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A nonlinear time-domain approach is proposed to model thin superconducting layers using an h-φ formulation to solve the diffusion of the magnetic field tangential components inside the layers. The model is computationally inexpensive thanks to i) the use of the magnetic scalar potential φ in the non-conducting regions, and ii) the reduction of the number of degrees of freedom resulting from the thin layer approximation.

I. INTRODUCTION

Problems involving High Temperature Superconductors (HTS) in the form of thin-film tapes bring new challenges in numerical analysis. Indeed, these tapes are used in most HTS applications involving high currents and/or high magnetic fields. Second generation (2G) HTS tapes are composed of a stack of thin films with a high aspect ratio. The superconducting layer is approximately 1 µm thick, which makes it difficult to mesh in a Finite Element (FE) environment. Furthermore, the highly nonlinear E-J macroscopic model of HTS generates sharp current fronts that severely impede convergence.

In conventional (ohmic) conductors, the meshing of thin layers is avoided through the use of the "Thin-Shell" (TS) FE approach. With this approach, the volume (surface) of the thin region is collapsed on a surface (line) situated halfway between its wide faces. This reduction in dimensionality avoids completely the need for meshing the thin region [START_REF] Sabariego | h-and a-formulations for the time-domain modeling of thin electromagnetic shells[END_REF]. Suitable interface boundary conditions (IBCs) are however required in order to consider the right physics in the thin regions. A nonlinear time-domain extension of the TS approach has been proposed in [START_REF] Sabariego | Nonlinear time-domain finite-element modeling of thin electromagnetic shells[END_REF], where the tangential components of the current density and magnetic field are represented by mathematics series in terms of Legendre polynomials. Both the magnetic field (h) and magnetic vector potential (a) formulations are studied in this paper, but only in the context of nonlinear ferromagnetic materials.

The modeling of HTS tapes as thin regions has recently been proposed in [START_REF] Zhang | An effective 3D finite element method model based on the T-A formulation for superconducting coated conductor[END_REF], based on a t-a-formulation. The approach is different from the generalized TS model since it considers solving an auxiliary 1-D FE problem in the thin region in terms of the current vector potential t, related to the normal component of h across the thin region. In this model, the tangential components of the magnetic field are neglected. This is valid as long as the normal component dominates the dynamics of the problem (this is often the case, but not when tapes are closely packed in a solenoidal coil).

In an attempt to achieve a more general version of nonlinear thin region models, we present in this paper an h-φ formulation that solves current and field distribution is HTS tapes using the tangential component of h, similarly as in the generalized TS approach. The IBCs are written in terms of small auxiliary 1-D FE problems across the tape thickness, allowing to compute the penetration of the tangential components of the field into the HTS layer in a time-dependent simulation. Results show good agreement with the t-a-formulation, as well as with a full discretized model, used as a reference solution. We also show that this approach is efficient at reducing the number of degrees of freedom (DoFs).

II. MAGNETODYNAMIC h-FORMULATION The well-known h-formulation is obtained from the weak form of Faraday's law (curle = ∂ t b). We consider the magnetodynamic problem in a domain Ω = Ω c ∪ Ω C c ∈ R 3 with boundary Γ, where Ω c and Ω C c denotes the conductive and non-conductive parts of Ω, respectively. Thus, the weak form, for all test-function w, is

∂ t (µh, w) Ω +(ρcurlh, curlw) Ωc + n × e, w Γe∪Γs = 0, (1)
where h and e are the magnetic and electric field vectors, µ is the permeability, ρ is the resistivity, n is the outward unit normal vector and (•, •) Ω and •, • Γ denote, respectively, the volume integral over Ω and the surface integral over Γ of the scalar product of their two arguments. The IBCs are expressed by the integral over Γ s .

The domain Ω and the weak form (1) can be discretized by edge elements in Ω c . However, it is known that expressing h by a magnetic scalar potential (h = -∇φ) provides advantages in terms of reduction of the total number of DoFs. A net current constraint on Ω C c can be imposed by edge-based cohomology basis functions (ψ) on Ω C c [START_REF] Lahtinen | A finite element simulation tool for performing hysteresis losses in superconductors using an h-oriented formulation with cohomology basis functions[END_REF]. This procedure provides computation time gains, especially in highly nonlinear cases such as HTS modelling.

