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ABSTRACT

Context. Most exoplanets detected so far are close-in planets, which are likely to be affected by tidal dissipation in their host star. To
obtain a complete picture of the evolution of star–planet systems, we need to consider the effect of tides within stellar radiative and
convective zones.
Aims. We aim to provide a general formalism allowing us to assess tidal dissipation in stellar radiative zones for late- and early-type
stars, including stellar structure with a convective core and an envelope like in F-type stars. This allows us to study the dynamics
of a given system throughout the stellar evolution. On this basis, we investigate the effect of stellar structure and evolution on tidal
dissipation in the radiative core of low-mass stars.
Methods. We developed a general theoretical formalism to evaluate tidal dissipation in stellar radiative zones that is applicable to
early- and late-type stars. From the study of adiabatic oscillations throughout the star, we computed the energy flux transported by
progressive internal gravity waves and the induced tidal torque. By relying on grids of stellar models, we studied the effect of stellar
structure and evolution on the tidal dissipation of F-, G-, and K-type stars from the pre-main sequence (PMS) to the red giant branch
(RGB).
Results. For a given star–planet system, tidal dissipation reaches a maximum value on the PMS for all stellar masses. On the main
sequence (MS), it decreases to become almost constant. The dissipation is then several orders of magnitude smaller for F-type than for
G- and K-type stars. During the subgiant phase and the RGB, tidal dissipation increases by several orders of magnitude, along with the
expansion of the stellar envelope. We show that the dissipation of the dynamical tide in the convective zone dominates the evolution
of the system during most of the PMS and the beginning of the MS, as the star rotates rapidly. Tidal dissipation in the radiative zone
then becomes the strongest contribution during the subgiant phase and the RGB as the density at the convective-radiative interface
increases. For similar reasons, we also find that the dissipation of a metal-poor star is stronger than the dissipation of a metal-rich star
during the PMS, the subgiant phase, and the RGB. The opposite trend is observed during the MS. Finally, we show that the contribution
of a convective core for the most massive solar-type stars is negligible compared to that of the envelope because the mass distribution
of the core does not favor the dissipation of tidal gravity waves.
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1. Introduction

About 46% of the observed exoplanets are located within
20 times the radius of their host star (according to the database
exoplanet.eu1, e.g., Schneider et al. 2011). This configuration
leads to significant star–planet interactions that affect the dynam-
ics of these compact systems (Cuntz et al. 2000). The study of
these interactions is therefore crucial for understanding the pop-
ulation of currently observed planetary systems and their evo-
lution. The study of the orbital architecture of exosystems then
improves our understanding of these processes and constrains
the evolution models we rely on. The secular evolution of a star–
planet system is essentially driven by stellar tides (Leconte et al.
2010), unless star–planet magnetic interactions develop due to
the motion of the planet in the ambient magnetized stellar wind,
which may have a significant role in the evolution of the system

1 http://www.exoplanet.eu, the database was consulted on
December 18, 2020 to provide this estimate.

(Strugarek et al. 2014, 2015, 2017). In particular, the dissipa-
tion of tides in the host star, by ensuring angular momentum
exchanges between the star rotation and the planetary orbit, is
thought to play a major role in the secular evolution of orbital
architecture (Bolmont & Mathis 2016; Benbakoura et al. 2019)
and star–planet obliquity (Lai 2012; Damiani & Mathis 2018).
Furthermore, as the reservoir of angular momentum of the planet
is smaller than the one in its orbit, the planet tends to be
synchronized within a few thousand years.

The gravitational response of the star to the planet leads to
two types of flows: the non-wave-like equilibrium tide (Zahn
1966; Remus et al. 2012; Ogilvie 2013), which consists of the
displacement induced by the hydrostatic adjustment of the stel-
lar structure, and the dynamical tide, which corresponds to
tidally forced internal waves. In stellar convective zones, the
dynamical tide is constituted by inertial waves, restored by the
Coriolis force, and is dissipated by the turbulent friction applied
by the convection on tidal waves (Ogilvie & Lin 2004, 2007).
The induced tidal dissipation may vary over several orders of
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magnitude with tidal frequency, stellar mass, age, rotation, and
metallicity (Mathis 2015; Gallet et al. 2017; Bolmont et al. 2017).
When inertial waves are likely to be excited, that is, when the
tidal frequency ranges between [−2Ω?, 2Ω?], Ω? being the stel-
lar rotation angular velocity, this dissipation is several orders of
magnitude higher than the dissipation of the equilibrium tide
(Ogilvie & Lin 2007).

To obtain a complete picture of tidal dissipation in stars,
we also need to consider the dynamical tide in stellar radiative
zones (we refer to Ogilvie 2014 and Mathis 2019 for extensive
reviews), which may compete with the dissipation in convective
layers (Ivanov et al. 2013). Zahn (1970, 1975) first highlighted
this process as a key dissipation mechanism in early-type stars to
account for the circularization of massive close binaries (Zahn
1977; Savonije & Papaloizou 1983, 1984, 1997; Papaloizou &
Savonije 1985, 1997; Savonije et al. 1995). This process occurs
for a/R? < 4, a being the orbital semimajor axis and R? the
stellar radius (North & Zahn 2003). For the stars that have a con-
vective core and a radiative envelope, the dissipation of gravity
waves is more efficient than the dissipation of the equilibrium
tide (Zahn 1977). Goodman & Dickson (1998) and Terquem et al.
(1998) adopted a similar approach in the case of solar-type stars
and showed that the resonant excitation of g-modes can compete
with the dissipation of the equilibrium tide in the envelope. This
effect has also been obtained in the case of gravito-inertial waves
for uniformly rotating stars (Ogilvie & Lin 2007; Chernov et al.
2013; Ivanov et al. 2013).

Goldreich & Nicholson (1989) first proposed a physical
interpretation of the dynamical tide in radiative zones. Internal
gravity waves are excited near the convective-radiative interfaces
by the tidal potential, where the buoyancy frequency matches
the tidal frequency. They then propagate into the radiative
zone, where they are damped by radiative diffusion (Zahn 1975,
1977), critical layers (Alvan et al. 2013), or nonlinear breaking
(Goodman & Dickson 1998; Barker & Ogilvie 2010; Barker
2011; Guillot et al. 2014). In addition, the evanescent tail of the
waves is subject to the friction applied by turbulent convection,
which is commonly modeled with an eddy viscosity (Terquem
et al. 1998). There, they deposit their angular momentum and
thus alter the dynamics of the system considered. In particular,
when we consider an early-type star with a radial differential
rotation in its radiative zone, this process leads to a synchroniza-
tion of the star starting from its surface (Goldreich & Nicholson
1989).

The main dependences of the torque induced by the dissipa-
tion of tidal gravity waves are well understood. In particular, the
location and stellar properties at the interface between the con-
vective and radiative zones are critical parameters for estimating
the amplitude of the dissipation. However, the effective contri-
bution of the tidal forcing to the gravity-wave torque requires an
intensive investigation of forced oscillations. As was pointed out
by Kushnir et al. (2017), this factor has been studied indepen-
dently for early-type stars in the context of binary systems (e.g.,
Zahn 1975; Goldreich & Nicholson 1989) and late-type stars in
the framework of the secular evolution of exoplanetary systems
(e.g., Goodman & Dickson 1998; Terquem et al. 1998). In order
to track the fate of the system from the birth of the star until
its death, we need a unified formalism allowing us to take any
changes in stellar structure during the evolution into account.

In this context, the effect of stellar structure and evolution,
which is subject to complex variations over time (Kippenhahn
& Weigert 1994), on the tidal dissipation in radiative zones con-
stitutes a key issue that needs to be addressed. Barker (2020)
carried out a first study of tidal dissipation through gravity

waves during stellar evolution. In the context of the evolution of
planetary systems, he compared the dissipation in the stellar
radiative zone with the frequency-averaged dissipation through
inertial waves in the stellar convective zone for a given stellar
rotation period and orbital period. He reported that the dissipa-
tion of tidal gravity waves is the dominant mechanism for the
migration of close-in planets. This may also be a way to account
for the survival of close-in exoplanets, depending on the host star
properties (Barker & Ogilvie 2010; Guillot et al. 2014).

Furthermore, tidal dissipation for a trilayer structure, for
example, in the case of F-type stars and red giants in the red
clump should be studied. It can be very important for our under-
standing of binaries and planetary systems because in these
configurations, the dissipation of the dynamical tide in the con-
vective zone is weaker than the dissipation of the equilibrium
tide (Mathis 2015; Gallet et al. 2017; Beck et al. 2018). Some
aspects of this question have been extensively studied by Fuller
(2017), who assessed the tidal dissipation through standing g-
modes in the case of F- and A-type stars by taking resonance
locking into account.

The goal of our work is to provide a general formalism to
assess tidal dissipation in stellar radiative zones that may be
applicable to late- and early-type stars as well as to trilayer struc-
tures. On this basis, we investigate the effect of stellar structure
and evolution on tidal dissipation for low-mass stars and study
the contribution of a convective core for F-type stars. In Sect. 2,
we study the forced adiabatic oscillations in a spherical geom-
etry. From there, we compute in Sect. 3 the energy flux that is
carried by the waves and the induced tidal torque. In Sect. 4 we
apply our formalism to massive stars that match the Zahn (1975)
formulation and to low-mass stars. In Sect. 5, we investigate the
effect of stellar structure and evolution on tidal dissipation in
low-mass stars. For F-type stars, we simultaneously evaluate the
contributions of the convective core and envelope to the dynam-
ical tide. All of these results are then summarized and discussed,
and we present perspectives in Sect. 6.

2. Forced adiabatic oscillations in a spherical
geometry

2.1. Statement of the problem

We aim to evaluate the tidal dissipation in stellar radiative zones
driven by internal gravity waves (IGW). To this end, we modeled
the stellar interior as an inviscid fluid. For instance, the Sun has a
Prandtl number of about 3× 10−6 (Brun & Zahn 2006), meaning
that thermal diffusion dominates viscosity effects.

To account for the interior of early- and late-type stars, we
considered a convective layer delimited by the radii rconv and
rint, where the interface of the convective to the radiative zone
is located. A radiative shell is then delimited by the radii rint and
rrad. In a solar-type star configuration, the waves are launched
near the base of the convective envelope. Then energy propa-
gates inward to the center before the waves dissipate (see the
left panel in Fig. 1), whereas in the massive star configuration,
energy is transported outward to the stellar surface (see the right
panel in Fig. 1). To take this changing direction of propagation
into account, we defined ε = sign(rconv − rrad). This quantity is
equal to 1 for an inward energy transport through gravity waves
and equal to −1 otherwise. The values of rrad, rconv, and ε for
massive and solar-type stars are listed in Table 1.

We focus on the progressive low-frequency waves that are
damped most strongly (e.g., Press 1981; Zahn et al. 1997; Alvan
et al. 2015). Terquem et al. (1998) have shown that the excitation

A3, page 2 of 26



J. Ahuir et al.: Dynamical tide in stellar radiative zones

rconv

rint

rrad

Massive star configuration

rrad
rint

rconv

Solar-type star configuration

Convective zone

Radiative zone

Fig. 1. Configurations of the radiative and convective spherical shells
in our work. In brown we show the convective layer. In orange we plot
the radiative layer. The red arrows represent the energy flux carried by
tidal gravity waves.

Table 1. Values of rrad, rconv, and ε for massive and solar-type stars.

Type of star rrad rconv ε

Massive R? 0 –1
Solar-type 0 R? 1

of a fixed spectrum of g-modes, dissipated by radiative damp-
ing, does not affect the secular evolution of the system. In our
model, the progressive gravity waves deposit angular momen-
tum at the place they are damped, which drives spin-orbit angular
momentum exchanges and the evolution of the system.

