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UPPER BOUNDS FOR THE USUAL MEASURES OF TOTALLY POSITIVE ALGEBRAIC INTEGERS WITH HOUSE LESS THAN 5.8

   

Upper bounds for the usual measures of totally positive algebraic integers with house less than 5.8

Introduction

Let α be a totally positive algebraic integer,i.e., its conjugates α 1 = α, . . . , α d are positive real numbers. First we recall the definitions of the usual measures for α.

The trace of α is Tr(α) = d i=1 α i and tr(α) = 1 d Tr(α) denotes the absolute trace of α. The well known "Schur-Siegel-Smyth trace problem"is the following: fix ρ < 2, then show that all but finitely many totally positive algebraic integers α have tr(α) > ρ. Many authors studied this problem throughout the years. The results obtained after those of I. Schur [Schu] and C.L. Siegel [Si] are all based on the method of explicit auxiliary functions with heuristic search of polynomials until 2009 ([F2]). For more details, see for example [S1], [ABP], [START_REF] Aguirre | The Trace Problem for Totally Positive Algebraic Integers, Number Theory and Polynomials[END_REF], [START_REF] Aguirre | The integer Chebyshev constant of Farey intervals[END_REF], [START_REF] Aguirre | The trace problem for totally positive algebraic integers. With an appendix by Jean-Pierre Serre[END_REF], [LW], [DW], [F1]. In 2016, thanks to a slightly change in the use of our recursive algorithm developed in [F2], we solved it for ρ < 1.792812 which is the better result at our knowledge [F1]. The recursive algorithm substitutes the heuristic search by a systematic search by induction of suitable polynomials. On the other hand, J.P. Serre [START_REF] Aguirre | The trace problem for totally positive algebraic integers. With an appendix by Jean-Pierre Serre[END_REF] showed that this method does not give such an inequality for any ρ larger than 1.8983021... . Therefore this method cannot be used to prove that 2 is the smallest limit point of the set of quantities {tr(α), α totally positive algebraic integer}.

If P = x d + . . . + a d = a 0 (x -α 1 ) . . . (x -α d ) denotes the minimal polynomial of α then the

length of α is L(α) = d i=0
|a i | and l(α) = L(α) 1/d is absolute length of α. In 1994, we studied the structure of the set L of the quantities {l(α), α totally positive algebraic integer} [F3]. Using the principle of auxiliary functions with heuristic search of polynomials, we found the fifth smallest points of L in the interval (2, 2.361101]. At last, we proved that L is dense in [2.376841 . . . , ∞). Again, thanks to our recursive algorithm, we proved [F4] that all but finitely many totally positive algebraic integers α have l(α) ≥ 2.365827. This constant improves those of Q. Mu and Q. Wu [MW](2013) and is the best constant to our knowledge.
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The Mahler measure of α is defined as M(α) = The smallest known value is due to Lehmer himself and is M(α) = 1.176280 . . . where α is the algebraic integer whose minimal polynomial is P (z) = z 10 + z 9 -z 7 -z 6 -z 5 -z 4 -z 3 + z + 1. In 1973, A. Schinzel [Schi] showed that all totally positive algebraic integers α, different from 0 and 1, satisfy Ω(α

) ≥ 1 + √ 5 2
and the equality holds if α is a root of the polynomial

x 2 -3x + 1. It means that 1 + √ 5 2
is the smallest element of the set M of the quantities {Ω(α), α totally positive algebraic integer}. In 1981, C. Smyth [S2] proved that all but finitely many totally positive algebraic integers satisfy Ω(α) ≥ 1.717177. He found the three following points of M. He also showed that M is dense in [1.727305 . . . , ∞). In 1994, with the same method and thanks to numerical improvements, we obtained [F3] that all but finitely many totally positive algebraic integers have Ω(α) ≥ 1.720678 . . .. This lower bound gives the two following points of M. In [F5], thanks to our recursive algorithm, we got that all but finitely many totally positive algebraic integers verify Ω(α) ≥ 1.722069. This constant improves those of Q. Mu and Q. Wu [MW] (2013) and is the best constant to our knowledge.

All these lower bounds were obtained with an explicit auxiliary function of the type:

∀x > 0, f (x) = g(x) - 1≤j≤J c j log |Q j (x)|
where g(x) = x for the trace, g(x) = log(x + 1) for the length and g(x) = log max(1, x) for the Mahler measure. The c j are positive real numbers and the polynomials Q j are non zero polynomials in Z Z[x].

