
HAL Id: hal-03296927
https://hal.science/hal-03296927v1

Submitted on 22 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Subjectivity Aware Conversational Search Services
Yacine Gaci, Jorge Ramírez, Boualem Benatallah, Fabio Casati, Khalid

Benabdslem

To cite this version:
Yacine Gaci, Jorge Ramírez, Boualem Benatallah, Fabio Casati, Khalid Benabdslem. Subjectivity
Aware Conversational Search Services. 24th International Conference on Extending Database Tech-
nology (EDBT 2021), Mar 2021, Nicosia (on line), Cyprus. �10.5441/002/edbt.2021.15�. �hal-03296927�

https://hal.science/hal-03296927v1
https://hal.archives-ouvertes.fr

Subjectivity Aware Conversational Search Services
Yacine Gaci1, Jorge Ramírez2, Boualem Benatallah3,1, Fabio Casati2,4, Khalid Benabdslem1

1 LIRIS - University of Claude Bernard Lyon 1, France
{yacine.gaci, khalid.benabdeslem}@univ-lyon1.fr

2 University of Trento, Italy
jorge.ramirezmedina@unitn.it

3 University of New South Wales, Australia
b.benatallah@unsw.edu.au

4 ServiceNow, USA
fabio.casati@gmail.com

ABSTRACT
Online users are becoming increasingly dependent on Web ser-
vices in choosing among products and services. This recent trend
is motivated by the integration of conversational agents which
took the human-machine interaction to unprecedented levels of
ease, using natural language as a communication medium. Given
the success of these systems, users are constantly switching to
experiential search, providing utterances that are intrinsically
subjective such as looking for a restaurant with a romantic am-
biance, creative cooking or nice staff. Current Web services are
unfortunately unable to decipher the subjective signals present
in user utterances and only support objective attributes that are
listed in service descriptions (e.g., restaurant address, cuisine,
price range).

To make the most of dialog systems, they must be able to de-
tect subjective attributes in user utterances and filter responses
according to user subjective preferences. This paper presents a
framework and techniques that augment conversational search
services with capabilities to understand and reason about sub-
jective user utterances. We propose novel subjective tag-based
indexing of information services. We discuss automatic subjec-
tive tag extraction from both user utterances and online reviews
using state of the art machine learning techniques such as BERT,
adversarial training and data programming. Experiments show
that the proposed techniques outperform existing information
retrieval systems and the search mechanisms provided by well-
known web search services such as Yelp.

1 INTRODUCTION
Digital services and online reviews are widely used in day-to-day
decisions [14], such as providing recommendations or opinions
regarding which restaurant to eat, which research paper to read
or even who to vote for in elections. When we make decisions,
recent studies show that we are prone to lean toward subjective
data focusing on past experiences rather than relying solely on
objective information (e.g., type of food served by a restaurant
or an address of a restaurant) [31]. For example, when we set
out to choose between two restaurants, we are attracted by the
ones offering great experiences such as delicious food, brilliant
atmosphere, friendly staff or romantic ambiance in addition to
deciding based on factual information such as restaurant loca-
tions or specific types of cuisine [39]. Often, we find experiential
and subjective information in online reviews because they reflect

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

user opinions and experiences [14]. Techniques from opinion
mining and information retrieval (IR) [32] can be used to extract
knowledge from reviews. However, such techniques usually lack
the necessary precision to obtain meaningful and accurate sub-
jective information due to their keyword-based search nature
[31]. On the other hand, online reviews are expressed in natural
language which is very nuanced and intricate, thus needing more
effective extraction techniques. In the same line of argument,
information retrieval systems are heavily manual for the users
given that users need to try different combinations of keywords
and query styles before having to compare between the results
in a manual and labor-intensive way. Hence, decisions made
through traditional information retrieval systems are generally
sub-optimal [14].

Capturing and reasoning about subjective information has
been explored at various levels [31]. Some techniques explored
ratings (e.g., star ratings) to represent aggregated user opinions
on entities or services [59]. Rating-based techniques do not con-
sider reviews content but they rather provide aggregated nu-
merical or symbolic values which are hard for users to express
accurately. For example, a star rating of three out of five might
give the impression that the restaurant is average in all aspects
but in reality, it may serve delicious food but employs unhelpful
waitstaff, which made the reviewer balance out her final rating.
Another line of subjectivity-related research translates numerical
attribute values to linguistic values (e.g., translation of prices to
linguistic values, such as {"cheap", "fair", "costly", "expensive"})
using insights from fuzzy logic [26]. Nonetheless, such methods
involve objective attributes, whose values are to be translated
into subjective linguistic variations, leaving the space of the in-
herently subjective attributes untouched.

More recently, [31] proposed techniques extending database
systems to account for both objective and subjective attributes
and support subjective database queries. Nevertheless, in order
to use [31], the database schema, and hence the subjective at-
tributes, must be defined beforehand. Unfortunately, it is not
always easy to identify which attributes to include in the schema
and what their precise meaning is [14]. Besides, while such exten-
sions [31] augment structured query languages with subjectivity
support, they presuppose technical expertise comparable to that
of professional database users, who can express (complex) SQL
queries. Therefore, there is a need for more advanced techniques
to empower all users to benefit from subjectivity-aware services
in performing their day-to-day activities in a digitally enabled
world.

At the same time, conversational Artificial Intelligence (AI)
and its instantiation in the form of messaging or chat bots (also

called task-oriented conversational bots) emerged as a new par-
adigm to naturally access services and perform tasks through
natural language (text or voice) conversations with software ser-
vices and humans. Thousands of bots have already been used
in a variety of significant use cases, e.g. tourism, travel, office
tasks, healthcare, e-commerce, education, and e-government ser-
vices. On the downside, the current generation of conversational
bots does not handle subjective information users ought to in-
clude in their utterances and often ignores them, leading to user
dissatisfaction.

In this work, we propose 𝑆𝐴𝐶𝐶𝑆 (Subjectivity Aware Con-
versational Search Service), consisting of a Natural Language
Understanding (NLU) framework and techniques, that combine
the usefulness of including subjective information in the search
utterances and the flexibility of utilizing natural conversations
to interact with users. A key feature of 𝑆𝐴𝐶𝐶𝑆 is the ability to
automatically and dynamically extract subjective information
from user utterances and online reviews without explicitly defin-
ing them beforehand. Achieving such an objective faces several
difficult issues, the most challenging of which is due to the ex-
pressiveness and complexity of natural language, i.e. the same
subjective information can be expressed using various phrases.
For instance, both "The food is phenomenal", "Very tasty plates of
food" or "Really good food" denote the deliciousness of food. To
address this issue, we introduce the concept of subjective tags.
Briefly stated, a subjective tag denotes subjective information
in user utterances and online reviews. For example, the review
sentence "This restaurant serves really good food and the service
is really quick", is tagged with {delicious food, quick service} sub-
jective tags. The use of tags provides a powerful mechanism
to reason about subjective information in user utterances and
online reviews (e.g., organization, navigation, summarization,
matching and understanding of subjective information). Building
upon advances in opinion extraction, in our approach a subjec-
tive tag is represented as concatenation of an aspect term and
an opinion term [32]. The aspect term denotes the feature being
described and the opinion term characterizes this feature. For
example, delicious food is a subjective tag wherein food is the
aspect while delicious is the opinion. 𝑆𝐴𝐶𝐶𝑆 marks each review
with a corresponding set of subjective tags.

In this paper we make the following contributions to over-
come challenges related to extracting subjective tags from user
utterances and online reviews as well as using them to support
subjectivity-aware human-bot natural language conversations:

• We introduce a framework that augments task-oriented
dialog systems with subjective filters. Search services are
augmented with subjective tag based search and indexing
[36]. Each subjective tag in the index is mapped to a list
of reviews and entities (e.g. restaurants, books, hotels...).
• We provide a novel subjective tag extraction pipeline that
is robust against variations of natural language. Tagging
labels eachword in a natural language sentence as being ei-
ther an aspect, an opinion or neither. We train a subjective
tag extraction model (called extractor) in an adversarial
fashion, wherein the adversary [13, 38] adds informed per-
turbations to natural language sentences. This allows the
tag extraction model to learn the possible variations in
language and update its parameters accordingly.
• After the aspects and opinions have been extracted, there
is a need to pair each aspect with its corresponding opin-
ion in order to construct subjective tags. We propose two

novel heuristics for pairing an aspect to an opinion. These
heuristics aim to overcome the limitation of word-based
distance approaches for pairing an aspect term to an opin-
ion term [31, 56]. The first heuristic relies on the distance
between aspects and opinions in the review parse trees
[24, 25, 41]. For example, the opinion professional would
be wrongfully paired with the aspect decor in the review
"The staff is friendly, helpful and professional. The decor is
beautiful" when relying on word distance alone. However,
when using a parse tree to represent the above review,
the two sentences "The staff is friendly, helpful and profes-
sional" and "The decor is beautiful" belong to two separate
sub-trees. Consequently, the opinion professional will be
closer to the aspect staff than the aspect decor because
professional and staff belong to the same sub-tree. While
more effective than traditional word distance techniques,
this heuristic has the following limitations: (i) In long
sentences, the different aspects and opinions may not be
separated into their own sub-trees. In this case, this heuris-
tic provides the same result as word distance methods. (ii)
The generated parse tree will be incorrect when there are
typos or punctuation errors in the review. The second
heuristic is proposed to overcome these limitations. It re-
lies on attention mechanism [3, 17, 54] to distribute the
attention of an aspect term among the different opinion
terms. These heuristics are combined using a data pro-
gramming paradigm [2, 49] to : (i) pair opinion and aspect
terms in natural language sentences in an unsupervised
model, or (ii) automatically generate training data from
online reviews to build a supervised pairing model.
• We evaluate the performance of the proposed techniques
using crowd sourced data. Experiments show that 𝑆𝐴𝐶𝐶𝑆 pro-
vides better results than IR systems. Besides, the tagger
improves upon state of the art by up to 4.93% in F1 scores
while the supervised pairing method adds 3.03 points in
accuracy.

