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Abstract1

An important measure of the strength of a mantle plume is its buoyancy2

flux B, defined as the integral over a horizontal plane of the product of the3

vertical velocity and the density deficit within the plume. In the case of4

the Iceland plume, which currently rises directly beneath the mid-Atlantic5

ridge, published estimates of B cover a range of a factor of 37. To reconcile6

these diverse estimates, we study a simple fluid mechanical model of a ridge-7

centered plume in which plume fluid with spreadability σ (buoyancy over8

viscosity) is supplied at a volumetric rate Q from a plume conduit located9

directly beneath a ridge with a half spreading rate U . The plume fluid spreads10

laterally to form a thin pool beneath a lithosphere whose thickness increases11

as the square root of age. Application of scaling and dimensional analysis12

to this model leads to a general scaling law for the ‘waist width’ Ww, the13

length of the plume-induced elevation anomaly along the ridge. The law has14

the form Ww/W0 = f2(Πb,Πs), where W0 = (σQ4/U5)1/6 is the fundamental15

length scale for plume-ridge interaction, Πb = (σQ/U2)1/3 is of the order16

of the aspect ratio (width/thickness) of the plume pool, Πs = (κ2σ/U3)1/4
17

measures the effect on the pool of the sloping base of the lithosphere (κ is the18

thermal diffusivity), and f2 is an unknown function. We determine f2 using19

a suite of 32 numerical solutions of a three-dimensional thermomechanical20

model implemented in the code StagYY (Tackley, 2008). To apply our scaling21

law to Iceland, we invert it to estimate the buoyancy flux B required to22

produce a waist width Ww = 2300± 300 km. After correction for the effect23



of ridge migration, we find B = 2.3± 0.6 Mg s−1. This is comparable within24

uncertainty to the buoyancy flux B = 3.0±0.8 Mg s−1 of the Hawaiian plume25

estimated using a 3-D dynamical model by Ribe and Christensen (1999).26

keywords: mantle plumes; plume-ridge interaction; Iceland; lubrication the-27

ory28

1 Introduction29

The mantle plume that creates Iceland is, together with the Hawaiian plume,30

one of the two best known and most intensively studied of all mantle plumes.31

By a nice coincidence, these two plumes happen to represent the two end-32

member extremes of the phenomenon of plume-ridge interaction (PRI), whereby33

a mantle plume influences the bathymetry, geochemistry and crustal struc-34

ture along a portion of a nearby mid-ocean ridge. In the Hawaiian case,35

the distance between the plume and the nearest ridge is so great that PRI36

does not occur at all. At the opposite extreme, the Iceland plume is lo-37

cated directly below the mid-Atlantic ridge (MAR), making this system the38

paradigmatic example of PRI.39

Intuition tells us that the intensity of PRI should be proportional to some40

measure of the ‘strength’ of the mantle plume involved. Since the pioneering41

work of Sleep (1990), the most commonly used measure of plume strength is42

the ‘buoyancy flux’ B. It is defined as43

B =

∫
S

wδρdS, (1)

where w is the (laterally variable) vertical velocity within the plume, δρ > 044

is the density deficit of the plume material, and the surface integral is taken45
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over a horizontal cross-section of the plume. The SI units of B are kg s−1,46

but we shall use the more customary units Mg s−1 = 103 kg s−1. If the47

plume is in steady-state, then B will be independent of the chosen cross-48

section. If the plume’s buoyancy is due to temperature differences alone,49

then δρ = ρ0α(T − T0) where T is the temperature, T0 is the temperature50

outside the plume, ρ0 is the reference density at the temperature T0 and51

α is the coefficient of thermal expansion. The buoyancy flux of a mantle52

plume is important because it is proportional to the heat flux that the plume53

carries. Because many of Earth’s largest mantle plumes are likely to arise at54

the core-mantle boundary, estimating their combined buoyancy flux provides55

an estimate of the heat flux coming out of the core (Davies, 1988; Hoggard56

et al., 2020).57

Two general methods have been used to estimate the buoyancy fluxes of58

mantle plumes interacting with mid-ocean ridges. The first, which we shall59

call the ‘flux balance’ method, is based on a balance between the vertical60

buoyancy flux in the plume conduit and the horizontal flux of buoyancy in the61

elevated topography of the hotspot swell carried by the moving plate (Sleep,62

1990; Schilling, 1991). In its simplest form, the equation for this method is63

B = c1(ρ0 − ρw)EUWw, where E is the maximum excess elevation, U is the64

half-spreading rate, Ww is the width of the elevation anomaly along the ridge65

itself, ρw is the density of seawater, and c1 is a model-dependent constant of66

proportionality of order unity. Implicit in this method is the assumption that67

the negative buoyancy of the hotspot swell is in isostatic equilibrium with the68

positive buoyancy of the underlying low-density plume material that com-69

pensates it. An alternative version of the flux balance method (Sleep, 1990;70
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Schilling, 1991) equates the volumetric flux Q (rather than the buoyancy71

flux) of the plume with the rate at which new lithosphere of thickness H72

and width Ww is carried away from the ridge at the rate U . This gives73

Q = c2HUWw, where c2 is a model-dependent constant of proportionality.74

The volume flux thus estimated can be transformed into a buoyancy flux75

B = ρ0α∆TmQ, where ∆Tm is an assumed maximum temperature anomaly76

of the plume.77

The second method is based on the width Ww of the excess elevation alone78

(Feighner and Richards, 1995; Ribe and Delattre, 1998). It simply asks how79

large the volume flux Q must be to generate an elevation anomaly with80

the observed width Ww. In view of laboratory observations that the width81

of a pool of buoyant plume material centered on a ridge increases in both82

directions away from the ridge, Feighner and Richards (1995) called Ww the83

‘waist width’. We shall therefore call the second method for estimating B the84

‘waist width’ method. This method requires a dynamical model (numerical85

or experimental) to predict the relation between Ww and Q.86

The aforementioned methods have been applied by several authors to esti-87

mate the buoyancy flux of the Iceland plume. Sleep (1990) estimated B = 1.488

Mg s−1 using a modified version of the second flux balance method described89

above. Schilling (1991) used both versions of the flux balance method to90

estimate Q ≈ 45 m3 s−1, which corresponds to B = 1.4 Mg s−1 for his es-91

timated excess plume temperature ∆Tm = 263 K. He used a reduced waist92

width Ww = 920 km corresponding to the width of geochemical (rather than93

elevation) anomalies along the ridge around Iceland. Feighner and Richards94

(1995) used the waist width method in conjunction with laboratory experi-95
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ments. They proceeded indirectly by verifying that the volume flux Q ≈ 4596

