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Abstract: Causal inference methods based on conditional independence construct Markov equivalent
graphs and cannot be applied to bivariate cases. The approaches based on independence of cause
and mechanism state, on the contrary, that causal discovery can be inferred for two observations. In
our contribution, we pose a challenge to reconcile these two research directions. We study the role
of latent variables such as latent instrumental variables and hidden common causes in the causal
graphical structures. We show that methods based on the independence of cause and mechanism
indirectly contain traces of the existence of the hidden instrumental variables. We derive a novel
algorithm to infer causal relationships between two variables, and we validate the proposed method
on simulated data and on a benchmark of cause-effect pairs. We illustrate by our experiments that
the proposed approach is simple and extremely competitive in terms of empirical accuracy compared
to the state-of-the-art methods.

Keywords: common hidden cause; graphical models; probabilistic models

1. Introduction

Causal inference purely from non-temporal observational data is challenging. In-
stead of learning the causal structure of an entire dataset, some researchers focus on the
analysis of causal relations between two variables only. The state-of-the-art conditional
independence-based causal discovery methods (see, e.g., [1,2]) construct graphs that are
Markov equivalent, but these methods are not applicable in the case of two variables, since
X → Y and Y → X are Markov equivalent.

The statistical and probabilistic causal inference methods based on assumptions of
independence of cause and mechanism (see [3] for a general overview) appeared relatively
recently and achieve very reasonable empirical results. The main idea behind these methods
is as follows: if a simple function that fits data exists, then it is likely that it also describes a
causal relation in the data.

The main goal of our paper is to try to reconcile two modern viewpoints on causal
inference: the research direction initiated by [1,2], which is based on the assumption of
conditional independencies, and the more recent research avenue where the main claim is
that causal inference between two observations only is feasible [4–10], the theory of which
relies on the independence of cause and mechanism.

To illustrate the intuition behind our approach, let us consider an example from [3]
with altitude and temperature, where A is altitude, T is temperature, P(A) are city locations,
and P(T|A) is the physical mechanism of temperature given altitude, and it can be shown
that changing the city locations P(A) does not change the conditional probability P(T|A).
The postulate of independence of cause and mechanism allows the causal direction A→ T
to be inferred. Any latent variables are ignored in this case. However, the city locations
depend on a country, since each country has its own urban policy, population density, etc.
Thus, in this example, P(A) has at least one latent variable which is county C. However,
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no matter what country is chosen, the physical mechanism P(T|A) holds, and the true
underlying causal structure is C → A → T. A country defines the distribution of cities.
Having two or more countries leads to a family of distributions. This mixture of probability
distributions is independent from P(T|A). Thus, this example also explains what is meant
under the independence between probability distributions.

To our knowledge, ref. [11] is the most related recent work to our contribution;
however, they consider the case of the pseudo-confounders, where all variables, even
confounders, are observed. Our contribution is multi-fold:

• Our main theoretical result is an alternative viewpoint on the recently appeared causal
inference algorithms that are based on the independence of cause and mechanism.
Here, we follow the simplification used by [3]; however, we are aware that the
independence of our interest is between the prior of the cause and the mechanism.

• Our main theoretical results are formulated as Theorems 1 and 2.
• Assuming the existence of the hidden instrumental variables, we propose a novel

method of causal inference. Since we consider a bivariate causal inference case
where only X and Y are observed, we also propose an approach to estimate the
latent instrumental variables for cases where the cluster assumption for the observed
data holds.

• We propose a simple and original method to identify latent confounders.
• We validate our method on a synthetic dataset on which we perform extensive nu-

merical experiments and on the cause-effect benchmark, which is widely used by the
causal inference community.

The paper is organized as follows. Section 2 discusses the state-of-the-art methods
of bivariate causal inference. Preliminaries on the instrumental variables are provided in
Section 3. We consider the role of the instrumental variables for causal inference, and we
introduce our approach in Section 4. In Section 5, we discuss the results of our numerical
experiments on synthetic and standard challenges. Concluding remarks and perspectives
close the paper.