This paper is organized as follows: We first discuss related
work. We then introduce the architecture of 𝑆𝐴𝐶𝐶𝑆 in Section 3.
The extraction of subjective tags is discussed in Sections 4 and
5. Section 4 describes the tagging while Section 5 details pair-
ing. Finally, Section 6 discusses the evaluation of the proposed
techniques.

2 RELATEDWORK
Our work lies at the intersection of two areas: Subjectivity search,
and aspect/opinion extraction.

Subjectivity Search. Despite the overwhelming importance
of subjective information in the decision making process, rela-
tively little effort focused on understanding and measuring the
effect of subjectivity in user decisions [31]. This task has been
traditionally delegated to standard information retrieval systems
which provide a keyword-based search, and a synonym expan-
sion at best [36, 52]. Systems that incorporate subjective filters in
their data models attracted the attention of the research commu-
nity only recently. Perhaps the closest work to ours is [31] which
aimed to augment traditional database systems with subjective
attributes. Their approach is different from ours in that their
subjective attributes are part of a database schema itself, which
should be explicitly defined by a database designer beforehand.
The query interfaces require the users to have precise knowledge

about source schemas too. In our approach, subjective tags are
dynamically extracted from user utterances as they interact with
the system, thus increasing flexibility and productivity.

[27] built a tunable high-precision knowledge base with both
factual and subjective attributes. To do so, they predefined a list of
attributes (e.g. GOOD_VIEW, KID_FRIENDLY, HAS_HIGH_CHAIRS)
and asked crowd workers to assess whether an entity (in their
case, they used locations in Google Maps) has each attribute or
not. They then modeled user consensus with Beta distributions.
The major limitation of this approach is the increasing cost of
crowd workers when adding new locations, new attributes or
even changing the domain. Besides, crowd-sourced data suffers
from data quality problems, mainly due but not limited to the
inherent subjectivity in the task at hand. Also, the subjective
attributes in [27] are set at design time and not learned from user
interactions as we do.

Prior works also tackled the problem of subjectivity and opin-
ions in various domains [29, 37, 59]. Most of them capture a
narrow aspect of subjectivity by prompting the reviewers to rate
the objects they write about. We often find these in e-commerce
services in the form of star ratings which aggregate opinions of
all sub-parts of the object and act as a proxy for the overall user
satisfaction. This suffers from coarse granularity because the star
rating skips the details we might be interested in and only gives
one global assessment of the reviewer’s true feeling.

Another body of research aims to translate objective facts into
subjective phrases [20, 26, 50, 60]. The dominant example is the
price which is mapped to a set of subjective phrases such as
{"cheap", "fair", "costly", "expensive"} depending on comparisons
between the price value and a set of thresholds. This approach
only deals with translating objective attributes whose values
are indisputable. It leaves the space of the inherently subjec-
tive attributes such as food deliciousness or room cleanliness
untouched.

Aspect Opinion Extraction. The problem of extracting as-
pects from review texts is a long standing one in the Natural
Language Processing (NLP) literature [32]. However, most previ-
ous work focused on identifying the aspects only and measuring
their quantitative sentiment polarity (as being positive, nega-
tive or somewhere in between). This task is often referred to as
Aspect-Based Sentiment Analysis (ABSA) [32].

Existing approaches include rule-based, feature-engineering-
based and deep-learning-based approaches [56]. In a rule-based
approach, to classify the aspect terms as positive or negative, a
lexicon is used along with handcrafted sentiment values [18, 19].
Feature-based approaches [22, 30] train a classifier to extract the
aspect terms with manually defined features. Both rule-based and
feature-based solutions are labor-intensive and highly demand-
ing in terms of effort and time. Deep-learning-based approaches
[33, 55, 56], aside from having superior performance than the
previous two methods, extend the extraction to opinion terms as
well. While [55] used recursive neural networks, [56] employed
an attention-based architecture. The motivation behind both
approaches is the necessity to link aspects to opinions. [31] em-
ployed BERT sentence embeddings [7] with a standard classifier
that classifies each word in the sentence into either Aspect, Opin-
ion or Other. In the same spirit, we use BERT as an embedding
layer along with a BiLSTM-CRF classification model. We also
leverage adversarial training to handle potential variations in
the language. Experiments show that 𝑆𝐴𝐶𝐶𝑆 ’s extractor yields
better performance in various test benchmarks.

Table 1: An example of an inverted index with degrees of
truth for each subjective tag and restaurant pair

Tag Restaurants

good food
Vue du Monde (0.89)
Anchovy (0.76)
Pizza Hut (0.82)

nice staff Vue du Monde (0.92)
Pizza Hut (0.63)

creative cooking
Anchovy (0.94)
Pizza Hut (0.34)
Kazuki’s (0.85)

fast delivery
Anchovy (0.13)
Pizza Hut (0.75)
McDonald’s (0.74)

3 SUBJECTIVE TAG BASED INDEXING AND
FILTERING IN CONVERSATIONAL
SEARCH SERVICES

To describe the pipeline of 𝑆𝐴𝐶𝐶𝑆 , we begin with illustrating
how subjective tags are used. We then move on to show how
𝑆𝐴𝐶𝐶𝑆 constructs these tags and how it uses them to answer
complex and subjective user utterances. It should be noted that,
while the proposed techniques are not domain specific, we choose
the restaurants domain as a use case in this paper in order to
illustrate the components of the proposed pipeline. We also as-
sume that the underlying dialog system is already equipped with
intent recognition [15, 23, 46] and slot filling techniques [4, 12].
Briefly stated, intent recognition allows the identification of user
intents from user utterances. For instance, from the following
user utterance: "I want to eat Italian food near Lyon in a romantic
ambiance", the dialog system identifies that the user is searching
for a restaurant. Once an intent is identified, the system also
extracts what is called slots (e.g., the type of cuisine (Italian), the
location of the restaurant (Lyon)). The chatbot then delegates the
search intent to a search API that retrieves a list of restaurants
filtered by objective criteria. The goal of 𝑆𝐴𝐶𝐶𝑆 is to re-filter this
list to only keep the restaurants which offer a romantic ambiance.

3.1 Subjective Tag Index
In order to use subjective tags, 𝑆𝐴𝐶𝐶𝑆 leverages an inverted index
data structure [36]. Table 1 shows a snippet of what the index
might look like 1. Each subjective tag points to a set of entities
(in this case restaurants) whose reviews include mentions of the
subjective tag. For example, good food in Table 1 points to Vue du
Monde, Anchovy and Pizza Hut, meaning that the reviews of these
restaurants mention the deliciousness of the food cooked there.
Also, every entity is accompanied by a degree of truth. Informally,
a degree of truth associated to a tag measures the degree of
certainty that 𝑆𝐴𝐶𝐶𝑆 exhibits when marking an entity with the
tag. In the case of Table 1, Vue du Monde is more likely to have
a nice staff than Pizza Hut (a degree of truth of 0.92 compared
to 0.63). The degrees of truth are computed automatically by
𝑆𝐴𝐶𝐶𝑆 .

After collecting the set of subjective tags, 𝑆𝐴𝐶𝐶𝑆 needs to
associate each tag with a set of entities, as depicted in Table 1.
Association, or mapping, between a tag and an entity is based on
similarity scores [53]: 𝑆𝐴𝐶𝐶𝑆 reads online reviews of the entity
1The degrees of truth reported in the table are for illustration only and do not reflect
the quality of these restaurants in the real world

Figure 1: Architecture of 𝑆𝐴𝐶𝐶𝑆

and extracts all subjective mentions from it. It then proceeds to
compute similarities between the subjective tags in the index
with those extracted from the reviews. If the similarity exceeds a
predefined threshold, 𝑆𝐴𝐶𝐶𝑆 includes the corresponding entity
to the index. Figure 1 illustrates this process.

The index in Figure 1 contains two subjective tags: good food
and great atmosphere. Suppose we have three entities (E1, E3
and E5) each having only one review. The extractor component
extracts subjective tags from the reviews, in this case good food,
superb atmosphere, really good ambiance. In the next step, the
similarity checker computes similarity scores between the re-
view tags and the index tags. Each time a similarity exceeds a
specified threshold, the indexer adds the corresponding entity to
the appropriate subjective tag in the index. Following the same
example in Figure 1, E1 and E5 are both included as mappings
to the subjective tag good food because their reviews both men-
tion it (good food and amazing pizza for E1 and E5 respectively).
However, the review of E3 only mentions the ambiance; hence
𝑆𝐴𝐶𝐶𝑆 does not add it as a mapping to good food. We use concep-
tual similarity which, in addition to the individual meaning of
words, also considers their nature or concept, for example pizza
being a type of food 2. Conceptual similarity has been shown to
work better on short phrases such as subjective tags than cosine
similarity. When building the index, 𝑆𝐴𝐶𝐶𝑆 automatically com-
putes the degrees of truth of an entity e with respect to tag. The
exact formula is shown in Equation 1.

