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Solving Abel integral equations by regularisation in
Hilbert scales

Cecile Della Valle*, Camille Pouchol∗

Abstract
Integral operators of Abel type of order a > 0 arise naturally in a large spectrum of physical

processes. Their inversion requires care since the resulting inverse problem is ill-posed. The
purpose of this work is to devise and analyse a family of appropriate Hilbert scales so that the
operator is ill-posed of order a in the scale. We provide weak regularity assumptions on the
kernel underlying the operator for the above to hold true. Our construction leads to a well-defined
regularisation strategy by Tikhonov regularisation in Hilbert scales. We thereby generalise the
results of Gorenflo and Yamamoto for a < 1 to arbitrary a > 0 and more general kernels. Thanks
to tools from interpolation theory, we also show that the a priori associated to the Hilbert scale
formulates in terms of smoothness in usual Sobolev spaces up to boundary conditions, and that the
regularisation term actually amounts to penalising derivatives. Finally, following the theoretical
construction, we develop a comprehensive numerical approach, where the a priori is encoded in
a single parameter rather than in a full operator. Several numerical examples are shown, both
confirming the theoretical convergence rates and showing the general applicability of the method.

1 Introduction
Inverse Problem. The context of the paper is the inversion of one-dimensional Abel operators of
the form

Tax(t) =

∫ t

0

(t− s)a−1k(t, s)x(s) ds . (1)

where a > 0, and k is a kernel satisfying some appropriate regularity conditions. Such operators
come up naturally in various physical applications.

For a < 1, these operators are ubiquitous because they are at the core of fractional dynamical
equations. Hence, they play a major role in modelling natural phenomena such as diffusion pro-
cesses [1], reaction kinetics of proteins [2], viscoelastic materials [3], the physics of surface-volume
exchange [4] to name but a few. They may even be found in applications to psychology [5].

The specific case where a = 1/2 is even more broadly studied. In the latter case, the Abel
integral Tax stands for the radial distribution of some spherically or cylindrically symmetric quantity,
such cases arising in modelling plasmas [6] and flames [7], in tomography [8], or in the so-called
star cluster problem [9]. Typically, the inverse problem consists in reconstructing a distribution
of a two-dimensional or three dimensional function from measurements of the projection of these
quantities onto a given axis.

The case where a ≥ 1 can also be found in a variety of applications. In hydraulics [10], for
instance, an Abel integral with a = 3/2 relates the shape of a notch of a weir and its flow rate. For
a = 2 or a = 3, such operators emerge from polymer clustering problems as in [11] and for a = 4
in cristallisation processes [12]. In these two clustering problems, the experimenter measures the
time-evolution of some moment of the polymer distribution. Assuming, as is commonly done, that
the distribution solves a transport equation with constant or time-varying speed, the inverse problem
to be solved belongs to the class (1).

In many of the above applications, the functions of interest are smooth functions, such as Gaus-
sian or Gaussian alike. Such information of regularity may be taken into account when it comes to
improving the inversion strategy in the definition of the prior.
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Regularisation strategy. In the present work, we aim at solving this ill-posed problem by means
of a regularisation strategy of Tikhonov type. More precisely, we penalise derivatives of the function
we wish to reconstruct. Such strategies are commonly used regardless of the operator. At least
formally, they are expected to be suitable when the a priori is formulated in terms of smoothness,
such as x belonging to some Sobolev space Hq , q > 0.

More specifically, for a measurement yδ ∈ L2(0, 1) corrupted by noise, we solve the inverse
problem by computing

xδ,α = argmin
x
‖Tax− yδ‖2 + α‖Lx‖2 , (2)

where the norm is that of L2(0, 1). Here, and informally at this stage:

• α > 0 is a regularisation parameter,

• δ > 0 stands for the noise level,

• L is a smoothing operator and formally represents the p-th derivative of x, which requires that
x has p derivatives in L2, i.e. x ∈ Hp.

Regularising by a method of Tikhonov type with underlying smoothing operator L may be studied
in the framework of the associated Hilbert scale (Xp)p∈R, with corresponding norms ‖ · ‖p, i.e.,
‖Lx‖ = ‖x‖p, when suitable hypotheses on the operator L1/p hold. Provided that Ta is smoothing
in this scale, the convergence of the method is well understood in a very generic framework [13, 14],
with infinite smoothing [15], and when it comes to finely tuning the regularisation parameter α [16].

Although penalising derivatives is common practice, there is no reason that this efficiently
achieves the inversion of a given operator T . When trying to apply the general framework of Hilbert
scales to penalising derivatives and formulating the a priori in terms of smoothness, the following
difficulties arise.

• One needs to build a suitable operator L so that both

(i) penalising the derivatives of order p is equivalent to penalising the norm ‖ · ‖p,

(ii) the a priori x ∈ Xq formulates in terms of usual smoothness assumptions x ∈ Hq .

• Once this is done, the operator T must be shown to be smoothing of some order in the
scale (Xp)p∈R.

State of the art. Part of this program has been successfully carried out in the works [17, 18] in the
case where a ≤ 1. The authors show how the Laplace operator associated with appropriate boundary
conditions allows one to build a well-adapted Hilbert scale (Xp)p∈R. However, a series of important
questions remains unanswered.

First, the constructed Hilbert scale is suitable only for a ≤ 1: the operator Ta is not smoothing
in the scale constructed in the aforementioned works whenever a > 1.

Second, the Hilbert scale of [18] has only been partially characterised and the link between prior
x ∈ Xq and regularity x ∈ Hq has only been established for q ≤ 1, which leaves out any stronger
but realistic smoothness assumption, that is when x has more than one derivative in L2.

Third, the efficient numerical implementation of such an approach is up to our knowledge yet
to be discussed. At first glance, if one goes from penalising the first derivative to penalising the
second, a significant part of the code must be changed. Also, penalising high-order derivatives leads
to cumbersome finite difference approximations. Finally, it is not clear how to penalise fractional
derivatives.

Main contributions. The goal of the present paper is to bridge these gaps. Our contributions may
be summed up as follows.

Construction of an appropriate Hilbert scale. We build a family of Hilbert scales, indexed by
an integer parameter r. We show that regularising in this Hilbert scale exactly amounts to penal-
ising derivatives, and that the a priori x ∈ Xq corresponds to x ∈ Hq(0, 1) up to some boundary
conditions at t = 0 and t = 1.
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Smoothing properties of the operator in the scale. We then show that the resulting Hilbert scale
is suited to the operator Ta when one picks r = dae, assuming enough regularity for the kernel
k: with this choice, Ta is smoothing of order a in the scale. In fact, we provide two criteria, one
which follows and generalises the method of proof of [18], another one of a more functional analytic
flavour.

Efficient numerical implementation. Working around the difficulties mentioned above, we in-
stead closely follow the Hilbert scale at the discrete level. This framework itself advocates for tuning
a single parameter p ≥ 0 standing for which derivative is being penalised. Indeed, we explain how
a single matrix has to be computed and raised to the chosen power p. We confirm our theoretical
results and illustrate the flexibility of the approach for various problems involving Abel operators.

Tools and methods. The literature features two main techniques when it comes to studying con-
vergence rates for Tikhonov-type regularisation.

A first category builds upon spectral decompositions and explicit calculations. For example, one
finds results in the case of the Abel integral for a ≤ 1 in [19]. However, explicit calculations to build
the resulting so-called filters are out of reach when a becomes large.

The second family of methods relies on the construction of an adapted Hilbert scale. That is the
case of the work of [18] for a ≤ 1. Let us also mention the work [20], for very specific cases when
a > 1, where some simplifications inherent in the problem allow the authors to conclude.

We adopt the latter strategy, but the proof of our main results cannot be carried out as a mere
generalisation of [18] which heavily relies on the explicit eigensystem of the Laplace operator (with
the appropriate boundary conditions). Instead, the operator we need to work with is defined as some
possibly higher power of the Laplacian together with suitable boundary conditions. The eigensystem
of the resulting operator becomes intractable as a increases, as evidenced by [21] or [22].

Instead, we make extensive work of interpolation theory. Typically, we prove results for specific
integer values for which we may directly perform computations such as integration by parts, and
then extend the results to fractional values by interpolation. The latter step requires knowledge
of interpolation spaces between some standard Sobolev spaces. For relatively simple cases, the
article [23] provides some results, but the present work requires the more advanced results given
in [24], where general Besov spaces and boundary conditions are treated.

Once the family of Hilbert scales is constructed, we establish that the operator Ta is injective and
smoothing of order a in the scale given by to r = dae, provided that k does not vanish on the diagonal
s = t and is sufficiently smooth. We provide two approaches to establish the result which may be
complementary depending on the kernel k. The first one follows the approach of [18] in establishing
a suitable factorisation of the operator Ta, the second relies on an alternative factorisation together
with Peetre’s Lemma [25], but requires a /∈ N and the a priori assumption that Ta is injective. Then,
we may rely on Natterer’s Theorem [13] to compute the rate of convergence the chosen method has.