2. Related Work

In this section, we discuss the state-of-the-art methods of bivariate causal inference
and the corresponding assumptions. In the current work, we focus on a family of causal
inference methods which are based on a postulate stating that if X → Y, then the marginal
distribution P(X) and the conditional distribution P(Y|X) are independent [8,12,13]. These
approaches provide causal directions based on the estimated conditional and marginal
probability distributions from observed non-temporal data. One of the oldest and most
well-studied types of models describing causal relations that is necessary to mention is
structural causal models (SCM). An SCM where X → Y is defined as follows:

X = NX , Y = fY(X, NY), (1)

where NX and NY are independent. Given fY and the noise distributions PNY and PNX , we
can sample data following an SCM.

A recently proposed but already often used postulate of independence of cause
and mechanism is formulated as follows (see, e.g., [8,12,13]). If X causes Y, then P(X)
and P(Y|X) estimated from observational data contain no information about each other.
Looking for a parallel between the postulate and the SCM, we assume that in an SCM,
fY and PNY contain no information about PX, and vice versa. The postulate describes
the independence of mechanisms and states that a causal direction can be inferred from
estimated marginal and conditional probabilities (considered as random variables) from a
dataset. In the following, we investigate this research direction.

It is not obvious how to formalise the independence of the marginal and conditional
probabilities. A reasonable claim [3] is that an optimal measure of dependence is the
algorithmic mutual information that relies on the description length in the sense of Kol-
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mogorov complexity. Since the exact computations are not feasible, there is a need for
a practical and reliable approximation. Such an approximation encodes that P(X) and
P(Y|X) require more compact models in a causal direction and more complex models in
an anticausal direction.

Two families of methods of causal inference dealing with bivariate relations are often
discussed. For a more general overview of causal structure learning see [3,14]. Additive
noise models (ANM) introduced by [15,16] are an attempt to describe causal relations
between two variables. The ANMs assume that if there is a function f and some noise E,
such that Y = f (X) + E, where E and X are independent, then the direction is inferred
to be X → Y. A generalised extension of the ANM, called post-nonlinear models, was
introduced by [17]. However, the known drawback of the ANM is that the model is not
always suitable for inference on discrete tasks [18].

Another research avenue exploiting the asymmetry between cause and effect is the
linear trace (LTr) method [19] and information-geometric causal inference (IGCI) [13]. If the
true model is X → Y, and if P(X) is independent from P(Y|X), then the trace condition
is fulfilled in the causal direction and violated in the anticausal one. The IGCI method
exploits the fact that the density of the cause and the log slope of the function transforming
cause to effect are uncorrelated. However, for the opposite direction, the density of the
effect and the log slope of the inverse of the function are positively correlated. The trace
condition is proved under the assumption that the covariance matrix is drawn from a
rotation invariant prior [12]. The method was generalized for non-linear cases [20], and it
was shown that the covariance matrix of the mean embedding of the cause in reproducing
kernel Hilbert space is free independent with the covariance matrix of the conditional
embedding of the effect given cause. The application of the IGCI to high-dimensional
variables is considered in [19,21]. Here, the independence between probability distributions
is based on the trace condition. The identifiability via the trace condition is proved [3,21]
for deterministic relations, and no theory exists for noisy cases, which are much more
relevant for real-life applications.

Origo [22] is a causal discovery method based on the Kolmogorov complexity. The
minimum description length (MDL) principle can be used to approximate the Kolmogorov
complexity for real tasks. Namely, from an algorithmic information viewpoint, if X → Y,
then the shortest program that computes Y from X is more compact than the shortest pro-
gram computing X from Y. The obvious weakness of methods based on the Kolmogorov
complexity, and also of Origo, is that the MDL only approximates Kolmogorov complexity
and involves unknown metric errors that are difficult to control. The empirical perfor-
mance is highly dependent on a dataset, and Origo was reported to reach state-of-the-art
performance on the multivariate benchmarks (acute inflammation, ICDM abstracts, adult
dataset); however, it performs less accurately than the ANM on the bivariate benchmark of
cause-effect pairs with known ground truth (the Tübingen data set) [23]. We also use this
benchmark for our experiments.