𝐷𝑒𝑔_𝑡𝑟𝑢𝑡ℎ(𝑡𝑎𝑔, 𝑒) = 𝑙𝑜𝑔(|𝑅𝑒 | + 1)
|𝑇 𝑡𝑎𝑔
𝑒 |

∗
∑

𝑡 ∈𝑇 𝑡𝑎𝑔
𝑒

𝑆𝑖𝑚(𝑡𝑎𝑔, 𝑡) (1)

Where 𝑅𝑒 is the set of entity e’s reviews and 𝑇 𝑡𝑎𝑔
𝑒 is the set

of subjective tags automatically extracted from 𝑅𝑒 and whose

2Conceptual similarity is outside the scope of this paper and may be subject to
another submission

similarity score exceeds a predefined threshold 𝜃𝑖𝑛𝑑𝑒𝑥 when com-
pared to the tag tag. |𝑅𝑒 | and |𝑇 𝑡𝑎𝑔

𝑒 | are the number of elements
in both 𝑅𝑒 and𝑇

𝑡𝑎𝑔
𝑒 respectively. Equation 1 finds all review tags

which are similar to tag and computes the arithmetic mean of
their similarity scores, weighted by the number of reviews. The
motivation of multiplying the mean with the number of reviews
for each entity is that the more reviews there are, the more sta-
tistically significant the degrees of truth become. That is why
𝑆𝐴𝐶𝐶𝑆 privileges the entities having more reviews.

Going back to the example in Figure 1, when the user submits
a new utterance "I want a restaurant with a romantic ambiance",
𝑆𝐴𝐶𝐶𝑆 extracts romantic ambiance from the utterance. Because
this tag is unknown to 𝑆𝐴𝐶𝐶𝑆 , it adds it to the user tag history.
Consequently, in the next indexing round, 𝑆𝐴𝐶𝐶𝑆 includes ro-
mantic ambiance to the index and computes its entity mappings
along with their degrees of truth as has been explained above.
This mechanism enables 𝑆𝐴𝐶𝐶𝑆 to adapt to new user needs.

3.2 Filtering
In this section, we provide details about how 𝑆𝐴𝐶𝐶𝑆 utilizes
subjective tags to answer users subjective utterances.

Processing user utterances. Suppose the user submits a new
utterance: "I want an Italian restaurant in Melbourne that serves
delicious food and has a nice staff". 𝑆𝐴𝐶𝐶𝑆 forwards this utterance
to the underlying dialog system which finds the user intent (in
this case searchRestaurant) and calls a corresponding search API
(e.g. TripAdvisor, Yelp...). In this example, 𝑆𝐴𝐶𝐶𝑆 expects the API
to return the set of restaurants that are in Melbourne and serve
Italian food. We call this set S𝑎𝑝𝑖 . As mentioned before, neither
the dialog system nor the search API understand subjective in-
formation in the utterance such as delicious food and nice staff,
thereby ignoring them completely. 𝑆𝐴𝐶𝐶𝑆 extracts these tags
from the utterance and use them to filter and rank S𝑎𝑝𝑖 before
showing the final results to the user.

Probing the index. If the subjective tags extracted from the
user utterance exist in the index, the corresponding entities with
their degrees of truth are directly taken from the index. For
instance, in the previous utterance, nice staff exists in the index
depicted in Table 1, and thus the matching set ("Vue du Monde",
0.92), ("Pizza Hut", 0.63) is extracted as is. We call this set S𝑡1,
where t1 = "nice staff".

On the other hand, if the subjective tag is not found in the
index, 𝑆𝐴𝐶𝐶𝑆 adds it to the user tag history as discussed in
Section 3.1 and Figure 1 for later indexing. However, in order to
provide a good answer to the user in real time, 𝑆𝐴𝐶𝐶𝑆 combines
mappings of similar tags which are already in the index. To
illustrate this, we go back to the previous example. Delicious food
does not exist in the index of Table 1, but is similar to good food
and creative cooking. In this case, 𝑆𝐴𝐶𝐶𝑆 calculates the union of
the mappings corresponding to these two tags and multiply their
degrees of truth by the similarity score of delicious food with each
of the two subjective tags. Assume that:

𝑠1 = 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (delicious food, good food) (2)

𝑠2 = 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (delicious food, creative cooking) (3)

The set of entities that 𝑆𝐴𝐶𝐶𝑆 finds for delicious food is then
S𝑡2 = {("Vue du Monde", 𝑠1 × 0.89), ("Anchovy", 𝑠1 × 0.76 + 𝑠2 ×
0.94), ("Pizza Hut", 𝑠1 × 0.82 + 𝑠2 × 0.34), ("Kazuki’s", 𝑠2 × 0.85)}

After the construction of S𝑎𝑝𝑖 , S𝑡1 and S𝑡2, 𝑆𝐴𝐶𝐶𝑆 needs
to aggregate the entities coming from the search API, plus the
ones recovered from each subjective tag in the utterance. In
other words, 𝑆𝐴𝐶𝐶𝑆 computes the intersection of these sets
of entities according to Algorithm 1. It is worth noting that the
function search_api takes the user utterance as input parameter
and relies on the underlying dialog system and the search API
to provide results filtered by objective attributes alone. On the
other hand, the function extract_tags takes the user utterance as
input parameter and returns the list of subjective tags using the
extraction pipeline which we describe in Sections 4 and 5.

Algorithm 1 Filtering & Ranking
1: Let u be the user utterance
2: Let index be the inverted index
3: Let 𝜃 𝑓 𝑖𝑙𝑡𝑒𝑟 be the similarity threshold
4: S𝑎𝑝𝑖 ← 𝑠𝑒𝑎𝑟𝑐ℎ_𝑎𝑝𝑖 (𝑢)
5: 𝑡𝑎𝑔𝑠 ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑡𝑎𝑔𝑠 (𝑢)
6: for t in tags do
7: if 𝑡 ∈ 𝑖𝑛𝑑𝑒𝑥 .𝑘𝑒𝑦𝑠 then
8: S𝑡 ← 𝑖𝑛𝑑𝑒𝑥 [𝑡]
9: else
10: S𝑡 ← ⋃

𝑡𝑎𝑔∈𝑖𝑛𝑑𝑒𝑥.𝑘𝑒𝑦𝑠
{index[tag]} such that

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑡, 𝑡𝑎𝑔) > 𝜃 𝑓 𝑖𝑙𝑡𝑒𝑟

11: R ← ⋂
𝑡 ∈𝑡𝑎𝑔𝑠

{S𝑎𝑝𝑖 ,S𝑡 }

12: Return 𝑠𝑜𝑟𝑡 (𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒_𝑠𝑐𝑜𝑟𝑒𝑠 (R))

3.3 Ranking
𝑆𝐴𝐶𝐶𝑆 ranks the filtered set of entities according to their degrees
of truth across all subjective tags. We identify two situations for
ranking.

One subjective tag. If the user expresses a single subjective
filter in her utterance, the ranking is straight forward. 𝑆𝐴𝐶𝐶𝑆 sorts
the entities according to their degrees of truth in descending or-
der, so that the top results are the ones whose reviews strongly
mention the subjective tag.

Many subjective tags. In this case, 𝑆𝐴𝐶𝐶𝑆 has a separate
set of entities with their degrees of truth for each subjective tag.
However, an entity can belong to many of such sets. Thus, before
ranking becomes feasible, 𝑆𝐴𝐶𝐶𝑆 must aggregate the degrees
of truth for each entity across all subjective tags. Aggregation
is done via computing the arithmetic mean over all tags. We
also experimented with other aggregation methods such as the
product or min operators, but the arithmetic mean works better
in practice. 𝑆𝐴𝐶𝐶𝑆 then sorts the entities in descending order.
Algorithm 1 combines the filtering and ranking stages. In line 12,
the function aggregate_scores computes the arithmetic mean of
degrees of truth across the tags.

As mentioned before, a subjective tag is the concatenation of
two terms: the aspect term and the opinion term. Following
previous effort [31], we formulate the task of extracting subjective
tags from a given input sentence as a two-stage process: tagging
and pairing, as illustrated in Figure 2. Each word in the sentence
is first tagged as being an aspect (AS), an opinion (OP) or neither
(O). Then, every aspect term gets paired with its corresponding

Figure 2: Token Tagging and Pairing

opinion term to build the set of subjective tags from the input
sentence. In the following, we describe the techniques we propose
for tagging and pairing tasks. We describe tagging in Section 4
and pairing in Section 5.

4 TAGGING
We denote by 𝑟𝑖 a review sentence which consists of a sequence of
tokens 𝑟𝑖 = {𝑤𝑖1,𝑤𝑖2, ...,𝑤𝑖𝑛}. We use the IOB encoding scheme
[47] with the following classes: B-AS (Beginning of Aspect), I-AS
(Inside of Aspect), B-OP (Beginning of Opinion), I-OP (Inside of
Opinion) and O (Outside). The set of tags is thus 𝐿 = {B-AS, I-AS,
B-OP, I-OP, O}. The objective of tagging is to classify each token
𝑤𝑖 𝑗 in the sentence 𝑟𝑖 , into a class 𝑐𝑖 𝑗 ∈ 𝐿. The components of
𝑆𝐴𝐶𝐶𝑆 ’s tagging model are detailed below.

4.1 Baseline for the Tagging Pipeline
Figure 3 depicts the base architecture for tagging words into
aspects and opinions. We use BERT [7], the recently-developed
language model, as the embedding layer thanks to its proven
superior quality when compared to other embedding models [7].
As illustrated in Figure 3, BERT embeddings serve as input to
the Bidirectional LSTM (BiLSTM) layer [16], which encodes the
past context (all words prior to any given word in the sentence)
and the future context (all words following a given word) of
each word. Following [8, 35], we encode the text sequence from
both left to right (forward) and right to left (backward). We then
concatenate the resulting representations to form the final output
of the BiLSTM.