Outline of the paper. First, we set up the theoretical framework required for our work in Sec-
tion 2, i.e., that of fractional Sobolev spaces Hs(0, 1), the theory of interpolation of Banach spaces
and some results on fractional powers of operators. Section 3 is devoted to constructing the (integer-
indexed) family of Hilbert scales and identifying it with usual Sobolev spaces. The next section,
Section 4, then provides the main result that the Abel operator is smoothing of order a in the appro-
priately chosen scale. The convergence of the method is then obtained through a direct application
of Natterer’s Theorem [13]. Finally, Section 5 consists of a thorough discussion of how to apply
the approach in practice, together with numerical simulations in several contexts involving Abel
operators.

2 Mathematical background
We introduce the spaces we will be dealing with, namely fractional Hilbert spaces. We also cover
the bits of interpolation theory of Hilbert spaces that will be needed throughout.

We shall always work with spaces of complex-valued functions defined on the interval (0, 1). As
usual, x̄ denotes the complex conjugate of x ∈ C. The norm ‖ · ‖ and scalar product (·, ·) without
subscript will refer to the L2(0, 1)-norm and scalar product, respectively. The notation ‖ · ‖ will also
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refer to the operator norm of bounded operators from L2(0, 1) onto L2(0, 1). The identity operator
over L2(0, 1) will be referred to as 1l.

For two Hilbert spaces X and Y endowed with respective norms ‖ · ‖X and ‖ · ‖Y , we will write

X ≈ Y ,

to indicate that these spaces are topologically equal, i.e., when X = Y and the norms ‖ · ‖X and
‖ · ‖Y are equivalent.

2.1 Fractional Sobolev spaces

For k ∈ N, the notation Hk(0, 1) stands for the usual Sobolev space W k,2(0, 1) of functions having
k derivatives in L2(0, 1), endowed with the norm

‖x‖2Hk(0,1) :=

k∑
j=0

‖x(j)‖2 .

For any θ ∈ (0, 1), the fractional Hilbert space Hθ(0, 1), is defined as follows

Hθ(0, 1) =

{
x ∈ L2(0, 1) s.t.

|x(t)− x(s)|
|t− s|1/2+θ

∈ L2((0, 1)2))

}
,

equipped with the norm
‖x‖2Hθ(0,1) = ‖x‖2L2(0,1) + |x|2Hθ(0,1) ,

where | · |Hθ(0,1) is the Gagliardo semi-norm

|x|2Hθ(0,1) =

∫ 1

0

∫ 1

0

|x(t)− x(s)|2

|t− s|1+2θ
ds dt .

Then, in the case where s = k + θ, k a positive integer and θ ∈ (0, 1), the fractional Hilbert space
correspond to functions x whose distributional derivative x(k) belongs to Hθ(0, 1), i.e.,

Hs(0, 1) =
{
x ∈ Hk(0, 1) s.t. x(k) ∈ Hθ(0, 1)

}
,

endowed with the norm

‖u‖2Hs(0,1) = ‖u‖2Hk(0,1) + ‖u(k)‖Hθ(0,1).

We insist that the semi-norm (denoted | · |Hs(0,1)) of a function x ∈ Hs refers

• to ‖x(s)‖ when s is an integer,

• to the the Gagliardo semi-norm |x|Hθ(0,1) when s is not an integer, with θ denoting its frac-
tional part.

Throughout, whenever the context is clear, we shall drop the reference to the interval (0, 1) and use
the notation L2, Hp for any p > 0.

2.2 The K-method for interpolating Hilbert spaces
Let X and Y be two separable Hilbert spaces with X continuously and densely embedded into Y .
The K-interpolation method (which is among the so-called real interpolation methods) is defined as
follows: for t > 0, y ∈ Y , we let

K(t, y) :=

(
inf
x∈X
‖x‖2X + t2‖y − x‖2Y

)1/2

.
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For θ ∈ (0, 1), we let

‖y‖2θ :=

∫ +∞

0

t−(2θ+1)K(t, y)2 dt .

The interpolation spaces are then defined by

[X,Y ]θ := {y ∈ Y, ‖y‖θ <∞},

endowed with the norm ‖ · ‖θ.
For our purpose, we will need the following result: interpolating between Hilbert spaces which

belong to a Hilbert scale, leads to the expected intermediate space. For completeness, we provide a
proof of this result.
Lemma 2.1

Let (Xp)p∈R be a Hilbert scale generated by a strictly positive, self-adjoint operator D with
D−1 : X0 → X0 compact. Then for all 0 ≤ r < s, for all θ ∈ (0, 1), we have

[Xs, Xr]θ ≈ X(1−θ)s+θr.

Let (µn, un) denote an eigensystem for the operator D, with µn > 0, µn → +∞ as n → +∞ and
(un)n∈N an orthonormal basis of L2. Such a decomposition exists by compactness of D−1. Then,
recall that the Hilbert scale is characterised for p ≥ 0 by

Xp =

{
x ∈ L2,

+∞∑
n=0

µ2p
n |(x, un)|2 <∞

}
,

and the norm of x ∈ Xp is given by

‖x‖2p =

+∞∑
n=0

µ2p
n |(x, un)|2 .

Proof. Let θ ∈ (0, 1) be fixed. With the notations above, for y ∈ Xr, writing x =
∑
n∈N xnun,

y =
∑
n∈N ynun, the infimum defining K(t, y) may be rewritten as

K(t, y)2 = inf
x∈Xs

‖x‖2s + t2‖y − x‖2r = inf
(µsnxn)∈l2(N)

+∞∑
n=0

(
µ2s
n |xn|2 + t2µ2r

n |yn − xn|2
)
.

For each n ∈ N, the infimum of xn 7→ µ2s
n |xn|2 + t2µ2r

n |yn − xn|2 over R is reached at the
value xn =

t2µ2r
n

t2µ2r
n +µ2s

n
yn, and hence equals t2µ2r

n µ
2s
n

t2µ2r
n +µ2s

n
|yn|2. For this choice of xn, we indeed have

(µsnxn) ∈ l2(N) since

µsn|xn| = µsn
t2µ2r

n

t2µ2r
n + µ2s

n

|yn| ∼ µsn
t2µ2r

n

µ2s
n

|yn| = t2µ2r−s
n |yn| = o(µrn|yn|)

Hence we end up with

K(t, y)2 = t2
+∞∑
n=0

µ2r
n µ

2s
n

t2µ2r
n + µ2s

n

|yn|2 = t2
+∞∑
n=0

µ2r
n

1

1 + t2µ
2(r−s)
n

|yn|2.

Now by Fubini’s theorem and the change of variable u = µr−sn t, we may compute

‖y‖2θ =

∫ +∞

0

t−(2θ+1)K(t, y)2 dt

=

+∞∑
n=0

µ2r
n |yn|2

∫ +∞

0

t1−2θ 1

1 + t2µ
2(r−s)
n

dt

=

(∫ +∞

0

u1−2θ

1 + u2
du

) +∞∑
n=0

µ2r
n µ

2(s−r)(1−θ)
n |yn|2

=C ‖y‖2(1−θ)s+θr ,
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with the constant C :=
∫ +∞

0
u1−2θ

1+u2 du = π
2 sin(πθ) . This ends the proof. �

2.3 Fractional powers of operators
A final important result on fractional powers of operators is worth mentioning. Let A with dense
domain D(A) be an accretive operator, i.e.,

∀x ∈ D(A) , Re (Ax, x) ≥ 0 .

Recall that A is called m-accretive if A + λ1l is furthermore surjective for all λ > 0. Then the
fractional powers of A may be defined, see [26]. We will need the so-called Heinz-Kato inequality,
which states that if some power r of two m-accretive operators compare, then so do their fractional
intermediate powers θr for all θ ∈ (0, 1).

Proposition 2.2 (Heinz-Kato Inequality)
Let A and B be m-accretive operators. If there exists r > 0, C > 0 such that D(Ar) ⊂ D(Br)

and
∀x ∈ D(Ar), ‖Brx‖X ≤ C‖Arx‖X ,

then for all θ ∈ (0, 1), D(Aθr) ⊂ D(Bθr) and there exists C = C(θ) > 0 such that

∀x ∈ D(Aθr), ‖Bθrx‖X ≤ C‖Aθrx‖X .

This result was originally proved in [27] for r = 1. In fact, this result has been extended to the more
general case of Banach spaces and sectorial operators having bounded imaginary powers in [28] (m-
accretive operators are sectorial and have bounded imaginary powers, see [26]). The proof is based
on Theorem 15.28 in [29], and straightforwardly extends to arbitrary r > 0.

3 Construction of the Hilbert scales
This section deals with constructing and characterising the appropriate Hilbert scales, in which the
operator Ta defined by (1) will be projected. More precisely, we let r ∈ N∗ be a fixed integer and
build a scale (Xr,p)p∈R indexed by r. Recall that r will ultimately be chosen as a function of the
exponent a appearing in Ta through r = dae.