There exist various applications of causal inference. Thus, [24] provides a geometric
interpretation of information flow as a causal inference. Speaking of probabilistic causal
inference approaches, we would like to mention [25], which is a survey considering
probabilistic causal dependencies among variables. Information theory is used in [26] to
apply bivariate analysis to discover the causal skeleton for multivariate systems. Note that
the method which is proposed in our contribution can also be extended to a multivariate
case in a similar way.

The most studied causal inference case is probably the case of time series [27], where
the Granger causality can be applied. We would like to underline that we consider the case
of observational non-temporal data in the current contribution, and the results on the time
series are beyond the scope of our paper.

We would like to underline the differences between [11] and our results. The re-
searchers consider a surrogate variable related to a distribution shift that characterises
hidden quantities that imply changes across domains and/or time. It is reported that it is
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possible to find causal models in each domain or for each time point for non-stationary
data, but they propose using the information on the distribution shift to identify one causal
model across domains and/or time. This surrogate variable can be seen as a confounder;
however, it is assumed that the values of these confounders are fixed and always observed
(Assumption 1 and Section 3.2 of [11]). Thus, they are pseudo-confounders. We, on the
contrary, assume that the surrogate variable is not observed, and we do not assume that
the confounders exist. We pose a challenge to identify their existence and to approximate
latent instrumental variables.

3. Independence of Probability Distributions and Instrumental Variables

Let X and Y be two correlated variables. In the settings considered by [3], in order
to decide whether X → Y or Y → X, it is proposed to check if the distributions P(X) and
P(Y|X) are independent. As far as we know, this independence between distributions (and
not between random variables) does not have any formal definition. However, some useful
properties can be derived, and various criteria were constructed for different cases [4–9]. In
this paper, we adopt the following definition. Let P(X, Y) be the joint distribution of X, Y
in a population P ; let Q(X, Y) be the joint distribution of X, Y in another population Q. If
X is the cause of Y, the causal mechanism should be the same in the two distributions:

P(X, Y) = P(X) · P(Y|X), (2)

Q(X, Y) = Q(X) · P(Y|X), (3)

i.e., P(Y|X) = Q(Y|X), and on the contrary, P(X|Y) 6= Q(X|Y). More generally, for all
mixed populations between P and Q, and for all mixtures Qλ = λP + (1− λ)Q with
λ ∈ [0, 1]:

∀λ ∈ [0, 1], Qλ(X) ⊥⊥ Qλ(Y|X) (4)

⇐⇒ Qλ(Y|X) = P(Y|X). (5)

Now, we consider λ as a hyper-parameter for a (latent) prior IX that allows the
population (P(X|IX = 0) = P(X), P(X|IX = 1) = Q(X)) to be selected. In this meta-
model, IX and X are dependent, and X and Y are dependent. However, IX and Y are
independent conditionally to X. On the contrary, if we consider λ as a hyper-parameter for
a (latent) prior IY, this allows the population (P(Y|IY = 0) = P(Y), P(Y|IY = 1) = Q(Y))
to be selected. In this meta-model, IY and Y are dependent, and X and Y are dependent.
However, since P(X|Y) 6= Q(X|Y), IY and X are not independent, even conditionally to Y.

To provide some intuition behind such a mixture model, let P(X) and Q(X) be the
distributions of city locations in two different countries and P(Y|X) be a physical mecha-
nism predicting weather in a given location. Then λ is the hyper-parameter controlling the
proportion of observations in each country, and note that λ, P(X), and Q(X) are indepen-
dent from P(Y|X). Such a representation of the problem as a mixture model with latent
priors motivates our proposition to use models with instrumental latent variables.