Finally, the BiLSTM output flows to the Conditional Random
Field (CRF) layer [28], which is paramount to encode dependen-
cies between the different labels of 𝐿. For example, I-OP cannot
follow I-AS in the label sequence. More generally, I-AS (or I-OP)
must either follow B-AS or I-AS (B-OP or I-OP). Given an input se-
quence 𝑧 = {𝑧1, 𝑧2, ..., 𝑧𝑛}, CRFs effectively utilize correlations be-
tween labels to predict the best label sequence 𝑦 = {𝑦1, 𝑦2, ..., 𝑦𝑛}.
Formally, the conditional probability function of CRFs is given
by:

𝑃 (𝑦 |𝑧,𝑊 ,𝑏) =

𝑛∏
𝑖=1

𝜓𝑖 (𝑦𝑖−1, 𝑦𝑖 , 𝑧)∑
𝑦′∈𝑌 (𝑧)

𝑛∏
𝑖=1

𝜓𝑖 (𝑦′𝑖−1, 𝑦
′
𝑖
, 𝑧)

(4)

where𝑌 (𝑧) denotes the set of possible labels for the sequence z
and𝜓𝑖 (𝑦𝑖−1, 𝑦𝑖 , 𝑧) = 𝑒𝑥𝑝 (𝑊𝑇

𝑦′,𝑦𝑧𝑖 + 𝑏𝑦′,𝑦) are potential functions
to be learned with𝑊𝑦′,𝑦 and 𝑏𝑦′,𝑦 being the weight and bias
vectors respectively. Decoding (i.e. solving the tagging task using
a CRF layer) consists in finding the best sequence of labels 𝑦 that
maximizes the log-likelihood given the input sequence z:

𝑦∗ = argmax
𝑦′∈𝑌 (𝑧)

𝑃 (𝑦′ |𝑧,𝑊 ,𝑏) (5)

In this work, we use linear-chain CRFs, where only interac-
tions between two successive labels are taken into consideration.

Figure 3: Sequence tagging model based on BERT + BiL-
STM + CRF

We also adopt the Viterbi algorithm [10] along with beam search
for efficient decoding of the label sequence.

4.2 Extending the Baseline with Domain
Adaptation

In "La carte of this restaurant is a killer", 𝑆𝐴𝐶𝐶𝑆 should be able
to tag la carte as an aspect and a killer as an opinion. However,
opinions are mostly adjectives whereas a killer is a noun, thereby
𝑆𝐴𝐶𝐶𝑆 might fail to recognize it as an opinion, or even mark
it as an aspect. Moreover, la carte is a rare word in the english
vocabulary, thus the tagger might not understand the word alto-
gether. This limitation is largely due to the fact that BERT has
been pre-trained on general Wikipedia articles [7]. As a conse-
quence, it does not know that a killer is a widely used idiom in
the restaurant jargon to characterize something as overly good.
It also ignores that la carte in this case means the menu, which
is an important aspect to be extracted. Hence, standard BERT
embeddings are blind to the domain and may hinder the tagging
performance of 𝑆𝐴𝐶𝐶𝑆 .

To make the embeddings more domain-aware, we follow the
guidelines of [58] who post-trained BERT on domain-specific
review corpora in order to make it understand opinion text rather
than genericWikipedia articles.We use reviews about restaurants
as a post-training dataset in our case. [58] also added another
fine-tuning iteration to make BERT aware of the task (e.g. as-
pect/opinion extraction), but on out-of-domain data. We find that
using domain knowledge alone works better in our case than
when leveraging both domain- and task-awareness. Experiments
show that domain adaptation adds up to 2.93 F1 score points over
the baseline.

4.3 Adversarial Learning for Dealing with
Language Expressiveness

Natural language is very nuanced, and introducing subtle changes
to the input sentences can change the meaning dramatically. For
example, adding not before the verb or changing always with

never reverse the meaning of the sentences completely. Unfortu-
nately, such changes happen frequently when using the trained
model with new sentences, unseen during training. This is par-
ticularly alarming when the changes are subtle, or insignificant
when assessed by a human evaluator, for example changing a
word with its synonym. However, word embeddings do not al-
ways align with human perception. For instance, two synony-
mous words might be far apart in the embedding space [9, 21, 40].
Even if they are close to each other, the tiny distance between
the embeddings can be enough to mislead the trained model
[38]. Adversarial examples have long been used to make trained
models robust against small input differences and perturbations
(noise). It has been shown to provide additional regularization
capabilities beyond that brought by the use of dropout alone [13].

We leverage adversarial learning to enhance the robustness
of 𝑆𝐴𝐶𝐶𝑆 ’s tagger against input noise. We generate adversarial
examples that are close to the original inputs and that should
share the same label sequence (i.e. aspect/opinion tags), yet are
specifically designed to fool the model into tagging them oth-
erwise. The creation of these adversarial inputs is enabled by
the introduction of small worst case perturbations bounded by a
chosen perturbation set, to decrease the model’s ability to pre-
dict correctly. The tagger is then trained on a mixture of clean
and adversarial examples to enhance its stability and robustness
against potential input perturbation. The objective function is
thus the following:

Min
𝜃
[𝛼.𝑙 (ℎ𝜃 (𝑥), 𝑦) + (1 − 𝛼). Max

𝛿 ∈Δ(𝑥)
𝑙 (ℎ𝜃 (𝑥 + 𝛿), 𝑦)] (6)

where ℎ𝜃 is the tagging model with 𝜃 being the corresponding
parameters. 𝑙 is the loss function and Δ(𝑥) is the set of pertur-
bations allowed for the input sequence x. In this work, we use
the 𝑙∞ ball: Δ(𝑥) = {𝛿 : | |𝛿 | |∞ < 𝜖} where 𝜖 is a hyperparameter
to be tuned. Equation 6 assumes the perturbations to be applied
directly on the embeddings as has been done in [38]. Solving
such an objective function exactly is intractable in complex net-
works. Consequently, by leveraging Danskin’s theorem [6], we
can first solve the inner maximization independently to find 𝛿∗
that maximizes the adversarial loss, and then adding 𝛿∗ to the
input to solve the outer minimization objective.

𝛿∗ = argmax
| |𝛿 | |∞<𝜖

𝑙 (ℎ𝜃 (𝑥 + 𝛿), 𝑦) (7)

Min
𝜃
[𝛼.𝑙 (ℎ𝜃 (𝑥), 𝑦) + (1 − 𝛼).𝑙 (ℎ𝜃 (𝑥 + 𝛿∗), 𝑦)] (8)

Finding an exact solution for 𝛿∗ is also an intractable problem
for complex models. We approximate 𝛿∗ by assuming a linear
tendency for the adversarial loss inside the norm-ball. We thus
use the Fast Gradient Sign Method (FGSM) suggested by [13] to
find a decent solution in an efficient way. The computation of 𝛿∗
is given by:

𝛿∗ = 𝜖.𝑠𝑖𝑔𝑛(𝑔) (9)

where 𝑔 = ∇𝛿 𝑙 (ℎ𝜃 (𝑥 + 𝛿), 𝑦). In Equation 8, the first loss is
the clean loss, while the second loss represents its adversarial
counterpart. The parameter 𝛼 denotes how much weight we
give to the adversarial example with respect to the original one.
Figure 4 illustrates the entire adversarial learning component.

Figure 4: Architecture for Adversarial learning using
BERT

5 PAIRING
In Figure 2, food is paired with really good, and service with a bit
slow 3 in order to create the corresponding subjective tags. Most
previous work [55, 56] employ simple heuristics such as word dis-
tance to pair aspects and opinions. However, such techniques fall
short of the expected accuracy especially on complex and tricky
input sentences. For example, the opinion professional would be
wrongfully paired with the aspect decor in the review "The staff
is friendly, helpful and professional. The decor is beautiful" when
relying on word distance alone, because professional is closer to
decor than to staff.

In this section, we first describe the two novel heuristics that
we propose to pair aspects with opinions (Section 5.1). Although
these heuristics can be directly used as an unsupervised pair-
ing model, in Section 5.2, we discuss how they are used in a
supervised model.

5.1 Pairing Heuristics
We design two types of unsupervised heuristics for pairing. The
first category is based on constituency parse trees [24, 25, 41]
while the second utilizes the attention mechanism [17].

Heuristic based on parse trees. The first method is a rule-
based method. The intuition behind it is that associated aspects
and opinions should be close to each other in the parse tree of the
input sentence. We start by building the parse tree and then apply
a greedy strategy that maps every aspect term to the "closest"
opinion term in the parse tree. Given that a single aspect can
be mapped to multiple opinions 4, we use this heuristic twice:
from aspects to opinions and then from opinions to aspects. For
example, in "The staff is friendly and professional", friendly is
closer to staff than professional is in the parse tree. Hence, the
first version outputs the pair (staff, friendly). On the other hand,
the second run starts from opinions and looks for the closest
aspect. It would thus give the pairs (staff, friendly) and (staff,
professional).

Heuristic based on BERT attention heads. The idea be-
hind using BERT attention heads for pairing is motivated by the
need to assign relevance scores to aspects and opinions. Ideally,
we want each aspect term to focus more on its corresponding
opinion (high relevance score) and ignores the rest (low rele-
vance scores). Attention can be leveraged to approximate rele-
vance. First introduced to enhance neural machine translation
[3] and later adapted to nearly every other NLP task, attention is
a mechanism to assign importance values to every token in the
sequence given a query term. We say that the query term attends
3A multi-word aspect (or opinion) is regarded as a single aspect (opinion) term
4The reverse also applies: An opinion term can be paired with multiple aspects as
well

Figure 5: BERT attention head for pairing aspect and opin-
ion terms

to the tokens which have the highest attention scores. In our
case, the query term is the aspect term, and the sequence is the
input sentence. Using this method, the goal is to distribute the
attention of every aspect term so that it attends to the rightful
opinion (that of the highest attention).

Fortunately, BERT is an attention-based model, and we have
it already trained on aspect/opinion extraction as explained in
Section 4. We hypothesize that, while learning the downstream
task of tagging aspects and opinions, BERT leverages its attention
heads in a way that makes aspects attend to the rightful opinions,
and vice versa. Figure 5 confirms our hypothesis. It illustrates one
attention head of BERT. Each row in the figure is the attention
distribution of the corresponding word over the entire input
sequence; the darker the color, the higher the attention. In the
figure, food is darkest at delicious, meaning that food’s attention
to delicious is very high. In the same spirit, both staff and decor
attend to amazing. Thus, BERT attention heads act as simple no-
training-required classifiers that, given an aspect, output themost
attended to opinion. We find that BERT heads capture various
linguistic properties, some of which correspond remarkably well
to the notion of pairing aspects with opinions. The best head we
found for pairing has an accuracy of 82.62% on the pairing test
set (Section6.4), which is excellent given the quasi-none effort
this method needs.