3.1 Defining the scales
For r ∈ N∗, we define{

Br = (−∆)r

D(Br) = {x ∈ H2r, x(k)(1) = 0 for 0 ≤ k < r , x(k)(0) = 0 for r ≤ k < 2r} . (3)

Such a definition is motivated by the following link with the inverse problem at hand: for r ∈ N∗,
we denote

Srx(t) :=

∫ t

0

(t− s)r−1x(s) ds , (4)

which is nothing but the integral operator Ta with the constant kernel k = 1.
Indeed, Sr and Br are related as follows.

Lemma 3.1
For all r ∈ N∗, Br defined by (3) and Sr defined by (4), there holds

(r − 1)!2(Br)
−1 = S∗rSr ,

as bounded operators in L2.
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Proof. For x ∈ D(Br), we may integrate by parts r times to uncover

SrBrx(t) = (−1)r
∫ t

0

(t− s)r−1x(2r)(s) ds

= (−1)r
[
(t− s)r−1x(2r−1)(s)

]t
0

+ (−1)r(r − 1)

∫ t

0

(t− s)r−2x(2r−1)(s) ds

= (−1)r(r − 1)!

∫ t

0

x(r+1)(s) ds = (−1)r(r − 1)!x(r)(t) .

Indeed, since x belongs to D(Br), the boundary conditions it satisfies are such that the integrated
terms all vanish, and we obtain S∗rSrBrx = (r − 1)!2x. Likewise, we easily check that S∗rSr
belongs to D(Br) for all x ∈ L2, and by integration by parts we find for x ∈ L2,

BrS
∗
rSrx = (r − 1)!2 x .

�

The bounded and symmetric operator S∗rSr being self-adjoint, so is Br as an operator from the
range of S∗rSr (which the previous lemma shows to be precisely D(Br)) into L2. Furthermore, we
also obtain that Br is positive, namely (Brx, x) ≥ 0 for all x ∈ D(Br). It is even strictly positive
since one easily checks that Sr is injective by differentiating r times the equality Srx = 0 (see also
next section).

Summing up, Br is a densely-defined, self-adjoint and strictly positive operator. Hence, we may
define its real powers, each of which generating a Hilbert scale. In particular, we let

Dr := B1/2r
r

and consider the associated Hilbert scale.
Definition 3.2

For r ∈ N∗, we define (Xr,p)p∈R to be the Hilbert scale induced by the operator (Dr,D(Dr)),
with corresponding norms

‖Dp
rx‖ =: ‖x‖r,p, x ∈ D(Dp

r ) .

Note that the operation of Dr should be interpreted as "differentiating once". The justification for
this convoluted way of differentiating (and with such boundary conditions) being the above relation
between Sr and Br.

In particular, since Sr is a Hilbert-Schmidt operator from L2 onto L2, (Dr)
−1 : L2 → L2 is

compact.

3.2 Characterising the scales
We now characterise the Hilbert scale thus constructed through usual (fractional) Sobolev spaces.
We recall the Sobolev embedding Hs ⊂ C0 for s ≥ 1

2 [30]. Hence for a given p ≥ 0, the pointwise
values x(k)(0) and x(k)(1) are well-defined for any k ∈ N, k ≤ p− 1

2 whenever x ∈ Hp.

Proposition 3.3
For r ∈ N∗, p ≥ 0, let

X̃r,p :=

{
x ∈ Hp, for k < p− 1

2
, x(k)(0) = 0 if 0 ≤ k[2r] < r, x(k)(1) = 0 if r ≤ k[2r] < 2r

}
,

equipped with the norm
‖ · ‖X̃r,p = | · |Hp .

Then for all r ∈ N∗ and p /∈ N + 1/2, we have

Xr,p ≈ X̃r,p.
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Proof. Our proof goes through the following two steps:

1. we prove the result for the specific values p = 2rm, m ∈ N, (with equality of norms and not
mere equivalence),

2. we then generalise the result to any p ≥ 0, p /∈ N + 1
2 , proving the topological equality of

Xr,p and X̃r,p.

The idea of the proof is summarised in Figure 1.

X2rm

X̃2rm

Xr,p

[L2, X̃r,2rm]θp

L2

L2

Figure 1: A schematic idea of the proof.

First step. For p = 2rm, m ∈ N, let us prove by induction on m that the sets Xr,p and X̃r,p are
equal. It suffices to prove that D(Bmr ) = X̃r,p. For p = 0, Xr,p = X̃r,p = L2 with the same norm,
by definition.

Now assume the equality holds for p = 2r(m− 1), m ∈ N∗, and let us address the equality for
p = 2rm.

• Let x ∈ Xr,p, then x ∈ D(Bmr ) whence Brx ∈ D(Bm−1
r ). The induction hypothesis is

nothing but D(Bm−1
r ) = X̃r,p−2r, which leads to Brx ∈ Hp−2r and x ∈ Hp by elliptic

regularity. Since D(Bm−1
r ) = X̃r,p−2r, we also have

for 0 ≤ r < p− 2r ,

{
(Brx)(k)(1) = 0 if 0 ≤ k [2r] ≤ r − 1,

(Brx)(k)(0) = 0 if r ≤ k [2r] ≤ 2r − 1,

⇐⇒ for 0 ≤ k < p− 2r ,

{
x(k+2r)(1) = 0 if 0 ≤ k [2r] ≤ r − 1,

x(k+2r)(0) = 0 if r ≤ k [2r] ≤ 2r − 1,

⇐⇒ for 2r ≤ k < p ,

{
x(k)(1) = 0 if 0 ≤ k [2r] ≤ r − 1,

x(k)(0) = 0 if r ≤ k [2r] ≤ 2r − 1
.

Finally, x ∈ D(Bmr ) does satisfy the required boundary conditions and we indeed have
x ∈ X̃r,p.

• Conversely, let x ∈ X̃r,p, then Bkrx is in L2 for k ≤ m and x ∈ D(Bmr ) and we have
Xr,p = X̃r,p.

Now, let us establish the equality of norms. For x ∈ Xr,p = X̃r,p with p = 2rm, m ∈ N, we simply
write

‖x‖Xr,p = ‖D2rm
r x‖ = ‖Bmr x‖ = ‖(−∆)rmx‖ = ‖x(2rm)‖ = |x|H2rm = ‖x‖X̃r,p .

Second step. We let p ≥ 0 be fixed, with p /∈ N + 1
2 . We pick any m such that p ≤ 2rm. From

the previous step
Xr,0 = X̃r,0 = L2, Xr,2rm ≈ X̃r,2rm.
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Now, we may make use of Theorem 5.1 of [31]: for any θ ∈ (0, 1), the identity 1l is continuous
as a mapping from the interpolated space [L2, Xr,p]θ into the interpolated space [L2, X̃r,p]θ, and
conversely. In other words, we have

∀θ ∈ (0, 1), [L2, Xr,2rm]θ ≈ [L2, X̃r,2rm]θ.

Fixing the value of θ to θp := p
2rm , we are left with proving that these two spaces are topologically

equal to Xr,p and X̃r,p, respectively.
In the first case, the result

[L2, Xr,2rm]θp ≈ Xr,θp2rm = Xr,p,

is a direct application of Lemma 2.1.
On the other hand, identifying [X̃r,0, X̃r,2rm]θp amounts to interpolating fractional Sobolev

spaces with boundary conditions. By Theorem 2.7 in [24], we have for p /∈ N + 1/2,

[L2, X̃r,2rm]θp = X̃r,p. .

Remark 3.4. Let us mention that in the case p /∈ N + 1
2 , we do not have

Xr,p ≈ X̃r,p.

In fact, Xr,p is a (strict) subspace of X̃r,p [24].

�

4 Projecting the operator in the Hilbert scale

4.1 Preliminary results
We now come to our main result, namely that Ta is of order a in the scale Xr,p, where the integer
r = dae ∈ N∗ denotes throughout this section the smallest integer above a. For a > 0, we extend
upon the definition (4) by letting

Sax(t) =

∫ t

0

(t− s)a−1x(s) ds , (5)

to which the operator Ta reduces when k(t, s) = 1 for all 0 < s < t < 1. Then, the integral
operator S is defined for x ∈ L2(0, 1) through

Sx(t) = S1x(t) =

∫ t

0

x(ξ) dξ .

The family (Sa)a>0 satisfies semi-group like properties, see also [32] for details. Thereafter, Γ
stands for the usual Euler function

a 7−→
∫ +∞

0

ta−1e−t dt.

Let us recall that the fractional powers of S are well-defined, because it is an m-accretive operator.
Indeed, since S is bounded, we only need to check that it is accretive to conclude that it is m-
accretive. For x ∈ L2, we integrate by parts to find

(Sx, x) =

∫ 1

0

x(s) ds

∫ 1

0

x̄(s) ds− (x, Sx) =⇒ Re(Sx, x) =
1

2

∣∣∣∣∫ 1

0

x(s) ds

∣∣∣∣2 ≥ 0.
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Lemma 4.1
For a /∈ N, which we write a = r − 1 + ω, r ∈ N∗ and 0 < ω < 1, we have

Sa = Γ(r)Γ(ω) Sr−1+ω = Γ(r)Γ(ω) Sa , (6)

as operators in L2. Moreover, Sa is injective.