The aim of models with instrumental variables [28–30] where X, Y, and IX are ob-
served, and U is an unobserved confounder, is to identify the causal effect of X on Y.
Assuming that the relationships are linear, and applying a linear Gaussian structural causal
model, one can write

X = α0 + αIX + δU + εX , (6)

Y = β0 + βX + γU + εY, (7)

where εX and εY are noise terms, independent of each other. It is assumed, without loss
of generality, that U, εX, and εY have mean zero. Note that the common cause U can
be absent, and we are not going to assume that U exists when modelling dependencies
between X and Y. The instrumental variable IX is uncorrelated with ancestors of X and Y.
The instrumental variable is a source of variation for X, and it only influences Y through
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X. Studying how X and Y respond to perturbations of IX can help one deduce how X
influences Y. A two-stage least squares [31] can be used to solve the problem.

Probability distributions as random variables

Similar to [3,21], we consider probability distributions as random variables. P(X) is a
function of X ∈ [0, 1], and thus, they are random variables distributed in [0, 1]. Note that a
model where a probability is randomly generated is an example of a hierarchical model, or
of a model with priors, where some parameters are treated as random variables.

4. Latent Instrumental Variables for Causal Discovery

In this section, we show that the methods based on the independence of cause and
mechanism, introduced by [4–9], indirectly contain traces of the existence of the hidden
instrumental variable. This can be seen as follows. P(X) generates X in the approaches
proposed and investigated by the scientists mentioned above. In our method, we assume
that X are generated by IX . Therefore, there is a strong parallel between P(X) and IX , which
are both priors for the observations. Thus, our method described below also provides
some intuition and interpretation of the recently proposed algorithms based on the inde-
pendence between the “cause and the mechanism”. We provide some theoretical results
on the independence of the causal mechanisms in terms of probability distributions and
information theory. These results allow us to derive a novel algorithm of causal inference
which is presented in the section below.

Our observations are X and Y, two one-dimensional vectors of the same length N,
and these variables are correlated. Here, we suppose that either causality between these
variables exists, and either X → Y, Y → X, or a common latent cause X ← U → Y can be
identified, where U is a hidden variable that can impact X and/or Y. Let IX and IY denote
latent instrumental variables of X and Y, respectively. In the current contribution, we do
not observe the instrumental variables; we assume that they exist and can be approximated.
We do not assume that the common cause U exists; however, we show how its existence
can be deduced, if this is the case.

There are three graphical structures that are of particular interest for us. They are
shown on Figure 1: the dark nodes are observed, and the instrumental variables and the
common latent cause are not observed from data.

Figure 1. The models of our interest. The dark nodes are observed from data, and the light coloured
nodes are latent.

Assumption 1. In the case of observational non-temporal data, if IX exists such that IX → X, and
if IY exists such that IY → Y, and if the random variables X and Y are correlated, then we assume
that it is impossible that both IX ⊥⊥ Y|X and IY ⊥⊥ X|Y hold.

Theorem 1. Let X and Y be two correlated random variables, and they do not have any common
cause. We assume that either X causes Y, or vice versa. If there exists a random variable IX such
that IX → X, and if IX ⊥⊥ Y|X, then we are able to infer causality and decide that X → Y.

Proof. Several directed acyclic graphs (DAGs) may be Markov equivalent [1,2]. We assume
that once an essential graph is found, the directed arcs of this graph are interpreted causally.

Under the assumption that IX → X, and if IX ⊥⊥ Y|X, the only possible directed graph
is IX → X → Y. In the case where IX 6⊥⊥ Y|X, we obtain IX → X ← Y.
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Theorem 2. If the true causal structure is IX → X → Y, and X and Y do not have any common
cause, then P(Y|X) does not contain any information about P(X), and vice versa; however, P(X|Y)
and P(Y) are not independent.