Following Alvan et al. (2015), we first assessed the cut-
off frequency that separates progressive waves and g-modes.
During their propagation, gravity waves are subject to radiative
damping, which in the quasi-adiabatic regime for low-frequency
waves results in an amplitude of the wave damped by a factor
exp (−τ/2) where

τ(r, l, ω) = ε [l(l + 1)]
3
2

∫ rint

r
KT

N3

ω4

dr1

r3
1

, (1)

with KT the thermal diffusivity of the medium (we refer to Zahn
et al. 1997, for more details). In order to separate standing modes
and progressive waves, we assume that a stationary wave can
form if

τ(rrad, l, ω) ≤ 1. (2)

In this case, the amplitude of the waves is sufficient at r = rrad
for them to undergo reflection, leading to the formation of a
standing g-mode. This condition defines the cutoff frequency ωc
as

ω ≥ [l(l + 1)]
3
8

ε
∫ rint

rrad

KT
N3

r3
1

dr1


1
4

≡ ωc, (3)

above which standing modes form, as shown in Fig. 2. For fre-
quencies higher than ωc, gravity waves carry enough energy to
undergo a reflection in spite of radiative damping, allowing the
generation of individual modes. Below this frontier (in blue in

Nmax

Fr
eq

ue
nc

y

Degree l

Progressive waves

g modes
ωc(l) 

Fig. 2. Nature of internal gravity waves as a function of degree l and
frequency. The dashed black line corresponds to the maximum value
of the Brunt–Väisälä frequency Nmax in the radiative zone. The black
line corresponds to the cutoff frequency ωc as a function of the degree,
marking the separation between standing g-modes (in white, above) and
progressive internal gravity waves (in blue, below).

Fig. 2), waves are sufficiently damped to prevent standing modes
from forming. The spectrum is then only composed of progres-
sive waves. Because propagative waves are damped at a distance
that is smaller than the size of the radiative zone, all the energy
carried by gravity waves is therefore dissipated inside the star
before any reflection. This configuration leads to the most effi-
cient dissipation if no critical layer or nonlinear effect is taken
into account.

However, a tidal gravity wave is likely to transfer its entire
angular momentum to the star through other dissipation mech-
anisms. If the amplitude of the wave exceeds a critical value
the case of a low-mass star, it can break near the center of
the star, thus transferring its angular momentum to the mean
flow and bringing the central regions of the star into corota-
tion with the tidal forcing (Barker & Ogilvie 2010; Barker 2011).
A similar process occurs near the stellar surface in the case of
intermediate-mass and massive stars (Rogers et al. 2013). This
forms a critical layer that acts as an absorbent barrier for the
subsequent waves. This process occurs if the planetary mass
exceeds a critical value that decreases sharply with stellar mass
and stellar age (Barker 2020) as the strength of the stratifica-
tion increases. We provide a similar wave-braking criterion in
Appendix D. For stellar masses higher than 0.9 M�, the mini-
mum planetary mass required to induce wave braking may fall
below 1 Jupiter mass at ages younger than 10 Gyr. Moreover, the
interaction of tidal gravity waves with the differential rotation
of the surrounding fluid may lead to the formation of a critical
layer when the frequency of excited waves is on the same order
of magnitude as the angular velocity of the fluid. In the radiative
zone of solar-type stars, the fluid remains stable in this config-
uration, and the amplitude of gravity waves is damped by the
critical layer (Alvan et al. 2013). For a mode of azimuthal num-
ber m at an orbital harmonic N, this layer exists at a radius rCL in
an inertial reference frame if

ω= mΩRZ(rCL), (4)

where ΩRZ(rCL) is the angular velocity of the radiative zone
at the radius rCL. As ω= Nnorb in an inertial reference frame,
with norb the mean motion of the planetary orbit, this leads to
ΩRZ(r) = N/m norb. We can assess the range of orbital periods
leading to a potential interaction with a critical layer by consid-
ering a coplanar and circular planetary orbit (N = m = 2). The
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radiative core of a solar-type star tends to synchronize its spin
with that of the convective zone during the MS (e.g., Gallet &
Bouvier 2015; Benomar et al. 2015). Therefore we assumed a
weak differential rotation within the star as a first approxima-
tion. Thus we can provide an upper bound of the orbital period
required for the creation of a critical layer by focusing on the
evolution of the surface rotation rate of the star (which is also the
rotation rate of the convective envelope when we assume that the
latter is in solid-body rotation). An interaction between a tidal
gravity wave and a critical layer may therefore occur within a
solar-type star if the orbital period of the planet is shorter than
10 days during the PMS and shorter than 50 days during the
MS (we refer to Gallet & Bouvier 2015; Amard et al. 2016, for
more details about the rotational evolution of the radiative zone
of solar-type stars).

In order to account for all these cases for which tidal dis-
sipation is likely to be effective, we assume in our model that
all the energy carried by gravity waves is dissipated inside the
star before any reflection. In this way, we may be able to pro-
vide an upper bound of tidal dissipation and to unravel the effect
of the stellar internal structure and rotation. In this context, we
consider forced adiabatic oscillations in the stellar interior. The
tidal torque is directly inferred from the angular momentum flux
carried by the internal gravity waves.

2.2. Forced dynamics of internal gravity waves

We assumed that the star is in hydrostatic equilibrium, which
leads to

∇p0 =−ρ0g0, (5)

where p0 is the pressure inside the star, ρ0 is its local density,
and g0 is the gravity. The subscript 0 in these quantities refers to
the unperturbed background. This structure is then perturbed by
the tidal potential UT applied by the companion. By introducing
velocity (u1), pressure (p1), and gravitational potential (ϕ1) per-
turbations induced by the planet, we can linearize the equations
of hydrodynamics around the equilibrium state in this approach
by ignoring all dissipative mechanisms:


∂tρ1 + u1 · ∇ρ0 + ρ0∇ · u1 = 0

∂tu1 =− 1
ρ0
∇p1 +

ρ1

ρ0
2∇p0 − ∇ϕ1 − ∇UT

1
p0

[
∂t p1 + (u1 · ∇) p0

] − Γ1

ρ0

[
∂tρ1 + (u1 · ∇) ρ0

]
= 0,

(6)

with Γ1 = (∂ ln p0/∂ ln ρ0)S the adiabatic exponent of the fluid,
and S is the specific macroscopic entropy. We made use of
the spherical coordinates (r, θ, ϕ), with r the radial coordinate,
θ the colatitude, and ϕ the longitude, and their corresponding
unit-vector basis (er, eθ, eϕ). After introducing the Lagrangian
displacement field ξ, we developed all the fluctuations on the
spherical harmonics Yl

m(θ, ϕ) ∝ Pm
l (cos θ)eimϕ as follows:

ξ(r, θ, ϕ, t) =
∑

l,m

[
ξr;l,m(r)Yl

m(θ, ϕ)er + ξh;l,m(r)∇hYl
m(θ, ϕ)

]
e−iωt,

(7)

ρ1(r, θ, ϕ, t) =
∑

l,m

ρ̃l,m(r)Yl
m(θ, ϕ)e−iωt, (8)

p1(r, θ, ϕ, t) =
∑

l,m

p̃l,m(r)Yl
m(θ, ϕ)e−iωt, (9)

ϕ1(r, θ, ϕ, t) =
∑

l,m

ϕ̃l,m(r)Yl
m(θ, ϕ)e−iωt, (10)

UT(r, θ, ϕ, t) =
∑

l,m

ϕT ;l,m(r)Yl
m(θ, ϕ)e−iωt, (11)

with ∇h = ∂θeθ + (1/ sin θ)∂ϕeϕ the horizontal gradient. We focus
on the behavior of a single mode in the remaining work, and we
assume that l and m are fixed by the tidal potential (e.g., l = m = 2
in a coplanar configuration, l = 2 and m = 0 for eccentricity tides,
l = 2 and m = 1 for obliquity tides). For the sake of simplicity, the
degree and order dependencies of the components of each per-
turbed quantity are therefore no longer specified. For instance,
we write ξr instead of ξr;l,m.

Furthermore, we adopted the Cowling approximation
(Cowling 1941), where we neglected the fluctuations of the
gravific potential of the wave. This approximation is well jus-
tified for low-frequency waves. This leads to (Press 1981;
Auclair-Desrotour et al. 2017)



∂r

(
r2ξr

)
+
∂r p0

Γ1 p0

(
r2ξr

)
=

(
l(l + 1)
ω2 − ρ0r2

Γ1 p0

)
y +

l(l + 1)
ω2 ϕT

∂ry − yN2

g0
=

1
r2

(
ω2 − N2

) (
r2ξr

)
− ∂rϕT ,

(12)

where we have introduced the reduced pressure y= p̃/ρ0 and the
Brunt–Väisälä frequency N2 = g0

(
∂r p0
Γ1 p0
− ∂rρ0

ρ0

)
.

In order to reunite the Zahn (1975), Goldreich & Nicholson
(1989), Goodman & Dickson (1998), and Barker & Ogilvie
(2010) prescriptions, among others, in a flexible framework
allowing for the study of a given system dynamics throughout
stellar evolution, we carried out and present in this paper all the
necessary derivations.

2.3. Wave behavior in the radiative zone

We now aim to study the propagation of tidal gravity waves
within the stellar interior. To do so, we first focus on the behavior
of these waves in the radiative zone of the star.

2.3.1. Approximations in the radiative zone

Following Press (1981), in the stably stratified radiative zone,
where N2 > 0, deriving the first equation of (12) with respect
to r and including the second equation gives

∂rr

(
r2ξr

)
+
∂rρ0

ρ0
∂r

(
r2ξr

)
+Kr2ξr =A + FT , (13)

with

K =

(
N2

ω2 − 1
)

l(l + 1)
r2 + ∂r

(
∂r p0

Γ1 p0

)
,

FT =− l(l + 1)
ω2

(
l(l + 1)
ω2 − ρ0r2

Γ1 p0

)−1 N2

g0
ϕT ,

A= ∂r

(
r2ξr

) N2

g0


l(l + 1)
ω2

(
l(l + 1)
ω2 − ρ0r2

Γ1 p0

)−1

− 1



+
(
r2ξr

) 
l(l + 1)
ω2

(
l(l + 1)
ω2 − ρ0r2

Γ1 p0

)−1 N2

g0

∂r p0

Γ1 p0

 − ∂r

[
ρ0r2

Γ1 p0
y

]
,

(14)

A3, page 4 of 26



J. Ahuir et al.: Dynamical tide in stellar radiative zones

where the last term in A can be replaced through Eq. (12). By
using the anelastic approximation to filter out acoustic waves, we
can assume that

ρ0r2

Γ1 p0
� l(l + 1)

ω2 . (15)

Therefore, we can simplify the expression ofA as

A ≈ −ξr
N2r2

c2
s
− ∂r

[
r2y

c2
s

]
, (16)

with cs =
√

Γ1 p0/ρ0 the speed of sound. In the anelastic approx-
imation, terms of order 1/c2

s (Spiegel & Veronis 1960) are
neglected, which leads to the simplified relation

∂rr

(
r2ξr

)
+ ∂r

(
r2ξr

) ∂rρ0

ρ0
+Kr2ξr =−N2

g0
ϕT . (17)

To obtain a Schrödinger-like equation in the radiative zone, we

introduce a new function ψ(r) = ρ
1
2
0 r2ξr , which leads to

d2ψ

dr2 +
l(l + 1)

r2

(
N2

ω2 − 1
)
ψ=

l(l + 1)N2

ω2r2

(
−ρ

1
2
0 r2ϕT

g0

)
+V, (18)

with V=ψ

[
ρ
− 1

2
0 ∂rr(ρ

1
2
0 ) − ∂r

(
∂r p0

Γ1 p0

)]
∼ L−2ψ, given a charac-

teristic length L of our system. Equations (17) and (18) are
equivalent to the Zahn (1975), Savonije & Papaloizou (1984) and
Goodman & Dickson (1998) formulations, whose main discrep-
ancies come from the terms taken into account in V. Here, we
assumed that the characteristic length of variation of the back-
ground is large compared the wavelength of a gravity wave, that
is,
(

N2

ω2 − 1
)

l(l + 1)
r2 � L−2. (19)

Therefore, we can neglect the V term and obtain the equation
ruling the behavior of internal gravity waves in the radiative zone
(Zahn 1975),

ψ′′ +
l(l + 1)

r2

(
N2

ω2 − 1
)
ψ=

l(l + 1)N2

ω2r2

(
−ρ

1
2
0 r2ϕT

g0

)
, (20)

where for an arbitrary quantity F, F′ = dF
dr . This convention is

used in the remainder of this work to simplify the notations.

