THE N-MEASURE FOR ALGEBRAIC INTEGERS HAVING ALL THEIR CONJUGATES IN A SECTOR

Let α be a nonzero algebraic integer of degree d whose all conjugates α 1 = α, α 2 , . . . , α d lie in a sector | arg z| ≤ θ, 0 ≤ θ ≤ 90 • . We define the N-measure of α by N(α) =

and the absolute N-measure of α by ν(α) = N(α) 1/ deg (α) . Firstly, we consider the case θ = 0. We prove that N(α) ∈ N and that, if α is a reciprocal algebraic integer, N(α) is a square. Then, we study the set N of the quantities ν(α). We prove that there exists a number l such that N is dense in (l, ∞). Finally, using the method of auxiliary functions, we find the seven smallest points of N in (2, l). In case of 0 < θ ≤ 90 • , we compute the greatest lower bound c(θ) of the absolute N-measure of α, for α belonging to eight subintervals of ]0, θ[. Among these subintervals, two are complete. These computations are also done by using auxiliary functions. The polynomials involved in the auxiliary functions are found by our recursive algorithm.

Introduction

Let α be a nonzero algebraic integer of degree d. We define the N-measure of α by:

N(α) = d i=1 (|α i | + 1/|α i |).
The absolute N-measure of α is the quantity ν(α) = N(α) 1/d . If P is the minimal polynomial of α, then N(P ) = N(α) and ν(P ) = ν(α).

It is obvious that ν(α) ≥ 2 and the equality holds if and only if α is a root of unity. Indeed, if for i = 1, . . . , d, we have |α i | + 1/|α i | = 2 then for all i = 1, . . . , d, |α i | = 1. By the theorem of Kronecker, we deduce that α is a root of unity.

The case θ = 0

Suppose first that θ = 0. It means α is a totally positive algebraic integer : α and all its conjugates are positive real numbers.

Theorem 1. For all nonzero totally positive algebraic integers α whose minimal polynomial P satisfies |P (0)| = 1, N(α) ∈ N.

Moreover, if α is reciprocal i.e., α and 1/α are conjugates, then N(α) is a square.

In order to study the structure of the set N of the quantities ν(α), we show the following Theorem 2. N is dense in (l, ∞) where l = lim n→∞ ν(β 2 n ) = 3.513182 . . ..

The β 2

n were defined by C.J. Smyth [START_REF] Smyth | The mean value of totally real algebraic numbers[END_REF] as follows:

β 2 0 = 1 β 2 n = β 2 n+1 + β -2 n+1 -2 β 2
n is a totally positive algebraic integer of degree 2 n .

Towards determining the structure of N in the gap (2, l), we prove the following Theorem 3. If α is a nonzero totally positive algebraic integer whose minimal polynomial has a constant term of modulus 1 and is different from x -1, x 2 -3x + 1, x 4 -7x 3 + 13x 2 -7x + 1, x 8 -15x 7 +83x 6 -220x 5 +303x 4 -220x 3 +83x 2 -15x+1, x 6 -11x 5 +41x 4 -63x 3 +41x 2 -11x+1, x 8 -15x 7 + 84x 6 -225x 5 + 311x 4 -225x 3 + 84x 2 -15x + 1 and x 16 -31x 15 + 413x 14 -3141x 13 + 15261x 12 -50187x 11 + 115410x 10 -189036x 9 + 222621x 8 -189036x 7 + 115410x 6 -50187x 5 + 15261x 4 -3141x 3 + 413x 2 -31x + 1 then we have:

ν(α) ≥ 3.483671.
Therefore, the points of N in (2, l) are:

2 = ν(x -1) = ν(β 2 0 ), 3 = ν(x 2 -3x + 1) = ν(β 2 1 ), 3.316624 . . . = ν ( x 4 -7x 3 + 13x 2 -7x + 1) = ν(β 2 2 ), 3.433631 . . . = ν(x 8 -15x 7 + 83x 6 -220x 5 + 303x 4 -220x 3 + 83x 2 -15x + 1) = ν(β 2 3 ), 3.448217 . . . = ν(x 3 -5x 2 + 6x -1) = ν(x 3 -6x 2 + 5x -1), 3.470100 . . . = ν(x 4 -7x 3 + 14x 2 -8x + 1) = ν(x 4 -8x 3 + 14x 2 -7x + 1), 3.479784 . . . = ν(x 16 -31x 15 + 413x 14 -3141x 13 + 15261x 12 -50187x 11 + 115410x 10 -189036x 9 + 222621x 8 -189036x 7 + 115410x 6 -50187x 5 + 15261x 4 -3141x 3 + 413x 2 -31x + 1) = ν(β 2 4 ). 1.2 The case 0 < θ < 90 •
The study of "small points" leads us to extend the search to algebraic integers α whose conjugates lie in a sector S θ = {z ∈ C such that | arg z| ≤ θ} with 0 < θ < 90 • . We follow here the work of M. Langevin [La] on the absolute Mahler measure Ω(α) = ( d i=1 max(1, |α i |)) 1/d of algebraic integers α having all their conjugates in a sector. He proved that there exists a function c(θ) on [0, 180 • ), always > 1, such that if α = 0 is not a root of unity, whose conjugates all lie in S θ , then Ω(α) ≥ c(θ). Note that this result is not numerical. G. Rhin and C. Smyth [RS] succeeded in finding the exact value of c(θ) for θ in nine subintervals of [0, 120 • ] and conjectured that c(θ) is a "staircase" function of θ, which is constant except for finitely many left discontinuities in any closed subinterval of [0, 180 • ). Their method uses explicit auxiliary polynomials A(X) = X a R(X) where R is a reciprocal polynomial in Z Z[X], found by heuristic methods. In 2004, thanks to Wu's algorithm [Wu], G. Rhin and Q. Wu [RW] gave the exact value of c(θ) for four new subintervals of [0, 140 • ] and extended four existing subintervals. In 2013, the author and G. Rhin [FR] found for the first time a complete subinterval and a fourteenth subinterval. A complete subinterval is an interval on which the function c(θ) describing the minimum on the sector | arg z| ≤ θ is constant, with jump discontinuities at each end. These improvements are due to our recursive algorithm.

Here, we prove the following result: Theorem 4. There exist a left discontinuous, strictly positive, staircase function g on [0, 90 • ) and a positive, continuous, monotonically decreasing function f on [0, 90 • ) such that:

for θ ∈ [0, 90 • ), if α is a nonzero algebraic integer whose conjugates all lie in S θ then

N(α) ≥ min(f (θ), g(θ)).
Moreover, the exact value of c(θ) = inf

| arg α|≤θ N(α) is known on eight subintervals of [0, 90 • ).
These intervals are given in Table 1.

The function g(θ) is a decreasing staircase function having left discontinuities. The function g(θ)

is the smallest value of ν(α) that could be found for α having all its conjugates in | arg z| ≤ θ.

The function f (θ) is given by f (θ) = max 1≤i≤8 (f i (θ)), and the functions f i (θ) are defined as follows:

f i (θ) = min z∈S θ   log(|z| + 1/|z|) - 1≤j≤J c ij log |Q ij (z)|  
where the polynomials Q ij and the real numbers c ij are read off from Table 3. 

x 4 -x 3 + 4x 2 -2x + 3
In Section 2, we prove Theorem 1. Section 3 deals with the denseness of the set N . In Section 4, we describe the method of explicit auxiliary functions. We link these functions with the integer transfinite diameter. Then, we explain the recursive algorithm which enables us to obtain the constant of Theorem 3. In Section 5, we deal with the case 0 < θ ≤ 90 • . All the computations were done on a MacBookPro with the languages Pascal and Pari.