Proof. Assume that IX ⊥⊥ Y|X. Let us consider the relation between P(Y|X) and P(X). In
the following, we treat P(Y|X), P(X|Y), P(X), and P(Y) as random variables. We can write

P(Y|IX , X) = P(Y|X). (8)

Note that we do not have P(X) in Equation (8) when we express P(Y|X) for IX →
X → Y. Let us consider the relation between P(X|Y) and P(Y) for the same graphical
structure. We obtain

P(X|Y) = P(Y|X)P(X|IX)

P(Y)
, (9)

where the form of the nominator is due to the fixed dependencies IX ⊥⊥ Y|X. From
Equation (9), we clearly see that P(X|Y) is not independent from P(Y) for this graphical
structure.

Table 1 provides the state-of-the-art methods of the bivariate causal inference (left
column) and the corresponding equivalent models with the latent instrumental variables
IY and IX , if they can be reconstructed (right column).

Table 1. Some state-of-the-art methods for causal discovery for the ground truth X → Y, under the
assumption that IX 6⊥⊥ Y|X, and the corresponding models with the latent instrumental variables.

The state-of-the-art methods of bivariate causal Existence of hidden instrumental variables,
inference and their main ideas an equivalent model with the latent IV

CURE (unsupervised inverse regression) [8]: This implies directly that P(X|IY , Y),
X 6⊥⊥ IY |Y,

It is possible to recover P(X|Y) from P(Y), and therefore, IY is needed to recover
it is not possible to recover P(Y|X) from P(X) the conditional probability

Information-geometric approach [13]: cov
(

P(Y|IX , X), P(X)
)
= 0

cov
(

log f ′, P(X)
)
= 0, cov

(
log f−1′ , P(Y)

)
≥ 0, cov

(
P(X|IY , Y), P(Y)

)
≥ 0

f ′ is log slope of the func. transform. cov
(

P(Y|X), P(X)
)
= 0

cause to effect cov
(

P(X|IY , Y), P(Y)
)
≥ 0

Comparing regression errors [32]: E[var(Y|IX , X)] ≤ E[var(X|IY , Y)]
E[(Y−E[Y|X])2] ≤ E[(X−E[X|Y])2] E[var(Y|X)] ≤ E[var(X|IY , Y)]

Using the distance correlation [9]:
D(P(X), P(Y|X)) ≤ D

(
P(Y), P(X|Y)

)
, D

(
P(X), P(Y|IX , X)

)
≤ D

(
P(Y), P(X|IY , Y)

)
where D is distance correlation D

(
P(X), P(Y|X)

)
≤ D

(
P(Y), P(X|IY , Y)

)
Via kernel deviance measures [10]: SX→Y = Compare (µ is cond. mean embedding)

1
N ∑N

i=1
(
‖µY|X=xi

‖Hy −
1
N ∑N

j=1 ‖µY|X=xj
‖Hy

)2
1
N ∑N

i=1
(
‖µY|IX ,X=xi

‖Hy −
1
N ∑N

j=1 ‖µY|IX ,X=xj
‖Hy

)2 vs.

Hy – RKHS, SY→X analogously,
SX→Y ≤ SY→X

1
N ∑N

i=1
(
‖µX|IY ,Y=yi

‖Hx −
1
N ∑N

j=1 ‖µX|IY ,Y=yj
‖Hx

)2

Construction of the Instrumental Variables

Assumption 2. (Cluster assumption. [33]) If points are in the same cluster, they are likely to be in
the same class.

In some tasks, the instrumental variables (IV) are observed, and their application is
straightforward. In a number of applications, they are not provided. Here, we discuss how
the instrumental variables can be approximated, and we draft a procedure to estimate them.
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In our experiments, in Section 5, we apply the proposed method for the IV construction.
Note that the identification and characterisation of latent variables is a challenge in itself.
Our work is slightly similar to [34,35] in that we apply clustering methods to create the
latent variables. Taking into account that only X and Y are observed, the instrumental
variables can be constructed using either X, Y, or both, and an optimal choice of the
variables (X, Y, or both) that are related to the IV is in its turn related to a graphical structure
that we try to identify and to orient. Thus, for a structure IX → X → Y, IX does not contain
information about Y, and IX has to be constructed from X only. On the contrary, in the case
of X → Y ← IY, IY is not independent from X, and IY has to contain information about
both X and Y.

