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Background

® INS /NI REBCO magnets

32 T magnet 32.35 T magnet 455 T LBC

Liuetal 2020 SUST 33:  Hahn et al 2019 Nature
https://nationalmaglab. 03LTO1 570: 496 Hu et al 2020 SUST

org/ 33: 095012

e The HTS coil is usually inserted in high field magnet
e The local critical current degradation is found in HTS coil under high Lorentz force

3



Background
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The mechanical stress or strain can affect the superconducting properties remarkably

e Degradation of critical current density with the strain

e Cracking or delamination is observed in the superconducting tape
e The discrete contact model should be used in the coil



Background

The superconducting coil is subjected to the complicated stress or strain.

Firstly, the winding stress can be generated as the tape is

under the pretension Winding
T i

ape

Pretgnsion Temperature stress
293 K
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= Qp |
M iing 42K
Winding process Cooling down Mechanical
: stress or strain
Secondly, the thermal stress can be generated during the
cooling process and quench

Thirdly, the Lorentz force can be improved with the Thermal Lorentz
stress force

increasing of critical current density and applied

magnetic field



Background

The key points of numerical simulation of mechanical response

Highly nonlinear:
€ E-J power law relationship
€ Nonlinear plastic deformation

€ Parameter are dependent on the temperature, such as thermal conductivity
and heat capacity

Multi-field coupling:

€ The electric field and current can cause energy loss

€ The critical current density is related to the temperature and magnetic field
€ The superconductor is subjected to Lorentz force

Multiscale modelling:

€ The superconducting layer (um)—» magnet (m)



Case 1: Mechanical behaviors during quench

Simplified 2D-axisymmetric numerical model

Copper stahilizers
=53 16L. subsiraie
€, £,  REBCO
i | % Kapton insulation
| m= Heater Tempergture Lorentz force
. @ Yoliage temperahure probes variation
AR R Sirain gaugze
H-formulation \ /
I oH. oH, ) | :
5Fp><( % o j raHr— Mechanical response
o1 |
oH, @éH, oH, : . .
_8r,0><( =~ o J Ly Mechanical equilibrium equations
_ or _ (0 0 o, —0
- - - Gr Z-zr 4 + fr :0
Heat diffusion equation Jor. oz r ,
do, Or, 1,
oT |[1o0( 0T\ o, aoT oz o +1=0
Z rr
UCp = —_(rk j'*‘ (k j +Qs+Qc’
ot r or or oz\ 0z

Niu et al, 2020, Appl. Math. Mech. -Engl. Ed. 42: 235-250



Mechanical behaviors during quench

The hot-spot temperature and current distributions
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e As the heating energy is larger than the MQE, the maximum temperature will increase

quickly.

e The current will redistribute during the quench.



Mechanical behaviors during quench

The radial and hoop stress distributions
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e The radial stress is much smaller than the hoop stress during quench.

e The stress or strain is remarkable at hot-spot region.



Case 2: Mechanical behaviors in REBCO caoill

® To reveal the stress-strain states of high-field REBCO magnets after

excitation, we design the subsequetional FE models to include the

winding and thermal stresses.
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Mechanical behaviors in REBCO caoil

............ electromagnetic force « Stress-strain relationship
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Mechanical behaviors in REBCO caoil

« Governing equations T-A formulation (@)

-

VxVxA=pul (all domains)
] V-A=0 (all domains)
|V x pyrsd =—0B /ot (REBCO domains)

Zhang et al 2017 SUST 30: 024005
 E-J constitutive law
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Mechanical behaviors in REBCO caoil

Comparison between simulation and

. Coil parameters
experimental results for 5-turn P

REBCO coil NbTi coil

REBCO coil Inner/Outer Radius (mm) _ 39.75/40 65 47.5/52.5
Height (mm) 42 160
0.30 : : : Turns number 5
i @ Experimental data fromTakahashi etal | - Transport current (A) 300 156
0.25 j—— simulation data fromTakahashi et al. e Conductor width/thickness (mm)  4.0/0.1
0.20 e JIF am@auon result o Critical current (A) 912
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Takahashi et al, 2020, IEEE supercond 30

: 4602607
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Mechanical behaviors in REBCO caoil

> Large-scale REBCO magnet 5, o oaning current induced field
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v" Screening current reduces the total
field at the fully charged state, and
results in the remanent field of ~0.8 T.

Some parameters of coil are given in Berrospe-Juarez et al 2020 IEEE supercond 30: 4600705 14



Mechanical behaviors in REBCO caoil

» Current and electromagnetic force after fully charged

« Screening current significantly changes the distribution of total current and
Lorentz force.

« The maximum radial Lorentz force is increased almost 400% by screening
current effect.
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Mechanical behaviors in REBCO caoil

» Stress-strain states at the fully charged state of REBCO magnet
Radial stress (MPa)
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The maximum tensile hoop stress appears at the outer tapes of pancakes 9 and 10 for

REBCO coil 1.

The calculated maximum stress is high enough to cause the plastic deformation of local
conductor, which correlates well with the practical observation in the test REBCO coils.
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Mechanical behaviors in REBCO caoll

» Peak stress and strain in REBCO magnets (only Lorentz force)
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» Stress-strain states considering winding, cooling and excitation

Overlarge local
stress of ~800 MPa
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Mechanical behaviors in REBCO caoil

» Current sweep reversal (CSR)

Current ramp path
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Mechanical behaviors in REBCO caoil

» Changes of hoop stress and strain using CSR
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Future work

1. Numerical simulation of 3D magnet structure
2. Fully coupled simulation

3. Complicated mechanical response, such as plastic deformation, delamination,
buckling and cracking

4. Dynamic mechanical response......
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Thank you for your attention!