Proof of Theorem 1

Remember that, if

P ∈ Z[x] of degree d, the reciprocal polynomial of P is P * = x d • P ( 1 x ) and P is reciprocal if P * = P .
Let α be a nonzero totally positive algebraic integer of degree d and let P =

d i=1 (x -α i ) be its minimal polynomial satisfying |P (0)| = 1. Put Q(x) = P (x) • P * (x). Then, Q is a reciprocal polynomial of degree 2d in which we do the change of variable y = x + 1/x -2. We get Q(x) = x d • R(y) where R ∈ Z[y] with deg(R)=d. The fact that |P (0)| = 1 implies that the polynomial R is monic. The roots of R are the β i = α i + 1/α i -2 for i = 1, . . . , d. Thus, N(P ) = d i=1 |β i + 2| = |R(-2)| because R is monic and |R(-2)| ∈ N. Now, if P is a reciprocal polynomial of degree 2d, then P = x d .R(y) and N(P ) = 2d i=1 |α i + 1/α i | = d i=1 (α i + 1/α i ) 2 = (R(-2)) 2 . 3 Denseness of the set N 3.1 Study of the sequence (ν(β 2 n )) n≥1
Remember that the sequence (β 2 n ) n≥0 satisfies:

β 2 0 = 1 β 2 n = β 2 n+1 + β -2 n+1 -2
We first prove the following Lemma 5.

ν(β 2 n ) = 2 n-1 i=0 (1 + λ i ) 1/2 i where λ 0 = 1 2 and λ i+1 = λ i (1 + λ i ) 2 for i ≥ 0. Proof For n ≥ 0, we put γ n = β 2 n , so γ n = γ n+1 + γ -1 n+1 -2.
Therefore, we can write: N(

β 2 n ) = N(γ n ) = 2 n i=1 (γ n,i + γ -1 n,i ) = 2 n-1 i=1 (γ n,i + γ -1 n,i ) 2 because γ n,i = γ 2 n-1 +i for 1 ≤ i ≤ 2 n-1 . (For 1 ≤ i ≤ 2 n , γ n,i denote the conjugates of γ n ).
Then, we have:

N(β 2 n ) = 2 n-1 i=1 γ 2 n,i + γ -2 n,i + 2 = 2 n-1 i=1 (2 + γ n-1,i ) 2 because γ 2 n+1 + γ -2 n+1 = γ 2 n + 4γ n + 2. Finally, we have N(β 2 n ) = 2 2 n-1 2 n-1 i=1 (1 + 1/2γ n-1,i ) 2 .
We recall here a more general lemma that we proved in [F]:

Lemma 6. The notations are the same as previously. Then we have

2 n i=1 (1 + λ 0 γ n,i ) = n i=0 (1 + λ i ) 1/2 i 2 n where λ 0 = 1 2 and λ i+1 = λ i (1 + λ i ) 2 for i ≥ 0. Now, we can conclude that ν(β 2 n ) = 2 n-1 i=0 (1 + λ i ) 1/2 i .
A short program, that can be read off from Annex below, allows us to compute with Pari the limit l of the sequence ν(β 2 n ) and we obtain l = 3.513182 . . .. Note that l gives an upper bound for the first accumulation point of N .

Proof of Theorem 2

The proof and notations follow those of C.J. Smyth in [START_REF] Smyth | The mean value of totally real algebraic numbers[END_REF]. For a given function g

: [0, ∞) → R, put M(g) the set of all means M g (α) = 1 d d i=1 g(|α i |)
for α a totally real algebraic integer, i.e., all its conjugates

α 1 = α, • • • , α d are real numbers. When the limits exist, put a(g) = lim n→∞ M g (β n ) and c(g) = lim n→∞ M g (2 cos(2π/n)).
Here a convenient choice for g is

g : x → log(x 2 + 1 x 2 ) (3.1) because then M g (α) = log ν(α 2 ).
The proof consists in two parts.

First step of the proof

C.J. Smyth [START_REF] Smyth | The mean value of totally real algebraic numbers[END_REF] proved the following Theorem 7. Let g : R + → R + be a monotonic increasing function, zero on [0, 1]such that

lim x→∞ g(x + 1)/g(x) = 1
and the values of log 2 g(2k + 1) mod 1 (k=0,1,2,. . .) are everywhere dense in (0, 1).

Then the limit a(g) exists and M(g) is dense in (a(g), ∞).