Proof. The case a ≤ 1, or equivalently r = 1, corresponds to Lemma 5 of [18], where it is shown
that Sω = Γ(ω)Sω . Hence, the equation (6) holds true for r = 1 and/or ω = 0 with the convention
S0 = 1l. Then, for any r > 1, x ∈ L2,

Srx(t) =

∫ t

0

(t− s)r−1x(s) ds

=

[
(t− s)r−1

∫ s

0

x(τ) dτ

]t
0

+

∫ t

0

(r − 1)(t− τ)r−2

∫ s

0

x(τ) dτ ds

= (r − 1)Sr−1Sx(t) .

Then integrating r times, we have Sr = Γ(r)Sr. We have also seen (see Lemma 3.1) that that Sr is
injective. For a = r − 1 + ω,

Sax(t) =

∫ t

0

(t− s)r−1+ω−1x(s) ds

=

∫ t

0

(t− s)r−1[(t− s)ω−1x(s)] ds

= [(t− s)r−1

∫ t

0

(t− τ)ω−1x(τ) dτ ]t0 + (r − 1)

∫ t

0

(t− s)r−2

∫ t

0

(t− τ)ω−1x(τ) dτ ds

= (r − 1)Sr−1Sωx(t) .

And therefore

Sa = (r − 1)Sr−1Sω = Γ(r)Sr−1Γ(ω)Sω = Γ(r)Γ(ω)Sr−1+ω .

Since Sω is injective (Theorem 4.3 of [33]) and Sr is also injective, Sa is by composition. �

4.2 Estimating the order of ill-posedness: first approach
We now want to establish that Ta is of order a in the Hilbert scaleXr,p constructed in Section 3. The
idea is similar to the work [33]: we decompose the operator Ta into a main operator TS = k(t, t)Sa
and a residual operator TR. We introduce some useful notations to state our result. First, we define
the open triangle

Ω :=
{

(t, s) ∈ (0, 1)2, 0 < s < t < 1
}
,

on which the kernel k is defined. Secondly, we shall require that k is sufficiently smooth with respect
to its second variable and that it does not vanish on the diagonal. More precisely, defining

g(t, s) := (k(t, t)− k(t, s))(t− s)a−1, (t, s) ∈ Ω,

we assume that for a.e. t ∈ (0, 1),

• s 7→ g(t, s) ∈ Hr(0, t) , (7)

• s 7→ k(t, s) ∈

{
C0,b(a)(0, t) with b(a) > 1− ω, for a ≤ 1

Hr−1(0, t), for a > 1
(8)

• k(t, t) 6= 0 . (9)

These hypotheses will be strengthened for our main result to hold true. They are sufficient at this
stage to decompose the operator: we can factor Sa out from Ta from the right-hand side.
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Lemma 4.2
Under hypotheses (7)-(8)-(9), the decomposition

∀x ∈ L2, Tax(t) = k(t, t)(1l−Ra)Sax(t) , (10)

holds, where

Rax(t) :=

∫ t

0

h(t, s)x(s) ds (11)

Here, denoting a = r − 1 + ω, with r = dae, Ra is an integral operator of kernel h vanishing
outside of Ω and given for (t, s) ∈ Ω by

• h(t, s) =
1

k(t, t)

(−1)a

Γ(a)

∂a

∂sa
g(t, s) , a ∈ N , (12)

• h(t, s) =
1

k(t, t)

(−1)r

Γ(r)

sin(πω)

π

∫ t

s

(τ − s)−ω ∂r

∂τ r
g(t, τ) dτ , a /∈ N , (13)

with g defined as

g(t, s) := (k(t, t)− k(t, s))(t− s)a−1, (t, s) ∈ Ω. (14)

Proof. For x ∈ L2, we write

Tax(t) =

∫ t

0

k(t, s)(t− s)a−1x(s) ds

= k(t, t)

∫ t

0

(t− s)a−1x(s) ds︸ ︷︷ ︸
TSx(t) = k(t, t)Sax(t)

−
∫ t

0

(k(t, t)− k(t, s))(t− s)a−1x(s) ds︸ ︷︷ ︸
TRx(t)

,

and by integration by parts, under condition (7)-(8), all n ≤ r,

TRx(t) =

∫ t

0

(k(t, t)− k(t, s))(t− s)a−1x(s)ds

=
[
(k(t, t)− k(t, s))(t− s)a−1Sx(s)

]t
0
−
∫ t

0

∂

∂s

(
(k(t, t)− k(t, s))(t− s)a−1

)
Sx(s) ds

=

[
∂n−1

∂sn−1

(
(k(t, t)− k(t, s))(t− s)a−1

)
Snx(s)

]t
0

+ (−1)n
∫ t

0

∂n

∂sn
(
(k(t, t)− k(t, s))(t− s)a−1

)
Snx(s) ds

= (−1)n
∫ t

0

∂n

∂sn
(
(k(t, t)− k(t, s))(t− s)a−1

)
Snx(s) ds .

in particular, it is easy to check that the condition (8) is sufficient for the boundary terms to vanish.
In the case of a ∈ N?, or equivalently a = r, the result is immediate by using n = r in the above:
formulae (10) and (12) hold.

In order to makeRa appear as in formula (10) when a = r−1+ω, we still need to factor Sω out
from the expression above for TR with n = r − 1, and justify that the remaining integral operator
is well-defined. The combination of Lemma 4.1 and Euler’s reflection formula (for 0 < ε < 1,
Γ(ε)Γ(1− ε) = π/ sin(πε)) leads, for all x ∈ L2 and ε ∈ (0, 1), to

Sx(t) =
sin(πε)

π
S1−ε Sεx(t) .

We introduce the notation z(t) = Sr−1x(t) and f(t, s) = (−1)r−1 dr−1

dsr−1

(
(k(t, t)− k(t, s))(t− s)a−1

)
,
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and we have

TRx(t) =

∫ t

0

f(t, s)z(s) ds =

∫ t

0

f(t, s)
∂

∂s

(∫ s

τ=0

z(τ) dτ

)
ds

=
sin(πε)

π

∫ t

0

f(t, s)
∂

∂s

(∫ s

0

(s− τ)−εSεz(τ) dτ

)
ds

=

[
sin(πε)

π
f(t, s)

∫ s

0

(s− τ)−εSεz(τ) dτ

]t
0

− sin(πε)

π

∫ t

s=0

∂

∂s
f(t, s)

∫ s

τ=0

(s− τ)−εSεz(τ) dτ ds

Here we wish to show that the first term cancels out to factorise Ta by Sa, which requires f(t, t) = 0.
For a ≤ 1 together with the condition (8) we immediately obtain f(t, t) = 0. For a > 1, we may
compute explicitly f(t, t) with the Leibniz derivation formula thanks to the condition (8) and check
that f(t, t) = 0 also holds. Hence, we end up with

TRx(t) = − sin(πε)

π

1

Γ(r)

∫ t

s=0

∫ t

τ=s

(τ − s)−ε ∂
∂τ
f(t, τ) dτ Sr−1+εx(s) ds .

Let us a posteriori justify the above calculations by proving that the integral∫ t

s=0

∫ t

τ=s

(τ − s)−ε ∂
∂τ
f(t, τ) dτ x(s) ds ,

is well-defined for x ∈ L2. Since ` : τ 7→ (−τ)−εδτ≤0 belongs to L1(0, t) and since k satisfies
condition (7), ∂τf(t, τ) is in L2(0, t). By Young’s convolution inequality, the convolution

s 7→
∫ t

0

(τ − s)−εδs−τ≤0
∂

∂τ
f(t, τ) dτ =

(
` ∗ ∂

∂τ
f(t, ·)

)
(s) ,

belongs to L2(0, t) . The integral is therefore the scalar product of two functions of L2(0, t).
To conclude, we set ε = ω, and we find (10) and (13) with TR = (k(t, t))−1RaSa. �

Thanks to the above decomposition (10), we may exhibit a sufficient condition to compare Ta and Sa.
Thus, the two operators are of the same order in the appropriate Hilbert scale.

Theorem 4.3
Let a > 0. Assume that k satisfies (7)-(8)-(9). If k is furthermore such that

• c−1
k ≤ |k(t, t)| ≤ ck for ck > 0 , (15)

• 1l−Ra : L2 → L2 is bounded, invertible , (16)

then Ta : L2 → L2 is injective and there exists a constant c = c(a) such that

∀x ∈ L2, c−1‖x‖r,−a ≤ ‖Tax‖L2 ≤ c‖x‖r,−a .

Remark 4.4. At first glance, Condition (16) might seem rather abstract. Since there are numerous
sufficient criteria to decide whether such a result holds true (especially coming from Fredholm The-
ory), we prefer to give the result with such generality and only then to give some workable sufficient
conditions ensuring Condition (16), see Corollary 4.6.

Proof. First step: k = 1. In this case, Ta = Sa, in which case injectivity has already been
established. Let us start with the integer case a = r. Recalling (r − 1)!2(Br)

−1 = S∗rSr from
Lemma 3.1, we have for x ∈ L2

‖Srx‖2 = (S∗rSrx, x) = (r − 1)!2(B−1
r x, x) = (r − 1)!2‖x‖2r,−r ,

Hence, Theorem 4.3 holds true with the constant c = c(r) = (r − 1)!

