networks (which will
be shown in section IV). That is because neural networks
are piece-wise linear, whose second-order derivatives are not
informative. New techniques are needed to solve this problem
efficiently.

III. METHOD

In this section, we discuss how to efficiently solve the con-
strained optimization (5) and ensure it is persistently feasible.
First, we introduce MIND, a way to find the optimal control
by encoding NNDM constraints as mixed integer constraints.
Then we present SIS, a method to find the control invariant
set by learning a new safety index φ that minimizes the size
of Xd(φ) in (4). Finally, we present the reformulated problem.

A. MIND: Encode NNDM constraints

To overcome the complexity of NNDM constraints, we
first add all hidden nodes zi,j and ẑi,j in the neural network
as decision variables and turn (5) into an equivalent form.
Nevertheless, the nonlinear non-smooth constraints introduced
by the ReLU activation zi,j = max{ẑi,j , 0} is still challenging
to handle. Inspired by MIPVerify [13], we use mixed integer
formulation to rewrite these constraints. With this encoding,
the constrained optimization is converted into a MIP, which
can be efficiently solved by existing solvers. But the safety
constraint may be violated during execution due to infeasibil-
ity. An example is shown in fig. 2. Therefore, we introduce
SIS.

(a) (b) (c)

Fig. 3: Illustration of trajectory tracking with NNDM using different
optimization methods: MIND (our method), shooting method with
sample size of 100, and Ipopt. (a-c) show 3 randomly generated
trajectories. MIND has the smallest tracking error in all three cases.

B. SIS: Guarantee feasibility

The goal of safety index synthesis is to to find a subset
Xs ⊆ X and choose a control law to make the subset
forward invariant and finite time convergent. We do this by
synthesizing a safety index φ that minimizes the size of Xd(φ).
According to [6], we assume φ(x) = φ∗0(x)+

∑
pi(αi,x)+β,

where φ∗0(x) defines the same sublevel set as φ0, pi(αi,x) is
a higher order term of φ0 that is parameterized by αi, and β
is a constant.

We use an evolutionary algorithm CMA-ES [3] to learn the
parameters αi, as well as γ from (3). To evaluate whether a set
of parameters minimizes the number of inevitable states, we
uniformly sample from the state space and check whether the
safe control set for each state sample is empty. We prove that
as long as the sampling is dense enough, we can guarantee
the learned safety index is feasible for an arbitrary state.

C. MIND-SIS: Safe control with NNDM

Once the safety index is synthesized, we substitute φ0 with
φ to guarantee the feasibility. To address the nonlinearity in
the safety constraint (3), we approximate it with first order
Taylor expansion at the current state xk:

φ(xk+1) = φ(xk) +∇xk
φ · ẋkdt+ o(‖ẋkdt‖), (6)

where limdt→0 o(‖ẋkdt‖) = 0. Then (5) is transformed into
the following mixed integer problem:

min
uk,xk+1,zi,δi,j∈{0,1}

‖xk+1 − xrk+1‖p

s.t. xk+1 = xk + zndt, z0 = [xk,uk] , uk ∈ U,
zi,j ≥ ẑi,j , zi,j ≥ 0, zi,j ≤ ẑi,j − ˆ̀

i,j (1− δi,j) ,
zi,j ≤ ûi,jδi,j , ẑi,j = wi,jzi−1 + bi,j ,

∀i ∈ {1, . . . , n},∀j ∈ {1, . . . , ki}

∇xk
φ · f(xk,uk) ≤ −min{φ(xk)

dt
, γ},

(7)

where δi,j are decision variables introduced by MIP. Depend-
ing on the norm ‖ ·‖p, eq. (7) is either a Mixed Integer Linear
Programming or Quadratic Programming, which both can be
solved by existing solvers such as GLPK, CPLEX, and Gurobi.

IV. EXPERIMENT

A. Experiment set up

The evaluation is designed to answer the following ques-
tions:

1) How does our method (by solving (7)) compare to
the shooting method and regular nonlinear solvers on
the original problem (5) in terms of optimality and
computational efficiency?

2) Does the safety index synthesis improve persistent fea-
sibility?

3) Does our method ensure safety in terms of forward
invariance and finite-time convergence?

We evaluate our method on a system with vehicle neural
network models. We learn 3 different NNDMs to show the
generalizability of our method. The three NNDMs are: I. 3-
layer with 50 hidden neurons per layer. II. 3-layer with 100
hidden neurons per layer. III. 4-layer with 50 hidden neurons
per layer.