We replace the function g defined by (3.1) by the function g * which satisfies the hypothesis of Theorem 7:

g * (x) =    g(x) if x > 1 0 if 0 ≤ x ≤ 1 (3.2) Since M g (β n ) = M g * (β n )
, the existence of a(g * ) implies those of a(g) and a(g * ) = a(g).

It is easy to see that g * satisfies the first hypothesis of Theorem 7. So, it is sufficient to study the denseness of the set F = {log 2 g(2k + 1) mod 1,k ∈ N}.

Let t ∈ [0, 1] and > 0. Does there exist f ∈ F such that |f (k) -t| < ? We search for n and k satisfying:

| log 2 g * (2k + 1) -t -n| < i.e., | log g * (2k + 1) -t -n log 2| < (3.3)
The uniform continuity of the function log on [1, ∞) gives :

∀ > 0, ∃ η( ) such that ∀x, y > 0, |x -y| < η( ) ⇒ | log x -log y| < .
We choose n such that 2 -n < η( ) and k such that

|(2k + 1) -(g * ) -1 (2 n e t )| ≤ 1. As (g * ) is
bounded by 1, the mean value Theorem for g * on (1, ∞) gives:

|g * (2k + 1) -2 n e t | ≤ 1, i.e., |2 -n g * (2k + 1) -e t | ≤ 2 -n < η( )
and the inequality (3.3) follows immediately. Thus, we have proved that It is easy to see that, for our function g defined by (3.1), the Lipschitz condition is satisfied for

M(g) is dense in (a(g * ), ∞) = (a(g), ∞) = (log l, ∞) = (1.256522 . . . , ∞).
B(λ) = 2λ • (λ 2 + 1). Thus, M(g) is dense on (c(g), ∞) = (1.465715 . . . , ∞).

Conclusion

We have shown that M(g) is dense on (min(a(g), c(g)), ∞) = (log l, ∞) which means that N is dense on (l, ∞), where l = lim n→∞ ν(β 2 n ) = 3.513182 . . ..

Proof of Theorem 3

The explicit auxiliary function

The auxiliary function involved in Theorem 3 is of the following type:

for x > 0, f (x) = log(x + 1/x) - 0≤j≤J c j log |Q j (x)|
where the c j are positive real numbers and the polynomials Q j are non zero polynomials in Z Z[x].

Let α be a totally positive algebraic integer with conjugates α 1 = α,. . .,α d . Then we have

d i=1 f (α i ) ≥ md,
where m denotes the minimum of the function f . Thus,

log N(α) ≥ md + 1≤j≤J c j log | d i=1 Q j (α i )|.
We assume that P does not divide any Q j , then

d i=1 Q j (α i ) is a nonzero integer because it is the resultant of P and Q j .
Therefore, if α is not a root of Q j , we have

ν(α) ≥ e m .
To avoid convergence problems with Pascal, we put y = x + 1/x -2. Then, f (x) becomes for y > 0, g(y) = log(y + 2) -1≤j≤J c j log |U j (y)| (1). Now, the main problem is to find a good list of polynomials U j which gives a value of m as large as possible. Thus, we link the auxiliary function with the integer transfinite diameter in order to find the polynomials with our recursive algorithm.

Auxiliary functions and integer transfinite diameter

In this section, we shall need the following definition: Let K be a compact subset of C.

If ϕ is a positive function defined on K, the ϕ-integer transfinite diameter of K is defined as

t Z,ϕ (K) = lim inf inf sup |P (y)| 1 n ϕ(y) . n ≥ 1 P ∈ Z[Y ] y ∈ K n → ∞ deg(P ) = n
This weighted version of the integer transfinite diameter was introduced by F. Amoroso [A] and is an important tool in the study of rational approximations of logarithms of rational numbers.

