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THE V-MEASURE FOR ALGEBRAIC INTEGERS HAVING ALL THEIR CONJUGATES IN A SECTOR

   

The v-measure for algebraic integers having all their conjugates in a sector

Introduction

Let α be a nonzero algebraic integer of degree d with conjugates α 1 = α, α 2 , . . . , α d . We define the V-measure of α by:

V(α) = d i=1 (1 + |α i |)(1 + 1/|α i |).
The absolute V-measure of α is the quantity v(α) = V(α) 1/d . If P is the minimal polynomial of α, then V(P ) = V(α) and v(P ) = v(α).

It is obvious that v(α) ≥ 4 and the equality holds if and only if α is a root of unity. Indeed, if for i = 1, . . . , d, we have (1 + |α i |)(1 + 1/|α i |) = 4 then for all i = 1, . . . , d, |α i | = 1. By the theorem of Kronecker, we deduce that α is a root of unity.

Remark: The scheme of this paper follows the scheme of our previous work [F2].

The case θ = 0

We suppose first that θ = 0. Then α is a totally positive algebraic integer i.e, all its conjugates are positive real numbers.

Theorem 1. For all nonzero totally positive algebraic integer α whose minimal polynomial P satisfies |P (0)| = 1, V(α) is a square. This is because, in this case, V(α) = P (-1) 2 . 1 Now, we want to study the structure of the set V of the quantities v(α) and prove the following Theorem 2. V is dense in (l, ∞) where l = lim n→∞ v(β 2 n ) = 5.649376 . . .. The β 2 n were defined by C.J. Smyth [START_REF] Smyth | The mean value of totally real algebraic numbers[END_REF] as follows:

β 2 0 = 1 β 2 n = β 2 n+1 + β -2 n+1 -2 β 2
n is a totally positive algebraic integer of degree 2 n . In order to determine the structure of the set V in the gap (4, l), we prove the following Theorem 3. If α is a nonzero totally positive algebraic integer whose minimal polynomial is different from x -1, x -2, x 2 -5x + 5, x 3 -7x 2 + 14x -7, x 4 -9x 3 + 27x 2 -31x + 11, x 4 -9x 3 + 26x 2 -28x + 9 and x 6 -13x 5 + 64x 4 -151x 3 + 177x 2 -96x + 19 then we have:

v(α) ≥ 4.935240.
Therefore, the seven smallest points of V in (4, l) are: 4 = v(x -1), 4.5 = v(x -2), 4.880511 = v(x 4 -9x 3 + 27x 2 -31x + 11), 4.919349 = v(x 2 -5x + 5), 4.925915 = v(x 6 -13x 5 + 64x

4 -151x 3 + 177x 2 -96x + 19, 4.932882 = v(x 4 -9x 3 + 26x 2 -28x + 9), 4.934380 = v(x 3 -7x 2 + 14x -7).
1.2 The case 0 < θ < 90 • Now, we consider algebraic integers α with all conjugates in a sector S θ = {z ∈ C such that | arg z| ≤ θ} with 0 < θ < 90 • . We follow the work of M. Langevin [La] on the absolute Mahler measure Ω(α) = ( d i=1 max(1, |α i |)) 1/d of algebraic integers α having all their conjugates in a sector. He proved that there exists a function c(θ) on [0, 180 • ), always > 1, such that if α = 0 is not a root of unity, whose conjugates all lie in S θ , then Ω(α) ≥ c(θ). His result is not numerical. G. Rhin and C. Smyth [RS] succeeded in finding the exact value of c(θ) for θ in nine subintervals of [0, 120 • ] and conjectured that c(θ) is a "staircase" decreasing function of θ, which is constant except for finitely many left discontinuities in any closed subinterval of [0, 180 • ). Their method uses explicit auxiliary polynomials A

(X) = X a R(X) where R is a reciprocal polynomial in Z Z[X],
found by heuristic methods. In 2004, thanks to Wu's algorithm [Wu], G. Rhin and Q. Wu [RW] gave the exact value of c(θ) for four new subintervals of [0, 140 • ] and extended four existing subintervals. In 2013, the author and G. Rhin [FR] found for the first time a complete subinterval and a fourteenth subinterval. A complete subinterval is an interval on which the function c(θ) describing the minimum on the sector | arg z| ≤ θ is constant, with jump discontinuities at each end. These improvements are due to our recursive algorithm.