After the training, we use the NNDM to directly control
the agent to avoid model mismatch in our evaluation. The
mismatch between the learned and ground truth dynamics
can be caused by simplification, system noises, insufficient
training, etc. When there is model mismatch, the safe control
computed using the given model may be unsafe for the
ground truth dynamics. Our evaluation only aims to show that
the proposed method can synthesize provably safe controls
efficiently under the NNDM assuming there is no model
mismatch. As future work, we will extend our work to robust
safe control, which is able to guarantee safety under model
mismatch [7, 12].

To answer the questions we raised in the beginning, we
design the following two tasks: trajectory tracking without and
with safety constraints.

B. Trajectory tracking

In this task, we randomly generate 500 reference trajectory
waypoints that are dynamically feasible for each NNDM. We
compare our method with shooting methods with different
sampling sizes and Ipopt (short for Interior Point OPTimizer),
a popular nonlinear solver. We use CPLEX to solve the MIND-
SIS formulation. This experiment is done on a computer with
AMD® Ryzen threadripper 3960x 24-core processor, 128 GB
memory. Some results are shown in fig. 3.

As shown in table I, MIND achieves an average tracking
error less than 10−8. We can consider MIND finds the optimal
solution, which is a significant improvement comparing to
other methods. To achieve the same tracking error as MIND,
the sampling size and computation time of the shooting
method will be unacceptably large. Ipopt ends quickly because
it gets stuck at local optima soon after the beginning. And
iteratively warm starting Ipopt with its own solution does not
help it get out of local optima. This suggests existing nonlinear
solvers do not work well with neural network constraints.

C. Trajectory tracking under safety constraints

This task considers two safety constraints corresponding to
different scenarios: collision avoidance and safe following.
When infeasibility happens, the agent reuses the control of
the last time step.

NNDM 1 NNDM 2 NNDM 3

Method Mean Std Time (s) Mean Std Time (s) Mean Std Time (s)

MIND < 10−8 < 10−7 36.4 < 10−8 < 10−7 83.8 < 10−8 < 10−7 123.5
Shooting-103 0.129 0.080 2.1 0.128 0.080 10.0 0.128 0.080 2.9
Shooting-104 0.041 0.026 20.9 0.041 0.026 100.2 0.041 0.026 28.3
Shooting-105 0.012 0.007 208.4 0.012 0.007 1006.3 0.012 0.007 282.2

Ipopt 1.871 0.626 3.2 1.852 0.619 4.0 1.865 0.623 3.3
Ipopt-iterative 1.871 0.626 13.3 1.852 0.619 16.3 1.865 0.623 13.5

TABLE I: Average tracking error and computation time for different methods in the trajectory tracking task (without safety constraint).
The table shows mean and standard deviation of the average tracking error. The number after “Shooting” denotes the sampling size. “Ipopt-
iterative” represents iteratively solving the problem by warm starting Ipopt with its own solution. Our method can always find the optimal
solution, therefore achieves almost zero tracking error. The actual trajectories are illustrated in fig. 3.

(a) (b) (c)

Fig. 4: Inevitable states distribution. An obstacle is located at (0, 0).
Each grid in the graph corresponds to a (px, py) location. We sample
100 states at each location. The color denote how many states at this
location are inevitable states. (a) shows the original safety index φ0

has a hard boundary, which means when the agent is near the obstacle,
no matter with what state, it can barely find a feasible control. (b)
shows a hand constructed safety index φh only can not find a feasible
control for part of the states around the obstacle. (c) shows the learned
index φ has no inevitable state, thus can always find a safe control.

1) Collision avoidance: Collision avoidance is one of the
most common requirement in real-world applications. Such as
in vehicle driving, and robot operation [5]. The collision avoid-
ance constraint is usually defined as φ0(x) = dmin−d(x) < 0,
where dmin is the acceptable minimal distance between the
agent and the obstacle, d(x) is the relative distance from
the agent to the obstacle. But this constraint usually can not
guarantee persistent feasibility. Therefore, we synthesize a
safety index φ(x) that guarantees persistent feasibility. We
design the safety constraint to be of the form:

φ(x) = dα1
min − d(x)

α1 − α2ḋ(x) + β,

where ḋ(x) is the relative velocity from the agent to the
obstacle, α1, α2 and β are parameters to learn. This form
guarantees forward invariance and finite time convergence as
shown in [6], To demonstrate the effect of the synthesized
safety index. We visualize the behavior of the agent with φ0
and φ in fig. 2. The figure also shows that the synthesized
safety index can be directly applied to unseen multi-obstacle
scenarios without any change.