m3 s−1 estimated by Schilling (1991) corresponded to a waist width of 85097

km according to their experimentally-based scaling law, reasonably close to98

the value (920 km) of Schilling (1991). Ribe and Delattre (1998) used the99

waist width method together with a dynamical model based on lubrication100

theory to conclude that a volume flux Q = 30 m3 s−1 (corresponding to101

B = 0.7 ± 0.17 Mg s−1 for ∆Tm = 200 ± 50 K) was required to explain a102

waist width Ww = 920 km. King and Adam (2014) used a geometric flux103

balance approach and two versions of the MiFil (minimization and filtering)104

method of Adam et al. (2005) to recalculate buoyancy fluxes for 54 terres-105

trial hotspots. Their three estimates for Iceland were 1.40 Mg s−1, 1.61 Mg106

s−1 and 1.52 Mg s−1. Parnell-Turner et al. (2014) used three independent107

flux-balance arguments to estimate B = 18 ± 7 Mg s−1, B = 26 ± 9 Mg108

s−1 and B = 17 ± 5 Mg s−1, respectively. Finally, Hoggard et al. (2020)109

estimated B = 4.0±1.0 Mg s−1 using a flux balance argument in the context110

of a model in which the plume pool comprises discrete ‘fingers’ that spread111

radially away from the hotspot.112

The most striking aspect of the foregoing list of estimates is the enor-113

mous range they cover, encompassing a factor of 37 from the lowest (0.7 Mg114

s−1) to the highest (26 Mg s−1). The aim of the present study is to explain115

and reconcile this disagreement using a geodynamical modeling approach.116

We begin (in § 2) by applying dimensional and scaling analysis to a simple117

fluid mechanical model for a ridge-centered plume, including the effects of118

a lithosphere that thickens with age and migration of the ridge relative to119

the plume. The result is a general scaling law for the waist width Ww that120
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involves an undetermined function of the key dimensionless parameters of121

the problem. Next (§ 3), we use three-dimensional thin-layer and thermome-122

chanical numerical models to characterize the undetermined function from123

§ 2. Finally (§ 4), we invert our scaling law for Ww to estimate the buoyancy124

flux (B = 2.3 ± 0.6 Mg s−1) required to explain the observed waist width125

(Ww = 2300±300 km) of the Iceland plume. The paper concludes (§ 5) with126

a discussion of our new estimate in light of previous estimates of the same127

quantity.128

2 Dimensional and scaling analysis129

To begin our study, we use a combination of dimensional and scaling analy-130

sis to determine as much as we can about how the waist width Ww depends131

on the various input parameters of the problem. Dimensional analysis is a132

generally applicable method based on the fact that a mathematical relation133

among a number of dimensional model parameters is equivalent to a rela-134

tion among a smaller number of dimensionless combinations (‘groups’) of135

those parameters. The basic theorem of dimensional analysis, called Buck-136

ingham’s Π-theorem (Buckingham, 1914), is a recipe for determining how137

many dimensionless groups are both necessary and sufficient for the problem138

at hand. Scaling analysis, by contrast, is a more specific method that starts139

from the differential equation(s) that govern the phenomenon of interest.140

By requiring the dominant terms in the equation to be of the same order141

of magnitude, one can determine the fundamental length and (in unsteady142

problems) time scales that characterize the phenomenon, and that cannot be143

determined by dimensional analysis alone.144
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To help build intuition, the following discussion proceeds step by step,145

considering first the idealized case of a vanishingly thin lithosphere, then a146

more realistic lithosphere whose thickness increases as the square root of age,147

and finally the effect of migration of the ridge relative to the plume.148

2.1 Vanishingly thin lithosphere149

Fig. 1 shows the idealized model upon which we shall base our scaling anal-150

ysis. Plume material with constant viscosity ηp and density deficit δρ is151

supplied at a volumetric rate Q by a plume conduit located directly beneath152

a stationary ridge with half spreading rate U . The steady-state thickness of153

the plume material beneath the lithosphere is h(x, y), and the lithosphere is154

assumed to have a vanishingly small thickness. The width of the plume pool155

is W (x), and the waist width is Ww = W (0).156

Our starting point is the partial differential equation that governs the157

steady-state thickness h(x, y) of the pool of buoyant plume material shown158

in Fig. 1. That equation can be derived using the theory of viscous flow in159

thin layers (lubrication theory), and is (Ribe et al., 1995; Ribe, 2018)160

∂

∂x
ψ(x, h) = σ∇2(h4) +

Q

πa2
exp

(
−r

2

a2

)
, (2)

where161

ψ(x, z) =
2U

π
z tan−1

(x
z

)
, (3)

is the ‘corner flow’ streamfunction of the ridge-generated mantle flow (Batch-162

elor, 1967; Ribe, 2018),163

σ =
gδρ

12ηp

(4)
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Figure 1: Lubrication model for a ridge-centered plume. Plume material
with viscosity ηp and density deficit δρ is supplied at a volumetric rate Q
beneath a stationary (non-migrating) ridge with half spreading rate U . The
steady-state thickness of the pool of plume material beneath the lithosphere
is h(x, y), and the lithosphere is assumed to have vanishingly small thickness.
The width of the pool is W (x), and the waist width is Ww = W (0).
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is the ‘spreadability’ of the plume material, ∇ is the horizontal gradient164

operator, and r is the horizontal radial distance from the center of the plume165