We give in Table 3 

a list of polynomials Q i with θ i = ϕ(Q i ) = max{| arg z| such that Q i (z) = 0}.
Now we define two functions f and g on [0, 90). The function g(θ) is the decreasing staircase function having left discontinuities at the angles θ i given in Table 3 and such that g(θ i ) = v(Q i ) . It gives the smallest known value of v(α) for α ∈ S θ then c(θ) ≤ g(θ). For 1 ≤ i ≤ 10, we define 10 non-increasing functions f i for θ ∈ [θ i , θ i+1 ] as follows:

f i (θ) = min z∈S θ   log(1 + |z|)(1 + 1/|z|) - 1≤j≤J c ij log |Q ij (z)|   .
The polynomials Q ij and the coefficients c ij can be read off from Table 3. The function

f is such that f (θ) = f i (θ) when θ ∈ [θ i , θ i+1 ) for 1 ≤ i ≤ 10. Since the functions f i are continuous we have f (θ) → f i (θ i+1 ) when θ → θ - i+1 .
We do not find any function f i such that f i (θ i ) > g(θ i ) for the other intervals [θ i , θ i+1 ), by Kronecker's theorem we may define f (θ) = 4 for θ ≥ θ 11 . Then the function f is non-increasing on [0, 90).

Theorem 4. The non-increasing functions f, g, c satisfy the following inequalities:

min(f (θ), g(θ)) ≤ c(θ) ≤ g(θ) (0 ≤ θ < 90).
Moreover, the exact value of c(θ) is known on ten subintervals of [0, 90).

These intervals are given in Table 1. One can read off the six intervals [θ i , θ i ) for 1 ≤ i ≤ 6, the interval [θ 8 , θ 8 ) and the three intervals [θ 7 , θ 7 ], [θ 9 , θ 9 ] and [θ 10 , θ 10 ] where c(θ) is known exactly. For θ in each of these intervals we have f (θ) > g(θ) so c(θ) = c(θ i ). Outside these intervals, c(θ) ≤ g(θ).

Table 1: The 10 intervals where c(θ) is known. The polynomials in the last column are the minimal polynomial of an algebraic integer belonging to S θ i and they are also listed in Table 3. 

i c(θ) θ i θ i Q 1 4.
z 3 + z + 1 2 Denseness of the set V 2.1 Study of the sequence (v(β 2 n )) n≥1
As above the sequence (β 2 n ) n≥0 are defined as follows:

β 2 0 = 1 β 2 n = β 2 n+1 + β -2 n+1 -2
We first prove :

Lemma 5. v(β 2 n ) = 4 n-1 i=0 (1 + λ i ) 1/2 i where λ 0 = 1 4 and λ i+1 = λ i (1 + λ i ) 2 for i ≥ 0. Proof For n ≥ 0, we put γ n = β 2 n , so γ n = γ n+1 + γ -1 n+1 -2.
Therefore, we have:

V(β 2 n ) = V(γ n ) = 2 n i=1 (1 + γ n,i )(1 + γ -1 n,i ) = 2 n-1 i=1 ((1 + γ n,i )(1 + γ -1 n,i )) 2 because γ n,i = γ 2 n-1 +i for 1 ≤ i ≤ 2 n-1 . (For 1 ≤ i ≤ 2 n , γ n,i denotes the conjugates of γ n ). Thus: V(β 2 n ) = 2 n-1 i=1 (2 + γ n,i + γ -1 n,i ) 2 = 2 n-1 i=1 (4 + γ n-1,i ) 2 Finally, we have V(β 2 n ) = 4 2 n-1 2 n-1 i=1 (1 + 1/4γ n-1,i ) 2 .
We need here a more general lemma that we proved in [F1]:

Lemma 6. The notations are the same as previously.