Inside the auxiliary function (1), we replace the numbers c j by rational numbers a j /q where q is a integer such that q.c j is an integer for all 0 ≤ j ≤ J. Then we can write:

for y > 0, g(y) = log(y + 2) - t r log |U (y)| (2)
where

U = J i=0 U a j j ∈ Z Z[Y ] is of degree r = J i=0 a j deg(U j ) and t = J j=0 c j deg(U j
) is a positive real number. We want to get a function whose minimum m is as large as possible. Thus we search a polynomial

U ∈ Z Z[Y ] such that sup y>0 |U (y)| t/r (y + 2) -1 ≤ e -m .
If we suppose that t is fixed, it is clear that we need an effective upper bound for the quantity

t Z,ϕ ((0, ∞)) = lim inf inf sup |P (y)| t r ϕ(y) r ≥ 1 P ∈ Z[Y ] y > 0 r → +∞ deg(P ) = r
where we use the weight ϕ(y) = (y + 2) -1 .

Even if we replace the compact subset K by the infinite interval (0, ∞), the weight ϕ ensures that the quantity t Z,ϕ ((0, ∞)) is finite.

Construction of the auxiliary function

The improvement compared with Wu's algorithm is that our polynomials are obtained by induction. Suppose that we have U 1 , U 2 , ..., U J . Then we use the semi-infinite linear programming (introduced in number theory by C. J. Smyth [START_REF] Smyth | On the measure of totally real algebraic numbers[END_REF]) to optimize g for this set of polynomials (i.e., to get the greatest possible m). We obtain the numbers c 1 , c 2 , ..., c J and g in the form (2)

with t = J i=1 c j deg(U j ).
For several value of k, we seek a polynomial R(y)

= k l=0 a l y l ∈ Z Z[y] such that sup y>0 |U (y)R(y)| t r+k (y + 2) -1 ≤ e -m , i.e., such that sup y>0 |U (y)R(y)|(y + 2) -(r+k)/t
is as small as possible.

We apply the LLL algorithm to the linear forms in a 0 ,. . ., a k

U (y i )R(y i )(y i + 2) -(r+k)/t
where y i are control points uniformly distributed in the interval [0,70], including the points where g has its least local minima. We get a polynomial R whose factors R j are good candidates to enlarge the set of polynomials (U 1 , U 2 , ...,U J ). We only keep the polynomials R j which have a nonzero coefficient c j in the new optimized auxiliary function g. After optimization, some previous polynomials U j may have a zero coefficient and are removed.

In order to get the constant of Theorem 3, we take k from 4 to 20 successively.

The polynomials and the coefficients c j involved in the auxiliary function of Theorem 3 are listed in the Table 2 below.

Proof of Theorem 4

Let α be a nonzero algebraic integer all of whose conjugates lie in a sector S θ = {z ∈ C such that | arg z| ≤ θ} with 0 < θ ≤ 90 • . The auxiliary functions f i , 1 ≤ i ≤ 8 are of the following type:

∀z ∈ S θ , f (z) = log(|z| + 1/|z|) - 1≤j≤J c j log |Q j (z)|,
where the c j are positive real numbers and the polynomials Q j are non zero polynomials in Z Z[z].

The function f is harmonic outside a finite set containing the roots of the polynomials Q j and thus, it takes its minimum on the boundary of

S θ . it is clear that f (z) → ∞ as z → ∞. So, since f (z) = f (z)
, it is sufficient to search the minimum of f on the upper edge of the sector S θ where z = xe iθ with x > 0.

The auxiliary function on the half line

R θ = {z ∈ C, z = xe iθ , x > 0} is f (z) = log(x + 1/x) - 1≤j≤J c j log |Q j (z))|.
Note that, concerning the integer transfinite diameter, we deal here with the compact K replaced by the half line R θ . But the weight ϕ(z) = (|z| + 1/|z|) -1 ensures that the quantity t Z Z,ϕ (R θ ) is a finite number.

Then, for several values of k, we search a polynomial

R(z) = k l=0 a l z l ∈ Z Z[z] such that sup x>0 |Q(z)R(z)| t r+k |x + 1/x| -1 ≤ e -m ,
Where m is the minimum of the function f . We search

sup x>0 |Q(z)R(z)||x + 1/x| -(r+k)/t
is as small as possible.