In this work, in order to use the method of explicit auxiliary functions to get upper bounds this time, we have to suppose that x belongs to an interval I of R. We don't choose it arbitrary. We study the localization of the roots of the totally positive polynomials involved in our auxiliary functions (there are more than one hundred) and we notice that, mostly, they are bounded by the value 5.8. Therefore, we focus our attention to the set of totally positive algebraic integers α having all their conjugates in I = (0, 5.8). It's equivalent to say that the house of α defined by α = max 1≤i≤d |α i |, is bounded by 5.8. Then, an explicit auxiliary function of the type:

∀x ∈ I, f (x) = c -g(x) - 1≤j≤J c j log |Q j (x)|
where c is a real number allows us to get upper bounds for the three usual measures.

More precisely, we obtain:

Theorem 1. If α is a totally positive algebraic integer such that α ≤ 5.8 then tr(α) ≤ 4.0779.

Remark: In the following table, we list ten algebraic integers, whose minimal polynomials appear in the auxiliary function involved in Theorem 1, that have an absolute trace equal to 4. It proves that our above upper bound is quite good.

tr(α) α Minimal polynomial of α 4 4 x -4 4 5.6920215 x 3 -12x 2 + 41x -29 4 5.7320508 x 2 -8x + 13 4 5.7491175 x 4 -16x 3 + 90x 2 -204x + 146 4 5.7606389 x 6 -24x 5 + 231x 4 -1130x 3 + 2920x 2 -3694x + 1719 4 5.7675038 x 9 -36x 8 + 562x 7 -4972x 6 + 27314x 5 -95852x 4 + 212323x 3 -280802x 2 + 194166x -49279 4 5.7881137 x 9 -36x 8 + 562x 7 -4972x 6 + 27312x 5 -95806x 4 + 211907x 3 -278957x 2 + 190161x -45878 4 5.7905003 x 7 -28x 6 + 325x 5 -2010x 4 + 7060x 3 -13768x 2 + 13185x -4227 4 5.7927026 x 10 -40x 9 + 706x 8 -7222x 7 + 47266x 6 -205975x 5 + 602162x 4 -1158217x 3 + 1389569x 2 -926043x + 254366 4 5.7956925 x 12 -48x 11 + 1038x 10 -13346x 9 + 113359x 8 -668138x 7 + 2791595x 6 -8290714x 5 + 17257804x 4 -24333909x 3 + 21771184x 2 -10870656x + 2212927
Theorem 2. If α is a totally positive algebraic integer such that α ≤ 5.8 and with minimal polynomial different from x-4, x-5, x 2 -8x+14, x 2 -9x+19 and x 4 -17x 3 +103x 2 -257x+211 then l(α) ≤ 4.78746.

Remark:

The totally positive algebraic integer whose house is 5.6964949 and with minimal polynomial x 5 -20x 4 + 155x 3 -579x 2 + 1037x -709 (appeared in the auxiliary function involved in Theorem 2) has an absolute length equal to 4.782145. It proves again that the above upper bound is quite good.

Theorem 3. If α is a totally positive algebraic integer such that α ≤ 5.8 and with minimal polynomial different from x -4, x -5, x 2 -8x + 14, x 2 -9x + 19, x 4 -17x 3 + 103x 2 -257x + 211,

x 5 -20x 4 +155x 3 -579x 2 +1037x-709 and x 11 -44x 10 +868x 9 -10124x 8 +77490x 7 -408213x 6 + 1508359x 5 -3904032x 4 + 6926534x 3 -8010726x 2 + 5426958x -1629014 then Ω(α) ≤ 3.713593.

Remark:

The totally positive algebraic integer whose house is 5.761517 and with minimal polynomial x 8 -32x 7 +440x 6 -3390x 5 +15979x 4 -47095x 3 +84583x 2 -84452x+35809 (appeared in the auxiliary function involved in Theorem 3) has an absolute Mahler measure equal to 3.7089332. It proves again that the above upper bound is quite good.

The principle of auxiliary functions

Remember that I = (0, 5.8). As mentioned in the introduction, the auxiliary functions used in our theorems are of the type:

∀x ∈ I, f (x) = c -g(x) - j∈J c j log |Q j (x)|
where c is a real number, the c j s are positive real numbers and the

Q j s are non zero polynomials in Z Z[x].
Suppose that the constant c is chosen such that the minimum m of the function f is > 0.

