

7th International Workshop on Numerical Modelling of High Temperature Superconductors 22nd – 23rd June 2021, Virtual (Nancy, France)

Numerical modelling of the ferromagneticsuperconductor interaction in 3D geometry using A–formulation

M. Solovyov¹, F. Gömöry¹

¹ Institute of Electrical Engineering Slovak Academy of Sciences Bratislava, Slovakia

Contact: mykola.solovyov@savba.sk

This work was supported under Grants APVV-15–0257 and APVV-16–0418 as well as VEGA 2/0097/18.

sciencesconf.org:htsmod2020:313853

The Comsol Multiphysics 3D model of superconducting cup magnetization in A-formulation is available on: http://www.htsmodelling.com/?page_id=748#cup

Numerical modelling, A-formulation ¹

 E_c - critical electric field equivalent

 J_c - critical current density

Mesh quality statistics

C	tat	icti	CC.
2	lai	120	CS

Complete mesh

All eleme	nts		
1172867			
21212			
212692			
417012			
21904			
42148			
Vertex elements: 138			
nent statistic	5		
Number of elements:			
Minimum element quality:			
Average element quality:			
Element volume ratio:		6.814E-12	
Mesh volume:		0.06425 m³	
	1172867 21212 212692 417012 21904 42148 s: 138 ment statistics ments: ment quality: nt quality: se ratio:	1172867 21212 212692 417012 21904 42148 s: 138 ment statistics ments: 1406771 ment quality: 1.105E-5 mt quality: 0.3363 meratio: 6.814E-12 0.06425 m ³	

Element Quality Histogram

Superconducting shield

a)

SF12050-AP tape from Furukawa (SuperPower) company. Declared minimal I_c is 387 A.

Straight tapes

could be modelled in 2D geometry

Helicoidally wound tapes 3D model required The numerical model of the wound tapes show good agreement with the experiment

The **magnetic cloak** versus the conventional superconducting shield in a uniform magnetic field

Superconducting shield

Magnetic cloak

$$\mu_r = \frac{R_1^2 + R_2^2}{R_2^2 - R_1^2} \tag{4}$$

 μ_r - relative permeability of FM material

 R_1 and R_2 are inner and outer radiuses of the FM shell

Ferromagnetic shell

 $Li_{0.575}Zn_{0.4}Ti_{0.55}Fe_{1.475}O_4$ ferrite powder ⁴ with grain size below 80 µm, mixed with the epoxy resin (31.2 vol. %)

R_{in} = 25 mm R_{out} = 32.75 mm length = 150 mm

Measurement error

Non-homogenous distribution of the ferrite powder

Influence of field-dependent properties of the materials

Jiles-Atherton model

Magnetization experiment

Magnetization loops of the magnetic cloak⁵

Magnetization loops of the magnetic cloak (3 layers in superconducting part)⁶

Force interaction experimental setup

Force meter EMSYST EMS20-5

Position adjusted for maximum force $F \sim B \frac{\partial B}{\partial z}$

Force interaction experiment

16

Magnetic cloak

Superconducting part

18

Ferromagnetic shell

19

Conclusions:

Advantages of A-formulation in Comsol Multiphysics:

- Suitable for modelling bulk and thin layer superconductors (CC).
- Tolerates using weak mesh resolution.
- Jiles-Atherton hysteresis behaviour of ferromagnetic may be incorporated into the model.
- Allows extracting forces and torques for model components (important for modelling the rotating machinery).

Something else?

Known limitations:

- Works properly for limited dB/dt range.
- Not suitable for over-critical states simulation.
- The coupling of two and more superconductors is not implemented yet.