conduit of radius a. From left to right, the terms in (2) represent advection of166

the plume material by the ambient flow, gravity-driven spreading of plume167

material, and injection of plume material into the pool, respectively. The168

definition (4) of σ assumes that the shear stress on the lower surface of the169

plume pool is zero. This boundary condition is more appropriate than a170

no-slip condition when the viscosity ratio (exterior/pool) is smaller than the171

pool’s width/thickness ratio (Ribe, 2018).172

The characteristic scales for the thickness h(x, y) and the width W (x)173

of the plume pool can now be determined by a scaling analysis of (2). To174

keep the notation simple, we shall denote these characteristic scales by the175

symbols h and W , respectively. There are two distinct pairs of length scales,176

depending on the angle θ shown in fig. 1.177

The first pair of length scales applies at distances far from the ridge178

where θ ≈ π/2. As a preliminary, we note that the derivatives ∂/∂x and179

∂/∂y both scale as W−1, because the geometry of the problem does not180

impose different length scales in the x- and y-directions. Now far from the181

ridge tan−1(x/z) ≈ π/2 and (∂/∂x)ψ(x, h) ≈ U∂h/∂x ∼ Uh/W , where the182

symbol ∼ means ‘scales as’, i.e. ‘is proportional to and of the same order183

of magnitude as’. This term must balance the gravitational spreading term184

σ∇2(h4), implying Uh/W ∼ σh4/W 2. In addition, conservation of volume185

flux requires Q ∼ UdWh, where Ud is the downstream (x-direction) velocity186

of the plume pool. Because the rate of gravitational spreading in the x-187

direction is much smaller than the plate speed U (Ribe and Christensen,188
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1994), we can set Ud = U . Solving the two foregoing relations for h and W189

we find190

W ∼
(
σQ3

U4

)1/4

≡ W1, h ∼
(
Q

σ

)1/4

≡ h1. (5)

The scales (5) are identical to those that apply for a Hawaii-type plume rising191

beneath an intact (unrifted) lithosphere moving at speed U relative to the192

plume (Ribe and Christensen, 1994).193

The second pair of lengthscales applies when θ � 1 and y > a (i.e., out-194

side the plume conduit), in which case the ridge-generated flow is primarily195

vertical. Then tan−1(x/z) ≈ x/z, and (3) implies (∂/∂x)ψ(x, h) ≈ U . The196

balance of the advection and gravitational spreading terms in (2) then gives197

U ∼ σh4/W 2. As before, conservation of volume flux requires Q ∼ UWh.198

Solving these two relations for h and W we obtain199

W ∼
(
σQ4

U5

)1/6

≡ W0, h ∼
(
Q2

σU

)1/6

≡ h0. (6)

These scales were first found by Ribe (2018). Unlike the scales (5) they200

are specific to plume-ridge interaction. The scale W0 corrects the erroneous201

lateral length scale (Q/U)1/2 proposed by Ribe et al. (1995) and adopted202

by a number of subsequent authors (Feighner and Richards, 1995; Feighner203

et al., 1995; Ribe, 1996; Ito et al., 1997; Ribe and Delattre, 1998).204

2.2 Thickening lithosphere205

The simple model described in the previous subsection assumes that the litho-206

sphere has a vanishingly small thickness. In reality, of course, the thickness207

of the lithosphere increases as the square root of its age. This increase has208

two competing dynamical effects that were not accounted for in the model209
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of § 2.1. First, the slope of the lithosphere-asthenosphere boundary (LAB)210

provides an additional gravitational driving force for upslope flow of buoyant211

plume material towards the ridge (Kincaid et al., 1995, 1996). This effect212

tends to increase the waist width. Second, and less obviously, the LAB is213

not a material surface. Instead, material continuously flows across it because214

the lithosphere’s vector velocity, which is horizontal at the sloping LAB, has215

a small component normal to that surface. This normal component of ve-216

locity corresponds to a sink of plume material, which gets transformed into217

effectively rigid lithosphere as it moves across the LAB. This effect tends to218

decrease the waist width. (Ribe, 1996).219

To quantify the physics just described, we use dimensional analysis to220

determine how the waist width Ww depends on the input parameters of the221

problem. Inspection of the lubrication equation (2) and the expression (3) for222

the streamfunction shows that Ww depends on σ, Q and U ; the dependence223

on a can be neglected as long as a� Ww. In addition, Ww must depend on224

the thermal diffusivity κ, which together with U controls the thickening of225

the lithosphere. There exists therefore a functional relationship among the226

M = 5 quantities Ww, σ, Q, U and κ. Of these five quantities, K = 2 have227

independent dimensions. According to Buckingham’s Π-theorem, M −K =228

3 independent dimensionless groups can be formed from these quantities.229

While the groups can be chosen in an infinite number of ways, it is generally230

good practice to use physically meaningful definitions. The obvious choice231

for the first group is Ww/W0, where W0 is the fundamental length scale for232

PRI found by scaling analysis in § 2.1. As the second group, we choose the233

11



‘buoyancy number’234

Πb =
W0

h0

=

(
σQ

U2

)1/3

, (7)

which is of the order of the aspect ratio (width/thickness) of the plume pool.235

As the third group, we choose the ratio of the slope of the lithosphere at236

x = W0 to the slope in the x-direction of the plume pool itself. According to237

the half-space cooling model the former slope is ∼ (κ/UW0)
1/2. The slope of238

the plume pool is ∼ h0/W0. Taking the ratio of these slopes and using the239

definitions (6), we obtain the ‘slope number’240

Πs =

(
κ2σ

U3

)1/4

. (8)

Putting everything together, we expect the waist width Ww of a ridge-241

centered plume beneath a thickening lithosphere to obey a scaling law having242

the general form243

Ww

W0

= f2 (Πb,Πs) (9)

where f2 is an undetermined function that remains to be found.244

2.3 Effect of ridge migration245

The last physical factor influencing the waist width is the speed Um at which246

the ridge is migrating relative to the hotspot. Ridge migration of course im-247

plies that the distance between the plume conduit and the ridge is constantly248

changing; here we are interested only in the instant in time when the plume249

conduit is directly beneath the ridge.250

The most obvious dimensionless group to use to characterize the effect251

of ridge migration is the ratio Πm of the ridge migration speed to the half252
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spreading rate, which we call the ‘migration number’:253