2.3.2. Solutions in the radiative zone

We now have to solve Eq. (20) in the radiative zone. Far from
the interface, we can assume that N2 � ω2 because we consider
low-frequency waves. Then we can use the WKBJ approximation
(Fröman & Fröman 1965), and the solution becomes

ψ(r) =−ρ
1
2
0 r2ϕT

g0
+ CW

1√
kr

eεi(τW−τ0), (21)

where kr =

√(
N2

ω2 − 1
)

l(l+1)
r2 is the radial wavenumber, CW, τ0 are

constants and τW = ε
∫ r

rrad
kr(r)dr. The factor ε is equal to 1 for an

inward transport of energy through gravity waves and equal to
−1 otherwise.

Furthermore, a turning point occurs near the radiative-
convective interface, where N ≈ ω. The WKBJ approximation
is no longer relevant, and we expand the square of the Brunt–
Väisälä frequency around the interface r = rint as

N2 =ω2 +

∣∣∣∣∣∣
dN2

dr

∣∣∣∣∣∣
int
ε(rint − r). (22)

Equation (20) now becomes an inhomogeneous Airy equation
(Zahn 1975; Goodman & Dickson 1998):

d2ψ

dη2 + v2ηψ=
l(l + 1)N2

ω2r2

(
−ρ

1
2
0 r2ϕT

g0

)
, (23)

with

v2 =
l(l + 1)
r2

intω
2

∣∣∣∣∣∣
dN2

dr

∣∣∣∣∣∣
int
, (24)

η= ε(rint − r). (25)

The solution ψh of the corresponding homogenous equation can
be written as a linear combination of the Airy functions Ai and
Bi as follows (Abramowitz & Stegun 1972):

ψh(η) = CA Ai
[
v

2
3 (−η)

]
+ CB Bi

[
v

2
3 (−η)

]
, (26)

where CA and CB are two constants. Furthermore, the Airy func-
tions can be linked to the Bessel functions J 1

3
and J− 1

3
as

Ai(−x) =

√
x

3

[
J 1

3

(
2
3

x
3
2

)
+ J− 1

3

(
2
3

x
3
2

)]
, (27)

Bi(−x) =

√
x
3

[
J− 1

3

(
2
3

x
3
2

)
− J 1

3

(
2
3

x
3
2

)]
. (28)

We rely for the remainder of this work on a formulation based on
Bessel functions, which allows us to link the Zahn (1970, 1975)
and Ivanov et al. (2013) approaches, and to simplify the matching
of the different solutions. The solution ψh therefore becomes

ψh(τ) =

(
τ

2

) 1
3 [
αradJ 1

3
(τ) + βradJ− 1

3
(τ)

]
, (29)

with τ= 2
3 vη

3
2 , αrad = CA.3−

2
3 − CB.3−

1
6 and βrad = CA.3−

2
3 +

CB.3−
1
6 . A particular solution ψp of the inhomogeneous Airy

equation, vanishing at the interface, can be expressed as (see
Appendix A)

ψp(η) = Z(η) +

(
τ

2

) 1
3 [
αrad,pJ 1

3
(τ) + βrad,pJ− 1

3
(τ)

]
, (30)

where Z(η) =−ρ
1
2
0 r2 ϕT

g0
is the particular solution of Eq. (20) in

the WKBJ formulation associated with the equilibrium tide,

αrad,p =−dZ
dη

(0)
(
v

3

)− 2
3

Γ

(
4
3

)
and βrad,p =−Z(0)Γ

(
2
3

)
. Because

J± 1
3
(τ) ∼

τ→+∞

√
2
πτ

cos(τ∓ π
6
− π

4
) far from the interface, the par-

ticular solution obtained with the Bessel formulation matches the
particular solution derived through the WKBJ approximation.
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2.4. Wave behavior in the convective zone

In the previous section we studied the propagation of tidal grav-
ity waves in the radiative zone. We now derive the equations
governing the behavior of such waves in the convective zone of
the star and solve them formally.

2.4.1. Approximations in the convective zone

In the convective zone, we assumed N2 = 0 because we consider
adiabatic oscillations. This approximation holds in convective
cores and in the regions of convective envelopes for which
convection is efficient (at radii up to 0.9 R?, below the superadia-
batic layer; we refer to Lebreton et al. 2014). In this configuration,
Eqs. (12) become



∂r

(
r2ξr

)
=− ∂r p0

Γ1 p0

(
r2ξr

)
+
ρ0r2

Γ1 p0
(ϕT − χ) +

l(l + 1)
ω2 χ

ξr =
∂rχ

ω2 ,

(31)

where we define χ= y+ϕT . Because N2 = 0, we have ∂r p0
Γ1 p0

=
∂rρ0
ρ0

,
which leads to


∂r

(
r2ξr

)
=−∂rρ0

ρ0

(
r2ξr

)
+
ρ0r2

Γ1 p0
(ϕT − χ) +

l(l + 1)
ω2 χ

ξr =
∂rχ

ω2

. (32)

As we focus on low-frequency gravity waves, we rely on the
anelastic approximation, which gives

∂r

(
r2ξr

)
=−∂rρ0

ρ0

(
r2ξr

)
+

l(l + 1)
ω2 χ + z (33)

with z =−∂rρ0

ρ0

r2ϕT

g0
. We now define the quantity X(r) = ρ0r2ξr,

which verifies the following relation:

X′ =
l(l + 1)
ω2 ρ0χ + ρ0z. (34)

By differentiating Eq. (34), we derive the equation ruling the
behavior of evanescent internal gravity waves in the convective
zone (Zahn 1975; Ivanov et al. 2013),

X′′ − ∂rρ0

ρ0
X′ − l(l + 1)

r2 X = ρ0z′. (35)

2.4.2. Solutions in the convective zone

We now need to solve Eq. (35) in the convective zone. Following
Zahn (1975), when we consider X1, X2 two independent solu-
tions of the corresponding homogeneous ordinary differential
equation, the general solution of Eq. (35) can be written as

X =

[
C1−

∫ r

rconv

Λ−1ρ0z′X2dr
]

X1 +

[
C2+

∫ r

rconv

Λ−1ρ0z′X1dr
]

X2,

(36)

where C1 and C2 are two constants of integration, and
Λ = X′2X1 − X′1X2 is their Wronskian. When we consider the
displacement functions ξ1 = X1/(ρ0r2), ξ2 = X2/(ρ0r2) and their

Wronskian Λξ = ξ1ξ
′
2 − ξ2ξ

′
1, the particular solution of Eq. (35)

can be written in an alternative form, knowing that Λ ∝ ρ0,

∫ r

rconv

Λ−1ρ0z′Xidr = Λ−1
ξ (rint)r−2

intξi(rint)
∫ r

rconv

z′
Xi

Xi(rint)
dr, (37)

with i = 1 or 2. Furthermore, the integral appearing in Eq. (37)
can be expressed as

∫ r

rconv

z′Xidr =B + Fi, (38)

with

B=

[
−

{
ρ′0
ρ0

r2ϕT

g0
+

(
r2ϕT

g0

)′}
Xi +

(
r2ϕT

g0

)
X′i

]r

rconv

,

Fi =

∫ r

rconv

[(
r2ϕT

g0

)′′
− l(l + 1)

r2

(
r2ϕT

g0

)]
Xidr.

(39)

2.5. Matching of the solutions

We have determined the functions describing the forced adia-
batic oscillations in the radiative zone and the convective zone.
We now need to match the different solutions obtained in order to
describe the behavior of tidal gravity waves in the whole stellar
interior.

2.5.1. Matching the radiative-convective zone

At the interface, we match the solutions in the radiative
and convective layers by taking tidal forcing into account.

For the sake of simplicity, we define S +(τ) =
(
τ
2

) 1
3 J 1

3
(τ) and

S −(τ) =
(
τ
2

) 1
3 J− 1

3
(τ), which constitute a basis for the homoge-

neous solution in the radiative zone in a Bessel formulation. Near
the interface, we can express a basis solution of the homoge-

neous equation in the convective zone ρ−
1
2

0 Xi, with i = 1 or 2, as
a linear combination αiS + + βiS −. In this way, we obtain

ρ
− 1

2
0 X(rint) = (αconv + αconv, p)S +(0) + (βconv + βconv,p)S −(0), (40)

where



αconv =α1C1 + α2C2

βconv = β1C1 + β2C2

αconv,p =−α1
∫ rint

rconv
Λ−1ρ0z′X2dr + α2

∫ rint

rconv
Λ−1ρ0z′X1dr

βconv,p =−β1
∫ rint

rconv
Λ−1ρ0z′X2dr + β2

∫ rint

rconv
Λ−1ρ0z′X1dr.

(41)

Furthermore, we can choose ρ−
1
2

0 X2 to match the basis solution
S + at the interface. Then we have α2 = 1 and β2 = 0. We can also
assume that αconv � βconv without restricting the generality of
the foregoing, which amounts to choosing a solution X1 close to
S −. We now aim to characterize all the solutions at the interface
and to better constrain the integration constants. To this end, we
write S + and S − as

S ±(τ) =
1
2

[
3

2
3 Ai

(
v

2
3 (−η)

)
∓ 3

1
6 Bi

(
v

2
3 (−η)

)]
, (42)
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which at the interface leads to


S +(0) = 0

S −(0) =
1

Γ
(

2
3

)

∂rS +(0) =
−ε

Γ
(

4
3

)
(
v

3

) 2
3

∂rS −(0) = 0.

(43)

On the basis of these calculations, the general solution
Xh =αconvS + + βconvS − of the homogeneous equation in the
convective zone verifies the following condition (Zahn 1975):

αconv

βconv

Γ( 2
3 )

Γ( 4
3 )

(
v

3

) 2
3

= − ε
d
dr (ρ−

1
2

0 Xh)int

(ρ−
1
2

0 Xh)int

. (44)

Moreover, in the same layer, the Wronskian Λξ of the dis-
placement functions corresponding to the basis solutions of the
homogeneous equation can be expressed as

Λξ(rint) = ρ−2
0 (rint)r−4

int
[
X1(rint)X′2(rint) − X2(rint)X′1(rint)

]

=−ερ−1
0 (rint)r−4

int
β1

Γ
(

4
3

)
Γ
(

2
3

)
(
v

3

) 2
3
.

(45)

The values of the displacement functions themselves at the
interface ξi(rint) = ρ−1

0 (rint)r−2
int Xi(rint) become

ξi(rint) =



ρ
− 1

2
0 (rint)r−2

int
β1

Γ
(

2
3

) , if i = 1

0, if i = 2.
(46)

Therefore we obtain from Eq. (37)

∫ rint

rconv

Λ−1ρ0z′X1dr =−ερ
1
2
0 (rint)Γ

(
4
3

) (
v

3

)− 2
3
∫ rint

rconv

z′
X1

X1(rint)
dr. (47)

Then we have for the particular solution in the convective zone

αconv,p = − α1

∫ rint

rconv

Λ−1ρ0z′X2dr

− ερ
1
2
0 (rint) Γ

(
4
3

) (
v

3

)− 2
3
∫ rint

rconv

z′
X1

X1(rint)
dr.

(48)

The matching of the inhomogeneous solutions in the radiative
and convective zones then gives

(αrad + αrad,p)
(

S +(0)
∂rS +(0)

)
+ (βrad + βrad,p)

(
S −(0)
∂rS −(0)

)

= (αconv + αconv,p)
(

S +(0)
∂rS +(0)

)
+ (βconv + βconv,p)

(
S −(0)
∂rS −(0)

)
.

(49)

Because the particular solution in the radiative zone vanishes at
the interface, we obtain

αrad =αconv + αconv,p, (50)

βrad = βconv + βconv,p. (51)

2.5.2. Matching WKBJ-Bessel

In the radiative zone, far from the interface, the functions J 1
3
(τ)

and J− 1
3
(τ) for high values of τ have the following asymptotic

form: J± 1
3
(τ) ∼

√
2
πτ

cos
(
τ ∓ π

6
− π

4

)
, which gives

ψ(τ) = Z(η) +
1√
π

(
2
τ

) 1
6
[
A+cos

(
τ − 5π

12

)
+A−cos

(
τ − π

12

)]
,

(52)

with

A+ =αconv + αconv, p + αrad,p,

A− = βconv + βconv, p + βrad,p.
(53)

When we define C= 3
1
6√
π
v

1
3 , knowing that kr = vη

1
2 near the

interface, we obtain

ψ(τ) = Z(η) +
C√
kr

[
A+ cos

(
τ − 5π

12

)
+A− cos

(
τ − π

12

)]
. (54)

Furthermore, we can note that
∫ rint

r krdr = ετ. By introducing
the constant ϕ= τ + τW − τ0 = ε

∫ rint

rrad
krdr − τ0, the asymptotic

solution becomes

ψ(η) = Z(η)

+
C√
kr

[
A+ cos

(
ϕ − 5π

12

)
+A− cos

(
ϕ − π

12

)]
cos(τW − τ0)

+
C√
kr

[
A+ sin

(
ϕ − 5π

12

)
+A− sin

(
ϕ − π

12

)]
sin(τW − τ0).