Consider now a totally positive algebraic integer with conjugates α 1 = α, . . . , α d , whose house is bounded by 5.8 and whose minimal polynomial P does not divide any Q j . We have

for i = 1, . . . , d, f (α i ) = c -g(α i ) - 1≤j≤J c j log |Q j (α i )| ≥ m > 0, i.e., d i=1 f (α i ) = dc - d i=1 g(α i ) - 1≤j≤J c j log | d i=1 Q j (α i )| > 0. But | d i=1 Q j (α i )| is a nonzero integer because it is the resultant of P and Q j . Hence, if α is not a root of Q j , we have c ≥ 1 d d i=1 g(α i ).
If we take, g(x) = x, we get c ≥ tr(α).

If we take g(x) = log(x+1), we get e c ≥ l(α) because we can prove by induction that the minimal polynomial P has a sequence of coefficients with alternate signs so, L(α

) = |P (-1)| = d i=1 (1+α i ).
If we take g(x) = log max(1, x), we get e c ≥ Ω(α).

In order to reduce the size of the coefficients of the polynomials Q j which will ensure a better precision in our calculus, we do the following transformation: y = x -5. Finally, we work with for y ∈ I = (-5, 0.8), h(y) = g(y + 5) -

1≤j≤J c j log |U j (y)| (1).
3 Link between auxiliary functions and generalized integer transfinite diameter

Let K be a compact subset of C. The transfinite diameter of K is defined by

t(K) = lim inf inf |P | 1 n ∞,K n ≥ 1 P ∈ C[X] n → ∞ P monic deg(P ) = n where |P | ∞,K = sup z∈K |P (z)| for P ∈ C[X].
We define the integer transfinite diameter of K by

t Z Z (K) = lim inf inf |P | 1 n ∞,K n ≥ 1 P ∈ Z Z[X] n → ∞ deg(P ) = n
Finally, if ϕ is a positive function defined on K, the ϕ-generalized integer transfinite diameter of K is defined by

t Z,ϕ (K) = lim inf inf sup |P (z)| 1 n ϕ(z) . n ≥ 1 P ∈ Z[X] z ∈ K n → ∞ deg(P ) = n
In the auxiliary function (1), we replace the coefficients c j by rational numbers a j /q where q is a positive integer such that q.c j is an integer for all 1 ≤ j ≤ J. Then we can write:

for y ∈ I , h(y) = c -g(y + 5) - t r log |U (y)| ≥ m (2)
where U = If we suppose that t is fixed, it is equivalent to find an effective upper bound for the weighted integer transfinite diameter over the interval I with the weight ϕ(y) = e -(c-g(y+5)) :

t Z Z,ϕ (I ) = lim inf inf sup |P (y)| t r ϕ(y) r ≥ 1 P ∈ Z Z[y] y ∈ I r → ∞ deg(P ) = r

Construction of the auxiliary functions

The problem is to find a set of "good "polynomials U j ,i.e., which gives the best value possible for the minimum m of the function h. We use here our recursive algorithm. This algorithm is based on an algorithm developed by Q. Wu [Wu] in 2003, which substitues the heuristic search of good polynomials by a systematic search of them. In 2009, we made two improvements to this previous algorithm in the use of the LLL algorithm. The idea is to get the polynomials U j by induction. For more details, see [F2]. Note that the auxiliary functions were then used to get lower bounds for the usual measures.

Here, we start with an arbitrary value of c (for example, c=5 for the trace) and k=3. Suppose that we have U 1 , U 2 , ..., U J . Then we use the semi-infinite linear programming (introduced in number theory by C. J. Smyth [S1]) to optimize h for this set of polynomials i.e., to get a minimum m > 0. We obtain the numbers c 1 , c 2 , ..., c J and h in the form (2) with t = (c-g(y+5)) ) (r+k)/t is as small as possible.

We apply LLL algorithm to the linear forms in a 0 ,. . ., a k

U (y i )R(y i )(e -(c-g(y i +5)) ) (r+k)/t
where y i are control points uniformly distributed in the interval I', including the points where h has its least local minima. We get a polynomial R whose factors R j are good candidates to enlarge the set of polynomials (U 1 , U 2 , ...,U J ). We only keep the polynomials R j which have a nonzero coefficient c j in the newly optimized auxiliary function h. After optimization, some previous polynomials U j may have a zero coefficient and are removed.