Πm =
Um

U
. (10)

Therefore when the ridge is migrating, the waist width of a ridge-centered254

plume must follow a scaling law having the general form255

Ww

W0

= f3 (Πb,Πs,Πm) (11)

where f3 is an unknown function. It is related to the function f2 previously256

introduced by f3(Πb,Πs, 0) = f2(Πb,Πs).257

3 Numerical models258

The general scaling laws for the waist width derived in the previous section259

involve undetermined functions f2 and f3 of the dimensionless groups Πb, Πs260

and Πm. The appearance of an undetermined function is typical whenever a261

scaling law involves more than a single dimensionless group, as in our case. In262

general, the form of the function is not simple and cannot be determined by263

dimensional or scaling analysis; instead, laboratory experiments or explicit264

solutions of a numerical model are necessary. Accordingly, this section is265

devoted to characterizing the functions f2 and f3 numerically. For clarity, the266

exposition is organized under the same headings as in the previous section.267

However, a section entitled ‘Vanishly thin lithosphere’ is absent because we268

jump directly to the more realistic case of a thickening lithosphere.269

3.1 Thickening lithosphere270

As shown in § 2.2, the scaling law for the waist width in the presence of271

a thickening lithosphere involves the undetermined function f2(Πb,Πs). The272
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definition (8) of the dimensionless group Πs contains the thermal diffusivity273

κ. This suggests that we should use a 3-D thermomechanical model to deter-274

mine the function f2. The model we use here builds on a series of previous275

3-D convection models of ridge-centered plumes and of the Iceland plume276

more specifically (Ribe et al., 1995; Ito et al., 1996, 1999; Albers and Chris-277

tensen, 2001; Ruedas et al., 2004; Marquart et al., 2007; Gallego et al., 2013).278

However, our approach differs from most of these earlier ones in that it uses279

a large suite of numerical solutions to determine a quantitative scaling law.280

Accordingly, in this subsection we study a 3-D convection model of a281

ridge-centered plume implemented in the code StagYY (Tackley, 2008). The282

details of the numerical implementation are outlined in Appendix A. Briefly,283

the domain of the solution is a Cartesian box 400 km deep and of vari-284

able length and width. The ridge flow is generated by a spreading velocity285

Uspread(x) = U tanh(x/b) imposed on the upper surface, where b = 25 km is a286

small transition width. The ridge-centered plume is generated by a Gaussian287

temperature anomaly ∆T exp[−(x2 + y2)/a2] imposed on the bottom of the288

box. In most of the solutions presented below, the rheology is Newtonian289

and the viscosity obeys a standard Arrhenius law with realistic activation290

parameters. For each steady-state solution obtained, the spreadability σ and291

the volume flux Q are calculated as described in Appendix A.292

Fig. 2 shows an example of a solution for reference values of the tempera-293

ture anomaly ∆T = 225 K, plume radius a = 55 km, and half spreading rate294

U = 3.1 cm yr−1. The buoyancy flux of the plume is B = 1.17 Mg s−1. Fig.295

2a shows the temperature field in the symmetry plane y = 0, and fig. 2b296

shows the ‘isostatic topography’ ζ(x, y), which is proportional at each point297
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to the vertical integral over the depth of the box of the temperature anomaly298

associated with the plume (Appendix A).299

Note that both Πs and Πb depend on the spreadability σ, which in turn300

depends on the characteristic plume viscosity ηp. We identify ηp with ηm, the301

minimum viscosity over the whole model domain. In practice this definition302

picks out the viscosity in the hottest central part of the plume beneath the303

‘hotspot’ (x, y) = (0, 0).304

To test the scaling law (9), we obtained 32 steady-state numerical solu-305

tions with different values of ∆T , a and U . The results are collected in fig.306

3, which shows the normalized waist width Ww/W0 ≡ f2 (colored squares)307

as a function of Πb and Πs. The points (Πb,Πs) are irregularly distributed308

because Πb and Πs are model outputs, not inputs. The colors vary smoothly309

over the Πb-Πs plane, showing that all the data points collapse onto a single310

two-dimensional surface even though three parameters (∆T , a and U) were311

varied to obtain them. Fig. 3 thus confirms the validity of the scaling law312

(9).313

Another important feature of fig. 3 is that the scaled waist width Ws/W0314

decreases as the slope number Πs increases. To understand why, recall (§ 2.2)315

that the sloping base of the lithosphere has two competing dynamical effects:316

it enhances upslope flow of plume material, which tends to increase the waist317

width, and it represents a sink of plume material, which tends to decrease318

the waist width. The results of fig. 3 show that the second of these effects is319

the dominant one.320

For the convenience of readers who may wish to use the scaling law shown321

in fig. 3, we provide in Appendix C the coefficients of a bicubic polynomial322
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Figure 2: Three-dimensional steady-state numerical solution for a ridge-
centered plume with reference values of the temperature anomaly ∆T = 225
K, plume radius a = 55 km, and half spreading rate U = 3.1 cm yr−1. The
buoyancy flux of the plume is B = 1.17 Mg s−1. (a) Temperature anomaly
in the vertical symmetry plane y = 0. (b) Isostatic topography ζ(x, y) (see
Appendix A for definition). The vertical black line shows the location of the
ridge. White indicates a region where ζ > 500 m.
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fit of the function f2(Πs,Πb).323