(55)

The matching with the WKBJ solution ψ= Z + CW
1√
kr

eεi(τW−τ0)

then leads to the following system:


A+ cos
(
ϕ − 5π

12

)
+A− cos

(
ϕ − π

12

)
=

CW

C
A+ sin

(
ϕ − 5π

12

)
+A− sin

(
ϕ − π

12

)
= εi

CW

C ,
(56)

which leads to (Ivanov et al. 2013)



αconv + αconv,p + αrad,p =
CW

C
sin

(
ϕ − π

12

)
− εi cos

(
ϕ − π

12

)

sin
(
π
3

)

βconv + βconv,p + βrad,p = − CW

C
sin

(
ϕ − 5π

12

)
− εi cos

(
ϕ − 5π

12

)

sin
(
π
3

) .

(57)

Therefore we can express the WKBJ amplitude CW as a function
of the particular solution coefficients as follows:

αconv

βconv
(βconv,p + βrad,p)−αconv,p−αrad,p =

−2CW√
3C

eεi(ϕ−
π
12− π

2 ), (58)

where we used the fact that αconv � βconv. We finally obtain the
following expression for CW (Zahn 1975):

CW =−K0e−εi(ϕ−
π
12− π

2 ), (59)

with K0 =
√

3
2 C

[
αconv

βconv
(βconv,p + βrad,p) − αconv,p − αrad,p

]
.
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2.5.3. Closure of the system

In the previous sections, we were able to characterize the partic-
ular solutions in the convective and the radiative zone thanks to
the following coefficients:


αrad,p =− dZ
dη (0)

(
v
3

)− 2
3

Γ1

(
4
3

)

βrad,p =−Z(0)Γ
(

2
3

)

αconv,p =−α1
∫ rint

rconv
Λ−1ρ0z′X2dr

−ερ
1
2
0 (rint)r2

int Γ
(

4
3

) (
v
3

)− 2
3 r−2

int

∫ rint

rconv
z′ X1

X1(rint)
dr

βconv,p =−β1
∫ rint

rconv
Λ−1ρ0z′X2dr.

(60)

Then we can compute the quantity K0 as follows:

K0 =T0 +
3Γ

(
4
3

)

2
√
π

(
v

3

)− 1
3
ρ

1
2
0 (rint)r2

int

×


−ε
d
dr (ρ−

1
2

0 Xh)int

(ρ−
1
2

0 Xh)int

−
dZ
dη (0)

Z(0)



(
ϕT

g0

)

int
+ εr−2

int

∫ rint

rconv

z′
X1

X1(rint)
dr


(61)

where

T0 =−
√

3
2
C

(
αconv

βconv
β1 − α1

) ∫ rint

rconv

Λ−1ρ0z′X2dr. (62)

Furthermore, from Eq. (38) we have

r−2
int

∫ rint

rconv

z′
X1

X1(rint)
dr = r−2

intF1 + T1

+

(
ϕT

g0

)

int


−ρ
′
0(rint)
ρ0(rint)

−

(
ρ
− 1

2
0 Z

)′
int(

ρ
− 1

2
0 Z

)

int

+
X′1(rint)
X1(rint)


,

(63)

where

F1 =

∫ rint

rconv

[(
r2ϕT

g0

)′′
− l(l + 1)

r2

(
r2ϕT

g0

)]
X1

X1(rint)
dr,

T1 =

(
ϕT

g0

)

rconv

(
rconv

rint

)2

×




ρ′0(rconv)
ρ0(rconv)

+

(
ρ
− 1

2
0 Z

)′
rconv(

ρ
− 1

2
0 Z

)

rconv


X1(rconv)
X1(rint)

− X′1(rconv)
X1(rint)


,

(64)

From this, we obtain

K0 =T0 +
3Γ

(
4
3

)

2
√
π

(
v

3

)− 1
3
ρ

1
2
0 (rint)r2

int

{
εr−2

intF1 + εT1 + T2

}
, (65)

with

T2 =

(
ϕT

g

)

rint

(
v

3

) 2
3 Γ

(
2
3

)

Γ
(

4
3

) C2

β1C1
. (66)

The constants of integration C1 and C2, defined in Eq. (36), cor-
respond to the homogeneous solutions in the convective zone.
In this way, we are able to assess the WKBJ amplitude of the
tidal gravity waves from stellar properties and the tidal potential.
This quantity is of prime importance for estimating the energy
and angular momentum fluxes carried by tidal internal gravity
waves.

3. Tidal dissipation in stellar radiative zones

3.1. Energy flux and luminosity

We return to the perturbed equations of hydrodynamics, assum-
ing the Cowling approximation (Cowling 1941),


∂tρ1 + u1 · ∇ρ0 + ρ0∇ · u1 = 0
∂tu1 =− 1

ρ0
∇p1 +

ρ1
ρ0

2∇p0 − ∇UT
1
p0

[
∂t p1 + (u1 · ∇) p0

] − Γ1
ρ0

[
∂tρ1 + (u1 · ∇) ρ0

]
= 0.

(67)

We introduce the buoyancy term b =
ρ1

ρ0
2∇p0 =−g0ρ1

ρ0
er, which

verifies in the anelastic approximation

∂tb =−N2 u1 · er. (68)

The momentum equation then gives

∂tu1 · u1 =− 1
ρ0
∇p1 · u1 + b · u1 − ∇UT · u1, (69)

which leads to

∂t

[
1
2
ρ0v

2
1 + ρ0

b2

2N2

]
+ ∇·[(p1 + ρ0UT) u1

]
= p1∇ · u1 − UT∂tρ1 .

(70)

From the anelastic approximation, we can simplify the continuity
equation because ∂tρ1 can be neglected. Furthermore, the anelas-
tic approximation reduces to the Boussinesq approximation at
low frequencies, which means that we can assume that ∇ · u1 = 0.
In this framework, the conservation of energy can be expressed
as follows:

∂te + ∇ · FE = 0, (71)

where e = 1
2ρ0v

2
1 + ρ0

b2

2N2 is the energy density of the fluid, the
sum of the kinetic energy density 1/2ρ0v

2
1 and of the potential

energy density ρ0b2/2N2, and FE = (p1 + ρ0UT)u1 is the energy
flux carried by the tidal internal gravity waves.

When we decompose the relevant quantities of the spheri-
cal harmonics, the temporal mean of the energy flux along the
direction of propagation becomes

FE(r, θ, ϕ) =
1
2
< {

ρ0(r)
[
y(r) + ϕT (r)

]
(−iωξr(r))∗

} |Ym
l (θ, ϕ)|2

=−ρ0ω

2
= {
χ(r)ξ∗r (r)

} |Ym
l (θ, ϕ)|2.

(72)

To assess the energy flux carried by a gravity wave traveling
in the radiative zone far from the interface, we consider only
the radial displacement associated with the dynamical tide in

its WKBJ form, ξr = CW ρ
− 1

2
0 r−2kr

− 1
2 exp [εi(τW − τ0)]. Further-

more, when we use the anelastic approximation on Eqs. (12), we
obtain

χ=
ω2

l(l + 1)
∂r(r2ξr). (73)

The mean energy flux carried by the waves then becomes

FE =−ε ω3

2l(l + 1)
|CW|2r−2|Ym

l |2. (74)
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From this expression, we can compute the energy luminosity
LE(r) =

∫ 2π
0

∫ π

0 FE(r, θ, ϕ) r2 sin θ dθdϕ as

LE =−ε 1
2

ω3

l(l + 1)
|CW|2, (75)

where the constant CW can be computed through the expression
of K0 in Eq. (65). As expected from adiabatic oscillations, the
energy luminosity is conserved. Furthermore, in the case of an
inward energy transport (for which ε = 1; see Table 1), the energy
luminosity is negative, while in the case of an outward energy
transport (for which ε =−1; see Table 1), LE is positive.

3.2. Computation of the tidal torque

In the radiative zone, far from the interface, we can express
the azimuthal displacement from the radial displacement in its
WKBJ form as

ξh =
χ

ω2r

= εi
rkr

l(l + 1)
ξr.

(76)

This expression then leads to the azimuthal velocity (Zahn et al.
1997)

v1ϕ =−εm rkr

l(l + 1)
v1r

sin θ
. (77)

From those calculations, we can compute the temporal mean of
angular momentum flux along the direction of propagation as

FJ(r, θ, ϕ) =
1
2
ρ0 r sin θ<

{
v1ϕ(r, θ, ϕ)v∗1r(r, θ, ϕ)

}

=
m
ω

FE(r, θ, ϕ).
(78)

From this expression, we can compute the mean luminosity of
angular momentum LJ(r) =

∫ 2π
0

∫ π

0 FJ(r, θ, ϕ) r2 sin θ dθdϕ:

LJ =−εm
2

ω2

l(l + 1)
|CW|2, (79)

which represents the angular momentum transported by tidal
gravity waves per unit of time. This quantity is also conserved
as we consider adiabatic oscillations. Furthermore, we find that
prograde waves (m > 0) transport angular momentum toward
the center of the star in the case of an inward energy transport
(ε = 1, corresponding to the configuration of solar-type stars),
while they deposit angular momentum near the stellar surface
in the case of an outward energy transport (ε =−1, correspond-
ing to the configuration of massive and intermediate-mass stars).
Because we assume that tidal gravity waves are entirely dissi-
pated in the radiative zone before any reflection (see Sect. 2.1),
the star then undergoes a tidal torque T coming from the depo-
sition of angular momentum by the excited waves. This means
that prograde waves transporting energy inward in the solar-type
configuration and outward in the massive-star configuration both
lead to a spin-up of the radiative zone (we refer to Appendix E
for a detailed computation), which leads to

T =−εLJ . (80)

Inserting Eq. (79) into Eq. (80) leads to

T =
m
2

ω2

l(l + 1)
|CW|2, (81)

which is independent of the direction of propagation of the
waves. This expression has to be compared to the following for-
mulation in the case of a coplanar and circular system (Murray
& Dermott 1999),

|T |= 9
4Q′

m2
p

M?
R2
?

n4

ω2
dyn

, (82)

where M? is the stellar mass, R? is the stellar radius, mp is the

planet mass, n is the mean motion, ω2
dyn =

GM?

R3
?

, and Q′ is a

modified quality factor, defined as the ratio of the total energy
stored in the tidal velocity field divided by the energy dissipated
over one planetary revolution (Goldreich 1963; Kaula 1964;
MacDonald 1964). This quantity can be linked to the Love num-
ber k2, which is the ratio of the perturbed gravitational potential
of the star divided by the tidal potential at the stellar surface, as

Q′ =
3

2|=(k2)| . (83)

From this formulation, we can assess the tidal dissipation and the
modified quality factor as

|=(k2)|= 1
3
|m|

l(l + 1)
M?

m2
pR2

?

ω2
dynω

2

n4 |CW|2, (84)

Q′ =
9
2

l(l + 1)
|m|

m2
pR2

?