Remember that the upper bound thus obtained is equal to c or e c . So, the smaller the value c is, the better the upper bound will be. Therefore, at this step, we start to decrease the value c until the minimum m > 0 is as close as possible to 0. The process is then repeated with the new value of c i.e., we seek a polynomial R. We increase the value of k when any new good polynomial is found. In order to get the constants of our theorems, we take k from 3 to 20 successively.

The polynomials and the coefficients c j involved in the auxiliary functions are listed in the tables below.

Table 1: Polynomials expressed on (-5,0.8) and their coefficient involved in Theorem1

j c j U j 1 0.60788001 x 2 0.01969114 x + 1 3 0.27896186 x 2 + x -1 4 0.07143360 x 2 + 2x -2 5 0.12185385 x 3 + 2x 2 -x -1 6 0.01513001 x 3 + 3x 2 -4x + 1 7 0.12949995 x 4 + 3x 3 -2x 2 -2x + 1 8 0.01274926 x 4 + 3x 3 -x 2 -3x + 1 9 0.01030851
x 4 + 4x 3 -2x 2 -4x + 2 10 0.00347525 x 4 + 4x 3 -4x + 1 11 0.00616329 x 5 + 4x 4 -x 3 -5x 2 + x + 1 12 0.01615593 x 6 + 5x 5 -8x 3 + 4x -1 13 0.00208365 x 6 + 6x 5 + 6x 4 -10x 3 -5x 2 + 6x -1 14 0.00808357 x 7 + 6x 6 + 7x 5 -11x 4 -10x 3 + 9x 2 + x -1 15 0.00465891

x 7 + 7x 6 + 10x 5 -10x 4 -15x 3 + 7x 2 + 5x -2 16 0.00317086 2x 8 + 11x 7 + 7x 6 -27x 5 -8x 4 + 23x 3 -3x 2 -4x + 1 17 0.00183290 x 9 + 8x 8 + 15x 7 -13x 6 -36x 5 + 17x 4 + 22x 3 -11x 2 -2x + 1 18 0.00357286 x 9 + 8x 8 + 17x 7 -5x 6 -35x 5 + 3x 4 + 23x 3 -6x 2 -3x + 1 19 0.00090485 x 9 + 9x 8 + 22x 7 -2x 6 -46x 5 -2x 4 + 33x 3 -7x 2 -4x + 1 20 0.00062738 x 9 + 9x 8 + 22x 7 -2x 6 -48x 5 -6x 4 + 37x 3 -2x 2 -9x + 2 21 0.00093622 x 10 + 10x 9 + 30x 8 + 11x 7 -63x 6 -31x 5 + 51x 4 + 10x 3 -13x 2 -x + 1 22 0.00104114 x 10 + 10x 9 + 31x 8 + 18x 7 -54x 6 -45x 5 + 37x 4 + 23x 3 -11x 2 -3x + 1 23 0.00072434 2x 10 + 15x 9 + 24x 8 -37x 7 -69x 6 + 64x 5 + 44x 4 -50x 3 + 5x 2 + 5x -1 24 0.00001135 x 12 + 11x 11 + 38x 10 + 23x 9 -97x 8 -92x 7 + 121x 6 + 72x 5 -78x 4 -8x 3 + 13x 2 + x -1 25 0.00327455 x 12 + 11x 11 + 41x 10 + 45x 9 -60x 8 -129x 7 + 30x 6 + 116x 5 -15x 4 -43x 3 + 9x 2 + 4x -1 26 
0.00128312 x 12 + 12x 11 + 48x 10 + 54x 9 -86x 8 -178x 7 + 65x 6 + 186x 5 -46x 4 -79x 3 + 24x 2 + 9x -3 27 0.00165324 x 13 + 11x 12 + 39x 11 + 29x 10 -97x 9 -125x 8 + 124x 7 + 142x 6 -115x 5 -52x 4 + 56x 3 -5x 2 -5x + 1 28 0.00023279 x 13 + 12x 12 + 47x 11 + 45x 10 -110x 9 -180x 8 + 127x 7 + 211x 6 -116x 5 -91x 4 + 61x 3 + 3x 2 -7x + 1 29 0.00088998 x 14 + 14x 13 + 70x 12 + 127x 11 -62x 10 -416x 9 -100x 8 + 555x 7 + 118x 6 -388x 5 + 121x 3 -20x 2 -12x + 3 30 0.00040193 x 16 + 15x 15 + 82x 14 + 172x 13 -43x 12 -630x 11 -365x 10 + 957x 9 + 663x 8 -873x 7 -426x 6 + 481x 5 + 86x 4 -130x 3 +6x 2 + 12x -2 31 0.00003509 x 16 + 15x 15 + 82x 14 + 173x 13 -33x 12 -597x 11 -341x 10 + 879x 9 + 548x 8 -787x 7 -275x 6 + 400x 5 + 9x 4 -79x 3 +10x 2 + 5x -1 32 0.00074353 x 16 + 15x 15 + 82x 14 + 174x 13 -25x 12 -581x 11 -356x 10 + 824x 9 + 570x 8 -717x 7 -316x 6 + 374x 5 + 38x 4 -88x 3 +11x 2 + 5x -1 33 0.00138686 x 16 + 15x 15 + 83x 14 + 183x 13 -2x 12 -584x 11 -428x 10 + 794x 9 + 660x 8 -674x 7 -372x 6 + 342x 5 + 63x 4 -76x 3 +7x -1 34 0.00062528 x 16 + 15x 15 + 83x 14 + 183x 13 -4x 12 -600x 11 -460x 10 + 818x 9 + 760x 8 -691x 7 -489x 6 + 371x 5 + 115x 4 -99x 3 -x 2 + 8x -1 