2 n i=1 (1 + λ 0 γ n,i ) = n i=0 (1 + λ i ) 1/2 i 2 n where λ 0 = 1 4 and λ i+1 = λ i (1 + λ i ) 2 for i ≥ 0. Now, we can conclude that v(β 2 n ) = 4 n-1 i=0 (1 + λ i ) 1/2 i .
A short program with Pari (see Annex below) computes the limit l of the sequence v(β 2 n ) and we get l = 5.649376 . . .. The limit l also gives an upper bound for the first accumulation point of V.

Proof of Theorem 2

We follow the notations and proof of C.J. Smyth in [START_REF] Smyth | The mean value of totally real algebraic numbers[END_REF]. For a given function g

: [0, ∞) → R, put M(g) the set of all means M g (α) = 1 d d i=1 g(|α i |)
for α a totally real algebraic integer, i.e., all its conjugates

α 1 = α, • • • , α d are real numbers. When the limits exist, put a(g) = lim n→∞ M g (β n ) and c(g) = lim n→∞ M g (2 cos(2π/n)).
Our choice here for g is

g : x → log(1 + x 2 )(1 + 1/x 2 ) (2.1) because then M g (α) = log v(α 2 ).
The proof consists in two parts.

2.2.1 First step of the proof C.J. Smyth [START_REF] Smyth | The mean value of totally real algebraic numbers[END_REF] proved the following Theorem 7. Let g : R + → R + be a monotonic increasing function, zero on [0, 1]such that

lim x→∞ g(x + 1)/g(x) = 1
and the values of log 2 g(2k + 1) mod 1 (k=0,1,2,. . .) are everywhere dense in (0, 1).

Then the limit a(g) exists and M(g) is dense in (a(g), ∞).

We replace the function g defined by (3.1) by the function g * which satisfies the hypothesis of Theorem 7:

g * (x) =    g(x) if x > 1 0 if 0 ≤ x ≤ 1 (2.2) Since M g (β n ) = M g * (β n )
, the existence of a(g * ) implies those of a(g) and a(g * ) = a(g).

It is easy to see that g * satisfies the first hypothesis of Theorem 7. So, it is sufficient to study the denseness of the set F = {log 2 g(2k + 1) mod 1,k ∈ N}.

Let t ∈ [0, 1] and > 0. Does there exist f ∈ F such that |f (k) -t| < ? We search for n and k satisfying:

| log 2 g * (2k + 1) -t -n| < i.e., | log g * (2k + 1) -t -n log 2| < (2.3)
The uniform continuity of the function log on [1, ∞) gives :

∀ > 0, ∃ η( ) such that ∀x, y > 0, |x -y| < η( ) ⇒ | log x -log y| < .
We choose n such that 2 -n < η( ) and k such that

|(2k + 1) -(g * ) -1 (2 n e t )| ≤ 1. As (g * ) is
bounded by 1, the mean value Theorem for g * on (1, ∞) gives:

|g * (2k + 1) -2 n e t | ≤ 1, i.e., |2 -n g * (2k + 1) -e t | ≤ 2 -n < η( )
and the inequality (3.3) follows immediately. Thus, we have proved that For our function g defined by (3.1), the Lipschitz condition is satisfied for B(λ) = 2λ. Thus, M(g) is dense on (c(g), ∞) = (1.924847 . . . , ∞).

M(g) is dense in (a(g * ), ∞) = (a(g), ∞) = (log l, ∞) = (1.731545 . . . , ∞).