M?

n4

ω2
dynω

2

1
|CW|2 . (85)

4. Application to stellar structures

4.1. Dynamical tide in intermediate-mass and massive stars:
the Zahn (1975) prescription

In the case of a massive star, we consider a bilayer structure
with a convective core and a radiative envelope. The energy
transported by a tidal gravity wave therefore propagates out-
ward, toward the stellar surface. This gives in our formulation
rconv = 0, rrad = R? and ε =−1, as already presented in Table 1.
Furthermore, we assume that the radial displacement and the
tidal potential vanish at the center due to spherical symmetry.
Because Eq. (12) in the anelastic approximation leads to

∂r

(
r2ξr

)
+
∂r p0

Γ1 p0

(
r2ξr

)
=

l(l + 1)
ω2 ϕT , (86)

the conditions at the center of the star can be reduced to

ξr(0) = 0, (87)

∂rξr(0) = 0. (88)

Furthermore, as we consider a convective core, we translate the
aforementioned conditions by means of the function X = ρ0r2ξr.
We then obtain X(0) = X′(0) = 0. When we assume that X1 is the
solution regular at the center, then C2 = 0, that is, T0 =T2 = 0. To
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keep a nonzero solution, we therefore need to impose X1(0) = 0.
Because rconv = 0, we also have T1 = 0. In this way, we can now
express K0 as

K0 =−
3Γ

(
4
3

)

2
√
π

(
v

3

)− 1
3
ρ

1
2
0 (rint)F , (89)

where

F =

∫ rint

0

[(
r2ϕT

g0

)′′
− l(l + 1)

r2

(
r2ϕT

g0

)]
X1

X1(rint)
dr (90)

can easily be linked to the Hl parameter introduced by Zahn
(1970, 1975). To compare with the results of Zahn (1975), we
proceeded as follows. From the expression of v in Eq. (24), we
have

K0 = −
(

l(l + 1)
ω2

) 1
4

√
3Γ

(
4
3

)

2
√
π

(
v

3

)− 5
6
ρ

1
2
0 (rint)


1

r2
int

∣∣∣∣∣∣
dN2

dr

∣∣∣∣∣∣
int


1
4

F

=−
(

l(l + 1)
ω2

) 1
4

K0,Z75,

(91)

where K0,Z75 is the amplitude of the WKBJ solution as derived
in Zahn (1975). Furthermore, in the present paper, the WKBJ

solution is written as ξr =−ϕT

g0
+ CW ρ

− 1
2

0 r−2 1√
kr

e−i(τW−τ0), while

in Zahn (1975), the following formulation was used:

ξr =−ϕT

g0
−CZ75 ρ

− 1
2

0 r−2
(

N2

r2

)− 1
4

e−i(τW−τ0). (92)

In order to keep consistent formulations, we therefore have

CW =−
(

l(l + 1)
ω2

) 1
4

CZ75. (93)

This change of convention then explains the different expressions
obtained for the K0 term. From Eq. (75) the energy luminosity
then becomes

LE =
1
2

ω2

√
l(l + 1)

K2
0,Z75, (94)

which is identical to the expression derived by Zahn (1975).
From the expression of K0, the energy luminosity becomes

LE =−
3

2
3 Γ2

(
1
3

)

8π
ω

11
3 [l(l + 1)]−

4
3 ρ0(rint)rint

∣∣∣∣∣∣
dN2

d ln r

∣∣∣∣∣∣
− 1

3

rint

F 2, (95)

which is similar to the Goodman & Dickson (1998) formulation
in the case of low-mass stars. The tidal torque and the cor-
responding tidal dissipation can then be computed as follows:

|T |= |m|
ω

3
2
3 Γ2

(
1
3

)

8π
ω

11
3 [l(l + 1)]−

4
3 ρ0(rint)rint

∣∣∣∣∣∣
dN2

d ln r

∣∣∣∣∣∣
− 1

3

rint

F 2, (96)

|=(k2)|=
3−

1
3 Γ2

(
1
3

)

4π
|m| [l(l + 1)]−

4
3

× ω
8
3

n4

GM2
?

m2
pR5

?

ρ0(rint)rint

∣∣∣∣∣∣
dN2

d ln r

∣∣∣∣∣∣
− 1

3

rint

F 2.

(97)

4.2. Dynamical tide in low-mass stars

We now aim to estimate the tidal dissipation in the radiative zone
of solar-type stars. After a general calculation of the associated
tidal torque, we propose alternative formulations of the same
quantity, especially in the case of a star with a thin convective
layer. Finally, we apply our formalism to a trilayer structure.

4.2.1. General computation of the tidal dissipation

In the case of a solar-type star, we consider a bilayer struc-
ture with a radiative core and a convective envelope. The
energy transported by the wave therefore propagates inward,
toward the center. This gives in our formulation (see Table 1)
rconv = R?, rrad = 0, and ε = 1. We assume that the density at
the stellar surface vanishes. This hypothesis is valid for a poly-
tropic model and allows us to automatically fulfill a stress-free
boundary condition, according to which the Lagrangian pressure
perturbation vanishes. Considering the same surface condition
for a no-zero density affects our results only marginally. A pho-
tospheric density slightly modifies the conditions of excitation of
tidal gravity waves (for more details, we refer to Appendix C).
Boundary conditions at the stellar surface will be extensively
investigated in a future work. For a zero density at the stellar
surface, we obtain

X(R?) = ρ0(R?)R2
? ξr(R?) = 0. (98)

Furthermore, we choose a basis solution in the convective zone
X1 such as X1(R?) = 0. Because X(R?) = C1X1(R?) + C2X2(R?),
we then need C2 = 0 to fulfill the condition at the stellar surface,
which leads to T0 =T2 = 0. Furthermore, when we consider stel-
lar matter as a polytrope near the stellar surface, we can define
θ,K, n as

P0 = Kρ
1+ 1

n
0 , (99)

ρ0 = ρcθ
n, (100)

where ρc is the density at the center (Chandrasekhar 1939;
Kippenhahn & Weigert 1994). By defining a dimensionless
radius ξ, the stellar mass and the stellar radius can be defined
from the solutions of the Lane-Emden equation as

R? =


(n + 1)Kρ

1
n−1
c

4πG



1
2

ξ1, (101)

M? =−4π


(n + 1)Kρ

1
n−1
c

4πG



3
2

ρ
3−n
2n

c ξ2
1

(
dθ
dξ

)

ξ1

, (102)

where ξ1 is the first zero of θ(ξ). Because the mass and radius
take finite values, we obtain

ρ′0
ρ0

=
n
θ

dθ
dξ
→

r→R?
−∞. (103)

Near the surface, X1 therefore is a solution of the following
equation:

X′′ − ρ
′
0

ρ0
X′ = 0, (104)
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which leads to X′1 ∝ ρ0. Therefore we obtain X′1(R?) = 0. From
these considerations, we now have T1 = 0 and

K0 =−
3Γ

(
4
3

)

2
√
π

(
v

3

)− 1
3
ρ

1
2
0 (rint)F , (105)

with

F =

∫ R?

rint

[(
r2ϕT

g0

)′′
− l(l + 1)

r2

(
r2ϕT

g0

)]
X1

X1(rint)
dr. (106)

The energy luminosity then becomes

LE =−
3

2
3 Γ2

(
1
3

)

8π
ω

11
3 [l(l + 1)]−

4
3 ρ0(rint)rint

∣∣∣∣∣∣
dN2

d ln r

∣∣∣∣∣∣
− 1

3

rint

F 2.
(107)

This expression is equivalent to the Goodman & Dickson (1998)
prescription if
∣∣∣∣∂rξ

dyn
r

∣∣∣∣
rint

= r−2
intF , (108)

where ξ
dyn
r is the radial displacement linked to the dynami-

cal tide. We can ensure that this condition is fulfilled from
straightforward calculations by expressing the radial displace-
ment ξr in the (S +, S −) basis, knowing that C2 =T1 = 0 (we
refer to Appendix B for more details). The tidal torque T can
be computed as

|T |= |m|
ω

3
2
3 Γ2

(
1
3

)

8π
ω

11
3 [l(l + 1)]−

4
3 ρ0(rint)rint

∣∣∣∣∣∣
dN2

d ln r

∣∣∣∣∣∣
− 1

3

rint

F 2.

(109)

By comparing this expression to the Murray & Dermott (1999)
formulation in Eq. (82), we can assess the tidal dissipation as

|=(k2)|=
3−

1
3 Γ2

(
1
3

)

4π
|m| [l(l + 1)]−

4
3

× ω
8
3

n4

GM2
?

m2
pR5

?

ρ0(rint)rint

∣∣∣∣∣∣
dN2

d ln r

∣∣∣∣∣∣
− 1

3

rint

F 2.

(110)

4.2.2. Alternative formulation of the forcing term

We now aim to simplify the forcing term F in the case of a
solar-type star to better understand this contribution to tidal dissi-
pation. The behavior of the tidal potential is ruled by the Poisson
equation,

∂r

(
r2∂rϕT

)
= l(l + 1)ϕT . (111)

The gravitational acceleration can be computed from the mean
density ρ̄ inside a sphere of radius r through Gauss’s law

g0 =
4
3
πGρ̄r, (112)

with ρ̄= 3
4πr3

∫ r
0 4πr2

1ρ(r1)dr1. From these expressions, we
obtain
{
∂rρ̄= 3

r (ρ(r) − ρ̄)
∂rg0 =

g
r + 4πG (ρ(r) − ρ̄) .

(113)

When we define Y =
r2ϕT
g0

, we have

Y ′ =
[
1 + 3

(
1 − ρ

ρ̄

)]
Y
r

+
r2ϕT

g0
, (114)

which by assuming slow variations of the stellar density, leads to
(Zahn 1970, 1975)

Y ′′ − 6
(
1 − ρ

ρ̄

)
Y ′

r
−

[
l(l + 1) − 12

(
1 − ρ

ρ̄

)]
Y
r2 = 0. (115)

The forcing term F therefore becomes (Kushnir et al. 2017)

F =

∫ R?

rint

6
(
1 − ρ

ρ̄

) [
1
r

(
r2ϕT

g0

)′
− 2

r2

(
r2ϕT

g0

)]
X1

X1(rint)
dr (116)

4.2.3. Case of a simplified bilayer structure for a solar-type
star

We assume a bilayer structure for a given solar-type star in this
section for which both the radiative core and the convective enve-
lope are assumed to be homogeneous, with respective constant
densities ρr and ρc � ρr. We also assume that the depth of the
convective layer is smaller than the stellar radius. We introduce
the aspect ratios

α=
Rr

R?
, (117)

β=
Mr

M?
, (118)

γ=
ρc

ρr
=
α3(1 − β)
β(1 − α3)

, (119)

where Rr is the radius of the radiative zone and Mr is its mass.
With this configuration, we have

ρ̄ ≈ ρr =
3M?

4πR3
?

β

α3 , (120)

g0 =
β

α3ω
2
dynr, (121)

with ω2
dyn = GM?

R3
?

. The forcing term F in its alternative form can
therefore be expressed as

F = 6 (1 − γ)
∫ R?

rint

[
1
r

(
r2ϕT

g0

)′
− 2

r2

(
r2ϕT

g0

)]
X1

X1(rint)
dr. (122)

Furthermore, in the case of a solar-type star, we showed that

X′1(r) ∝ ρ0(r), with 1 − r
R?
� 1. (123)
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From this we obtain

X1(r)
X1(rint)

=
ρc(R? − r)
ρc(R? − rint)

=
1

1 − α
(
1 − r

R?

)
. (124)

The forcing term then becomes

F = 6
1 − γ
1 − α

∫ R?

rint

[
1
r

(
r2ϕT

g

)′
− 2

r2

(
r2ϕT

g

)] (
1 − r

R?

)
dr. (125)

By introducing the quantity Ψ =
ϕT
r2 , we can write Y =

r2ϕT
g

independent of the stellar radius as

Y =
α3

β

Ψ

ω2
dyn

r3. (126)

From this we obtain

F = 3
1 − γ
1 − α

α5

β

(
2α
3
− 1

)
R2
?

Ψ

ω2
dyn

. (127)

By comparing with the Goodman & Dickson (1998) prescrip-
tion, we obtain

∂rξ
dyn
r (rint) = 3

1 − γ
1 − α

α3

β

(
2α
3
− 1

)
Ψ

ω2
dyn

. (128)

This prescription justifies the parametrizations of Goodman &
Dickson (1998) and Barker & Ogilvie (2010) analytically. This
leads to the following tidal dissipation:

3
2Q′

=

3
8
3 Γ2

(
1
3

)

16π2 |m| [l(l + 1)]−
4
3

× ω
8
3

n4

M?R3
?

G
E(α, β)

∣∣∣∣∣∣
dN2

d ln r

∣∣∣∣∣∣
− 1

3

rint

Ψ2

m2
p
,

(129)

where E(α, β) =
α11(1 − β)(1 − γ)2

β2(1 − α3)(1 − α)2

(
2α
3
− 1

)2

. When we con-

sider the amplitude of the largest tide for a coplanar and circular
orbit (Ogilvie & Lin 2004; Barker & Ogilvie 2010),

Ψ =

√
6π
5

mp

M?
n2, (130)

we obtain a simplified expression for the tidal dissipation,

3
2Q′

=

3
11
3 Γ2

(
1
3

)

40π
|m| [l(l + 1)]−

4
3ω

8
3

R3
?