It is of some interest to examine how non-Newtonian (dislocation creep)324

rheology influences the scaling law we have determined. The composite325

Newtonian/non-Newtonian rheological law we used is specified by (20) and326

(21). It involves a reference stress τ0 at which the diffusion creep and disloca-327

tion creep viscosities are the same. For the parameters of the solution shown328

in fig. 2, we found that the addition of non-Newtonian rheology has essen-329

tially no effect on the waist width for τ0 = 10 MPa, and increases it by only330

7.5% for τ0 = 0.3 MPa. The smallness of this effect is somewhat surprising,331

because the flow just beneath the ridge should be controlled primarily by the332

non-Newtonian viscosity due to the high strain rates there. The smallness333

of the effect is probably due to the smoothing of the velocity singularity at334

the ridge by the finite transition width b, and by the fact that we impose335

a miminum cutoff viscosity ηmin = 1017 Pa s. In any case, the small effect336

of non-Newtonian rheology justifies our decision to consider only Newtonian337

rheology in the solutions used to construct fig. 3.338

3.2 Effect of ridge migration339

As shown in § 2.3, the scaling law for the waist width in the presence of340

ridge migration involves an undetermined function f3(Πb,Πs,Πm). Because341

it is impractical to characterize completely a function of three arguments,342

we opted for the simpler approach of estimating the magnitude of the ridge343

migration effect for an Iceland-type plume. Our first attempt was to use344

StagYY with a = 68 km, ∆T = 275 K and U = 3.96 × 10−10 m s−1. The345

code was first run for 60 Ma with a fixed ridge to give the plume time to346
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Figure 3: Normalized waist width Ww/W0 ≡ f2 as a function of the slope
number Πs and buoyancy number Πb for 32 numerical solutions for a steady
ridge-centered plume with different values of the half spreading rate U , the
temperature anomaly ∆T , and the plume radius a.
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develop 1200 km away from the ridge, after which the ridge migration speed347

was ramped up during 20 Ma to Um = 1.5U . However, we found that the348

buoyancy flux of the plume diminished by more than a factor of ten before349

increasing again when the ridge was close to the plume, an unrealistic result350

that is probably an artefact of the model boundary conditions. We therefore351

decided to use a simpler model that contains the basic physics, namely an352

extended version of the lubrication model of § 2.1 with ridge migration added.353

The extended lubrication equation is354

∂h

∂t
+

∂

∂x
ψ(x, h) = σ∇2(h4) +

Q

πa2
exp

(
−r

2

a2

)
, (12a)

355

r2 = (x− x0 + Umt)
2 + y2. (12b)

Equation (12) differs from the simpler lubrication equation (2) by the addi-356

tion of an unsteady term ∂h/∂t and by a new expression for r that includes357

relative motion between the plume and the ridge. Equation (12) with the ex-358

pression (3) for ψ(x, z) is valid for a lithosphere of vanishing thickness, which359

is of course unrealistic. However, we anticipate that this should not matter360

much because we are only interested here in a relative effect, i.e. the factor361

by which ridge migration changes the waist width. For convenience, (12) is362

solved in the reference frame of the ridge, in which the plume moves toward363

the ridge with velocity −Umex, where ex is a unit vector in the x-direction.364

The position of the plume at the beginning of the simulation t = 0 is x = x0.365

Fig. 4 shows the results for Πb = 25, a typical buoyancy number for366

an Iceland-sized plume. Fig. 4a shows the steady-state thickness h(x, y) of367

the plume pool for a non-migrating ridge directly above the plume source,368

while Fig. 4b shows h(x, y, t0) with a migrating ridge with Πm = 1.23, at369
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the instant t = t0 when the ridge is directly above the plume source. The370

waist width for the latter case is smaller than that for a steady ridge-centered371

plume by 17%. This decrease of the waist width due to ridge migration has a372

simple physical explanation. During the time when the ridge is approaching373

the plume, the lithosphere above the plume is moving relative to it not at374

speed U , but rather at the enhanced speed U + Um. This greater relative375

speed corresponds to stronger advection of the plume pool, which counteracts376

gravitational spreading more effectively and makes the pool narrower than377

it would be in the absence of ridge migration (Ribe and Delattre, 1998).378

4 Strength of the Iceland plume379

We now use the ‘waist width’ method to obtain a new estimate of the380

buoyancy flux of the Iceland plume by inverting our scaling law Ww/W0 =381

f2(Πs,Πb) for a ridge-centered plume. Our first task is to choose a range382

of values of Ww appropriate for the Iceland plume. Fig. 5 shows the ax-383

ial elevation of the Mid-Atlantic Ridge as function of distance from Iceland.384

Based on these data we choose Ww = 2300 ± 300 km as the representative385

width of the ridge elevation anomaly associated with Iceland. The maximum386

and minimum values in this range are shown in fig. 5 by horizontal arrows.387

Our chosen range is consistent with the value Ww = 2400 km assumed by388

Parnell-Turner et al. (2014). Moreover, the lower end of the range (= 2000389

km) corresponds to twice the distance from Iceland of the transition between390

smooth and rough crust along the Reykjanes ridge, which is a possible proxy391

for the waist width (N. White, personal communication).392

Turning next to our scaling law, we first note that the relevant portion393
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Figure 4: Effect of ridge migration on the waist width Ww for a plume directly
beneath a ridge, as predicted by the lubrication model with Πb = 25 and a
lithosphere of vanishing thickness. (a) Contour plot of steady-state plume
pool thickness h(x, y) for a plume source directly beneath a stationary ridge.
The contour interval is 0.05h0 and the outermost contour is 0.05h0. The
position of the ridge is x = 0, and the thick vertical line has length Ww/2.
(b) Same as (a), but with ridge migration at speed 1.23U to the right relative
to the plume stem.
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of the Πs-Πb space for the Iceland plume is the upper right corner of fig. 3,394

as we shall verify a posteriori. Using the average of the values of Ww/W0 for395

the two points closest to that corner, we obtain the scaling law396

Ww = 0.86W0. (13)

Solving (13) for B ≡ αρ0∆TmQ, we obtain397

B = 1.25αρ0∆Tm

(
W 6

wU
5

σ

)1/4

. (14)