x 3 + 4x 2 + 2x -2 10 0.00648598 x 4 + 3x 3 -x 2 -3x + 1 11 0.01491318 x 4 + 3x 3 -2x 2 -2x + 1 12 0.00159782 x 4 + 4x 3 + x 2 -5x + 1 13 0.00306567 x 4 + 4x 3 + 2x 2 -3x -1 14 0.00177842 x 5 + 5x 4 + 5x 3 -4x 2 -3x + 1 15 0.00245270 x 6 + 6x 5 + 9x 4 -2x 3 -8x 2 + 1
x 3 + 2x 2 -x -1 9 0.00515778 x 3 + 3x 2 -1 10 0.00953120 x 4 + 3x 3 -x 2 -3x + 1 11 0.01371676 x 4 + 3x 3 -2x 2 -2x + 1 12 0.00422687 x 4 + 4x 3 + x 2 -5x + 1 13 0.00656933 x 4 + 4x 3 + 2x 2 -3x -1 14 0.00541172 x 5 + 5x 4 + 5x 3 -4x 2 -3x + 1 15 0.00133178 x 6 + 6x 5 + 8x 4 -6x 3 -9x 2 + 3x + 1 16 0.00593261 x 6 + 6x 5 + 9x 4 -2x 3 -8x 2 + 1 17 0.00088740 x 7 + 8x 6 + 20x 5 + 11x 4 -16x 3 -11x 2 + 2x + 1 18 0.00032713 x 8 + 7x 7 + 14x 6 -20x 4 -3x 3 + 10x 2 -x -1 19 0.00153253 x 8 + 8x 7 + 19x 6 + 5x 5 -27x 4 -12x 3 + 13x 2 + 2x -1 20 0.00624530 x 8 + 8x 7 + 20x 6 + 10x 5 -21x 4 -15x 3 + 8x 2 + 3x -1 21 0.00038110 2x 8 + 12x 7 + 18x 6 -9x 5 -27x 4 + x 3 + 11x 2 -1 22 0.00063568 x 10 + 7x 9 + 12x 8 -12x 7 -39x 6 + 4x 5 + 39x 4 -x 3 -14x 2 + x + 1 23 0.00054001 x 10 + 8x 9 + 19x 8 + 2x 7 -41x 6 -24x 5 + 31x 4 + 17x 3 -11x 2 -2x + 1 24 0.00054553 x 10 + 9x 9 + 26x 8 + 14x 7 -47x 6 -40x 5 + 40x 4 + 18x 3 -14x 2 -x + 1 25 0.00078408 x 10 + 11x 9 + 44x 8 + 69x 7 -104x 5 -57x 4 + 47x 3 + 31x 2 -7x -4 26 
0.00006017 2x 10 + 15x 9 + 33x 8 + 2x 7 -60x 6 -24x 5 + 41x 4 + 12x 3 -12x 2 -x + 1 27 0.00259968 x 11 + 10x 10 + 35x 9 + 42x 8 -23x 7 -79x 6 -17x 5 + 46x 4 + 15x 3 -12x 2 -2x + 1 28 0.00061682 x 11 + 11x 10 + 43x 9 + 60x 8 -27x 7 -127x 6 -31x 5 + 88x 4 + 24x 3 -25x 2 -3x + 2 29 0.00138347 x 11 + 11x 10 + 43x 9 + 61x 8 -20x 7 -113x 6 -31x 5 + 68x 4 + 19x 3 -16x 2 -2x + 1 30 0.00066958 x 11 + 11x 10 + 43x 9 + 61x 8 -20x 7 -113x 6 -31x 5 + 69x 4 + 22x 3 -18x 2 -4x + 2 31 0.00069381 x 11 + 11x 10 + 44x 9 + 68x 8 -7x 7 -118x 6 -57x 5 + 68x 4 + 36x 3 -18x 2 -4x + 1 32 0.00275776 x 12 + 12x 11 + 53x 10 + 95x 9 + 14x 8 -156x 7 -118x 6 + 79x 5 + 83x 4 -15x 3 -19x 2 + x + 1 33 0.00002970 x 14 + 14x 13 + 75x 12 + 177x 11 + 99x 10 -309x 9 -431x 8 + 175x 7 + 436x 6 -62x 5 -187x 4 + 30x 3 + 25x 2 -3x -1 34 0.00002671 x 15 + 15x 14 + 89x 13 + 251x 12 + 265x 11 -253x 10 -800x 9 -229x 8 + 737x 7 + 401x 6 -340x 5 -178x 4 + 82x 3 + 26x 2 -7x -1 35 0.00019284 2x 17 + 31x 16 + 190x 15 + 550x 14 + 564x 13 -761x 12 -2207x 11 -480x 10 + 2622x 9 + 1438x 8 -1608x 7 -1009x 6 + 573x 5 +303x 4 -113x 3 -36x 2 + 9x + 1 36 0.00051457 x 18 + 16x 17 + 102x 16 + 311x 15 + 350x 14 -438x 13 -1501x 12 -566x 11 + 1869x 10 + 1530x 9 -1147x 8 -1251x 7 + 423x 6 +483x 5 -109x 4 -86x 3 + 18x 2 + 5x -1 37 0.00085382 2x 18 + 31x 17 + 190x 16 + 548x 15 + 541x 14 -856x 13 -2346x 12 -385x 11 + 3052x 10 + 1553x 9 -2098x 8 -1213x 7 + 873x 6 +398x 5 -208x 4 -53x 3 + 22x 2 + 3x -1 38 0.00006742 2x 19 + 37x 18 + 285x 17 + 1149x 16 + 2373x 15 + 1292x 14 -4465x 13 -8383x 12 -209x 11 + 10965x 10 + 5593x 9 -7044x 8 -5210x 7 + 2727x 6 + 2169x 5 -715x 4 -431x 3 + 121x 2 + 32x -9