GM?

∣∣∣∣∣∣
dN2

d ln r

∣∣∣∣∣∣
− 1

3

rint

E(α, β). (131)

4.3. Tidal dissipation for a trilayer structure

In main-sequence F-type stars, a convective core is present in
addition to the envelope (Kippenhahn & Weigert 1994). The
dominating CNO cycle is extremely sensitive to the tempera-
ture and concentrates the energy production at low radii. In this
configuration, convection therefore is the most efficient process
in the central region to transport energy toward the center. A
convective core also exists in evolved stars, for which the dis-
sipation of g-modes is important (Schlaufman & Winn 2013;

FE

FJ (m > 0)

FJ (m < 0)

rint,1

rint,2

R*

Radiative zone

Convective zone

Fig. 3. Configurations of the radiative and convective spherical shells
for the case of a trilayer structure. In brown we show the convective
layer. In orange we plot the radiative layer. The red arrows represent
the energy fluxes (FE), the black arrows correspond to the angular
momentum fluxes (FJ) for prograde waves (m > 0), and the blue arrows
stand for the angular momentum fluxes in the case of retrograde waves
(m < 0).

Essick & Weinberg 2016; Weinberg et al. 2017). More complex
stellar structures may therefore have to be investigated with our
formalism.

As tidally excited modes are observed in this type of stars,
for example, in heartbeat stars (we refer to Fuller 2017 for an
extensive study), the formation of standing g-modes is gener-
ally not prevented. For instance, following Barker & Ogilvie
(2010), wave braking may occur in the central part of the star
if the companion is massive enough (we refer to Barker 2020
and Appendix D for a derivation of this criterion). However,
this configuration is more likely to occur for stars older than
2 Gyr (Barker 2020), whose convective core has already disap-
peared. The only remaining possibility to prevent the formation
of a standing mode is a potential interaction with a critical layer
(Alvan et al. 2013). At the beginning of the MS, the rotation
period of the stellar radiative zone can be comparable to the
orbital period of the companion and can be short enough to
ensure efficient tidal interaction (e.g., Gallet & Bouvier 2015;
Amard et al. 2019). We present the general formalism for this
potential (rare) event. In any case, our prescription may no longer
provide an upper bound of tidal dissipation for this type of stars.
Tidal gravity modes may be resonantly excited and can produce
more dissipation than progressive waves.

As shown in Fig. 3, we consider a trilayer structure with a
convective core delimited by the interface located at r = rint,1, an
intermediate radiative layer, and a convective envelope between
r = rint,2 and r = R?. Inside the radiative zone, the tidal grav-
ity wave therefore propagates inward and outward from the
interfaces. We assume that all the energy carried by a grav-
ity wave from an interface is dissipated in the radiative zone
before reaching the other interface. In this way, the outward and
inward gravity waves are decoupled. The corresponding values
of rint, rrad, rconv, and ε in the case of an outward and inward
energy transport are presented in Table 2.

Far from the interfaces in the radiative zone, the radial dis-
placement of the inward and outward gravity waves can be
written in the following WKBJ form:

ξr,in = CW,in ρ
− 1

2
0 r−2kr

− 1
2 exp [i(τW − τ0)] , (132)

ξr,out = CW,out ρ
− 1

2
0 r−2kr

− 1
2 exp [−i(τW − τ0)] . (133)
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Table 2. Values of rint, rrad, rconv, and ε in the case of a trilayer structure.

Configuration rint rrad rconv ε

Inward energy transport rint,2 rint,1 R? 1
Outward energy transport rint,1 rint,2 0 −1

Each contribution transports angular momentum within the
radiative zone, quantified by the corresponding luminosity,

LJ,in/out =−εm
2

ω2

l(l + 1)
|CW,in/out|2. (134)

As we consider the net torque applied on the radiative zone
as a whole, we only focus on the transport of angular momentum
at the convective-radiative interfaces (we refer to Appendix E for
more details). Because both inward and outward prograde (retro-
grade) gravity waves transport energy toward the inside (outside)
of the radiative layer, the two contributions act in concert and
lead to the same change in the rotation of the radiative zone. The
total tidal torque then leads to the following tidal dissipation:

|=(k2)|=
3−

1
3 Γ2

(
1
3

)

4π
m [l(l + 1)]−

4
3
ω

8
3

n4

GM2
?

m2
pR5

?

×
ρ0(rint,1)rint,1

∣∣∣∣∣∣
dN2

d ln r

∣∣∣∣∣∣
− 1

3

rint,1

F 2
out + ρ0(rint,2)rint,2

∣∣∣∣∣∣
dN2

d ln r

∣∣∣∣∣∣
− 1

3

rint,2

F 2
in

 ,

(135)

with

Fout =

∫ rint,1

0

[(
r2ϕT

g0

)′′
− l(l + 1)

r2

(
r2ϕT

g0

)]
X1,out

X1,out(rint)
dr,

Fin =

∫ R?

rint,2

[(
r2ϕT

g0

)′′
− l(l + 1)

r2

(
r2ϕT

g0

)]
X1,in

X1,in(rint)
dr.

(136)

From the boundary conditions we considered in Sects. 4 and
5.1, the functions X1,in and X1,out are solutions of the following
Cauchy problems:


X′′1,out −
∂rρ0

ρ0
X′1,out −

l(l + 1)
r2 X1,out = 0

X1,out(0) = X′1,out(0) = 0,
(137)


X′′1,in −

∂rρ0

ρ0
X′1,in −

l(l + 1)
r2 X1,in = 0

X1,in(R?) = X′1,in(R?) = 0.
(138)

5. Variation in tidal dissipation of low-mass stars
throughout their evolution

5.1. Physical insight and the Goldreich & Nicholson (1989)
approach

We assumed that the totality of the energy flux carried by inter-
nal gravity waves is dissipated before the waves undergo any
reflection. Therefore, tidal dissipation is directly linked to the
efficiency of the excitation of the waves. Furthermore, in the

radiative zone, near the interface, the forced oscillations follow
the inhomogeneous Airy equation

d2ψ

dη2 + v2ηψ= v2ηZ, (139)

with

v2 =
l(l + 1)
r2

intω
2

∣∣∣∣∣∣
dN2

dr

∣∣∣∣∣∣
rint

(140)

and

η= rint − r. (141)

We can therefore introduce a characteristic length λ of the vari-
ation in the gravity waves in the radial direction (Goodman &
Dickson 1998; Kushnir et al. 2017), defined as

λ= v−
2
3 =ω

2
3 [l(l + 1)]−

1
3

∣∣∣∣∣∣
dN2

d ln r

∣∣∣∣∣∣
− 1

3

rint

rint. (142)

By following Goldreich & Nicholson (1989), for a given forc-
ing frequency ω, the group velocity vg of the gravity waves
can then be estimated as vg ∼ λω. Furthermore, because grav-
ity waves are excited by the equilibrium tide, the characteristic
velocity u of the fluid can be assessed as u ∼ ξeq,intω, where
ξeq,int ∼ − ϕT (rint)

g0,int
(Zahn 1975) is the radial displacement linked

to the equilibrium tide estimated at the interface. The energy
luminosity LE can therefore be expressed as

LE ∼ ρ(rint)u2vgr2
int

= ρ(rint)λω3r2
int

(
ϕT (rint)
g0,int

)2

.
(143)

By introducing ϕT (rint) = r2
intΨ and ω2

dyn,int = g0,int/rint, we obtain

LE ∼ ω 11
3 ρ(rint)r5

int

∣∣∣∣∣∣
dN2

d ln r

∣∣∣∣∣∣
− 1

3

rint


Ψ

ω2
dyn,int


2

, (144)

which is similar to the Goodman & Dickson (1998) formula-
tion, as was pointed out by Kushnir et al. (2017) and in our
prescription. The tidal dissipation then becomes

|=(k2)| ∝ GM2
?

m2
pR5

?

1
n4

LE

ω

∝ ω
8
3

n4

GM2
?

m2
pR5

?

ρ0(rint)rint

∣∣∣∣∣∣
dN2

d ln r

∣∣∣∣∣∣
− 1

3

rint


Ψ

ω2
dyn,int


2

.

(145)

This approach allows us to better understand the effect of the
relevant physical parameters on tidal dissipation. For a given
star–planet system, a higher density at the interface will increase
the energy carried by the waves and therefore the tidal dissipa-
tion. A similar effect can be obtained for higher values of rint and
smoother slopes of the Brunt–Väisälä profile, which enhance the
group velocity.
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Fig. 4. Evolution of the stellar radius (top left, plain line), the radius of the radiative zone (top left, dotted line), the density at the interface core-
envelope (top right), the gradient of the square of the Brunt–Väisälä frequency at the interface (bottom left) and the forcing term F (bottom right)
as a function of the age of the system for stellar masses (M?) between 0.4 and 1.4 M�, with Porb = 1 d, a typical value for a hot Jupiter. The colored
squares correspond to the ZAMS in each model, and the colored circles represent the TAMS.

5.2. Model grid for low-mass stars

To study the effect of stellar structure and evolution on tidal dis-
sipation in the radiative zone of low-mass stars, we relied on
grids computed with the 1D stellar evolution code STAREVOL
(see Siess et al. 2000; Lagarde et al. 2012; Amard et al. 2019, for
an extensive description) for masses ranging from 0.4 to 1.4 M�
at solar metallicity Z = 0.0134 (Asplund et al. 2009). We studied
all phases from the PMS to the top of the RGB.

As shown in Fig. 4 (top left panel), the star is completely
convective at the beginning of the evolution and then contracts
during the PMS. A radiative core grows after the Hayashi phase,
and a mass transfer occurs from the convective envelope to
the radiative zone, leading to an increase and then a decrease
in density at the core-envelope interface during the PMS (top
right panel). At the zero-age main sequence (ZAMS), the stel-
lar radius, the size of the radiative core, and the density at the
core-envelope interface reach a value that remains almost con-
stant during the MS. There, the thinner convective envelope of
more massive stars lead to lower densities at the interface. Dur-
ing the subgiant phase, low-mass stars are characterized by larger
radii, thicker convective layers, and higher densities at the inter-
face than their MS counterparts because the envelope expands
and the core contracts.

A key contribution for assessing tidal dissipation in low-mass
stars is the forcing term

F =

∫ R?

rint

6
(
1 − ρ

ρ̄

) [
1
r

(
r2ϕT

g0

)′
− 2

r2

(
r2ϕT

g0

)]
X1

X1(rint)
dr. (146)

At a given age, this quantity is computed by relying on the den-
sity radial profiles provided by STAREVOL in order to obtain
the solution X(r) in the convective envelope. Below the stellar
surface, the density profile is replaced by a polytropic model,
whose polytropic index varies with the extent of the convective
zone to ensure a singularity at r = R? (for more details about
the numerical implementation of surface boundary conditions,
we refer to Eq. (C.5)). The differential equations were solved
by relying on a fourth-order Runge–Kutta method. In this way,
if we neglect the changes in stellar structure, Eq. (127) leads to
F ∝ R5

?M−1
? for a given star–planet system (which allows us to

keep the tidal potential constant). According to this scaling law,
the forcing term presents a time evolution similar that of to the
stellar radius (see the bottom right panel in Fig. 4). Furthermore,
when we consider a mass–radius relationship during the MS, the
F term tends to be higher for more massive stars. However, tak-
ing an inhomogeneous distribution of mass in the stellar interior
and variations in stellar structure into account, we find a more
complex behavior of the forcing term F . For M? = 1.4 M�, F
reaches higher values than for the 1.2 M� evolution at the begin-
ning of the PMS and during the SG phase. However, at the end
of the PMS and during the MS, a reduced contribution of the
forcing term can be seen for M? = 1.4 M�.