12



Let a > 0 be fixed. Letting r = dae, we use the above according to which we have

∀x ∈ L2, (r − 1)!‖D−rr x‖ = ‖Srx‖ =⇒ ‖D−rr x‖ = ‖Srx‖

using Sr = (r − 1)!Sr. We now aim at applying the Heinz-Kato inequality 2.2. Since the operator
D−1
r is positive and self-adjoint, it is m-accretive. We also know that S is m-accretive. Hence, we

may use the Heinz-Kato inequality with n = r and θ = a/r ≤ 1 in Proposition (2.2). The result is
proved because Lemma 4.1 shows Sθ1Sr−1 and Sa differ only by a multiplicative constant.

Second step: general k. For any k under Conditions (7)-(9), we recall that

Ta = k(t, t)(1l−Ra)Sa .

Under Conditions (7)-(8)-(9), for x ∈ L2(0, 1), Rax is well defined. Moreover, under Condi-
tion (16), Rax belongs to L2, and the injectivity of both 1l − Ra and Sa yield that of Ta. The
hypotheses allow us to bound as follows for x ∈ L2:

‖Tax‖ ≤ ck‖1l−Ra‖‖Sax‖ ,

as well as
‖Sax‖ ≤ ck‖(1l−Ra)−1Tax‖ ≤ ck‖(1l−Ra)−1‖ ‖Tax‖ ,

and the first step concludes the proof. �

Remark 4.5. In the proof of Theorem 4.3, we used the Heinz-Kato inequality 2.2 to compare Sa and
D−ar with r = dae. We could in fact have compared Sa with D−ar for any r ≥ a. Hence, we have
actually proved the following result under the hypotheses of the previous theorem:

Ta is of order a in any Hilbert scale (Xr,p) with r ≥ a.

It is of course of little interest to take any r larger than dae in practice if a is known. On the contrary,
if there is uncertainty on the value of a, say in the form of a weak information a ∈ [amin, amax], then
one could (and should) take r = damaxe.

We propose to give sufficient conditions for which the condition (16) on the integral operator Ra
is verified, which might be more handy to check depending on the inverse problem at hand.

Corollary 4.6
Let a > 0. Assume that k satisfies (7)-(8)-(9)-(15)-(16). If the integral operator Ra of kernel h

defined by (12)-(13) satisfies one of the following conditions :

• ‖Ra‖ < 1, (17)

• ∃ γ ∈ L2(0, 1) s.t. ∀x ∈ L2 , |Rax(t)| ≤
∫ t

0

γ(s)|x(s)| ds , (18)

• h ∈ L∞(Ω) , (19)

then the conditions of Theorem (4.3) are satisfied.

Remark 4.7. Condition (19) certainly implies condition (18) (by taking the constant function γ :=
‖h‖L∞(Ω)). We choose to stress condition (19) independently since it may be checked more directly.

We also note that if h ∈ L2(Ω), Ra is a Hilbert-Schmidt operator, and hence is compact from
L2 onto L2. Hence, by the Fredholm alternative, showing that 1l − Ra is bijective is equivalent to
showing that it is either injective or surjective.

Proof. We prove that all conditions imply that 1l−Ra is bounded, invertible with bounded inverse.

Under Condition (17) , since ‖Ra‖ < 1, it is standard that 1l − Ra is invertible, bounded (with
inverse given that then the Neumann series

∑
Rna of Ra). Consequently, the condition (16) of

Theorem 4.3 holds true.
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Under Condition (18) , the function Rax is in L2. Our reasoning follows the proof of Lemma 1
of [17], which for completeness we repeat below. Let us prove by induction that

|Rnax(t)| ≤ 1

n!1/2(n− 1)!1/2

(∫ t

0

γ(s)2 ds

)n/2 (∫ t

0

(t− s)n−1|x(s)|2 ds

)1/2

, n ∈ N .

This inequality holds true for n = 1. Now for any n ∈ N, by Hölder’s inequality,

|Rn+1
a x(t)| ≤

∫ t

0

γ(s)|Rnax(s)| ds

≤ 1

n!1/2(n− 1)!1/2

∫ t

0

γ(s)

(∫ s

0

γ(τ)2 dτ

)n/2 (∫ s

0

(s− τ)n−1|x(τ)|2 dτ

)1/2

ds

≤ 1

n!1/2(n− 1)!1/2

(∫ t

0

γ(s)2

(∫ s

0

γ(τ)2 dτ

)n
ds

)1/2 (∫ t

0

∫ s

0

(s− τ)n−1|x(τ)|2 dτ ds

)1/2

≤ 1

(n+ 1)!1/2(n)!1/2

(∫ t

0

(∫ s

0

γ(τ)2 dτ

)n+1
)1/2 (∫ t

0

(t− s)n|x(s)|2 ds

)1/2

≤ 1

(n+ 1)!1/2(n)!1/2

(∫ t

0

γ(s)2 ds

)(n+1)/2 (∫ t

0

(t− s)n|x(s)|2 ds

)1/2

.

Now, if we bound the kernel integral operator Sn,(∫ 1

0

∫ t

0

(t− s)n|x(s)|2 ds)2 dt

)1/2

≤ ‖x‖√
n

we obtain for all n ∈ N,

‖Rna‖ ≤
‖γ‖n

n!
.

Therefore the Neumann series of Ra converges in the operator norm, and 1l − Ra is then invertible
with bounded inverse, and the condition (16) is met.

�

Let us now make condition (17) a bit more explicit. Since Ra is an integral operator, we can always
control its norm by the Hilbert-Schmidt norm (which may or may not be finite) through

‖Ra‖ ≤ ‖h‖L2((0,1)2) = ‖h‖L2(Ω).

Hence, a sufficient condition for condition (17) to be satisfied is explicitly given by

• for a ∈ N,

1

Γ(a)

∫
Ω

(
1

k(t, t)

∂a

∂sa
(
(k(t, t)− k(t, s))(t− s)a−1

))2

ds dt < 1 ,

• for a = r − 1 + ω, ω < 1,

| sin(πω)|
πΓ(r)

∫
Ω

(
1

k(t, t)

∫ t

s

(t−τ)−ω
∂r

∂τ r

(
(k(t, t)− k(t, τ))(t− τ)a−1

)
dτ

)2

ds dt < 1 .

4.3 Estimating the order of ill-posedness: second approach
We now propose an alternative way to prove the result with less restrictive assumptions, but for the
case a /∈ N and assuming that injectivity of Ta has been established independently, and in sufficiently
weak spaces. We refer to [33] for some sufficient conditions regarding injectivity for Abel operators
in classical Lp spaces, and to Remark 4.11 when it comes to passing from classical injectivity to
weaker injectivity (at least for a < 1).
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Indeed, in the case where a is not integer, Sa+γ can be compared to Sa in the same Hilbert scale
provided that γ is taken small enough. This is not the case for a ∈ N, and the underlying reason
is that the operators S and S∗ do not commute. Under assumptions (7)-(8)-(9), we go back to the
formula (13) but for ε = ω + γ. We obtain for x ∈ L2,

Tax(t) = k(t, t)Sax(t) + k(t, t)Ra,γSa+γx(t) , (20)

with

Ra,γx(t) = c(a, γ)

∫ t

0

∫ t

s

(τ − s)−ω−γ ∂
r

∂τ r
g(t, τ) dτ x(s) ds , (21)

with g defined by (14) and

c(a, γ) =
(−1)r

Γ(r)

sin(π(ω + γ))

π
.

Here, in contrast to [18], our approach completely diverges. Our idea is to view the residual
Ra,γSa+γ as a compact perturbation of the main part, and to use a corollary of the so-called Peetre’s
lemma [25].

Theorem 4.8

Let a > 0, a /∈ N. Assume that k satisfies (7)-(8)-(9). If Ta is injective from Xr,−a onto L2,
and if, for γ small enough, Ra,γ defined by (20)-(21) satisfies

‖Ra,γ‖ < +∞ , (22)

then, there exists a constant c = c(a) such that

∀x ∈ L2, c−1‖x‖r,−a ≤ ‖Tax‖L2 ≤ c‖x‖r,−a .

We emphasise that Theorem 4.8 requires less demanding conditions, since they do not rely on esti-
mating the norm of the operator Ra,γ (but only that it be finite). However, by relaxing the assump-
tion (17), another condition naturally emerges, which is that the injectivity of Ta has to be checked
independently since Condition (22) is not sufficient to guarantee it.

Before coming to the proof of Theorem 4.8, we develop the necessary (functional analytic) tools.
In what follows, C > 0 is a constant which might change from line to line.

Lemma 4.9
Given three Hilbert spaces X , Y , Z such that the injection of Y into Z is compact, and given

two bounded operators S et R from Y to X , we define the operator T := S + R which we
assume to be injective. Moreover, if we have

∀x ∈ Y, C−1‖x‖Y ≤ ‖Sx‖X ≤ C‖x‖Y (23)
∀x ∈ Z, ‖Rx‖X ≤ C‖x‖Z (24)

Then,
∀x ∈ Y, C−1‖x‖Y ≤ ‖Tx‖X ≤ C‖x‖Y .