Conclusion

We have proved that M(g) is dense on (min(a(g), c(g)), ∞) = (log l, ∞) which means that V is dense on (l, ∞), where l = lim

n→∞ v(β 2 n ) = 5.649376 . . ..
3 Proof of Theorem 3

The explicit auxiliary function

The auxiliary function involved in Theorem 3 is of the following type:

for x > 0, f (x) = log(1 + x)(1 + 1 x ) - 0≤j≤J c j log |Q j (x)|
where the c j are positive real numbers and the polynomials Q j are non zero polynomials in

Z Z[x].
If α is a totally positive algebraic integer with conjugates α 1 = α,. . .,α d , we have

d i=1 f (α i ) ≥ md,
where m denotes the minimum of the function f . Thus,

log V(α) ≥ md + 1≤j≤J c j log | d i=1 Q j (α i )|.
Now assume that P does not divide any Q j , then

d i=1 Q j (α i ) is a nonzero integer because it is the resultant of P and Q j .
Therefore, if α is not a root of Q j , we have

v(α) ≥ e m .
The problem becomes to find a convenient set of polynomials Q j which gives a value of m as large as possible. This leads us to link the auxiliary function with the integer transfinite diameter in order to find the polynomials with our recursive algorithm.

Auxiliary functions and integer transfinite diameter

Let K be a compact subset of C.

If ϕ is a positive function defined on K, the ϕ-integer transfinite diameter of K is defined as

t Z,ϕ (K) = lim inf inf sup |P (x)| 1 n ϕ(x) . n ≥ 1 P ∈ Z[X] x ∈ K n → ∞ deg(P ) = n
This weighted version of the integer transfinite diameter was introduced by F. Amoroso [A].

Inside the auxiliary function (1), we replace the numbers c j by rational numbers a j /q where q is an integer such that q.c j is an integer for all 0 ≤ j ≤ J. Then we can write:

for x > 0, f (x) = log(1 + x)(1 + 1 x ) - t r log |Q(x)| (2)
where

Q = J i=0 Q a j j ∈ Z Z[X] is of degree r = J i=0 a j deg(Q j ) and t = J j=0 c j deg(Q j ) is a positive
real number. We want to get a function whose minimum m is as large as possible. It means to

search a polynomial Q ∈ Z Z[X] such that sup x>0 |Q(x)| t/r ((1 + x)(1 + 1/x)) -1 ≤ e -m .
If we suppose that t is fixed, it is clear that we need an effective upper bound for the quantity

t Z,ϕ ((0, ∞)) = lim inf inf sup |P (x)| t r ϕ(x) r ≥ 1 P ∈ Z[X] x > 0 r → +∞ deg(P ) = r
where we use the weight ϕ(x) = ((1 + x)(1 + 1/x)) -1 .

We replace the compact subset K by the infinite interval (0, ∞), but the weight ϕ ensures that the quantity t Z,ϕ ((0, ∞)) is finite.

Construction of the auxiliary function

We proceed as follows: suppose that we know Q 1 , Q 2 , ..., Q J . We use the semi-infinite linear programming (introduced in number theory by C. J. Smyth [START_REF] Smyth | On the measure of totally real algebraic numbers[END_REF]) to optimize f for this set of polynomials (i.e., to get the greatest possible m). We obtain the numbers c 1 , c 2 , ..., c J and f in the form (2) with t =

J i=1 c j deg(Q j ).
Then for several value of k, we seek a polynomial R(

x) = k l=0 a l x l ∈ Z Z[x] such that sup x>0 |Q(x)R(x)| t r+k ((1 + x)(1 + 1/x)) -1 ≤ e -m , i.e., such that sup x>0 |Q(x)R(x)|((1 + x)(1 + 1/x)) -(r+k)/t
is as small as possible.

We apply the LLL algorithm to the linear forms in a 0 ,. . ., a k

Q(x i )R(x i )((1 + x i )(1 + 1/x i )) -(r+k)/t .
The x i are control points uniformly distributed in the interval [0,70], including the points where f has its least local minima. We get a polynomial R whose factors R j are good candidates to extend the list of polynomials (Q 1 , Q 2 , ...,Q J ). We only keep the polynomials R j which have a nonzero coefficient c j in the new optimized auxiliary function f . After optimization, some previous polynomials Q j may have a zero coefficient and are removed.

In order to get the constant of Theorem 3, we take k from 4 to 20 successively.