But, here, R(z) is not a real linear form in the unknown coefficients a i . Thus we replace it by its real part and its imaginary part. Then, we apply LLL to the linear forms

|Q(z n ).Re(R(z n )) • |x n + 1/x n | -(r+k)/t and |Q(z n ) • Im(R(z n )).|x n + 1/x n | -(r+k)/t .
The numbers x n are suitable control points in [0, 50] , including the points wheref has its least local minima. Then we apply our recursive algorithm as described in Section 3.

The polynomials and the coefficients c j involved in the auxiliary function of Theorem 4 are listed in the N(Q j ) c j θ(Q j ) Q j 2.1213203 0.072660766 45.000000

3 -5x 2 + 6x -1 9 0.00091541 x 3 -6x 2 + 5x -1 10 0.01112510 x 4 -7x 3 + 13x 2 -7x + 1 11 0.00424427 x 4 -7x 3 + 14x 2 -8x + 1 12 0.00010144 x 4 -8x 3 + 15x 2 -8x + 1 13 0.00145858 x 5 -9x 4 + 26x 3 -29x 2 + 11x -1 14 0.00050273 x 6 -11x 5 + 42x 4 -67x 3 + 45x 2 -12x + 1 15 0.00055594 x 7 -13x 6 + 61x 5 -131x 4 + 136x 3 -66x 2 + 14x -1 16 0.00041956 x 7 -13x 6 + 61x 5 -132x 4 + 138x 3 -67x 2 + 14x -1 17 0.00129057 x 7 -13x 6 + 62x 5 -137x 4 + 147x 3 -73x 2 + 15x -1 18 0.00287103 x 8 -15x 7 + 83x 6 -220x 5 + 303x 4 -220x 3 + 83x 2 -15x + 1 19 0.00075792 x 8 -15x 7 + 85x 6 -232x 5 + 328x 4 -242x 3 + 91x 2 -16x + 1 20 0.00055993 2x 8 -26x 7 + 128x 6 -308x 5 + 391x 4 -265x 3 + 94x 2 -16x + 1 21 0.00019384 x 9 -17x 8 + 116x 7 -411x 6 + 819x 5 -934x 4 + 599x 3 -206x 2 + 34x -2 Table 3: The auxiliary functions f i , 1 ≤ i ≤ 8 f 1 N(Q j ) c j θ(Q j ) Q j 2.
x 2 -2x + 2 2.2117398 0.027983260 45.309985

x 4 -4x 3 + 8x 2 -7x + 3 2.2613295 0.015502898 45.459748

x 6 -6x 5 + 18x 4 -29x 3 + 28x 2 -15x + 4 2.3694703 0.000822075 47.464280

x 8 -9x 7 + 41x 6 -112x 5 + 200x 4 -233x 3 + 177x 2 -80x + 18 2.3451610 0.000681118 50.081319

x 8 -9x 7 + 40x 6 -106x 5 + 183x 4 -207x 3 + 154x 2 -69x + 16 2.0000000 0.041823516 60.000000

x 2 -x + 1 f 5 N(Q j ) c j θ(Q j ) Q j 2.1213203 0.063690701 45.000000

x 2 -2x + 2 2.2117398 0.007017163 45.309985

x 4 -4x 3 + 8x 2 -7x + 3 2.0000000 0.077288797 60.000000

x 2 -x + 1 f 6 N(Q j ) c j θ(Q j ) Q j 2.0000000 0.074090899 60.000000

x 2 -x + 1 2.1933236 0.002608550 63.681104

x 4 -3x 3 + 7x 2 -7x + 5 2.2473333 0.016313417 68.667414

x 4 -2x 3 + 5x 2 -3x + 2 2.1213203 0.060755551 69.295189

x 2 -x + 2 f 7 N(Q j ) c j θ(Q j ) Q j 2.1213203 0.077121906 69.295189

x 2 -x + 2 2.0000000 0.068834995 90.000000

x 2 + 1 f 8 N(Q j ) c j θ(Q j ) Q j 2.1162455 0.043532810 82.588473

x 4 -x 3 + 4x 2 -2x + 3 2.0000000 0.083777873 90.000000

x 2 + 1

  Let g : R + →: R + be a function such that lim x→∞ g(x) = ∞ and which satisfies a Lipschitz condition |g(x) -g(y)| < B(λ)|x -y| for x, y ∈ [0, λ], for each λ > 0. Then M(g) is dense on (c(g), ∞), where c(g) = 2 π π/2 0 g(2 cos θ)dθ.