  |α i |) and Ω(α) = M(α) 1/d denotes the absolute Mahler measure of α. If M(α) = 1, then a classical theorem of Kronecker[K] tells us that α is a root of unity. It suggests the question: infα not a root of unity M(α) > 1 ? It is known as the "Lehmer's problem "and it is still open. Another formulation can be given as follows. Does there exist an absolute constant c > 0 such that: if M(α) > 1 then M(α) > 1 + c ?

a

  j deg U j and t = J j=1 c j deg U j (this formulation was introduced by J. P. Serre). Thus we seek a polynomial U ∈ Z Z[y] such that sup y∈I |U (y)| t/r e -(c-g(y+5)) ≤ e -m .

  l ∈ Z Z[y] such that sup y∈I |U (y)R(y)| t r+k (e -(c-g(y+5)) ) ≤ e -m , i.e., such that sup y∈I |U (y)R(y)|(e -

Table 2 :

 2 Polynomials expressed on (-5,0.8) and their coefficient involved in Theorem 2

	j	c j	U j
	1	0.13036736	x
	2	0.02568103	x + 1
	3	0.07351847	x 2 + x -1
	4	0.00563913	x 2 + 2x -1
	5	0.01599146	x 2 + 2x -2
	6	0.00040951	x 2 + 3x + 1
	7	0.03575081	x 3 + 2x 2 -x -1
	8	0.00347327	x 3 + 3x 2 -1
	9	0.00028418	

Table 3 :

 3 Polynomials expressed on (-5,0.8) and their coefficient involved in Theorem 3

	j	c j	U j
	1	0.16929006	x
	2	0.04824241	x + 1
	3	0.00180977	x + 2
	4	0.09384986	x 2 + x -1
	5	0.01670291	x 2 + 2x -1
	6	0.02553475	x 2 + 2x -2
	7	0.00074233	x 2 + 3x + 1
	8	0.04999466