We rely on clustering methods for the instrumental variables estimation. In our
experiments, we apply the k-means clustering; however, other clustering approaches can
be used. Algorithm 1 drafts the procedure to approximate the candidates for the IV. We
developed a method—Algorithm 2—that makes the decision of whether IX and IY are to
be constructed from one or two observed variables. The proposed algorithm constructs
the instrumental variables separately from X, Y ( IXX , IYY ), and from both (IXXY , IYYX ), and
tests which instrumental variables are more relevant. Algorithm 2 compares the distance
(we considered the Euclidean distance in our experiments; however, another measure,
e.g., the Kullback–Leibler, can be used) between IXX and IXXY , and between IYY and IYYX .
The intuition behind the proposed criterion is as follows. If Y influences clustering of X
less than X impacts clustering of Y (the condition i f (dist(IXX , IXXY) < dist(IYY , IYY X)) in
Algorithm 2), then we apply IX constructed from X only, and IY is constructed from X and
Y. Furthermore, vice versa. An important remark is that this criterion has a lot in common
with the causal discovery methods based on the Kolmogorov complexity and the MDL: to
infer causality, our criterion choses a simpler model.

A Symmetric Causal Inference Algorithm

We introduce a simple symmetric algorithm based on the conditional (in)dependence
tests to infer causality. It relies on the theoretical foundations provided above. Our
algorithm is sketched as a decision tree in Figure 2. It takes IX, IY, X, and Y and returns
a causal direction. Precisely, if a conditional independence test states that Y ⊥⊥ IX |X is
true, then X → Y is inferred; otherwise, we test whether X ⊥⊥ IY|Y, and if it is true, then Y
causes X. The last case where X and Y are correlated but both Y ⊥⊥ IX |X and X ⊥⊥ IY|Y
are false, let us conclude that there is a common hidden cause U, and Y ← U → X.

Y ⊥⊥ IX |X?

X → Y X ⊥⊥ IY|Y?

Y → X X ← U → Y

yes no

yes no

Figure 2. A symmetric causal inference algorithm.
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Algorithm 1 Construction of IV Candidates

IXX (IV variable of X from X)
Fix a number of clusters K
Cluster {Xi}N

i=1 into K clusters
for i = 1 : N do

Ii,XX is the centre of the cluster where Xi belongs
end for

IXXY (IV variable of X from X and Y)
Fix a number of clusters K
Cluster {Xi, Yi}N

i=1 into K clusters
for i = 1 : N do

Ii,XXY is the 1st coordinate (corresponding to X) of the clusters centres where (Xi, Yi)
belongs

end for

IYY (IV variable of Y from Y)
is constructed similarly to the IV variable of X from X

IYYX (IV variable of Y from X and Y)
is constructed similarly to the IV variable of X from (X, Y)
(Take the 2nd coordinate of the clusters centres)

Algorithm 2 Approximation of the Instrumental Variables (IV) IX and IY from X and Y.
Input: Observations X and Y, a clustering algorithm
Output: Instrumental variables IX and IY

// Construct instrumental variables to be tested
Construct IV of X, IXX using X only
Construct IV of X, IXXY using X and Y
Construct IV of Y, IYY using Y only
Construct IV of Y, IYYX using X and Y

// Take the decision which IV to use

if (dist(IXX , IXXY ) < dist(IYY , IYYX )) then
// the IV of X is constructed from X only
IX = IXX
// the IV of Y is constructed from both X and Y
IY = IYYX

else
// the IV of Y is constructed from Y
IY = IYY
// the IV of X is constructed from X and Y
IX = IXXY

end if

5. Experiments

In this section, we illustrate the predictive efficiency of the proposed method on both
artificial and real datasets. We run the numerical experiments on a recent MacBook Pro,
2.6GHz 6-core Intel Core i7, 16GB memory. We use the R language and environment for
our experiments, in particular the bnlearn R package.