The polynomials and the coefficients c j involved in the auxiliary function of Theorem 3 are listed in the Table 2 below.

Remark:

The main change with Wu's algorithm is that our polynomials are obtained by induction.

Proof of Theorem 4

Now, α is a nonzero algebraic integer with conjugates lie in a sector S θ = {z ∈ C such that | arg z| ≤ θ} with 0 < θ ≤ 90 • . The auxiliary functions f i , 1 ≤ i ≤ 10 are of the following type:

∀z ∈ S θ , f (z) = log(1 + |z|)(1 + 1/|z|) - 1≤j≤J c j log |Q j (z)|,
where the c j are positive real numbers and the polynomials Q j are non zero polynomials in Z Z[z].

Since the function f is harmonic outside a finite set containing the roots of the polynomials Q j , it takes its minimum on the boundary of S θ . It is clear that f (z) → ∞ as z → ∞. Thus, as we have f (z) = f (z), it is sufficient to search the minimum of f on the upper edge of the sector S θ where z = xe iθ with x > 0.

The auxiliary function on the half line

R θ = {z ∈ C, z = xe iθ , x > 0} is f (z) = log(1 + x)(1 + 1 x ) - 1≤j≤J c j log |Q j (z))|.
Concerning the integer transfinite diameter, we replace here the compact K by the half line R θ . But, again, the weight ϕ(z) = (|z| + 1/|z|) -1 ensures that the quantity t Z Z,ϕ (R θ ) is a finite number.

Then, for several values of k, we search a polynomial

R(z) = k l=0 a l z l ∈ Z Z[z] such that sup x>0 |Q(z)R(z)| t r+k |(1 + x)(1 + 1/x)| -1 ≤ e -m ,
where m is the minimum of the function f . We search

sup x>0 |Q(z)R(z)||(1 + x)(1 + 1/x)| -(r+k)/t
is as small as possible.

Since R(z) is no more a real linear form in the unknown coefficients a i , we replace it by its real part and its imaginary part. Then, we apply LLL to the linear forms

|Q(z n ).Re(R(z n ))•|(1+x n )(1+1/x n )| -(r+k)/t and |Q(z n )•Im(R(z n )).|(1+x n )(1+1/x n )| -(r+k)/t .
The x n are suitable control points in [0, 50] , including the points wheref has its least local minima. Then we apply our recursive algorithm as described in Section 3.

The polynomials and the coefficients c j involved in the auxiliary function of Theorem 4 are listed in the Table 3 below.

Annex: The program which computes lim

n→∞ v(β 2 n ) N=25; lambda=vector(N,j,0); lambda[1]=1/4; for(k=2,N,lambda[k]=lambda[k-1]/(1+lambda[k-1]) 2 );p=4;for(k=1,N-1,p=p*(1+lambda[k]) 1/2 k-1 ;print(p*1.))
The computation gives: 

j c j Q j 1 0.134139923394118 x -1 2 0.061749635022796 x -2 3 0.009744089471627 x -3 4 0.001848231653815 x 2 -3 + 1 5 0.008718157080652 x 2 -4 + 2 6
0.004623942020398 x 2 -5 + 5 7 0.001677775683442 x 3 -6x 2 + 9 -3 8 0.000770087575792 x 3 -7x 2 + 14 -7 9 0.003025585967283 x 4 -9x 3 + 26x 2 -28 + 9 10 0.008560749688132

x 4 -9x 3 + 27x 2 -31 + 11 11 0.004698394045964

x 6 -13x 5 + 64x 4 -151x 3 + 177x 2 -96 + 19 12 0.001126497871938

x 6 -13x 5 + 65x 4 -158x 3 + 193x 2 -110 + 23 13 0.000001874362705

x 6 -13x 5 + 65x 4 -158x 3 + 194x 2 -113 + 25 14 0.000403173239206

x 6 -14x 5 + 76x 4 -203x 3 + 278x 2 -182 + 43 15 0.000383084810882

x 7 -16x 6 + 102x 5 -333x 4 + 596x 3 -580x 2 + 282 -53 16 0.000260704467608

x 8 -18x 7 + 134x 6 -536x 5 + 1252x 4 -1736x 3 + 1385x 2 -578 + 97 17 0.000745912646983