Proof. The upper bound directly follows from the continuous injection of Y into Z,

∀x ∈ Y, ‖Tx‖X ≤ ‖Sx‖X + ‖Rx‖X ≤ C‖x‖Y + C‖x‖Z ≤ C‖x‖Y .

The lower bound, on the other hand, is a consequence of Peetre’s lemma, which we recall below.

Lemma 4.10 ([25]-Lemma 3)
Let X and Y be two Banach spaces, and two operators, T bounded injective from Y into X ,

and R compact from Y into X . We assume that

∀x ∈ Y, ‖x‖Y ≤ C (‖Tx‖X + ‖Rx‖X) .
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Then,
∀x ∈ Y, ‖x‖Y ≤ C‖Tx‖X .

We may write
∀x ∈ Y, ‖Sx‖X = ‖Tx−Rx‖X ≤ ‖Tx‖X + ‖Rx‖X ,

which leads via hypothesis (23) to

∀x ∈ Y, ‖x‖Y ≤ C (‖Tx‖X + ‖Rx‖X) .

Now let (xn)n∈N be a bounded sequence of Y . Then, by the compact injection of Y into Z, (xn)n∈N
converges in Z upon extraction. By the inequality (24), (Rxn)n∈N converges in X along the sub-
sequence, which shows that R is compact from Y into X . Hence, Lemma 4.10 concludes the
proof. �

Proof. As mentioned in the sketch of proof, we pick γ > 0 small enough so that da+γe = dae = r,
which is possible since a /∈ N. Then, we have

Tax(t) = k(t, t)Sax(t) +Ra,γSa+γx(t) ,

a decomposition which can be shown to hold as in Lemma 10 thanks to (7)-(8)-(9).
The operator Ta is now the sum of two operators, a first one whose projection in a Hilbert scale

is known thanks to Theorem 4.3 for the simple case of k(t, s) = k(t, t), and a second one that is a
compact perturbation of the first one, as we shall see.

We define X = L2, Y = Xr,−a and Z = Xr,−(a+γ), the injection of Y into Z is compact since
the two spaces belong to the same Hilbert scale. The operator Sa and Ra,γSa+γ are bounded oper-
ators from X = L2 to X = L2, respectively thanks to Lemma 4.1 and thanks to the condition (22).
Hence, they are also bounded operators from Y = Xr,−a toX = L2 (once uniquely extended) since
L2 = Xr,0 is densely embedded into Xr,−a. By assumption, Ta is injective from Y = Xr,−a onto
X = L2. By (15), c−1

k ≤ |k(t, t)| ≤ ck and using Theorem 4.3, the first term satisfies

c−1‖x‖r,−a ≤ ‖k(t, t)Sax‖L2 ≤ c‖x‖r,−a ,

and the condition (23) is met.
We now evaluate the operator R = Ra,γSa+γ in the Hilbert scale (Xr,p)p∈R. Then, by Theo-

rem 4.3, there exists C > 0 such that

C−1‖x‖r,−(a+γ) ≤ ‖Sa+γx‖ ≤ C‖x‖r,−(a+γ) .

Moreover, the operator Ra,γ is assumed to be bounded, and we denote ‖Ra,γ‖ = M . Hence, we
have the announced upper bound

‖Ra,γSa+γx‖L2 ≤M‖Sa+γx‖L2 ≤ cM‖x‖r,−(a+γ) .

We have then shown that condition (24) holds true. We may now apply Lemma 4.9. and conclude
that for a /∈ N, for all x ∈ L2,

C−1‖x‖r,a ≤ ‖Tax‖L2 ≤ C‖x‖r,a .

Remark 4.11. The requirement that Ta be injective from the weak space Xr,−a into L2 is rather
abstract. Since the injectivity of Ta in Lp spaces has thoroughly been studied in the literature, let us
give some sufficient conditions such that

Ta : L2 → L2 injective =⇒ Ta : Xr,−a → L2 injective.

We work in the setting where 0 < a < 1: we leave open the problem of finding comparably simple
conditions when a > 1.

Let x ∈ Xr,−a such that Tax = 0. We prove that this equality enforces x ∈ L2. Since
decomposition (10) holds, we have

Sax(t) = −RaSax(t) .

Now, assuming for the moment the following properties
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• y ∈ L2 =⇒ Ray ∈ H1,

• Sax ∈ Ha =⇒ x ∈ L2,

we apply the first one to y = Sax, obtaining y = Sax ∈ H1. The second property then yields x ∈ L2.
Let us finally discuss the two above properties. The second one is a very general property of Sa that
requires no further conditions, and is established in Theorem 2.1 of [34]. The first implication is
obtained using the conditions

• ∀s ∈ (0, 1), t 7→ h(t, s) ∈ H1(s, 1) , (25)

• (t, s) 7→ ∂

∂t
h(t, s) ∈ L2(Ω) . (26)

Indeed, when these hold, we may use that h(t, t) = 0 and differentiate once (in the weak sense)
y = Ray to obtain

y′(t) =

∫ t

0

∂

∂t
k(t, t)h(t, s)y(s)ds . (27)

�

In Appendix A, we also elaborate on the particular case where k is analytic with respect to its
second variable, which leads to sufficient conditions that may be easier to check in some specific
cases.

4.4 Tikhonov regularisation
Let us now return to the solution of the inverse problem associated to the Abel integral. We wish to
reconstruct x such that

Tax = y ,

Instead of having access to the exact data y, we must reconstruct the signal from noisy data yδ such
that the measurement error is bounded in the L2 norm,

‖yδ − y‖ ≤ δ , (28)

We also are given some a priori regularity about the unknown x, which we assume writes

x ∈ Xr,q, ‖x‖r,q ≤M . (29)

The Tikhonov-type regularisation method for recovering x consists in solving the minimisation prob-
lem

min
x∈Xr,p

J (u) J (u) := ‖Tau− yδ‖2L2 + α‖u‖2r,p (30)

We then have the following convergence theorem, which directly follows from Natterer’s theo-
rem [13].

Corollary 4.12
Under the hypotheses of Theorem 4.3 or Theorem 4.8, assume (28) and (29), take

p ≥ q − a
2

, (31)

as well as
α = α(δ) = Cδ

2(a+p)
a+q , (32)

for some C > 0. Then, the solution xδ,α(δ),p of the minimisation problem (30) with regularisa-
tion parameter α(δ) satisfies

‖xδ,α(δ),p − x‖ ≤ c δ
q
q+aM

a
a+q (33)

for some constant c > 0.
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We repeat here the implication drawn by Natterer in [13]: there is nothing wrong with high order
regularisation, even well above ther order of smoothness of the exact solution. The only mistake one
can make is to regularise with an order which is too low.
Remark 4.13. Let us also mention the following slight improvement, still from [13]: if one further
assumes that

(T ∗aTa)1/2 and Dr commute, (34)

then Corollary 4.12 holds true and condition (31) becomes

p ≥ q

2
− a .

From the results of Theorem 4.3, the above hypothesis (34) happens to be satisfied when the kernel k
is identically 1 and a = r is a positive integer, i.e., with our notations when Ta = Sa = Sr. Indeed,
recall the equality B−1

r = S∗rSr, which directly entails that T ∗aTa = S∗rSr = B−1
r commutes with

Dr = B
1
2r
r .

5 Numerical experiments
In this section, we discuss the numerical and practical solution of an inverse problem related to an
operator of the form (1) by penalising derivatives.

5.1 Preliminary remarks
Corollary (4.12) shows that the quality of the inversion, or equivalently of the reconstruction, is
improved if the function to be reconstructed is smooth and satisfies some boundary conditions.

In particular, if the unknown is compactly supported inside (0, 1), our results simply mean the
following: the smoother (in the usual L2 Sobolev sense) the unknown, the better the reconstruction
method works. If however the function is not compactly supported, the order of convergence is
controlled by the boundary conditions, even for arbitrarily smooth functions.

Proposition 3.3 also shows that the minimisation problem

min
x∈Xr,p

‖Tau− yδ‖2L2 + α‖u‖2r,p (35)

is equivalent to
min
x∈Xr,p

‖Tau− yδ‖2L2 + α|u|2Hp , (36)

upon changing the parameter α, and at least for p /∈ N + 1
2 . For p ∈ N, in particular, this is nothing

but penalising the pth derivative of u through ‖u(p)‖2.
At this stage, in order to solve the above, we need to elaborate on how to discretise the pth

derivative as well as how to deal with the boundary conditions. As mentioned in the introduction, a
first approach would be to use finite differences to approximate the derivative u(p). Then, for each
chosen level or regularisation p, this method would lead to cumbersome computations, at least when
p ∈ N. This has three major drawbacks:

• the code must significantly be changed for each instance of p and may become heavy for large
values (recall that we should not refrain from taking p large),

• this does not carry over to the case of fractional p,

• the boundary conditions are not properly taken into account.