Simulated Data

We consider simple discrete and continuous scenarios. In the discrete case, we fix the
structures and the probability distributions on the graphs and generate binary variables.
In the continuous case, we use a Gaussian distribution. We generate the instrumental
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variables IX and IY, X and Y, and the hidden variable U. We use the bnlearn R pack-
age to construct the synthetic datasets, and we also use the conditional independence
tests from the same package. For our discrete setting with binary variables, we apply
an asymptotic mutual information independence test ci.test(test=’mi’), and for the
continuous setting with Gaussian variables, we apply the exact t-test for Pearson’s correla-
tion ci.test(test=’cor’). Note that the abovementioned conditional independence tests
from the bnlearn R package return “big” p-values if the variables are conditionally indepen-
dent, and the p-values are small (with an arbitrary threshold 0.05) for dependent variables.

We consider and simulate discrete and continuous data for two following scenarios:
(1) X → Y, and (2) X ← U → Y. We test a various number of observations, from 10 to
10,000, and we observe that in the discrete case, even for such a simple problem as one
with variables taking binary values, a large number of observations is needed to obtain a
reasonable performance. Figure 3 illustrates the p-values of the conditional independence
tests for the discrete (two plots above) and continuous (two plots below) settings. We show
the results for both cases X ⊥⊥ IY|Y and Y ⊥⊥ IX |X. We observe that for the ground truth
X → Y, X ⊥⊥ IY|Y asymptotically converges to small p-values (close to 0), and Y ⊥⊥ IX |X
returns large p-values, even for a large number of observations.
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Figure 3. Simulated data. Ground truth: X → Y. Two plots above: discrete data; two plots below:
continuous data. The p-values of an asymptotic mutual information test (for the discrete case) and an
exact t-test for Pearson’s correlation (the continuous case) as a function of the number of observations
(x-axis).

Figure 4 shows our results for the scenario X ← U → Y. For the discrete and
continuous experiments, we test whether Y ⊥⊥ IX |X and whether X ⊥⊥ IY|Y. We see
that the variables are not independent. In Figure 5, we demonstrate the p-values of the
conditional independence test Y ⊥⊥ X|U, which is a sanity check, and we observe that
in this case where the ground truth is X ← U → Y, the p-values are far from 0 for both
continuous and discrete scenarios. In the experiments on the simulated data, our aim is
to show that the p-values are reasonable indicators of the conditional independence. We
do not report the accuracy values, since it is straightforward according to the proposed
algorithm (Figure 2).
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Figure 4. Simulated data. Ground truth: X ⊥⊥ Y|U. Above: two plots for the discrete setting; below:
two plots for the continuous setting. The p-values as a function of the number of observations
(x-axis).
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Figure 5. Simulated data. Ground truth: X ⊥⊥ Y|U. The results of the conditional independence tests
for X ⊥⊥ Y|U for continuous (on the left) and discrete (on the right) data. On the x-axis: the number
of observations.

Cause-Effect Pairs

We tested the proposed algorithm on the benchmark collection of the cause-effect pairs,
obtained from http://webdav.tuebingen.mpg.de/cause-effect (accessed on 15 January
2021), version 1.0. The data set contains 100 pairs from different domains, and the ground
truth is provided. The goal is to infer which variable is the cause and which is the effect. The
pairs 52–55, 70–71, and 81–83 are excluded from the analysis, since they are multivariate
problems. Note that each pair has an associated weight, provided with the data set, since
several cause-effect pairs can come from the same scientific problem. In a number of
publications reporting results on this dataset, the accuracy is a weighted average. We apply
the proposed method, described in Section 4, to infer causality on the cause-effect pairs. In
Figure 6, we show the standard (unweighted) accuracy and the weighted accuracy, where