x 8 -18x 7 + 134x 6 -537x 5 + 1260x 4 -1760x 3 + 1418x 2 -598 + 101 18 0.000652672384412

x 8 -18x 7 + 135x 6 -547x 5 + 1299x 4 -1835x 3 + 1492x v(Q j ) c j θ(Q j ) Q j 4.00000 0.120028 0 x -1 4.30940 0.012943 30.0000

2 -3x + 3 f 5 v(Q j ) c j θ(Q j ) Q j 4.
x 2 -3x + 3 4.32814 0.001299 34.5817

x 6 -8x 5 + 29x 4 -58x 3 + 68x 2 -44x + 13 4.31264 0.004190 35.6858

x 8 -10x 7 + 47x 6 -131x 5 + 236x 4 -280x 3 + 215x 2 -98x + 21 4.27300 0.008190 36.2431

x 4 -5x 3 + 11x -11x + 5 4.35739 0.001903 37.7612

x 4 -5x 3 + 11x 2 -10x + 4 4.12132 0.019883 45.0000

x 2 -2x + 2 f 7 v(Q j ) c j θ(Q j ) Q j 4.00000 0.06036 0 x -1 4.27300 0.008216 36.2431

x 4 -5x 3 + 11x 2 -11x + 5 4.15075 0.003199 39.0700 2x 6 -11x 5 + 29x 4 -43x 3 + 39x 2 -20x + 5 4.34442 0.001774 39.4782

x 6 -7x 5 + 23x 4 -40x 3 + 41x 2 -23x + 6 4.36481 0.000167 41.8833

x 7 -9x 6 + 33x 5 -69x 4 + 88x v(Q j ) c j θ(Q j ) Q j 4.00000 0.036463 60.0000

x 2 -x + 1 4.11491 0.012541 61.1985

x 4 -x 3 + 2x 2 + 1 f 10 v(Q j ) c j θ(Q j ) Q j 4.07339 0.007302 73.6316

x 3 + x + 1 4.20906 0.008674 79.0744

x 8 -2x 7 + 10x 6 -12x 5 + 28x 4 -19x 3 + 26x 2 -8x + 7 4.21560 0.009987 80.2809

x 4 -x 3 + 5x 2 -2x + 4 4.20719 0.000880 83.1995

x 6 -x 5 + 7x 4 -4x 3 + 13x 2 -3x + 6 4.11803 0.013675 84.2506

x 7 -2x 6 + 7x 5 -10x 4 + 14x 3 -14x 2 + 8x -5 4.12132 0.010461 90.0000

x 2 + 2

  2.2.2 Second step of the proof C.J. Smyth [Sm1] established the following Theorem 8. Let g : R + →: R + be a function such that lim x→∞ g(x) = ∞ and which satisfies a Lipschitz condition |g(x) -g(y)| < B(λ)|x -y| for x, y ∈ [0, λ], for each λ > 0. Then M(g) is dense on (c(g), ∞), where ccos θ)dθ.

Table 2 :

 2 The polynomials involved in Theorem 3.

	5.0000000000000
	5.3851648071345
	5.5385668995107
	5.6017408320507
	5.6284946631685
	5.6400801272366
	5.6451863873055
	5.6474688546314
	5.6485007769183
	5.6489716924285
	5.6491882700948
	5.6492885311707
	5.6493352061849
	5.6493570404592
	5.6493672976162
	5.6493721340930
	5.6493744221264
	5.6493755077355
	5.6493760241907
	5.6493762704706
	5.6493763881680
	5.6493764445270
	5.6493764715632
	5.6493764845544