To learn a safety index that minimizes the size of the
inevitable state set Xd, we use CMA-ES to optimize the
parameters. For each set of parameters. We uniformly sample
40000 states to compute the size of the Xd. fig. 4 shows the
distribution of inevitable states of the original safety index φ0,
a synthesized safety index φh with hand designed parameters,
and a synthesized safety index φl with learned parameters.
The learned safety index φl has no inevitable states, thus can

always find a safe control.
We evaluate these safety indices on 100 randomly generated

collision avoidance tasks. The agent has to track a trajectory in
each task while avoiding collision (keep φ0 ≤ 0). We consider
a task succeeds if there is no collision or inevitable states on
the trajectory. The evaluation results are shown in table II. We
can see that the learned safety index achieves 0% φ0-violation
rate and 0% infeasible rate.

Collision avoidance Safe following

Metric φ0 φh φl φ0 φh φl

Success rate 0% 72% 100% 0% 82% 100%
φ0-violation rate 100% 0% 0% 100% 0% 0%

Infeasible rate 100% 28% 0% 100% 18% 0%

TABLE II: Performance comparison of the original safety index φ0,
a synthesized safety index φh with manually tuned parameters, and a
synthesized safety index φl with learned parameters on 100 randomly
generated tasks. We consider one trial successful if there is no safety
violation or infeasible state. We can see that φ0 always violates the
constraints due to infeasibility (due to our choice of the initial state).
φh guarantees the safety but fail to find controls for some states due
to infeasibility. But the learned index φl can always find a control
and guarantees safety.

2) Safe following: The safe following constraint appears in
the case that an agent is following a target while keeping a
safe distance to the target. Such as in adaptive cruise control,
nap-of-the-earth flying, etc. The safety index can be defined as
φ0(x) = (d(x) − dmin)(d(x) − dmax). We design the safety
constraint to be of the form:

φ(x) =(d(x)− dmin)α1(d(x)− dmax)α1

+ α2[d(x)ḋ(x) + ḋ(x)(dmin + dmax)] + β
(8)

Where α1, α2, β are parameters to learn, The learning process
and the evaluation is similar to the collision avoidance case.
The evaluation results are shown in table II. The learned index
achieves 0% φ0-violation rate and 0% infeasible rate.

V. CONCLUSION

In this work, we propose MIND-SIS, the first method to
derive safe control law for NNDM. MIND finds the optimal
control for NNDM, and SIS synthesizes a safety index that
guarantees forward invariance and finite time convergence. We
provide theoretical guarantees that our method can achieve
optimality and ensure feasibility.

REFERENCES

[1] Aaron D Ames, Xiangru Xu, Jessy W Grizzle, and
Paulo Tabuada. Control barrier function based quadratic
programs for safety critical systems. IEEE Transactions
on Automatic Control, 62(8):3861–3876, 2016.

[2] Franco Blanchini. Set invariance in control. Automatica,
35(11):1747–1767, 1999.

[3] Nikolaus Hansen. The cma evolution strategy: A tutorial.
arXiv preprint arXiv:1604.00772, 2016.

[4] Michael Janner, Justin Fu, Marvin Zhang, and Sergey
Levine. When to trust your model: Model-based policy
optimization. arXiv preprint arXiv:1906.08253, 2019.

[5] Hsien-Chung Lin, Changliu Liu, Yongxiang Fan, and
Masayoshi Tomizuka. Real-time collision avoidance
algorithm on industrial manipulators. In 2017 IEEE Con-
ference on Control Technology and Applications (CCTA),
pages 1294–1299. IEEE, 2017.

[6] Changliu Liu and Masayoshi Tomizuka. Control in a
safe set: Addressing safety in human-robot interactions.
In ASME 2014 Dynamic Systems and Control Confer-
ence. American Society of Mechanical Engineers Digital
Collection, 2014.

[7] Changliu Liu and Masayoshi Tomizuka. Safe explo-
ration: Addressing various uncertainty levels in human
robot interactions. In 2015 American Control Conference
(ACC), pages 465–470. IEEE, 2015.

[8] Changliu Liu, Tomer Arnon, Christopher Lazarus,
Christopher Strong, Clark Barrett, Mykel J Kochenderfer,
et al. Algorithms for verifying deep neural networks.
Foundations and Trends® in Optimization, 4, 2020.