Table 1

 1 Intervals [θ i , θ i ] where c(θ) is known exactly. Here c(θ) = c(θ i ) = ν(P ) for θ ∈ [θ i , θ i ].The angles are given in degrees.

	i	c(θ)	θ i	θ i	P
	1	2.5	0	23.15	x -2
	2 2.455652 26.267699	27.23	x 4 -7x 3 + 19x 2 -23x + 11
	3 2.309401	30	37.17	x 2 -3x + 3
	4 2.265128 39.985729 45.309985 x 4 -5x 3 + 11x 2 -11x + 5
	5 2.211739 45.309985	52.6	x 4 -4x 3 + 8x 2 -7x + 3
	6 2.193323 63.681104	67.59	x 4 -3x 3 + 7x 2 -7x + 5
	7 2.12.13.20 69.295189 82.588473 x 2 -x + 2
	8 2.116245 82.588473	89.99	

Table 2 :

 2 Table 3 below. The polynomials involved in Theorem 3.

	Annex: The program which computes lim n→∞	ν(β 2 n )
	N=25;	
	lambda=vector(N,j,0);	
	lambda[1]=2/9; for(k=2,N,lambda[k]=lambda[k-1]/(1+lambda[k-1]) 2 );p=1;for(k=1,N,p=p*(1+lambda[k]) 1/2 k ;print(2*p*(1+1/2)))
	The computation gives:	
	3.31662479035540	
	3.43363162301252	
	3.47978396444099	
	3.49878633852976	
	3.50685371295751	
	3.51035762903346	
	3.51190629049069	
	3.51260021930633	
	3.51291460021634	
	3.51305831890415	
	3.51312451476539	
	3.51315519816299	
	3.51316949809199	
	3.51317619392804	
	3.51317934210340	
	3.51318082764469	
	3.51318153088927	
	3.51318186475827	
	3.51318202367455	
	3.51318209949318	
	3.51318213574302	
	3.51318215310816	
	3.51318216144157	
	3.51318216544726	
	3.51318216737561	

  -10x 7 + 47x 6 -131x 5 + 236x 4 -281x 3 + 218x 2 -102x + 23 f 4

		0000000 0.27726826	0	x -1
		2.5000000 0.13135075	0	x -2
		2.6321199 0.00099184	23.749627	x 4 -8x 3 + 25x 2 -35x + 19
		2.4556520 0.00681346	26.267699	x 4 -7x 3 + 19x 2 -23x + 11
		2.3094011 0.02113516	30.000000	x 2 -3x + 3
	f 2	N(Q j )	c j	θ(Q j )	Q j
		2.0000000 0.28694004	0	x -1
		2.4556520 0.01101937	26.267699	x 4 -7x 3 + 19x 2 -23x + 11
		2.6832816 0.01253213	26.565051	x 2 -4x + 5
		2.5057826 0.00273581	27.277283	x 4 -7x 3 + 19x 2 -22x + 10
		2.4304356 0.00124547	29.171773	x 8 -13x 7 + 76x 6 -258x 5 + 554x 4 -769x 3 + 675x 2 -344x + 79
		2.3094011 0.04293284	30.000000	x 2 -3x + 3
	f 3	N(Q j )	c j	θ(Q j )	Q j
		2.0000000 0.24253217	0	x -1
		2.3094011 0.01928768	30.000000	x 2 -3x + 3
		2.3420541 0.00307938	37.011218	x 8 -11x 7 + 56x 6 -168x 5 + 323x 4 -406x 3 + 327x 2 -155x + 34
		2.3167326 0.00438622	37.168675	x 6 -8x 5 + 29x 4 -58x 3 + 68x 2 -44x + 13
		2.2651285 0.01631844	39.985729	x 4 -5x 3 + 11x 2 -11x + 5
		2.1213203 0.02800549	45.000000	x 2 -2x + 2
		2.2804413 0.00209584	46.139190	x 8