We use a value U = 2.85×10−10 m s−1 (0.90 cm yr−1) calculated in Appendix398

B from the plate rotation vectors of model HS3-NUVEL1A of Gripp and399

Gordon (2002). Next, we calculate σ at the depth zm where the viscosity400

within the plume is a minimum, and where the plume’s excess temperature401

is ∆Tm. Using (21), we find402

σ =
gαρ0∆Tm

12ηm

, ηm = η0 exp

[
E1 + gρ0zmV1

R(T0 + ∆Tm)
− E1

RT0

]
(15)

In (15), the quantities g, ρ0, α, η0, E1, V1, R and T0 are all known constants.403

From our numerical solutions, we find zm = 25 km.404

Fig. 6 shows the buoyancy flux predicted by (14) as a function of the405

(unknown) excess plume temperature ∆Tm, for three values of Ww in the406

range 2000-2600 km. The buoyancy flux ranges from 1.54± 0.30 Mg s−1 for407

∆Tm = 120 K to 1.84± 0.36 Mg s−1 for ∆Tm = 260 K.408

The foregoing estimates of B were predicted by a scaling law for a steady409

ridge-centered plume, and do not take into account the progressive migration410

of the mid-Atlantic ridge relative to the Iceland plume during the past several411

tens of Ma. As we noted earlier, the importance of ridge migration can be412

characterized by a dimensionless ‘migration number’ Πm = Um/U , where Um413
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is the ridge migration speed. In Appendix B we use the HS3-NUVEL1A414

plate rotation vectors to estimate Πm = 1.23 for the Iceland plume/ridge415

system. As we explained at the end of § 3.2, the effect of ridge migration is416

to reduce the waist width (by 17% for the case considered in § 3.2) relative417

to the case without ridge migration. This means that in the presence of ridge418

migration a greater buoyancy flux is required to explain a given value of the419

waist width.420

The results of fig. 4 allow us to determine the factor by which the buoy-421

ancy flux B must be increased to compensate for the effect of ridge migration.422

Let W est
w be some estimated value of the waist width. Then in view of the423

definition (6) of the length scale W0, the scaling law W ∝ W0 can be written424

in two ways as425

W est
w = 1.464βQ

2/3
no migr = 1.209βQ

2/3
migr (16)

where β = (σ/U5)1/6 and the subscripts ‘migr’ and ‘no migr’ indicate values426

with and without ridge migration, respectively. The constants 1.464 and427

1.209 that appear in (16) are the values of the waist width in units of W0428

from Figs. 4a and 4b, respectively. Now B ∝ Q, whence (16) implies429

Bmigr

Bno migr
=

(
1.464

1.209

)3/2

= 1.33. (17)

This result means that the estimated values of B in Fig. 6 must be increased430

by 33% to account for the effects of ridge migration that were neglected in431

constructing that figure. Taking into account this enhancement factor and432

the uncertainty of the temperature excess ∆Tm, we obtain our final estimate433

B = 2.3± 0.6 Mg s−1 for the buoyancy flux of the Iceland plume.434
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5 Discussion435

In § 2.1 we noted that our plume-ridge interaction lengthscale (σQ4/U5)1/6 ≡436

W0 corrects an erroneous length scale (Q/U)1/2 ≡ S0 proposed by Ribe et al.437

(1995). However, that does not mean that previous studies using the length438

scale S0 (Ribe et al., 1995; Ribe, 1996; Ribe and Delattre, 1998) are incorrect.439

The reason is that S0 and W0 are simply related by S0 = W0Π
−1/2
b , where Πb440

is the buoyancy number (7). Thus one can use S0 as the basic length scale441

as long as one takes the buoyancy number systematically into account. The442

difference is essentially one of economy: scaling laws expressed in terms of443

the correct lengthscale W0 will be simpler and cleaner than laws expressed444

in terms of S0, which will involve an extra dependence on Πb.445

Our estimate B = 2.3± 0.6 Mg s−1 for the buoyancy flux of the Iceland446

plume differs from most previous estimates of this quantity, being interme-447

diate between lower values (Sleep, 1990; Schilling, 1991; Ribe and Delattre,448

1998; King and Adam, 2014) and much higher ones (Parnell-Turner et al.,449

2014). Most of the lower values are within the narrow range 1.4-1.6 Mg s−1.450

These estimates are almost certainly too low because the underlying models451

assume Ww = 800-920 km. Such widths are appropriate for the geochemical452

anomalies along the mid-Atlantic Ridge around Iceland, but do not reflect453

the much larger width of the elevation anomaly evident in fig. 5.454

We now examine the much larger estimates of B obtained by Parnell-455

Turner et al. (2014). We focus on the second and third of their three estimates456

because equations for these cases are either given by the authors or can easily457
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be inferred. Their second estimate is458

B2 = πd2Uρ0α∆Tm (18)

where d = Ww/2 is the radius of a plume pool assumed to be circular. Using459

U = 1.25 cm yr−1, d = 1200 km, ρ0 = 3200 kg m−3, α = 3 × 10−5 K−1 and460

∆Tm = 150 K, we obtain B2 = 26 Mg s−1, the value cited by Parnell-Turner461

et al. (2014). However, we note the appearance in (18) of the product of462

the half-spreading rate U and the planform area πd2 of the plume pool. It463

seems to us more realistic to replace the quantity πd2U by 2dh(2U), the464

product of the cross-sectional area of a plume pool with thickness h and the465

full spreading rate 2U (to account for flux of material away from the ridge466

in both directions). Our estimate of the buoyancy flux is therefore obtained467

from that of Parnell-Turner et al. (2014) by multiplying it by 4h/πd ≡ χ2.468

To estimate h, we use the scale h0 defined by (6) with Q = 110 m3 s−1
469

and σ = 4.5 × 10−17 m−1 s−1, values obtained directly from one of our 3-D470

numerical simulations of an Iceland-sized plume. We thereby find h = 94471

km. This yields χ2 = 0.10, which implies a reduced estimate B2 = 2.6 Mg472

s−1 of the buoyancy flux. This new value is within the range 2.3 ± 0.6 Mg473

s−1 that we estimated based on our scaling law.474

The third estimate of Parnell-Turner et al. (2014) is475

B3 = πd2hρ0α∆Tm/τ (19)