http://webdav.tuebingen.mpg.de/cause-effect
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the weights for each observation pair are given in the dataset. To increase the stability
and also the accuracy, we propose a scenario where we split the data into k-folds, carry
out causal inference on each fold separately, and take an ensemble decision on the causal
direction. The accuracy for such an ensemble approach is also shown in Figure 6 for
both weighted and not weighted performance. The number of folds in our experiments
is 10. Speaking of state-of-the-art results on the cause-effect pairs, it was reported that
Origo [22] achieves (weighted) accuracy of 58%, and the ANM [16] reaches 72 ± 6%.
Figure 6 illustrates that the proposed method outperforms the state-of-the-art algorithms:
our weighted accuracy is 83.2%. Note that the ensemble method reduces the variance
significantly. We do not provide the results of the extensive numerical comparisons of the
state-of-the-art methods on the cause-effect pairs, since these results can be easily found in
the original papers (cited in the Related Work section). Moreover, the goal of the current
work is not only to achieve state-of-the-art results and to outperform them, which we do,
but also to focus on an alternative formulation of the independence of the cause and the
causal mechanism, as well as to consider a reasonable method for the identification and
construction of the hidden instrumental variables.
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Figure 6. On the left: accuracy on the cause-effect benchmark. On the right: the difference between
the test statistics X ⊥⊥ IY |Y and Y ⊥⊥ IX |X.

What is central and what is interesting to look at are the p-values of the conditional
independence tests (here, the exact t-test for Pearson’s correlation from bnlearn R package)
X ⊥⊥ IY|Y and Y ⊥⊥ IX |X. In Figure 6 (on the right), we show their difference. If the
p-values of the test X ⊥⊥ IY|Y are small (that is, X and IY are not independent, given Y)
and the results of Y ⊥⊥ IX |X are relatively large (or larger than ones of X ⊥⊥ IY|Y), stating
that Y and IX are independent, given X, then the plotted difference is negative. This is
exactly what is observed for almost all cause-effect pairs.

Figure 6 (on the right) shows our results for the case where the number of clusters,
i.e., modalities of the hidden instrumental variables, is set to 15 for both IX and IY. We
tested different numbers, K, of clusters for the construction of instrumental variables (see
Section 4 for details). For the current task, we did not notice any important impact on
the result; however, taking extremely small (2–3) and large (70–100) numbers of clusters
degrades the performance. In practical real applications, an optimal K can be fixed using a
grid search.

6. Conclusions, Limitations, and Future Research

We posed a challenge to bring together two principle research avenues in causal
inference: causal inference using conditional independence and methods based on the
postulate of independence of cause and mechanism. We focused on the methods of causal
inference based on the independence of cause and mechanism, and we provided some
theoretical foundations for this family of algorithms. Our main message is that the role of
the hidden instrumental variables cannot be neglected.
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The implications of our study are twofold. First, the proposed method will motivate
the development of novel theoretical (probabilistic) approaches to recover hidden common
causes. Second, our method can already be tested and studied for some real biological and
medical applications. However, the application to real problems, especially to medical and
biological tasks, should be done in tight collaboration with human experts.

We propose an algorithm to estimate the latent instrumental variables efficiently.
We also introduce a simple (and symmetric) algorithm to perform causal inference for
the case of two observed variables only, where the corresponding instrumental variables
are approximated. Our original approach is simple to implement, since it is based on
a clustering algorithm (we used the k-means; however, any other clustering method
can be tested) and on conditional independence tests. The introduced approach can be
applied to both discrete and continuous data, and we have shown that it is extremely
competitive compared to the state-of-the-art methods on a real benchmark, where a cluster
assumption holds.

The main limitation of our work is that it is focused on the bivariate case; however, in
a number of real applications, there is a need to infer causality between several variables.

Currently, we consider an extension of the proposed algorithm to more complex
graphs and potentially huge applications, such as modelling gene interactions. Another
avenue of research is novel metrics to measure the conditional independence of variables.
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