5.2 Supervised Learning-based Approach for
Pairing

We also provide a supervised learning alternative to the problem
of pairing. We formulate our pairing objective as a classification
problem. Given an input sentence 𝑠𝑖 (e.g., "The food is delicious
and the staff are friendly") and a short phrase 𝑝𝑖 (e.g., "delicious
food")5, the classifier classifies 𝑝𝑖 as being a correct extraction
from 𝑠𝑖 or not. To use this classifier with 𝑆𝐴𝐶𝐶𝑆 , we first use the
tagger to extract aspects and opinions from 𝑠𝑖 . We then construct
all possible pairs from the sets of aspects and opinions regardless
of their soundness. For example, suppose we have food and staff
as aspects, and delicious and friendly as opinions. The list of
all possible pairings is: 𝑃𝑎𝑙𝑙 = ["delicious food", "delicious staff",
"friendly food", "friendly staff"]. We feed 𝑠𝑖 with each pair from
𝑃𝑎𝑙𝑙 into the classifier, and consider it as a correct extraction if
the classifier returns a positive label.

5In the context of this work, these short phrases are subjective tags

Figure 6: Data Programming pipeline for pairing

We use data programming [2, 49] in order to create the dataset
necessary to train such a classifier. The entire pipeline is illus-
trated in Figure 6. First, a set of labeling functions [2, 48, 49] use
the heuristics described in Section 5.1 in order to independently
assign a label to every (𝑠𝑖 , 𝑝𝑖) pair. These labeling functions are
considered weak supervision sources.

The second step in the pipeline aggregates the labels from the
labeling functions to construct a single overall label for every
(𝑠𝑖 , 𝑝𝑖) pair, based on agreements and disagreements between
labeling functions. This is generally achieved with generative
models which, by aggregating enough datapoints, end up creating
a decent labeled training dataset. Finally, we use this dataset
to train a discriminative model. In our case, it’s the classifier
discussed above. It is important to note that, in our case, we have
a working solution for pairing aspects with opinions at each step
of the pipeline. However, experiments show that committing to
the entirety of the pipeline and using the discriminative model
(and thus the supervised model) drives a considerable boost in
pairing accuracy when compared to the unsupervised methods.

In the following, we describe the labeling functions, the genera-
tive and discriminative models we use in the supervised learning-
based pairing pipeline.

Labeling functions for the pairing pipeline. A labeling
function in 𝑆𝐴𝐶𝐶𝑆 ’s pairingmodule has the same interface as the
classifier, i.e. expects a sentence 𝑠𝑖 and a phrase 𝑝𝑖 as input, and
outputs a binary label telling whether 𝑝𝑖 is a legit extraction from
𝑠𝑖 . All labeling functions are based on the heuristics presented
in Section 5.1. To transform each heuristic 𝐻 𝑗 into a labeling
function 𝐿𝑗 , we follow the procedure below:

(1) Extract all aspects and opinions from 𝑠𝑖 using 𝑆𝐴𝐶𝐶𝑆 ’s
tagger.

(2) Use 𝐻 𝑗 to find the pairs 𝑃𝐻 𝑖
𝑗
as detailed in Section 5.1.

(3) If the short phrase 𝑝𝑖 belongs to the set of constructed
pairs 𝑃𝐻 𝑖

𝑗
, output 1. Otherwise, return 0.

We use seven different labeling functions: two are based on
the parse tree method (the first from aspects to opinions, the
second the other way around) while the remaining five rely on
BERT attention scores employing different heads. The choice of
attention heads has been made after a qualitative analysis.

Generative model for the pairing pipeline. We use the
generativemodel proposed by Snorkel [48] in our pipeline. Snorkel
is a data programming framework that integrates the noisy sig-
nals of multiple labeling functions to estimate the true label
class[48]. Snorkel offers two mechanisms for aggregation. The
simplest is a majority vote model where each labeling function is
regarded as an independent voter. The chosen label for each dat-
apoint is the most agreed upon by labeling functions. The other
method incorporates statistical properties of labeling functions

such as accuracies and correlations. Snorkel then trains a proba-
bilistic graphical model to generate the true labels without access
to ground truth data. Training is based on agreements and dis-
agreements between the different labeling functions as dictated
by data programming. Although the authors of Snorkel state that
the probabilistic generative model works better in practice than
the majority vote, we found the latter to be more accurate.

We can directly use the generative model to extract subjec-
tive tags from review sentences. However, a better use of data
programming lies in the automatic creation of labelled training
data to train a subsequent discriminative model. The advantages
of doing so are twofold: First, the discriminative model general-
izes beyond the scope of examples fed to the labeling functions.
Second, the discriminative model is faster to execute because
the generative model loops through all labeling functions and
aggregates their outputs, whereas the discriminative model only
uses one forward pass in case of neural networks.

Discriminative model for the pairing pipeline.We train
a simple two-layer neural network with a sigmoid activation
function. We encode 𝑠𝑖 and 𝑝𝑖 using BERT embeddings. We train
the classifier with the training data that has been automatically
created with the procedure explained in the previous sections.
Our experiments confirm that the discriminative model outper-
forms the generative one, as has been found in [48].

6 EXPERIMENTS
We first begin by showing our experimental settings before de-
scribing the experiments that we conducted. The first set of ex-
periments evaluates the overall performance of 𝑆𝐴𝐶𝐶𝑆 and com-
pares it to two baselines (Section 6.2). We then move to assess the
quality of 𝑆𝐴𝐶𝐶𝑆 components. We evaluate the sequence tagger
in Section 6.3 and the pairing mechanism in Section 6.4.

6.1 Experimental Settings
Datasets. We apply 𝑆𝐴𝐶𝐶𝑆 to the domain of restaurants whose
online reviews we get from the publicly available Yelp Dataset
[1]. Since it covers a wide array of businesses, we filter it to only
keep reviews about Italian restaurants in Montreal, resulting
in 280 entities (restaurants) with 7061 reviews. To train the as-
pect/opinion tagger, we use the training dataset created by [31]
that contains 800 sentences, wherein each token is accompanied
by its label. For pairing, we use the same training dataset as in
[31] but without the labels since we augment the data and infer
the labels with Snorkel [48].

Processing. We implemented 𝑆𝐴𝐶𝐶𝑆 in Python using stan-
dard packages such as PyTorch [42] for neural networks, Hug-
gingFace transformers library [57] for BERT, NLTK [34] for tex-
tual preprocessing and Scikit-Learn [43] for evaluation metrics.
In order to incorporate domain knowledge into BERT, we directly
use the models for restaurants published on Huggingface com-
munity hub by [58]. For adversarial training, we fix the value of
𝛼 to 0.5 (Equation 8) while we vary 𝜖 between {0.1, 0.2, 0.5, 1.0,
2.0}.

6.2 Comparing 𝑆𝐴𝐶𝐶𝑆 with Baselines
In this experiment, we evaluate the overall performance of 𝑆𝐴𝐶𝐶𝑆 ,
and then compare it to two strong baselines. The evaluation
works as follows: we first prepare a set of subjective tags as a test

set. Each system that we want to evaluate takes the tags as input
and returns an ordered list of results, sorted by their degree of
relevance with respect to the subjective tags. The result of each
system is then compared to the ideal ordering of entities. The
system whose ordering is "closest" to the ideal one is deemed the
best. We apply this experiment to the domain of restaurants.

Preparing subjective tags. Since there is no benchmark for
subjective tags, we had to create our own. [39] identified the most
important features restaurant seekers consider when choosing
a restaurant. These features include "delicious food", "creative
cooking", "varied menu", "romantic ambiance"... We chose 18 of
them to serve as our subjective tags for testing purposes. We
then construct combinations of these tags by uniform random
sampling. Each combination will form a potential subjective user
utterance. For example, if random sampling puts together the
tags "clean plates" and "quick service", it works as if a user gave the
following utterance to the system: "I am looking for a restaurant
that delivers a quick service with clean plates.". The number of tags
per combination depends on the level of difficulty of the query
(utterance). In this experiment, we set 3 levels of difficulty: Short
with either 1 or 2 tags; Medium with 3 or 4; Long with 5 or 6 tags.
Each set (level of difficulty) contains 100 queries (combinations).

Evaluation metrics. To measure how well the entities re-
turned by 𝑆𝐴𝐶𝐶𝑆 and the baselines satisfy the queries in the test
set, we use the well-known Normalized Discounted Cumulative
Gain (NDCG) [5] which is a measure of ranking quality. Formally,
this metric computes the quality of a ranked list and divides it
by that of the ideal ordering, thus giving a score between 0 and
1, the higher the better. For illustration purposes, assume that
subjective query Q has n subjective tags: 𝑄 = {𝑞1, 𝑞2, ..., 𝑞𝑛} and
that we input Q to 𝑆𝐴𝐶𝐶𝑆 . The latter returns a list of top-k
entities 𝐸 = {𝑒1, 𝑒2, ..., 𝑒𝑘 }. We define 𝑠𝑎𝑡 (𝑞𝑖 , 𝑒 𝑗) ∈ [0, 1] as the
degree with which entity 𝑒 𝑗 satisfies the subjective tag 𝑞𝑖 . The
NDCG score is computed as follows:

𝐷𝐶𝐺 (𝑄, 𝐸) =
𝑘∑
𝑗=1
(2

1
𝑚

∑𝑚
𝑖=1 𝑠𝑎𝑡 (𝑞𝑖 ,𝑒 𝑗) − 1)/𝑙𝑜𝑔2 (𝑗 + 1) (10)

𝑁𝐷𝐶𝐺 (𝑄, 𝐸) = 𝐷𝐶𝐺 (𝑄, 𝐸)/𝑖𝐷𝐶𝐺 (𝑄) (11)
Intuitively, a highly relevant entity (that with 𝑠𝑎𝑡 (𝑞𝑖 , 𝑒 𝑗) scores

close to 1) should be at the top in order for the DCG to be high.
iDCG in Equation 11 corresponds to the DCG score of the ideal
ordering. It is fairly easy to get the iDCG as it is only a matter
of sorting the entities with respect to the sum of their 𝑠𝑎𝑡 (𝑞𝑖 , 𝑒 𝑗)
scores and then computing the DCG. Finally, we take the arith-
metic mean over all queries to compute the quality of the entire
test set.