where τ = 30 Ma is the time required to fill a plume pool of volume πd2h.476

With the values of d, h, ρ0 α and ∆Tm given above, (19) gives the estimate477

B3 = 17 Mg s−1 of Parnell-Turner et al. (2014) if one assumes h = 250 km.478

However, using our more realistic value h = 94 km we find B3 = 6.5 Mg s−1.479

27



This estimate is 60% lower than that of Parnell-Turner et al. (2014), but still480

more than twice the value B = 2.9 Mg s−1 at the upper end of our range.481

The most recent estimate B = 4.0±1.0 Mg s−1 of the buoyancy flux of the482

Iceland plume is that of Hoggard et al. (2020), based on a model in which the483

plume pool comprises a small number of discrete fingers of thickness za that484

spread radially to a maximum distance Rmax. Upon neglecting two smaller485

terms in eqn. (3) of Hoggard et al. (2020), that expression for the volume flux486

becomes Q = 3πzaR
2
max/8∆t, where ∆t = 15 Ma is the time (estimated from487

the geometry of the V-shaped ridges south of Iceland) required for pulses of488

hot material to spread down the length of a finger. The most striking aspect489

of the foregoing formula is that it is independent of the (half-) spreading rate490

U . This makes the model of Hoggard et al. (2020) fundamentally different491

than the fluid-mechanical models investigated in the present study, for which492

Q ∝ U5/4 (eqn. (14)).493

Finally, it is of interest to compare our estimated buoyancy flux for the494

Iceland plume with corresponding estimates for the Hawiian plume. The495

classic estimates BHawaii = 6.3 Mg s−1 (Davies, 1988) and 8.7 Mg s−1 (Sleep,496

1990) are based on equating the vertical flux of buoyancy in the plume stem497

to the horizontal flux of buoyancy associated with the topography anomaly498

of the Hawaiian swell moving ‘downstream’ to the NW with a speed equal499

to the plate speed. Vidal and Bonneville (2004) used a similar flux balance500

method to estimate BHawaii as a function of time; for the past 15 Ma, they501

found values in the ranges 2.5-4.4 Mg s−1 and 3.9-6.4 Mg s−1 for two differ-502

ent lithospheric subsidence models. As mentioned earlier, King and Adam503

(2014) used three versions of the flux balance method to estimate the buoy-504
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ancy fluxes of 54 terrestrial hotspots, and found values BHawaii = 4.66 Mg505

s−1, 7.1 Mg s−1, and 4.9 Mg s−1. However, the classical flux balance approach506

does not take into account the fact that plume material moves downstream507

at an average speed that is lower than the plate speed, due to the presence508

of shear in the asthenosphere (Ribe and Christensen, 1994). Nor does it509

allow for the additional buoyancy due to the depleted residuum of melting,510

which compensates a significant portion of the swell topography (Ribe and511

Christensen, 1999). Ribe and Christensen (1999) presented a 3-D thermome-512

chanical model that includes both these effects, and estimated the buoyancy513

flux of the Hawaiian plume by fitting the present-day melt production rate514

and the width and amplitude of the Hawaiian swell. They thereby found515

BHawaii = 3.0 ± 0.8 Mg s−1. We prefer this estimate to the others cited516

above because the underlying dynamical model is more physically realistic.517

Provisionally accepting this estimate, we conclude that the buoyancy fluxes518

of the Iceland and Hawaiian plumes are comparable given the uncertainties519

involved.520
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A Numerical implementation527

The code StagYY (Tackley, 2008) employs a finite-volume discretization and528

a multigrid solver to determine inertia-free flow in a fluid with variable vis-529

cosity. It can handle both Newtonian (diffusion creep) and non-Newtonian530

(dislocation creep) rheologies. While most of our numerical solutions used531

Newtonian rheology, a few used a composite diffusion creep/dislocation creep532

rheology. In this more general case, the viscosity is533

η =

(
1

η1

+
1

η3.5

)−1

, (20)

where η1 is the Newtonian viscosity (rheological power-law index n = 1) and534

η3.5 is the non-Newtonian viscosity (n = 3.5; Bai et al., 1991). The general535

expression for both viscosities is536

ηn = η0

(
τ

τ0

)1−n

exp

(
En + pVn

RT
− En

RT0

)
(21)

where η0 = 1019 Pa s is a reference viscosity, τ is the second invariant of537

the deviatoric stress, τ0 is a reference deviatoric stress, En is the activation538

energy, p is the pressure, Vn is the activation volume, R is the universal gas539

constant, and T0 = 1600 K is the temperature of the mantle well below the540

cooling lithosphere. We used the values of En and Vn for dry olivine given541

in Table 1 of Karato and Wu (1993).542

The input parameters that specify a given numerical solution are the543

plume temperature anomaly ∆T , the plume radius a and the half-spreading544

rate U . The ranges used were 180 K ≤ ∆T ≤ 275 K, 35 km ≤ a ≤ 66 km,545

and 4×10−10 m s−1 ≤ U ≤ 3×10−9 m s−1. The horizontal dimension of each546

finite volume was 12.5 km for all runs. The vertical grid was refined near the547
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top and bottom of the model domain, the average finite volume height being548