Despite a noisy profile inherent to the numerical treatment of
the stellar interior, the bottom left panel in Fig. 4 shows that the
gradient of the squared Brunt–Väisälä frequency increases dur-
ing the PMS. It then reaches a stationary value on the MS, which
does not depend on the stellar mass. In this way, its main effect
is to enhance tidal dissipation in young systems. This behavior
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Fig. 5. Brunt–Väisälä frequency profiles as a function of the distance
to the center of the star, normalized to the radius of its radiative zone, at
30 Myr (top panel), 900 Myr (middle panel), and 5 Gyr (bottom panel).
The dotted profiles are situated in the PMS, the plain lines in the MS,
and the dash-dotted lines in the post-MS phase. The colors correspond
to the same stellar masses as in Fig. 4. The dashed lines correspond to
the tangents to the N2 profiles at the interface. The triangles indicate the
position of the maximum Brunt–Väisälä frequency.

can be explained by considering the evolution of the Brunt–
Väisäla profiles for different stellar masses. As shown in Fig. 5,
the Brunt–Väisälä frequency drops at the center and at the inter-
face between the convective and the radiative zones at all ages.
Moreover, during the PMS (see the dotted lines in Fig. 5), the
frequency at a given radius increases due to the contraction of
the star, which locally increases the gravity (Charbonnel et al.
2013). This leads to higher maximum values of N2 during the
early evolution. Furthermore, because

dN2

d ln r

∣∣∣∣∣∣
int

=
dN2

d
(

r
rint

)

∣∣∣∣∣∣∣∣
int

, (147)

it also explains the increase in the gradient of N2 at the interface
during the PMS. During the MS (see the plain lines in Fig. 5),

as the structure of the star is stabilized, the position of the maxi-
mum frequency in the radiative zone approaches the center of the
evolving star. This marginally changes its value and the general
shape of the profile. Thus dN2/d ln r and Nmax remain approx-
imately constant during this phase. The dependence on stellar
mass of these two quantities is then essentially explained by the
relative PMS and MS lifetimes of the different types of stars.
The more massive the star, the faster its PMS evolution, and
thus the earlier the dN2/d ln r and Nmax values reach the MS
plateau. During the subgiant phase and the RGB (see the dash-
dotted lines in Fig. 5), as the maximum value of N2 increases and
approaches the center of the star (Fuller et al. 2014), the gradient
dN2/d ln r at the convective-radiative interface decreases, which
emphasizes tidal dissipation in the radiative zone.

5.3. Time evolution of tidal dissipation as a function of stellar
mass and evolutionary stage

The evolution of our tidal dissipation prescription (see the green
curve in the top panels of Fig. 6) for a planet orbiting a nonro-
tating star with a period Porb = 1 d is similar to the prescriptions
of Barker & Ogilvie (2010; dashed black line in the top panels of
Fig. 6) and Goodman & Dickson (1998; dotted black line in the
top panels of Fig. 6). The discrepancies between these estimates
of tidal dissipation come from the parametrization of dN2/d ln r
and dξr/dr at the core-envelope interface, which are sensitive to
the hypothesis made in a given stellar evolution model. The sim-
plified version of our prescription, derived in Sect. 4.2.3 (see the
green dashed curve in the top panels of Fig. 6) is only relevant
during the MS of higher-mass stars, where the thin convective
layer approximation remains valid.

The bottom panels in Fig. 6 show that tidal dissipation
increases at the beginning of the PMS toward its maximum value
because a radiative core forms. This maximum increases with
stellar mass and is reached earlier for more massive stars because
their lifetime is shorter. The energy transported by IGW is then
reduced by the decrease in density at the interface that is due to
mass transfer from the envelope to the core, and to a lesser extent,
by an increase in the gradient of the Brunt–Väisälä frequency.
Their excitation is then inhibited and tidal dissipation decreases
to reach an almost constant value during the MS. During this
evolutionary stage, G-type and K-type stars (M? = {0.6 − 1} M�)
present a similar dissipation, as was pointed out by Barker
(2020). In the case of F-type stars (M? = {1.2 − 1.4} M�), tidal
dissipation decreases by about four orders of magnitude as the
stellar mass increases and the convective envelope becomes thin-
ner. It is important to note that for these stars, the dissipation
of progressive waves probably is not the dominating contribu-
tion to tidal friction in the stellar radiative zone because standing
modes may undergo a more efficient dissipation that is enhanced
through resonance locking (Fuller 2017). For M-type stars (here
M? = 0.4 M�), the smaller extension of the radiative core leads
to a weaker tidal dissipation. At the end of the MS phase, as
the hydrogen is mostly consumed, the core becomes isothermal
and contracts. At the same time, the remaining burning hydrogen
migrates to form a shell around the helium core. This leads to an
inflation of the convective envelope. As the density at the inter-
face increases, the tidal dissipation therefore becomes stronger
during the subgiant phase and the RGB.

This evolution of tidal dissipation as a function of stel-
lar mass and stellar age is expected when ω < ωc, when an
interaction with a corotation layer occurs, or when wave brak-
ing develops within the radiative core. For this last mechanism,
the mass of the companion has to be greater than a critical value
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Fig. 6. Evolution of the tidal dissipation and the corresponding quality factor as a function of stellar mass and stellar age. Top left: evolution of
the tidal dissipation as a function of time for M? = 1 M� and Porb = 1 d. Top right: time evolution of the corresponding tidal quality factor. In green
we plot the prescription developed in our work. Dashed green shows the simplified prescription for a thin convective envelope. The dashed black
line shows the Barker & Ogilvie (2010) prescription. The dotted black line represents the Goodman & Dickson (1998) prescription. Bottom left:
evolution of the tidal dissipation as a function of time for stellar masses (M?) between 0.4 and 1.4 M�, with Porb = 1 d. Bottom right: time evolution
of the corresponding tidal quality factor. The colored squares correspond to the ZAMS and the colored circles to the TAMS in each model. Double
lines indicate the presence of a convective core. In this configuration, wave braking is unlikely to occur.

Mcr (we refer to Appendix D, and Barker & Ogilvie 2010; Barker
2011, 2020 for more details). In particular, during the subgiant
phase and the RGB, more massive stars require lower planetary
masses to initiate wave breaking. This means that super-Earths
and hot Neptunes are likely to trigger this process during these
phases of evolution because the convective envelope of the star
is thicker (see Appendix D and Barker 2020).

5.4. Dynamical tide in the convective and the radiative zones
of low-mass stars: effect of structural and rotational
evolution

We aim in this section to compare the dissipation of the dynam-
ical tide in the radiative and convective zones of low-mass stars
throughout their evolution. In particular, we take the evolution
of stellar rotation into account to assess the dissipation of tidal
inertial waves in the convective layer. We then study the effect
of metallicity and stellar structure (bilayer versus trilayer) on the
tidal dissipation through gravity waves.

5.4.1. Spin evolution

A consistent treatment of the tidal dissipation in the convec-
tive zone requires taking the evolution of stellar rotation into
account. To this end, we relied on STAREVOL evolutionary
tracks adapted from Amard et al. (2019). We computed stellar
models of rotating stars for a range of initial masses between

0.4 and 1.4 M� at solar metallicity. The star–disk interaction was
taken into account at the beginning of the PMS by assuming a
constant surface rotation rate during the disk lifetime, set by the
observations. Over the whole mass range, we selected the fast
rotators as calibrated by Gallet & Bouvier (2015) with a three-
day initial rotation period and a 2.5 Myr disk lifetime. In this way,
we considered an upper bound of the tidal dissipation through
inertial waves.

Figure 7 shows that after the dissipation of the disk, the
star spins up during the PMS due to its contraction. During the
MS, the magnetized stellar winds then carry angular momentum
away from the star, leading to its spin-down (Skumanich 1972;
Kawaler 1988; Matt et al. 2015). As the evolution of the most
massive stars is faster than that of the least massive, the decrease
in their rotation rate at the beginning of the MS occurs at lower
ages. Furthermore, F stars have a smaller outer convective zone,
leading a to less efficient stellar dynamo. They are therefore less
strongly braked during the MS and thus remain fast rotators dur-
ing most of their life. Therefore lower-mass stars reach a slower
rotation rate at the solar age than their higher-mass counterparts.

5.4.2. Tidal dissipation in the convective zone

We now aim to compare the dissipation of the dynamical
tide in the radiative and convective zones of low-mass stars
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Fig. 7. Evolution of the surface rotation rate (scaled to the present Sun
rotation rate) for stars with a mass ranging from 0.4 to 1.4 solar masses
(Amard et al. 2019). The solar rotation rate at solar age is represented
by a black circle. The colored squares correspond to the ZAMS in each
model.

throughout their evolution. To this end, we relied on the for-
malism of Ogilvie (2013) and Mathis (2015) to assess tidal
dissipation in the convective zone through inertial waves. In this
framework, we assumed the same simplified bilayer structure as
in Sect. 5.3. The stellar convective envelope was assumed to be
in solid-body rotation with angular velocity Ω?. Furthermore,
centrifugal effect was neglected by assuming moderate rotation,
that is, Ω2

?/ω
2
dyn � 1. In the case of a coplanar and circular star–

planet system, the frequency-averaged tidal dissipation is given
by
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with α=
Rr

R?
, β=

Mr

M?
and γ=

ρc

ρr
=
α3(1 − β)
β(1 − α3)

, Rr being the

radius of the radiative zone and Mr its mass. The effective
calculation of the tidal dissipation related to the excitation of
inertial modes leads to a strongly frequency-dependent resonant
spectrum that is highly sensitive to the friction in the stellar
medium (Savonije & Papaloizou 1997; Ogilvie 2013). A fre-
quency average then provides a reasonable estimate likely to
over- or underestimate the effective dissipation at a given fre-
quency. Moreover, the assumption of a bilayer structure for the
star is reasonable for stellar masses lower than 1.2 M� because
the Mathis (2015) prescription underestimates tidal dissipation
by a factor lower than 2 compared to the Ogilvie (2013) formu-
lation applied to a more realistic stratified structure of the star
(Barker 2020). However, in the case of F-type stars, the two-layer
model may generally underpredict the dissipation by at least one
order of magnitude.

Furthermore, the dissipation of the equilibrium tide in the
convective zone can be estimated as (Remus et al. 2012)

[=(k2)
]CZ
eq = 4π

2088
35

R4
?

GM2
?

∣∣∣∣∣∣ω
∫ 1

α

x8ρCZνt dx

∣∣∣∣∣∣ , (149)

where νt is the turbulent viscosity in the convection zone, ρCZ
is the density in the convection zone, and x = r/R? is the nor-
malized radial coordinate. Following Duguid et al. (2020), the
turbulent viscosity strength can be assessed from the convective
turnover time tc as

νt = νclcF(ω), (150)

where νc is the typical convective velocity, lc is the mixing
length, and

F(ω) =



5, |ω|tc < 10−2

1
2

(|ω|tc)−
1
2 , |ω|tc ∈ [10−2, 5]

25√
20

(|ω|tc)−2 , |ω|tc > 5.

(151)

This prescription accounts for the results of the latest numerical
simulations of the interaction between turbulent convection and
tidal flows. In particular, they provide strong evidence in favor
of the Goldreich & Nicholson (1989) frequency dependence at
high frequencies because the energetically dominant modes of
the convection contribute most to the effective viscosity (for a
more in-depth discussion, we refer to Barker 2020). As we only
aim here to provide an order of magnitude of tidal dissipation,
we assumed a constant density in the convective zone equal to
ρCZ = 3M?(1− β)/4πR3

?(1− α3). Furthermore, we approximated
the mixing length lc by its maximum, given by the depth of the
convective zone (1 − α)R?. This leads to

[=(k2)
]CZ
eq =

696
35
|tcω| R?

GM?
ν2

c(1 − β)
1 − α9

1 − α3 F(ω). (152)

Given the stellar luminosity L? and the rotation period Prot, we
can estimate the convective velocity νc and convective turnover
time tc from the Mathis et al. (2016) formulation based on the
mixing-length theory for a rotating body (e.g., Stevenson 1979;
Augustson & Mathis 2019),

νc = νc,0



(
1 − 1

242Ro2

)
, Ro > 0.25

1.5 Ro
1
5 , Ro < 0.25,

(153)

where Ro = Protνc,0/lc is the convective Rossby number and
νc,0 = (L?/(ρCZR2

?))1/3 is the convective velocity from the stan-
dard mixing-length theory, without rotation. For both prescrip-
tions, we relied on STAREVOL to compute the stellar mass,
radius, rotation, and luminosity and to assess the α, β coeffi-
cients. Furthermore, we chose the so-called conventional equi-
librium tide (Zahn 1966; Remus et al. 2012), which is defined as
the hydrostatic response of the star to the tidal potential. Its use
in convective zone is discussed in favor of a non-wavelike equi-
librium tide (Goodman & Dickson 1998; Terquem et al. 1998;
Ogilvie 2014). However, as presented in Barker (2020), the first
formulation differs from the second by a factor of 2–3. This dis-
crepancy does not affect our results because we considered both
orders of magnitudes and upper bounds of tidal dissipation.