Ground truth. We obtain the ground truth 𝑠𝑎𝑡 (𝑞𝑖 , 𝑒 𝑗) of sub-
jective tag 𝑞𝑖 and entity 𝑒 𝑗 via crowdsourcing. We give each
worker a tag 𝑞𝑖 and one review 𝑟𝑘

𝑗
from the set of online reviews

corresponding to entity 𝑒 𝑗 . The crowdsourcing task is to inspect
the review 𝑟𝑘

𝑗
and tell whether it mentions the tag 𝑞𝑖 or not. The

worker must assign each pair of review/tag a relevance score
among the following: 0 for no relevance, 13 for weak relevance, 23
for strong relevance and 1 for perfect relevance. As an example,
given the review sentence "The food is very delicious but the ser-
vice is terrible", the tag great food should be marked as perfectly

Table 2: Comparing 𝑆𝐴𝐶𝐶𝑆 to baselines

System Short Medium Long
IR 0.829 0.896 0.916

SIM - 1 att 0.828 0.886 0.907
SIM - 2 atts 0.837 0.891 0.909

𝑆𝐴𝐶𝐶𝑆 - 6 tags 0.815 0.874 0.896
𝑆𝐴𝐶𝐶𝑆 - 12 tags 0.825 0.882 0.902
𝑆𝐴𝐶𝐶𝑆 - 18 tags 0.854 0.911 0.928

relevant, nice decor not relevant while slow service as weakly rel-
evant because the slowness of the service is somewhat related to
it being terrible. For each review/tag pair, we ask three different
workers to provide labels, from which we take the majority vote,
resulting in 𝑠𝑎𝑡 (𝑞𝑖 , 𝑟𝑘𝑗) relevance scores. To obtain 𝑠𝑎𝑡 (𝑞𝑖 , 𝑒 𝑗), we
take the mean of 𝑠𝑎𝑡 (𝑞𝑖 , 𝑟𝑘𝑗) across the reviews of the same en-
tity 𝑒 𝑗 . The crowdsourcing experiment has been conducted on
Yandex Toloka platform6.

Baselines. We compare 𝑆𝐴𝐶𝐶𝑆 to two baselines: an Informa-
tion Retrieval (IR) system and a custom simulation (SIM). The
IR baseline uses Okapi BM25 [5] retrieval model. We follow the
work of [11] and add the capability to expand the terms of the
query into synonymous and related terms, as well as select the
best query combinationmethod they found tomake the IR system
more competitive.

SIM represents what a determined and tireless user can get
from Yelp or other similar online services. Because these services
provide a set of queryable attributes (such as NoiseLevel, Am-
biance or GoodForGroups), the user might filter the search results
with the attributes she thinks closely resemble her subjective
preferences. For example, if she is interested in quiet restaurants,
she can set the attribute NoiseLevel to calm and the attribute
GoodForGroups to False in Yelp’s interface. She can also rank
the results by star rating. SIM is a simulation of such behavior.
We assume that the user can choose one or two attributes from
Yelp’s interface at a time. SIM computes all possible combina-
tions of attribute values and selects the one that maximizes the
NDCG score, thus finding the best top-k results that satisfy the
subjective queries. It’s needless to say that SIM constitutes a very
strong baseline to compare 𝑆𝐴𝐶𝐶𝑆 against.

Comparison and analysis. Table 2 reports the NDCG scores
of the three systems on the test set. Each column corresponds to
the level of difficulty, that is Short, Medium or Long. The first row
shows the quality of the IR system. The following two lines are
variations of SIM using only one attribute, or a combination of
two separate attributes. The last 3 rows describe the performance
of 𝑆𝐴𝐶𝐶𝑆 , each time with a different number of subjective tags
present in the index. This is to simulate the adaptive capability
of 𝑆𝐴𝐶𝐶𝑆 as interactions with users unfold.

In all difficulty levels, 𝑆𝐴𝐶𝐶𝑆 outperforms the information
retrieval system with a margin between 1.2% and 2.5%. This
is not surprising because the IR system is based on keywords
and looks for exact match whereas 𝑆𝐴𝐶𝐶𝑆 models subjective
attributes with subjective tags. Table 2 shows that 𝑆𝐴𝐶𝐶𝑆 is
superior to keyword-based systems even when the latter are
bulked with query expansion and adequate predicate aggregation
techniques. On the other front, SIM simulates the behavior of a

6https://toloka.yandex.com

Table 3: Dataset Descriptions with number of sentences
for train and test

Dataset Description Train Test Total
S1 SemEval-14 Restaurants 3041 800 3841
S2 SemEval-14 Electronics 3045 800 3845
S3 SemEval-15 Restaurants 1315 685 2000
S4 Booking.com Hotels 800 112 912

determined user that runs through all possible combinations of
queryable attributes that online services such as Yelp offer. To
make the evaluation challenging, we take the combination that
maximizes the NDCG score, thus reflecting the best result a user
can have when interacting with Yelp’s interface. As shown on
the table, considering two attributes yields better results than
one attribute, but with diminishing returns. That is why we don’t
bother searching the space of more than two attributes, which
adds a non-negligible amount of computation. 𝑆𝐴𝐶𝐶𝑆 outruns
SIM with 2 attributes by a margin between 1.7% and 2.0%.

Evenwith a small number of tags in the index, the performance
of 𝑆𝐴𝐶𝐶𝑆 is comparable to that of IR or SIM. This is especially the
case at the initialization of the index, where it finds itself nearly
empty (in Table 2, the index contains 6 tags only). However, as
𝑆𝐴𝐶𝐶𝑆 interacts with users, it extracts new subjective tags from
user utterances and adds them to the index in a dynamic and
adaptive way. This experiment demonstrates that adding more
tags to the index improves the overall accuracy (improvement
between 3.2% and 3.9%), and confirms that 𝑆𝐴𝐶𝐶𝑆 adapts to new
user needs.

We also observe that, for all three systems, accuracy increases
with a higher number of subjective criteria. We hypothesize that
with more subjective tags, the list of restaurants which verify
all the subjective filters shrinks, leading to a lower margin for
error in all systems; thus a higher NDCG score. Nonetheless,
𝑆𝐴𝐶𝐶𝑆 is still the best no matter the number of subjective tags
to be considered. We also observe that the largest improvement
happens with short queries (1 or 2 subjective tags therein). This
result reinforces the integration of 𝑆𝐴𝐶𝐶𝑆 to task-oriented dialog
systems where utterances are short and usually span a small
number of subjective filters.

6.3 Sequence Tagging Evaluation
We show that the aspect and opinion tagger of 𝑆𝐴𝐶𝐶𝑆 is of better
quality than that of state of the art, especially when the train-
ing dataset is small. We evaluate the sequence tagging model
with 4 different datasets summarised in Table 3. The first three
datasets are from SemEval competitions: SemEval 2014 Task
4 (Restaurants and Electronics)[45] and SemEval 2015 Task 12
(Restaurants)[44]. Each dataset contains a set of sentences where
each token is labeled as being an aspect, an opinion or neither,
following IOB coding scheme [47]. The original SemEval datasets
contain labels for aspects only. However, we use the versions
of [31, 55, 56] who added labels for opinions to the original sen-
tences. The last dataset has been created and labeled by [31].
The goal of this experiment is to compare 𝑆𝐴𝐶𝐶𝑆 ’s tagger with
the strongest previous works in the literature, using datasets of
different sizes and domains as well.

Other extraction tasks such as Named Entity Recognition
(NER) [51] employ F1 to measure the quality of tagging. In the
same spirit, Table 4 reports F1 scores of the extraction quality.
For an aspect (or opinion) to be counted as correctly extracted,

Table 4: Evaluation of aspect/opinion tagger

Models S1 S2 S3 S4
OpineDB 81.82 75.44 72.30 67.41

OpineDB + DK 83.06 75.42 73.86 69.64
Adversarial (𝜖 = 0.1) 81.23 76.56 74.63 70.16
Adversarial (𝜖 = 0.2) 83.46 76.97 73.64 72.34
Adversarial (𝜖 = 0.5) 84.43 75.36 72.28 70.32
Adversarial (𝜖 = 1.0) 82.80 67.50 73.47 70.38
Adversarial (𝜖 = 2.0) 82.93 71.39 73.27 68.42

it needs to match the exact terms present in the ground truth.
We compare our tagger against two strong baselines: OpineDB’s
tagger [31] which is a BERT-based solution that outperformed
previous works in the literature [55, 56] and currently enjoys
state of the art performance. We also enhance OpineDB’s tag-
ger with the domain-specific fine-tuning strategy suggested by
[58] to make it even stronger (OpineDB + DK in Table 4). We
evaluate our adversarial tagging model with different sizes of
perturbations (𝜖 values) as shown in Table4, but we fix 𝛼 = 0.5
(Equation 8) across all runs. The models are trained for 15 epochs.