In fact, dealing with all three caveats is achieved by closely following the initial formulation with
the Hilbert scale and underlying operator Dr, as we now explain in more detail.

5.2 Discretisation and method
Several choices are available both for discretising the operators involved as well as minimising the
criterion J defined by (30).
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Discretising the operator Ta. Let us quickly mention how we may synthetically produce data, i.e.,
how the operator Ta is discretised. The interval [0, 1] is evenly separated with n points (ti)0≤i≤n−1,
ti = i

n , with step ∆t = 1/n. A function x is represented by the vector X = (x(ti))0≤i≤n−1. First,
for a constant kernel k = 1 and any a > 0, the discretised operator T̃a may be computed as an
approximation of Ta defined by (1), thanks to the trapezoidal rule

Tax(ti) =

∫ ti

0

(ti − s)a−1x(s) ds

(
T̃aX

)
i

=

i∑
j=1

x(tj) + x(tj−1)

2

∫ tj

tj−1

(ti − s)a−1 ds+O(∆t)

=

i∑
j=1

x(tj) + x(tj−1)

2a
((ti − tj−1)a − (ti − tj)a) +O(∆t) ,

which leads to the corresponding matrix

(T̃a)i,j =



(∆t)a

2a
((i− j + 1)a − (i− j − 1)a) j < i ,

(∆t)a

2a
(ia − (i− 1)a) j = 0, i 6= 0 ,

(∆t)a

2a
j = i, i 6= 0 ,

0 i = j = 0, or j > i.

This approximation is of order one as shown in [35] or [36]. Thus, from the discrete operator T̃a, we
compute Y = T̃aX , to which we add a Gaussian normal noise of different standard deviations δ to
obtain the data Y d.

Discretising the derivativeDr. Instead of computing the finite difference of order p, we discretise
the Hilbert scale. For r ∈ N∗, we define the matrix Br as the approximation of (−∆)r with the
appropriate boundary conditions. In order to do so, we directly compute the matrix Br with the
finite difference method, where the boundary conditions are enforced in the construction.

Several discretisation choices are possible depending on the wanted order. For instance, using
discretisations that are all of order (at least) O(∆t2), here are the resulting matrices for r = 1, 2, 3.

For r = 1, B = −∆, x′(0) = 0 and x(1) = 0,

B1 = (∆t)−2


2 −2 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 −1 0

0 0
. . . . . . . . .

 .

For r = 2, B = ∆2, x′′(0) = x′′′(0) = 0 and x(1) = x′(1) = 0,

B2 = (∆t)−4



2 −4 2 0 · · · · · · 0
−2 5 −4 1 · · · · · · 0
1 −4 6 −4 1 0 0
0 1 −4 6 −4 1 0

0 0
. . . . . . . . . . . . . . .

0 0 · · · 1 −4 6 −4
0 0 · · · 0 1 −4 7


.
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For r = 3, B = −∆3, with the corresponding boundary conditions,

B3 = (∆t)−6



2 −6 6 −2 0 0 · · · · · · 0
−3 10 −12 6 −1 0 · · · · · · 0
3 −12 19 −15 6 −1 0 · · · 0
−1 6 −15 20 −15 6 −1 0 0
0 −1 6 −15 20 −15 6 −1 0
... 0 0

. . . . . . . . . . . . . . . 0
... 0 0 −1 6 −15 6 −15 20
... 0 0 0 −1 6 −15 20 −16
... 0 0 0 0 −1 6 −14 26


.

Remark 5.1. Note that the discretised form of Br for r = 1, 2 or 3 no longer is symmetric, although
the continuous operator is. This can certainly be circumvented by considering the weak formulation
of the elliptic partial differential equation Brx = y and using (for instance) finite elements, but
requires more involved computations which we believe make the numerical approach less straight-
forward, while not improving its efficiency.

Note, however, that all we need for solving the problem is to compute fractional powers of
B∗rBr and not Br directly. Hence, the powers are also uniquely defined at the discrete level since
the matrices we need to take powers of are all symmetric.

To compute the fractional power of symmetric matrices, we use the Schur-Padé alogorithm de-
veloped in [37].

Minimisation of J . Finally, we minimise the discrete function over Rn

J̃ (X) = ‖T̃aX − Y d‖2 + α‖Dp
rX‖2 ,

where the norm is the Euclidean norm over Rn. Its unique minimum Xδ,α,p satisfies the so-called
normal equations

Xδ,α,p =
(
T̃Ta T̃a + α

(
D̃T
r D̃r

)p)−1

T̃Ta Y
d . (37)

For the numerical implementation, we choose n small, i.e. n = 100. For experimental signals, this
value may reach several thousands or more, and in that case the minimum of a quadratic function can
efficiently be obtained by the conjugate gradient method. Both techniques have been implemented
and give the same results.

5.3 Recovering the theoretical rates
Solving the inverse problem through the Tikhonov approach highly depends on the parameter α.
In this subsection, our purpose is to retrieve the theoretical orders of convergence given by Corol-
lary 4.12.

Hence, for illustration purposes, we here and only here choose the value of the regularisa-
tion coefficient α optimally, i.e., by estimating the best possible reconstruction error as follows:

Data: true signal x, noisy signal yδ

Result: Solve the inverse problem by minimising (30)
while αm < α < αM do

Solve (37) for α ;
Compute error = ‖xδ,α,p − x‖;
if error < error opt then

Select α as αopt;
end

end
Here, the regularisation parameter is searched for in [αm, αM ], where αm is set at 10−16 and αM
chosen appropriately depending on the data (for a function of norm 1 we pick αM = 104). The
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regularisation parameter space is explored incrementally with a logarithmic step, and is increased
as long as the prediction no longer improves. Of course, such a search cannot be implemented in a
practical inverse problem, since this requires knowing the solution.

We numerically illustrate the rate of convergence obtained for various values of a and p. In par-
ticular, we highlight that the choice of the matrix Br is critical when the solution and its derivatives
do not (properly) vanish at the boundary.

As an illustrating example, we reconstruct a Gaussian function centered at x = 1
2 and with

sufficiently small variance so that it numerically boils down to a compactly supported function. We
also consider an off-center Gaussian function, for which the function (and its derivatives) do not
vanish at x = 0. Those functions are both infinitely smooth. However, only the centered Gaussian
belongs to Xr,p for any r > 0 and any p ≥ 0 (at the numerical level and for sufficiently small
variance).

Rate of convergence. We solve the minimisation problem defined by (30) for varying noise levels
and show that convergence rates are close to the optimal ones as given by Corollary 4.12.

Figures 2 shows the reconstruction of a Gaussian signal for different values of the order of ill-
posedness a and of the order of penalisation p. For a given level of noise, or standard deviation
δ = 0.05, the lower the order a, the better the reconstruction becomes. Moreover, Figure 2 shows
that the optimal slope is attained, which for p = 1 is s = (2 + a)/(2 + 2a), i.e. s ≈ 0.833, s = 0.75
and s = 0.70 for a = 0.5, a = 1 and a = 1.5 respectively.

Example of saturation. We also aim at highlighting how the slope of convergence rates s satu-
rates. Indeed, assume that the unknown belongs to Xr,q and let p∗ = q−a

2 . As soon as p is chosen
higher than p∗, the convergence rate should no longer improve, as per Corollary 4.12.

Thus, for a = 1, if we choose as function x to be an off-center Gaussian, then x(1) = 0 but
x′(0) 6= 0, and this function therefore belongs to X1,q for any q < 3/2. In particular it is in X1,1.
However, it does not belong to X1,q for q > 3/2. We deduce that p∗ = (3/2 − 1)/2 = 1/4 and
for all p ≥ 1/4 the slope remains at q/(a + q) = 0.6. This saturating phenomenon for the order of
convergence is illustrated by Figure 3. We notice that the slope is slightly below than the expected
0.6.

Remark 5.2. According to Remark 4.13, when the operators commute, the saturation of the con-
vergence rate s is obtained with a smaller p∗, i.e., p∗ = q/2 − a. In our example, the continuous
operators (S∗aSa)1/2 and Dr commute. On the other hand, the discrete operators lose this property.

The importance of the chosen derivative operator. As already mentioned, if the function x is
not compactly supported, the right choice of the derivative operator becomes crucial. To illustrate
this phenomenon, we again pick the off-center Gaussian.

For a = 1.5 (hence r = 2), such a function belongs to X2,q for all q < 5/2, and does not belong
to X2,q for q > 5/2 since x(1) = x′(1) = 0, but x′′(0) 6= 0. Then, p∗ = 1/2(5/2− 1.5) = 1/2 and
for p ≥ p∗ the slope of convergence is q/(a+ q) = 0.62.

We choose to compare for p = 2 the effect of choosing either the matrix B1 or B1/2
2 . In

Figure 4, we observe that the matrix B1 leads to a reconstruction xδ,α,p which must satisfy the
condition x′(0) = 0, whereas such condition is not enforced with the choice ofB1/2

2 . We also notice
that the slope of convergence is optimal for B1/2

2 , but saturates at 0.5 for B1. This confirms that the
matrix B1/2

2 offers a better reconstruction, and in that case the values taken by the unknown at the
boundaries play an important role. We hence numerically confirm that regularising with a high order
can be less effective if the operator is not chosen appropriately.