12.5 km.549

Turning to the boundary conditions, we recall that the velocity boundary550

condition on the upper surface that drives the ridge flow and the thermal551

boundary condition on the bottom that drives the plume were given in § 3.1.552

The two vertical boundaries normal to y are planes of mirror symmetry. The553

bottom boundary and the two vertical boundaries normal to x are permeable554

with zero shear stress but some resistance to normal flow. The normal stress555

σnn on these boundaries is related to the normal velocity un by σnn = ηun/D,556

where η is the viscosity and D is a virtual boundary distance (Ribe and557

Christensen, 1994). We used D = 500 km for the bottom boundary and558

D = 2600 km for the side boundaries.559

For each numerical solution corresponding to a given set of values of ∆T ,560

a and U , we calculated several output parameters as follows.561

The first output parameter is the isostatic topography, defined as562

ζ(x, y) =
ρ0α

ρ0 − ρw

∫ h

0

δT (x, y, z)dz, (22)

where x is the horizontal coordinate perpendicular to the ridge, y is the563

coordinate parallel to the ridge, and z is the depth. In (22), ρ0 = 3300 kg564

m−3 is the mantle density, ρw = 1000 kg m−3 is the density of seawater,565

α = 3.5 × 10−5 K−1 is the thermal expansivity, h = 400 km is the depth of566

the model box, and δT is the local temperature anomaly due to the presence567

of the plume. It is defined as δT = T (x, y, z) − T (x, ymax, z) where ymax is568

the width of the model box, chosen to be sufficiently large that the plume569

does not influence the temperature on the vertical plane y = ymax.570
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The second output parameter is the waist width Ww, which is defined as571

(twice) the value of y at which the isostatic topography along the ridge falls572

below 30 m.573

A third output parameter is the buoyancy flux B of the plume defined as574

B = −ρ0α

∫
u · ez(T − T0)dxdy. (23)

where ez is a downward-pointing vertical unit vector and the integral is over575

the bottom of the model box.576

A fourth output parameter is the minimum viscosity ηm in the plume577

directly beneath the hotspot (x, y) = (0, 0). Let Tm be the temperature at578

the point where the viscosity is ηm.579

The aforementioned output parameters are sufficient for calculating the580

volume flux Q and the spreadability σ, which are in turn needed to calculate581

the plume width scale W0 and the dimensionless parameters Πb and Πs. We582

calculated the volume flux as583

Q =
B

ρ0α∆Tm

, (24)

where ∆Tm = Tm − T0. The spreadability was calculated as584

σ =
gρ0α∆Tm

12ηm

. (25)

Note that Q and σ are calculated using the temperature Tm and the viscosity585

ηm at the point where the viscosity is minimum, because that point corre-586

sponds best to the point at which the plume fluid is injected into the pool.587

Once Q and σ are known, the length scale W0 and the buoyancy number Πb588

were calculated using (24), (25) and the input value of U . Finally, the slope589

number Πs was calculated assuming κ = 7.6× 10−7 m2 s−1.590
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B Rates of spreading and ridge migration at591

Iceland592

In this appendix we estimate the half-spreading rate U and the ridge mi-593

gration speed Um for the mid-Atlantic ridge at Iceland, where the North594

American plate (plate 1) and the Eurasian plate (plate 2) meet. Let n be595

the unit normal vector to the ridge pointing from plate 1 to plate 2, and let596

U1 and U2 be the velocities of plates 1 and 2 in the hotspot reference frame.597

Then598

U =
1

2
|(U2 −U1) · n| , Um =

1

2
|(U2 + U1) · n| . (26)

To estimate U1 and U2, we use the angular velocities of model HS3-599

NUVEL1A, found in Table 12 of Gripp and Gordon (2002). It is most con-600

venient to use a mixture of spherical and Cartesian coordinates. The radial601

unit vector is602

r = cos θ z + sin θ(cosφx + sinφy), (27)

where θ is the colatitude, φ is the longitude, and x, y and z are Cartesian603

unit vectors in the directions indicated. Transforming the angular velocities604

from HS3-NUVEL1A into Cartesian coordinates, we have605

ω1 = 5.443 10−17x + 1.297 10−17y − 2.046 10−16z, (28a)
606

ω2 = 1.517 10−17x + 5.112 10−17y − 9.987 10−17z, (28b)

in units of radians s−1. Next, we note that the center of Iceland is located607

approximately at 65◦ N latitude and 341.5◦ E longitude. The radial vector608

from the center of the Earth to this point is609

R0 = 2.553 106x− 8.543 105y + 5.774 106z (29)
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in units of m. Noting now that Uj = ωj ×R0, we find610

U1 = −9.992 10−11x− 8.366 10−10y − 7.961 10−11z (30a)
611

U2 = 2.098 10−10x− 3.426 10−10y − 1.435 10−10z (30b)

in units of m s−1.612

The final step is to determine the normal vector n. To estimate the613

strike of the ridge, we use the line connecting the southernmost point of the614

Kolbeinsey Ridge at 66.65◦ N latitude and 340.5◦ E longitude (point R+)615

and the northernmost point of the Reykjanes Ridge at 64.1◦ N latitude and616

337.5◦ E longitude (point R−). In Cartesian coordinates,617

R+ = 2.380 106x− 8.429 105y + 5.849 106z, (31a)
618

R− = 2.571 106x− 1.065 106y + 5.731 106z. (31b)

Now the three components of n satisfy the three simultaneous equations619

(R+ −R−) · n = (R+ + R−) · n = n · n− 1 = 0. The solution is620

n = 0.6956x + 0.6948y − 0.1829z. (32)

Substituting (30) and (32) into (26), we obtain621

U = 2.85 10−10 m s−1 (0.90 cm yr−1) (33a)
622

Um = 3.51 10−10 m s−1 (1.11 cm yr−1). (33b)
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C Regression for the waist width of a ridge-623

centered plume624

We represent the function f2(Πs,Πb) shown in fig. 3 by a bicubic polynomial625

of the form626

f2 =
3∑

i=0

3−i∑
j=0

cij(Πs)
i(log10 Πb)

j. (34)

Using a standard least-squares procedure, we find that the coefficients that627

provide the best fit to the 32 points in fig. 3 are628

c00 = 3.306, c01 = −4.852, c02 = 4.733, c03 = −2.223, (35a)
629

c10 = −3.916, c11 = −1.096, c12 = 7.000, c20 = 7.922, (35b)
630

c21 = −16.72, c30 = 8.685 (35c)

The RMS error of the fit is 0.028. Note that (34)-(35) is only reliable for631

points (Πs,Πb) that lie within the ‘cloud’ of points in fig. 3, and should not632

be used to extrapolate to points lying outside the cloud.633
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