The adversarial tagging model beats state of the art perfor-
mance in all four datasets with an improvement ranging from
1.53% to 4.93%. As shown in the table, fine-tuning BERT with
domain knowledge (DK) improves the performance by up to
2.23%, confirming the findings of [58] on aspect-based sentiment
analysis. However, the boost of domain fine-tuning is not enough
to outperform the adversarial training component, motivating
the integration of adversarial examples in deep learning models.
We also note that the adversarial component works better for
smaller datasets (S4). We believe this is due to the regularization
capabilities adversarial training provides as a counter-measure
against overfitting beyond what is already ensured with dropout.
We also notice that the tagging model performs best with lower
perturbation sizes (𝜖 ∈ {0.1, 0.2, 0.5}), in which case the adversar-
ial examples remain "closer" to the original ones, in contrast to
large perturbation sizes (𝜖 ∈ {1.0, 2.0}) that can lead the model
to exhibit poor accuracy. The issue of large 𝜖 values is espe-
cially noticeable with the Electronics dataset (S2) where 𝜖 = 1.0
makes the adversarial model worse than OpineDB’s baseline. We
hypothesize that, since the Electronics dataset contains many
technical terms such as brand names and numerical references,
adding slight perturbations can change the meaning of terms
completely while keeping the same labels, leading to the model’s
poor performance.

These results are very promising in the context of task-oriented
dialog systems. Since chatbots should cover a wide array of do-
mains, they need to be trained and fine-tuned for every single
one of them. This task implies the creation of various datasets
that are large enough to ensure a decent learning. Fortunately,
Table 4 shows that our tagging model is efficient even with small
training data (S4), thus eliminating the need to build large and
costly datasets.

6.4 Pairing Evaluation
In this section, we evaluate the accuracy of the pairing model. We
use the test benchmark created by [31] and employed to conduct
their own experiments. Each test example consists of a review
sentence (e.g., "The food is delicious and the staff is helpful"), a
tag ("delicious staff") and the label is whether the tag is a correct

Table 5: Evaluation of the pairing models

Models Accuracy Precision Recall F1
OpineDB 83.87 / / /

lf_bert_7:10 82.62 95.02 78.36 85.89
lf_bert_3:10 74.56 91.54 68.66 78.46
lf_bert_3:8 68.26 91.76 58.21 71.23
lf_bert_4:6 75.82 93.00 69.40 79.49
lf_bert_8:9 77.33 94.95 70.15 80.69
lf_tree_op 74.06 92.31 67.16 77.75
lf_tree_as 76.07 91.00 71.64 80.17

Majority Vote 84.10 97.20 78.70 87.00
Probablistic Model 82.40 98.10 75.40 85.20
Discriminative 86.90 92.52 87.69 90.04

extraction from the review sentence. The test set contains 397
sentences with a fairly equal amount of positive and negative
examples. We compare the accuracy of 𝑆𝐴𝐶𝐶𝑆 ’s pairing model
with that of [31] in Table 5. To highlight the effectiveness of data
programming in the context of pairing and motivate the use of
both generative and discriminative models, we also assess the
quality of every step in the data programming pipeline presented
in Section 5.2. Thus, Table 5 reports the accuracy, precision, recall
and F1 scores of all seven labeling functions that we used in our
solution, both types of generative models (Majority vote and the
probabilistic graphical model) and the supervised discriminative
classifier.

We take the accuracy score of OpineDB pairing method di-
rectly from their paper [31] as we use the same test set. However,
they do not report their precision, recall and F1 scores. In Table 5,
lf_bert_l:h corresponds to the labeling function that is based on
BERT using the attention head number h at layer l. lf_tree_op is
the labeling function that uses the parse tree and that goes from
each opinion to its closest aspect. lf_tree_as travels from aspects
to opinions. We train the model with Booking.com dataset for
hotels.

𝑆𝐴𝐶𝐶𝑆 ’s pairing model outperforms that of [31] by a margin
of 3.03% in accuracy. This result confirms the effectiveness of
data programming and weak supervision, and shows that really
robust and efficient deep learning models can be designed with
little effort and much less resources rather than relying on costly
manual annotation. In Table 5, the labeling functions have dif-
ferent accuracies but they all suffer from low recall. We believe
this phenomenon is due to the fact that labeling functions are
simple heuristics in the first place, and thus fail to cover the en-
tirety of the input space. On the other hand, they all enjoy very
high precision, ranging from 91.00% to 95.02%. This insight sheds
some light on the nature of our labeling functions and suggests
to direct future work on designing heuristics that are less-precise
but wide-reaching in order to balance precision and recall ratios.
The generative models in Table 5 inherit the high precision of the
labeling functions, with the probabilistic model scoring an out-
standing 98.10%. However, they also drag the low recall, but are
better in general than labeling functions when taken separately.
This is due to the nature of generative models which maximize
the benefits of labeling functions while minimizing their risk
by combining and integrating their respective labels. Our find-
ings support the original statements of [48]. Nevertheless, the
experiment shows that the majority vote model surpasses the
probabilistic graphical model in terms of accuracy, unlike what

[48] reported. One explanation for this is that our labeling func-
tions are already accurate enough and have comparable F1 scores,
leading to similar votes. Thus, consensus should be relatively
easier to reach, translating to better accuracy. Finally, we find
that the discriminative model is the top scoring model in both ac-
curacy, recall and F1, because it has been trained in a supervised
fashion. Rather than depending on labeling functions to provide
noisy labels, the discriminative model analyzes the feature space
and generalizes its classification decisions to new and potentially
unseen input; hence the high recall.

7 CONCLUSION
We proposed 𝑆𝐴𝐶𝐶𝑆 : a Natural Language Understanding mod-
ule for task-oriented dialog systems which allows to recognize
the subjective signals in user utterances and filter search re-
sults accordingly. 𝑆𝐴𝐶𝐶𝑆 is based on the inverted index data
structure and mines subjective information from online reviews.
We propose a novel subjective tag extraction pipeline that is
robust against variations of natural language. We also propose
two novel heuristics for pairing an aspect to an opinion. These
heuristics aim to overcome the limitation of word-based distance
approaches for pairing an aspect term to an opinion term.We also
performed extensive evaluation of the proposed subjective tag
extraction and pairing techniques. The performed experiments
show that these techniques outperform existing approaches.

The advancements brought by 𝑆𝐴𝐶𝐶𝑆 are promising, albeit
far from perfect. As future work, we plan to investigate the incor-
poration of search automata as a substitute for inverted indexes.
Subjective digital assistants should be able to take into account
user profiles and adjust their search and interaction behavior ac-
cordingly. We also plan to extend the robustness of the proposed
techniques to cater for biased or fraudulent online reviews. For
instance, a reviewer might have been paid by a business owner
to write positive reviews about it, or negative reviews about its
competitors. We have to differentiate between truthful and fake
reviews in order to provide a transparent search experience for
users. Finally, given the importance of thresholds in similarity
assessments, it would be useful for 𝑆𝐴𝐶𝐶𝑆 to adjust these dynam-
ically depending on the semantics of the subjective tags being
compared.

ACKNOWLEDGEMENT
Thisworkwas partially supported by the PICASSO (IDEX/FEL/2018/01
- 18IA102UDL) project at LIRIS centre.

REFERENCES
[1] 2020. MS Windows NT The Yelp Dataset. https://www.yelp.com/dataset/
[2] Stephen H Bach, Bryan He, Alexander Ratner, and Christopher Ré. 2017.

Learning the structure of generative models without labeled data. Proceedings
of machine learning research 70 (2017), 273.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[4] Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang Tang. 2017. A survey on
dialogue systems: Recent advances and new frontiers. Acm Sigkdd Explorations
Newsletter 19, 2 (2017), 25–35.

[5] D Manning Christopher, Raghavan Prabhakar, and Schacetzel Hinrich. 2008.
Introduction to information retrieval. An Introduction To Information Retrieval
151, 177 (2008), 5.

[6] John M Danskin. 2012. The theory of max-min and its application to weapons
allocation problems. Vol. 5. Springer Science & Business Media.

[7] JacobDevlin,Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018).

[8] Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A
Smith. 2015. Transition-based dependency parsing with stack long short-term
memory. arXiv preprint arXiv:1505.08075 (2015).

https://www.yelp.com/dataset/

[9] Manaal Faruqui, Jesse Dodge, Sujay K Jauhar, Chris Dyer, Eduard Hovy, and
Noah A Smith. 2014. Retrofitting word vectors to semantic lexicons. arXiv
preprint arXiv:1411.4166 (2014).

[10] G David Forney. 1973. The viterbi algorithm. Proc. IEEE 61, 3 (1973), 268–278.
[11] Kavita Ganesan and Chengxiang Zhai. 2012. Opinion-based entity ranking.

Information retrieval 15, 2 (2012), 116–150.
[12] Jianfeng Gao, Michel Galley, Lihong Li, et al. 2019. Neural approaches to

conversational ai. Foundations and Trends® in Information Retrieval 13, 2-3
(2019), 127–298.

[13] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining
and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[14] Alon Y Halevy. 2019. The Ubiquity of Subjectivity. IEEE Data Eng. Bull. 42, 1
(2019), 6–9.

[15] Homa B Hashemi, Amir Asiaee, and Reiner Kraft. 2016. Query intent detection
using convolutional neural networks. In International Conference on Web
Search and Data Mining, Workshop on Query Understanding.

[16] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory.
Neural computation 9, 8 (1997), 1735–1780.

[17] Dichao Hu. 2019. An introductory survey on attention mechanisms in NLP
problems. In Proceedings of SAI Intelligent Systems Conference. Springer, 432–
448.

[18] Minqing Hu and Bing Liu. 2004. Mining and summarizing customer reviews.
In Proceedings of the tenth ACM SIGKDD international conference on Knowledge
discovery and data mining. 168–177.

[19] Minqing Hu and Bing Liu. 2004. Mining opinion features in customer reviews.
In AAAI, Vol. 4. 755–760.