  2 -633 + 107 19 0.000352222775710 x 8 -19x 7 + 149x 6 -627x 5 + 1539x 4 -2239x 3 + 1868x 2 -809 + 139 20 0.000068815531942 x 8 -19x 7 + 149x 6 -627x 5 + 1541x 4 -2254x 3 + 1907x 2 -850 + 153 21 0.000014696986402 x 12 -28x 11 + 344x 10 -2451x 9 + 11268x 8 -35159x 7 + 76200x 6 -115315x 5 +120628x 4 -84845x 3 + 38001x 2 -9718 + 1073

Table 3 :

 3 The auxiliary functions f i , 1 ≤ i ≤ 10 -7x 3 + 19x 2 -22x + 10 4.44065 6.45845 E-5 26.2404 x 12 -19x 11 + 168x 10 -910x 9 + 3354x 8 -8846x 7 + 17102x 6 -24411x 5

	f 1	v(Q j )	c j	θ(Q j )	Q j
		4.50000 0.109569	0	x -2
		4.00000 0.159943	0	x -1
		4.49390 0.001016	20.5575	x 8 -13x 7 + 74x 6 -239x 5 + 476x 4 -595x 3 + 454x 2 -194x + 37
		4.47076 0.001195	22.3862	x 4 -7x 3 + 19x 2 -23x + 11
		4.53330 0.000250	22.7179	x 10 -17x 9 + 131x 8 -7 + 1793x 6 -3659x 5 + 5140x 4 -4894x 3
					+3016x 2 -1086x + 175
		4.58284 9.89994 E-5 23.1681 x 5 -9x 4 + 33x 3 -60x 2 + 53x -17
		4.64998 0.002097	23.7496	x 4 -8x 3 + 25x 2 -35x + 19
		4.53248 0.000469	24.0255	x 10 -17x 9 + 131x 8 -599x 7 + 1792x 6 -3651x 5 + 5112x 4 -4840x 3
					+2956x 2 -1050x + 166
		4.52195 0.000883	24.4961	x 10 -17x 9 + 131x 8 -599x 7 + 1793x 6 -3660x 5 + 5146x 4 -4909x 3
					+3035x 2 -1098x + 178
	f 2	v(Q j )	c j	θ(Q j )	Q j
		4.00000 0.140130	0	x -1
		4.49390 0.004873	20.5575	x 8 -13x 7 + 74x 6 -239x 5 + 476x 4 -595x 3 + 454x 2 -194x + 37
		4.47076 0.008004	22.3862	x 4 -7x 3 + 19x 2 -23x + 11
		4.52195 0.000301	24.4961	x 1 0 -17x 9 + 131x 8 -599x 7 + 1793x 6 -3660x 5 + 5146x 4 -4909x 3
					+3035x 2 -1098x + 178
		4.30940 0.029232	30.0000	x 2 -3x + 3
	f 3	v(Q j )	c j	θ(Q j )	Q j
		4.00000 0.156836	0	x -1
		4.30940 0.023194	30.0000	x 2 -3x + 3
		4.47076 0.004332	22.3862	x 4 -7x 3 + 19x 2 -23x + 11
		4.53161 5.86076 E-5 25.5367 x 4 +25540x 4 -19123x 3 + 9750x 2 -3053x + 448
		4.48215 0.000362	26.4803	x 12 -20x 11 + 186x 10 -1059x 9 + 4100x 8 -11350x 7 + 23008x 6 -34386x 5
					+37591x 4 -29318x 3 + 15494x 2 -4989x + 743
		4.68328 0.006789	26.5651	x 2 -4x + 5
		4.44726 0.000805	27.4317	x 8 -13x 7 + 76x 6 -258x 5 + 554x 4 -769x 3 + 675x 2 -344x + 79
		4.47572 0.000172	27.5096	x 12 -20x 11 + 186x 10 -1059x 9 + 4099x 8 -11338x 7 + 22944x 6 -34191x 5
					+37224x 4 -28887x 3 + 15191x 2 -4876x + 727
		4.45763 0.000147	28.2826	x 12 -19x 11 + 168x 10 -909x 9 + 3340x 8 -8758x 7 + 16778x 6 -23643x 5
					+24325x 4 -17837x 3 + 8867x 2 -2693x + 381
		4.44764 0.001217	28.3244	x 6 -10x 5 + 43x 4 -100x 3 + 132x 2 -94x + 29
		4.46165 0.000199	28.3538	x 12 -19x 11 + 168x 10 -909x 9 + 3340x 8 -8757x 7 + 16767x 6 -23592x 5
					+24196x 4 -17646x 3 + 8703x 2 -2619x + 368
		4.48237 0.000966	28.9238	x 7 -12x 6 + 64x 5 -194x 4 + 359x 3 -404x 2 + 256x -71
		4.49944 0.000320	29.9530	x 13 -22x 12 + 225x 11 -1414x 10 + 6082x 9 -18880x 8 + 43463x 7 -75057x 6
					+97177x 5 -93148x 4 + 64276x 3 -30269x 2 + 8738x -1173
		4.50347 0.000233	30.9258	x 10 -17x 9 + 133x 8 -626x 7 + 1954x 6 -4212x 5 + 6334x 4 -6550x 3
					+4454x 2 -1799x + 329
	f 4	v(Q j )	c j	θ(Q j )	Q j
		4.00000 0.160737	0	x -1
		4.47076 0.004736	22.3862	x 4 -7x 3 + 19x 2 -23x + 11
		4.68328 0.007227	26.5651	x 2 -4x + 5
		4.44726 0.001341	27.4317	x 8 -13x 7 + 76x 6 -258x 5 + 554x 4 -769x 3 + 675x 2 -344x + 79
		4.43050 0.000275	27.8282	x 12 -19x 11 + 168x 10 -910x 9 + 3354x 8 -8847x 7 + 17112x 6 -24455x 5
					+25648x 4 -19281x 3 + 9886x 2 -3116x + 460
		4.44764 0.001702	28.3244	x 6 -10x 5 + 43x 4 -100x 3 + 132x 2 -94x + 29
		4.46165 0.000953	28.3538	x 12 -19x 11 + 168x 10 -909x 9 + 3340x 8 -8757x 7 + 16767x 6 -23592x 5
					+24196x 4 -17646x 3 + 8703x 2 -2619x + 368
		4.48237 0.001132	28.9238	x 7 -12x 6 + 64x 5 -194x 4 + 359x 3 -404x 2 + 256x -71
		4.30940 0.020855	30.0000	x