[9] Anusha Nagabandi, Gregory Kahn, Ronald S Fearing,
and Sergey Levine. Neural network dynamics for model-
based deep reinforcement learning with model-free fine-
tuning. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 7559–7566.
IEEE, 2018.

[10] Mitio Nagumo. Über die lage der integralkurven
gewöhnlicher differentialgleichungen. Proceedings of the
Physico-Mathematical Society of Japan. 3rd Series, 24:
551–559, 1942.

[11] Duy Nguyen-Tuong and Jan Peters. Model learning for
robot control: a survey. Cognitive processing, 12(4):319–
340, 2011.

[12] Charles Noren and Changliu Liu. Safe adaptation in
confined environments using energy functions. arXiv
preprint arXiv:1912.09095, 2019.

[13] Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating
robustness of neural networks with mixed integer pro-
gramming. arXiv preprint arXiv:1711.07356, 2017.

[14] Deepak Tolani, Ambarish Goswami, and Norman I
Badler. Real-time inverse kinematics techniques for
anthropomorphic limbs. Graphical models, 62(5):353–
388, 2000.

[15] Tianhao Wei and Changliu Liu. Safe control algorithms
using energy functions: A uni ed framework, benchmark,

and new directions. In 2019 IEEE 58th Conference
on Decision and Control (CDC), pages 238–243. IEEE,
2019.

	Introduction
	Related Work
	Game Theoretic Formulation
	Player Actions
	Utilities

	Game-Theoretic Notion of Trust
	Experimental Setup and Evaluation
	Robot Delivery Domain
	Computing the Trust Boundary in a Task-Planning Scenario
	Human Studies

	Conclusions and Future Work
	Introduction
	Scene Graph Model
	Data Collection
	Training & Evaluation

	Generating Explanations from SSGs
	SSG Explanations
	SSG-R Explanations via Pairwise Ranking

	Analysis of Semantic Explanations
	User Study
	Quantitative Results

	Conclusion & Future Work
	Introduction
	Behavior Trees
	Human Action Nodes
	Conclusion
	Introduction
	Dialogue Object Search
	Pilot Study
	Discussion & Next Steps
	Introduction
	Related Work and Background
	Technical Approach
	Experiments
	Conclusion
	Introduction
	Preliminaries
	Safety Modulo Fault
	Model Predictive Shielding Modulo Fault
	Evaluation
	Experimental Setup
	Experimental Results

	Conclusion
	Appendix A: Proof of Theorem IV.2
	Appendix B: Experimental Details
	Introduction
	Related Work
	Background: Bayesian Optimization
	Problem Statement
	Model Adaptation with Preferences
	Experiments
	Experiment 1: Cartpole Optimization
	Experiment 2: Manipulation Task

	Discussion
	Introduction
	Research Challenges
	Estimating Users' Perception, Understanding, and Belief
	Designing Human-Centered Pedagogical Methods

	Towards an Interactive AI Teacher
	Introduction
	Related Work
	Contributions

	Preliminaries
	Method
	Constrained Zonotope ReLU Activation
	Constrained Zonotope Emptiness Check
	Constrained Neural Network Training
	Generic Formulation
	Set and Constraint Representations

	Differentiating the Collision Check Loss

	Numerical Example
	Conclusion and Future Work
	Introduction
	Problem Formulation and Approach
	Case Study
	Conclusion
	Introduction
	Related Work
	Differentiable Human Ergonomics Model
	Postural Optimization Using DULA
	Simulated Teleoperation Environment
	Gradient-free postural optimization

	Gradient-based postural optimization
	Conclusion and Future Directions
	Aknowledment
	Introduction
	Methods
	Problem Definition
	Target Estimation
	Hierarchical Bayesian Model
	Information-Theoretic Objective Path planning
	Path Selection

	Results
	Simulation Results
	Single Search vs Continuous Search
	n-Agent Case
	Search Time

	Experimental Results

	Conclusion
	Introduction
	Problem Statement
	Approach
	Case Studies
	Conclusion
	Introduction
	Formulation
	Method
	MIND: Encode NNDM constraints
	SIS: Guarantee feasibility
	MIND-SIS: Safe control with NNDM

	Experiment
	Experiment set up
	Trajectory tracking
	Trajectory tracking under safety constraints
	Collision avoidance
	Safe following

	Conclusion