Moreover, we note that the solution becomes increasingly sensitive to the a priori regularity
parameter p as it becomes large. Hence, even if formally taking p large cannot be harmful, it leads
to numerical instabilities. This is an incentive to choose p as optimally as possible depending on the
problem under study.
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Figure 2: Examples of signals and their reconstructions for different values of a. The first row
shows the signal obtained by Abel transform of a Gaussian function for three different values of a,
in black the signals y = Tax without noise and in blue the noisy signals yδ with noise δ = 0.05.
The second row displays the reconstructions of the Gaussian from the noisy signals. Finally, in the
third and last row, are plotted the reconstruction errors ‖xδ,α,p − x‖ as a function of the noise level
δ (or equivalently the standard deviation of white Gaussian noise). The smaller a, the better the
reconstructed signal approximates the real solution x in log-log scale. The line of expected optimal
slope s is drawn in red.
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Figure 3: Example of slope saturation when the function x and its derivatives do not vanish at
the boundary. On the left is plotted the Abel transform of a Gaussian function centered on t =
0.2. The noisy observation yδ results from the addition of a white Gaussian noise with a standard
deviation δ = 0.05 to y = Tax. In the middle is plotted the reconstrcution xδ,α,p for p = 0, p = 1
and p = 2. The last graphic shows the error ‖xδ,α,p − x‖ as a function of δ in a log− log scale. The
slope s for p = 1 or p = 2 is only 0.45, which is close to the ideal 0.6, instead of the slope of 0.75
obtained in Figure 2.
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Figure 4: Effect of the chosen matrix Dr and Br. For a = 1.5 and p = 2, and a standard deviation
δ = 0.05, we compare the reconstructions obtained with either the matrix B1/2

2 or B1. On the left is
plotted the Abel transform for a = 1.5 of a Gaussian function centered on 0.2. The noisy observation
yδ results from the addition of a white Gaussian noise with a standard deviation δ = 0.05 to y = Tax.
In the middle is plotted the reconstruction xδ,α,p for p = 2 and two different derivative operators.
On the right is shown the error ‖xδ,α,p−x‖ as a function of the noise δ in a log− log scale, and their
slope s. The optimal rate of convergence s = 0.62 is only obtained with B1/2

2 , which is the matrix
associated to the right Hilbert scale for the inverse problem.
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5.4 Example in stereology
We now propose to apply our method to an example in stereology, with the aim of proceeding as in
a real experimental situation. The model proposed in [4] or [38] reads

y(t) =
√
t

∫ t

0

x(s)

(t2 − s2)1/2
ds ,

which can be rewritten in the form

y(t) =

∫ t

0

k(t, s)(t− s)a−1x(s) ds, k(t, s) =

√
t√

t+ s
. (38)

Note that this kernel still falls short of satisfying our regularity hypotheses (as it already did with
those of [33]). Indeed, it can be checked that k does not satisfy the condition of (7) since g(t, s) =
(k(t, t)− k(t, s))(t− s)a−1 is not even in H1(0, t). We shall see that the method nonetheless works
efficiently.

Upon using the trapezoidal rule, the discretisation of Ta reads

(T̃a)i,j =



(∆t)a

2a

√
i√

i+ j
((i− j + 1)a − (i− j − 1)a) j < i ,

(∆t)a

2a
(ia − (i− 1)a) j = 0, i 6= 0 ,

(∆t)a

2a

1√
2

j = i, i 6= 0 ,

0 i = j = 0 or j > i .

We consider an initial vector X of very large size, much larger than the reconstruction sample,
namely N � n. We then compute Y = (yi)0≤i≤N−1, to which a white noise of unknown stan-
dard deviation is added, chosen in the interval [0.01, 0.1]. After sub-sampling the signal, we obtain
Y d = (yδi )0≤i≤n−1, from which we reconstruct the signal xδ,α,p.

In order to solve this inverse problem, we pick the smoothing operator associated to a = 0.5,
which are respectively the square root of B1 for p = 1 and B1 for p = 2. Since we do not have
access to the true data x or the noise level δ, we follow the discrepancy principle as an a posteriori
rule to select the parameter α [39]. More precisely, we first assume that the signal (yi)0≤i≤imax is
null up to some known time t < timax . Then, there is only noise and the noise level δ may therefore
be estimated as the average of (yi)0≤i≤imax. Then, the regularisation parameter α is chosen so that
the error is in the same range as the expected noise level δ.

Data: noisy signal yδ

Result: Solve the inverse problem by minimisation of (30)
Compute δ as the average of (yδi )0≤i≤imax ;
while αm < α < αM do

Solve (37) for α ;
Reconstruct Txδ,α,p ;
Compute error = ‖Txδ,α,p − yδ‖ ;
if error ∼ δ then

Select α as αopt;
end

end
Figure 5 shows the reconstruction xδ,a,p for p = 1 or 2. As expected, the reconstruction is

smoother for p = 2. Even if the parameter α is not optimal, the reconstruction method for xδ,α,p
remains efficient when combined to a posteriori rules dealing with the unknown level of noise.

Acknowledgments. The authors are grateful to Nikolaos Roidos for the insightful exchanges about
the Heinz-Kato inequality and his work [28].
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Figure 5: Reconstruction by Tikhonov regularisation and a posteriori rule, for a = 0.5, kernel k
given by (38). On the left we plot the Abel transform of a Gaussian function centered on t = 0.5.
The measurement y = Tax is corrupted with an additive white Gaussian noise with a standard
deviation δ = 0.05. On the right we show the reconstruction xδ,α,p obtained with p = 1.
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Appendix A The analytic case
We here elaborate on making condition (22) more explicit at the expense of requiring more smooth-
ness for k. Assuming that for each t ∈ (0, 1), k(t, ·) is analytic around t with radius of convergence
at least t, we may write for all (s, t) ∈ Ω,

k(t, s) =
∑
n∈N

(−1)nan(t)

n!
(t− s)n .

We introduce a family of operators indexed by n ∈ N∗ by letting an(t) := ∂sk(t, t), and

An,γx(t) = an(t)

∫ t

0

(t− s)n−γ−1x(s) ds .

We give here an other computation of the splitting of Ta between the main term comparable to Sa
and a compact perturbation of this term. For x ∈ L2,

TRx(t) =

+∞∑
n=1

(−1)nan(t)

n!
Sa+nx(t)

=

+∞∑
n=1

(−1)nan(t)

n!

Γ(r + n)Γ(ω)

Γ(r)Γ(ω + γ)Γ(n)Γ(γ)
Sn−γSa+γx(t) .

Then, noticing that an(t)Sn−γ = An,γ , we have

TRx(t) =

+∞∑
n=1

(−1)n

n!

Γ(r + n)Γ(ω)

Γ(r)Γ(ω + γ)Γ(n)Γ(γ)
An,γSa+γx(t) = Ra,γSa+γx(t) .

Moreover, Stirling’s approximation yields as n→ +∞.

Γ(r + n)Γ(ω)

Γ(r)Γ(ω + γ)Γ(n)Γ(γ)
∼ nr

Γ(r)

Γ(ω)

Γ(ω + γ)Γ(γ)
∼ Cnr .
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In fact, the expression of Ra,γ in the form (21) is equivalent to the one above, as can be seen from
an explicit calculation. For 0 < γ < r − a small enough, a sufficient condition for the condition
‖Ra,γ‖ < +∞ to hold then is

+∞∑
n=1

nr

n!
‖An,γ‖ < +∞ . (39)

Note that the analyticity of k means condition (39) implicitly assumes that the operators An,γ are
well-defined and bounded as operators from L2 onto L2, for γ small enough. Condition (39) is still
formulated in a general and abstract way, but can be easily checked in practice. Let us make it more
explicit in the following cases:

• Let us suppose that the functions an are bounded and ‖an‖∞ = O(nγ), then assuming that
An is an Hilbert-Schmidt operator, we may estimate its norm for a /∈ N:

‖An‖2 ≤ ‖An‖2HS

=

∫ 1

0

an(t)2

∫ t

0

(t− s)2n−2γ−2 ds dt

≤ 1

(2n− 2γ − 1)(2n− 2γ)
‖an‖2∞

= O(n2γ−2) .

Those integrals are well defined as long as we choose γ < 1/2. The series
∑

nr+γ−1

n! con-
verges, which ensures that condition (39) is met.

• Let us suppose that an(t) = bnt
−β , for β < 1, and a /∈ N,

‖An‖2 ≤ b2n
∫ 1

0

t−2β

∫ t

0

(t− s)2n−2γ−2 ds dt

≤ b2n
(2n− 2γ − 1)

∫ 1

0

t−2β+2n−2γ−1 dt ,

These integrals are finite if γ < 1 is taken sufficiently small so that β + γ < 1. If the series∑
bn

nr−1

n! converges, condition (39) is met.
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