  -12x 7 + 65x 6 -205x 5 + 410x 4 -531x 3 + 436x 2 -209x + 46 4.40730 0.001488 34.0856 x 8 -12x 7 + 66x 6 -213x 5 + 438x 4 -585x 3 + 496x 2 -245x + 55 f 6

	00000 0.149253	0	x -1
	4.44726 0.000224	27.4317	x 8 -13x 7 + 76x 6 -258x 5 + 554x 4 -769x 3 + 675x 2 -344x + 79
	4.43050 0.000276	27.8282	x 12 -19x 11 + 168x 10 -910x 9 + 3354x 8 -8847x 7 + 17112x 6 -24455x 5
			+25648x 4 -19281x 3 + 9886x 2 -3116x + 460
	4.44764 0.000758	28.3244	x 6 -10x 5 + 43x 4 -100x 3 + 132x 2 -94x + 29
	4.30940 0.024490	30.0000	x 2 -3x + 3
	4.37789 0.007228	32.0950	x 4 -6x 3 + 15x 2 -17x + 8
	4.39727 0.001220	34.0406	x 8

  3 -70x 2 + 32x -7 4.12132 0.02604 45.0000 x 2 -2x + 2 4.21656 0.01509 45.3100 x 4 -4x 3 + 8x 2 -7x + 3 4.20509 0.000723 63.2729 x 6 -5x 5 + 15x 4 -26x 3 + 28x 2 -17x + 5

	f 8	v(Q j )	c j	θ(Q j )	Q j
		4.12132 0.05118	45.0000 x 2 -2x + 2
		4.00000 0.03096	60.0000 x 2 -x + 1
	f 9