A. 1-D Eddy Current Problem

The behavior of electromagnetic quantities inside the thin region (-d/2 ≤ y ≤ d/2) is locally determined by a 1-D eddy current problem in terms of the tangential components of the magnetic field (h t ). A local coordinate system xyz is adopted with the y axis normal to the thin surface and with y = 0 at its center. Thus, the equation to be solved is

∂ y (ρ∂ y h t (y, t)) = σµ∂ t h t (y, t), (2) 
with the nonlinear electrical resistivity of the HTS material given by the E-J power-law

ρ = e c j c |j| j c n-1 1-D = e c j c | -∂ y h t (y)| j c n-1 , (3) 
and the boundary conditions associated with the upper and lower surfaces of the thin region given by

h + t = h t (d/2, t), h - t = h t (-d/2, t). (4) 
The 1-D FE problem is solved locally in each pair of edges that belong to the thin layer in the 2-D or 3-D FE model. Classical first-order Lagrange basis functions are considered.

B. Proposed TS Approach and Implementation

In the classical TS approach, the thin region volume (Ω s ) is excluded from the calculus domain and is represented by interface conditions at its boundaries (Γ s ) via surface integral terms [START_REF] Sabariego | h-and a-formulations for the time-domain modeling of thin electromagnetic shells[END_REF]. In a linear case, ( 2) is solved analytically in terms of the tangential fields. Instead, here we propose to solve a local 1-D FE (Fig. 1). The surface integral terms on Γ s are derived from the volume integrals in Ω s and reduced to surface integrals in terms of the tangential components of the magnetic field in the week form of the h-formulation (1), i.e., n × e, w Γs = -∂ t (µh, w) Ωs -(ρcurlh, curlw) Ωs , [START_REF] Lahtinen | A finite element simulation tool for performing hysteresis losses in superconductors using an h-oriented formulation with cohomology basis functions[END_REF] where the magnetic field in Ω s is rewritten as h t (t)p(y), with h t tangential to Γ s and p(y) differentiable with respect to y (-d/2 ≤ y ≤ d/2). The volume integrals terms in [START_REF] Lahtinen | A finite element simulation tool for performing hysteresis losses in superconductors using an h-oriented formulation with cohomology basis functions[END_REF] are then reduced to the following surface integrals

∂ t (µh, w) Ωs = ∂ t µh t , w t Γs d/2 -d/2
p(y)p (y)dy, (6)

(ρcurlh, curlw) Ωs = ρh t , w t Γs d/2 -d/2
∂ y p(y)∂ y p (y)dy. (7) Finally, (1), ( 6) and (7) are described only through the tangential components of the magnetic field on Ω c and along Γ s , and the scalar potential is expressed in the cohomology basis of Ω C c , thereby leading to a nonlinear system of algebraic equations that can be solved by the Newton-Raphson Method. 

• • • • • • • • • h t0 = -∇φ + Γ + t ∈ Ω C c h t1 h t2 h tN h tN +1 = -∇φ - Γ - t ∈ Ω C c ψ
Fig. 1: Proposed approach, geometry and mesh example III. SIMPLE APPLICATION EXAMPLE We apply the proposed approach to a single thin superconducting layer embedded in a non-conducting region (free space). The layer is 10 µm thick and 4 mm wide. In the E-J power-law, e c = 10 -4 V/m, j c = 5×10 8 A/m 2 and n = 21 are constants. A sinusoidal current of j c S/2 is imposed, where S is the cross-section of the thin layer. In terms of discretization, the same number of elements across the width of the tape is used in the TS and in the 2-D models. The local tangential magnetic field distribution near the upper boundary of the layer is presented on the left side of Fig. 2. The normal component of the magnetic field is computed by average their values on each side of the thin HTS layer (computed from the φ representation), and presented on the right side of Fig. 2. The number of DoFs in this particular case is reduced by up to 50%, depending on the selected 1-D FE discretization. IV. DISCUSSION The proposed approach shows good agreement with the reference model in terms of both the normal and the tangential magnetic field components local distribution, even if only the tangential components are considered in the IBCs. Only a small difference is observed in the normal component of the magnetic field near the extremity of the layer when compared to the fully discretized reference model. This formulation is thus the dual of the t-a-formulation introduced in [START_REF] Zhang | An effective 3D finite element method model based on the T-A formulation for superconducting coated conductor[END_REF], which solves only for the normal component of h and ignore its tangential component. Both methods can reduce the number of DoFs substantially compared to a fully discretized model. Our latest progress towards a general formulation that takes into account both components will be presented.
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 2 Fig. 2: Local magnetic field components distribution.