[20] K Indhuja and Raj PC Reghu. 2014. Fuzzy logic based sentiment analysis of
product review documents. In 2014 First International Conference on Computa-
tional Systems and Communications (ICCSC). IEEE, 18–22.

[21] Sujay Kumar Jauhar, Chris Dyer, and Eduard Hovy. 2015. Ontologically
grounded multi-sense representation learning for semantic vector space mod-
els. In proceedings of the 2015 conference of the north American chapter of
the Association for Computational Linguistics: human language technologies.
683–693.

[22] Wei Jin, Hung Hay Ho, and Rohini K Srihari. 2009. A novel lexicalized HMM-
based learning framework for web opinion mining. In Proceedings of the 26th
annual international conference on machine learning, Vol. 10. Citeseer.

[23] Joo-Kyung Kim, Gokhan Tur, Asli Celikyilmaz, Bin Cao, and Ye-Yi Wang. 2016.
Intent detection using semantically enriched word embeddings. In 2016 IEEE
Spoken Language Technology Workshop (SLT). IEEE, 414–419.

[24] Dan Klein and Christopher D Manning. 2003. Accurate unlexicalized parsing.
In Proceedings of the 41st annual meeting of the association for computational
linguistics. 423–430.

[25] Dan Klein and Christopher D Manning. 2004. Corpus-based induction of
syntactic structure: Models of dependency and constituency. In Proceedings
of the 42nd annual meeting of the association for computational linguistics
(ACL-04). 478–485.

[26] George Klir and Bo Yuan. 1995. Fuzzy sets and fuzzy logic. Vol. 4. Prentice hall
New Jersey.

[27] Ari Kobren, Pablo Barrio, Oksana Yakhnenko, Johann Hibschman, and Ian
Langmore. 2019. Constructing High Precision Knowledge Bases with Subjec-
tive and Factual Attributes. In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining. 2050–2058.

[28] John Lafferty, AndrewMcCallum, and Fernando CN Pereira. 2001. Conditional
random fields: Probabilistic models for segmenting and labeling sequence data.
(2001).

[29] Parisa Lak and Ozgur Turetken. 2014. Star ratings versus sentiment analysis–a
comparison of explicit and implicit measures of opinions. In 2014 47th Hawaii
International Conference on System Sciences. IEEE, 796–805.

[30] Fangtao Li, Chao Han, Minlie Huang, Xiaoyan Zhu, Ying-Ju Xia, Shu Zhang,
and Hao Yu. 2010. Structure-aware review mining and summarization. In
Proceedings of the 23rd international conference on computational linguistics.
Association for Computational Linguistics, 653–661.

[31] Yuliang Li, Aaron Feng, Jinfeng Li, Saran Mumick, Alon Halevy, Vivian Li,
and Wang-Chiew Tan. 2019. Subjective databases. Proceedings of the VLDB
Endowment 12, 11 (2019), 1330–1343.

[32] Bing Liu. 2012. Sentiment analysis and opinion mining. Synthesis lectures on
human language technologies 5, 1 (2012), 1–167.

[33] Pengfei Liu, Shafiq Joty, and Helen Meng. 2015. Fine-grained opinion mining
with recurrent neural networks and word embeddings. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing. 1433–
1443.

[34] Edward Loper and Steven Bird. 2002. NLTK: the natural language toolkit.
arXiv preprint cs/0205028 (2002).

[35] Xuezhe Ma and Eduard Hovy. 2016. End-to-end sequence labeling via bi-
directional lstm-cnns-crf. arXiv preprint arXiv:1603.01354 (2016).

[36] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008.
Introduction to information retrieval. Cambridge university press.

[37] Russell Mannion, Huw Davies, and Martin Marshall. 2005. Impact of star
performance ratings in English acute hospital trusts. Journal of Health Services
Research & Policy 10, 1 (2005), 18–24.

[38] Takeru Miyato, AndrewMDai, and Ian Goodfellow. 2016. Adversarial training
methods for semi-supervised text classification. arXiv preprint arXiv:1605.07725
(2016).

[39] Luiz Rodrigo Cunha Moura, Gustavo Quiroga Souki, et al. 2017. Choosing a
Restaurant: Important attributes and related features of a consumer’s decision
making process. Revista Turismo em Análise 28, 2 (2017), 224–244.

[40] Nikola Mrkšić, Ivan Vulić, Diarmuid Ó Séaghdha, Ira Leviant, Roi Reichart,
Milica Gašić, Anna Korhonen, and Steve Young. 2017. Semantic specialization
of distributional word vector spaces using monolingual and cross-lingual
constraints. Transactions of the association for Computational Linguistics 5
(2017), 309–324.

[41] Joakim Nivre and Mario Scholz. 2004. Deterministic dependency parsing of
English text. In COLING 2004: Proceedings of the 20th International Conference
on Computational Linguistics. 64–70.

[42] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in pytorch. (2017).

[43] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python.
the Journal of machine Learning research 12 (2011), 2825–2830.

[44] Maria Pontiki, Dimitrios Galanis, Harris Papageorgiou, Suresh Manandhar,
and Ion Androutsopoulos. 2015. Semeval-2015 task 12: Aspect based sentiment
analysis. In Proceedings of the 9th international workshop on semantic evaluation
(SemEval 2015). 486–495.

[45] Maria Pontiki, Dimitris Galanis, John Pavlopoulos, Harris Papageorgiou, Ion
Androutsopoulos, and Suresh Manandhar. 2014. SemEval-2014 Task 4: Aspect
Based Sentiment Analysis. In Proceedings of the 8th International Workshop on
Semantic Evaluation (SemEval 2014). Association for Computational Linguis-
tics, Dublin, Ireland, 27–35. https://doi.org/10.3115/v1/S14-2004

[46] Chen Qu, Liu Yang, W Bruce Croft, Falk Scholer, and Yongfeng Zhang. 2019.
Answer interaction in non-factoid question answering systems. In Proceedings
of the 2019 Conference on Human Information Interaction and Retrieval. 249–
253.

[47] Lance A Ramshaw and Mitchell P Marcus. 1999. Text chunking using
transformation-based learning. In Natural language processing using very
large corpora. Springer, 157–176.

[48] Alexander Ratner, Stephen H. Bach, Henry Ehrenberg, Jason Fries, Sen Wu,
and Christopher Ré. 2017. Snorkel: Rapid Training Data Creation with Weak
Supervision. Proc. VLDB Endow. 11, 3 (Nov. 2017), 269–282. https://doi.org/
10.14778/3157794.3157797

[49] Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel Selsam, and Christo-
pher Ré. 2016. Data programming: Creating large training sets, quickly. In
Advances in neural information processing systems. 3567–3575.

[50] Régis Saint-Paul, Guillaume Raschia, and Noureddine Mouaddib. 2005. Gen-
eral purpose database summarization. In Proceedings of the 31st international
conference on Very large data bases. 733–744.

[51] Erik F Sang and Fien De Meulder. 2003. Introduction to the CoNLL-2003
shared task: Language-independent named entity recognition. arXiv preprint
cs/0306050 (2003).

[52] Dilip Kumar Sharma, Rajendra Pamula, and DS Chauhan. 2020. A contempo-
rary combined approach for query expansion. Multimedia Tools and Applica-
tions (2020), 1–27.

[53] Junfeng Tian, Zhiheng Zhou, Man Lan, and Yuanbin Wu. 2017. Ecnu at
semeval-2017 task 1: Leverage kernel-based traditional nlp features and neu-
ral networks to build a universal model for multilingual and cross-lingual
semantic textual similarity. In Proceedings of the 11th International Workshop
on Semantic Evaluation (SemEval-2017). 191–197.

[54] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[55] Wenya Wang, Sinno Jialin Pan, Daniel Dahlmeier, and Xiaokui Xiao. 2016. Re-
cursive neural conditional random fields for aspect-based sentiment analysis.
arXiv preprint arXiv:1603.06679 (2016).

[56] Wenya Wang, Sinno Jialin Pan, Daniel Dahlmeier, and Xiaokui Xiao. 2017.
Coupled multi-layer attentions for co-extraction of aspect and opinion terms.
In Thirty-First AAAI Conference on Artificial Intelligence.

[57] Thomas Wolf, L Debut, V Sanh, J Chaumond, C Delangue, A Moi, P Cistac, T
Rault, R Louf, M Funtowicz, et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. ArXiv, abs/1910.03771 (2019).

[58] Hu Xu, Bing Liu, Lei Shu, and Philip S Yu. 2019. Bert post-training for review
reading comprehension and aspect-based sentiment analysis. arXiv preprint
arXiv:1904.02232 (2019).

[59] Qiang Ye, Rob Law, and Bin Gu. 2009. The impact of online user reviews on
hotel room sales. International Journal of Hospitality Management 28, 1 (2009),
180–182.

[60] Lotfi A Zadeh. 1975. The concept of a linguistic variable and its application to
approximate reasoning—I. Information sciences 8, 3 (1975), 199–249.

https://doi.org/10.3115/v1/S14-2004
https://doi.org/10.14778/3157794.3157797
https://doi.org/10.14778/3157794.3157797

	Abstract
	1 Introduction
	2 Related Work
	3 Subjective Tag Based Indexing and Filtering in Conversational Search Services
	3.1 Subjective Tag Index
	3.2 Filtering
	3.3 Ranking

	4 Tagging
	4.1 Baseline for the Tagging Pipeline
	4.2 Extending the Baseline with Domain Adaptation
	4.3 Adversarial Learning for Dealing with Language Expressiveness

	5 Pairing
	5.1 Pairing Heuristics
	5.2 Supervised Learning-based Approach for Pairing

	6 Experiments
	6.1 Experimental Settings
	6.2 Comparing SACCS with Baselines
	6.3 Sequence Tagging Evaluation
	6.4 Pairing Evaluation

	7 Conclusion
	References