5.4.3. Comparison with tidal dissipation in the convective
envelope throughout stellar evolution

We now compare tidal dissipation in the stellar radiative and con-
vective zones throughout stellar evolution. To do so, we first need
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Fig. 8. Characteristic periods as a function of the age of the system for
stellar masses between 0.4 and 1.4 M�. In dark gray we plot the region
corresponding to tidal frequencies greater than Nmax, for which no prop-
agation of gravity waves is allowed. The colored areas correspond to
orbital periods that are likely to excite progressive waves (with frequen-
cies ω < ωc) for each stellar mass. In purple we show typical values
corresponding to the Roche limit. The dashed black line corresponds to
an orbital period of one day.

to study the frequencies available to tidal gravity waves as a func-
tion of stellar mass and stellar age. For tidal frequencies higher
than the maximum Brunt–Väisälä frequency Nmax, the propaga-
tion of internal gravity waves is not allowed (the corresponding
periods are represented as gray areas in Fig. 8). However, this
case in general corresponds to orbital periods below the Roche
limit (in violet in the same figure; for a calculation of this limit,
we refer to Benbakoura et al. 2019). This implies that after sev-
eral million years of evolution, a planet is likely to excite gravity
waves throughout the evolution of the star for all the stellar
masses considered.

Figure 8 also represents the orbital period corresponding to
the cutoff frequency ωc. Beyond this critical period, tidal gravity
waves are entirely dissipated through radiative damping before
undergoing any reflection (see the colored regions in Fig. 8). As
stratification and thermal diffusivity are higher for the most mas-
sive and the oldest stars, close-in planets are more likely to excite
progressive waves in the radiative zone of this type of stars. Dur-
ing the RGB, even planets located at the Roche limit are therefore
able to excite progressive waves. During the PMS and MS of the
least massive stars, a planet excites gravity waves that cannot
be entirely dissipated through radiative damping. In the absence
of other ways of dissipation, g-modes are then formed. How-
ever, for sufficiently massive planets, wave breaking may occur
at the center of the star, or in the presence of differential rota-
tion, gravity waves may interact with a critical layer. In this case,
close-in planets may generate efficient tidal dissipation in the
stellar radiative zone.

To evaluate an order of magnitude of the contribution of
the dissipation of tidal gravity waves, it might be tempting
to rely on the method introduced by Ogilvie (2013), Mathis
(2015), and Gallet et al. (2017) for tidal inertial waves. They
computed a frequency average that would evaluate the capacity
of a given stellar structure to dissipate the tidal wave, assum-
ing that it is excited in an impulsive way and is dissipated
after a finite time by a dissipation mechanism. We would then
have

〈=(k2)
〉RZ

IGW =
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0
= (k2)

dω
ω
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Fig. 9. Top: evolution of the dissipation of the dynamical tide through
inertial waves (dashed lines) and of the equilibrium tide in the con-
vective zone (dotted lines). Bottom: evolution of the dissipation of the
dynamical tide through gravity waves (solid lines) and of the dynamical
tide through inertial waves (dashed lines). Stellar mass ranges between
0.4 and 1.4 M�. The colors correspond to the same masses as in Fig. 8.

which for solar-type stars gives

〈=(k2)
〉RZ

IGW =

3
2
3 Γ2

(
1
3

)

32π
|m| [l(l + 1)]−

4
3

GM2
?

R5
?

ω
8
3
c

× ρ0(rint)rint

∣∣∣∣∣∣
dN2

d ln r

∣∣∣∣∣∣
− 1

3

rint

F 2

m2
pn4

.

(155)

We stopped the frequency average at ωc because we focus on
progressive waves.

However, the frequency-averaged method is meaningful in
the case of a strongly resonant and erratic dissipation. For
instance, in the case of tidal inertial waves, the amplitude of the
resonant dissipation strongly depends on the strength of the tur-
bulent friction applied by convection (Ogilvie & Lin 2004, 2007;
Auclair-Desrotour et al. 2015; Mathis et al. 2016). However, we
cannot use this approach if the dissipation varies with a power
law of the tidal frequency, as is the case for progressive gravity
waves (the same holds for the equilibrium tide). In this configu-
ration, the frequency-averaged dissipation would lead to a lower
bound that is not representative. We therefore chose an effective
evaluation for a typical hot-Jupiter system with a period of one
day.

Figure 9 shows the evolution of the dissipation of the equi-
librium tide in the convective zone (dashed lines) and of the
dynamical tide through inertial waves (dashed lines) and gravity
waves (solid lines) for M? = 0.4 − 1.4 M�. The dissipation of the
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equilibrium tide in the radiative zone is neglected here because
its efficiency is much lower than the other contributions (Zahn
1966, 1977). Moreover, because we considered fast rotators, the
dissipation through inertial waves that we calculated acts as an
upper bound. While the tidal dissipation through gravity waves
is comparable to its counterpart in the convective zone at the
beginning of PMS, the mass transfer from the convective to the
radiative zone decreases the efficiency of the dissipation in the
stellar core, as presented in Sect. 5.3. This means that during
most of the PMS and the beginning of the MS, when the rotation
of the star is at its highest, the dissipation of the dynamical tide
in the convective zone dominates. The dissipation of the equilib-
rium tide is then lower by several orders of magnitude than the
other two contributions.

Because magnetic braking substantially decreases the stellar
rotation rate, the tidal dissipation through inertial waves during
the MS loses efficiency to the benefit of the dissipation in the
core. This dissipation remains constant during the MS due to
the small changes in stellar structure. During the most advanced
phases, the equilibrium tide becomes comparable to the contri-
bution of inertial waves. In the case of the most massive stars,
the equilibrium tide is likely to become the dominant contri-
bution within the stellar envelope. This scenario is consistent
with the evolution of eccentricities observed for red giant bina-
ries observed by the Kepler mission (Beck et al. 2018). However,
because the core contracts and the envelope expands during the
SG phase and the RGB, tidal dissipation through gravity waves
becomes largely dominant. This may have a strong effect on
the secular evolution of star–planet systems and binaries during
the most advanced phases (Schlaufman & Winn 2013; Essick &
Weinberg 2016; Weinberg et al. 2017; Vick & Lai 2020). When
slower rotators (with a rotation period between 5 and 10 days)
are considered, the tidal dissipation though inertial waves is less
efficient, as =[k2] ∝ Ω2

?. The dissipation through gravity waves
then dominates the evolution of the system during longer phases,
at the beginning of the PMS and at the end of MS.

5.5. Effect of stellar metallicity

Stellar metallicity may affect the secular evolution of star–
planet systems and thereby the orbital period distribution of hot
Jupiters (e.g., Gonzalez 1997; Santos et al. 2003). In order to
assess its effect on tidal dissipation through gravity waves, we
focused on a 1 M� star with three different metallicities, that is,
Z = 0.004, Z = 0.0134 = Z�, and Z = 0.0255, as in Bolmont et al.
(2017). When the metallicity of the star increases, its opacity
evolves in the same way (Kippenhahn & Weigert 1994). This has
the effect of decreasing the stellar luminosity and the effective
temperature, which subsequently increases the overall lifetime
of the star. Furthermore, the radiative zone shrinks, which causes
the density at the convective-radiative interface to increase at a
given evolutionary phase.

Figure 10 shows that tidal dissipation through gravity waves
evolves in the same way, regardless of the stellar metallicity
considered. Furthermore, dissipation increases along with metal-
licity. This behavior may lead to a discrepancy of about one
order of magnitude near the ZAMS between the solar metal-
licity case (Z = 0.0134) and the metal-poor case (Z = 0.004).
At the beginning of the evolution, metal-poor stars undergo a
stronger dissipation than metal-rich stars. The higher the metal-
licity, the later the formation of the radiative core. As the
radiative zone reaches its maximum extension at the end of
the PMS, the opposite behavior is therefore observed, and dis-
sipation increases with metallicity. At the end of evolution,

106 107 108 109 1010

Age [yr]
10 6

10 5

10 4

10 3

10 2

10 1

(k
2)

Z = 0.004
Z = 0.0134
Z = 0.0255

Fig. 10. Evolution of the tidal dissipation through gravity waves
as a function of time for three different stellar metallicities, i.e.,
Z = 0.004, Z = 0.0134 = Z�, and Z = 0.0255, with M? = 1 M� and
Porb = 1 d. The colored squares correspond to the ZAMS in each model,
and the colored circles show the TAMS.

as metal-poor stars reach the subgiant phase and the RGB
before their metal-rich counterparts, the observed trend reverses
again and the dissipation of metal-poor stars becomes more
efficient.

5.6. Tidal dissipation in massive solar-type stars: bilayer
versus trilayer structure

We now focus on the STAREVOL models with stellar masses
ranging from 1 to 1.4 M�. Figure 11 shows that all mod-
els form a convective core near the ZAMS. However, for
M? = 1.4 M�, the star maintains its core during the entire MS,
while for M? = 1.2 M� the core disappears at around 1 Gyr. For
M? = 1 M� the convective core only remains for 40 Myr.

In this configuration, as shown in Fig. 12, the contribution
of a convective core to the total tidal dissipation is negligible
compared to the contribution of the outer thin convective enve-
lope we derive for a bilayer structure. Despite a higher density at
lower radii, the low extent of the core tends to reduce tidal dissi-
pation through outward gravity waves, especially with the aid of
the forcing term F . This contribution involves a

(
1 − ρ

ρ̄

)
factor,

with ρ̄ the mean density inside a sphere of radius r, which in a
core configuration quantifies the inhomogeneity of the mass dis-
tribution near the center. A tiny convective core, coupled with a
flat mass distribution near the center from spherical symmetry,
then leads to a weak dissipation.

6. Conclusions and discussions

We provided a general formalism for assessing tidal dissipa-
tion in stellar radiative zones in all types of stars. We focused
on the angular momentum flux transported by progressive
tidal gravity waves, which are more likely to affect the sec-
ular evolution of the considered binary or planetary system
(Goodman & Dickson 1998; Terquem et al. 1998). This approach
allowed us to gather the founding work of the Zahn (1975),
Goldreich & Nicholson (1989), Goodman & Dickson (1998), and
Barker & Ogilvie (2010) prescriptions, among others, into a
unique flexible framework that is applicable to all types of
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Fig. 11. Kippenhahn diagram showing the evolution of the internal
structure of the nonrotating star for M? = 1 M� (top), M? = 1.2 M�
(middle), and M? = 1.4 M� (bottom) from the PMS up to the end of
the MS. The upper line represents the stellar radius in solar radii. The
hatched gray areas depict convective regions, and the dotted areas stand
for radiative regions.

stars and planetary systems. In the case of low-mass stars, we
investigated the effect of stellar structure and evolution on tidal
dissipation through gravity waves. We showed that for a given
star–planet system, tidal dissipation reaches a maximum value
on the PMS for all the stellar masses we considered. This behav-
ior is the result of the expansion of the radiative zone, allowing
the propagation of higher-frequency waves, and the subsequent
decrease in stellar density at the convective-radiative interface,
which cuts the energy off that is transported by the tidal gravity
waves. Then, as the stellar structure stabilizes, tidal dissipation
evolves to a stationary value during the MS, which is maximum
for K-type stars and decreases by several orders of magnitude
for F-type stars because their convective envelope is thinner.
We also find that during most of the PMS and the beginning
of the MS when the star rotates rapidly, the dissipation of the
dynamical tide in the convective zone dominates the other con-
tributions for fast rotators. Then, as magnetic braking spins the
star down on the MS, tidal gravity wave dissipation becomes
the largest contribution. We confirmed that stellar metallicity
also significantly affects tidal dissipation. The dissipation is two
orders of magnitude larger in a metal-rich (Z = 0.0255) than
in a metal-poor star (Z = 0.0040). However, we find that at a
given age, the dissipation is more efficient in low-metallicity
stars during the PMS, SGB, and RGB because they evolve
more quickly. Finally, we showed that the contribution of a
convective core for F-type stars is negligible compared to the
tidal dissipation derived by assuming a bilayer structure. Because
tidal dissipation is enhanced by density inhomogeneities in the
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Fig. 12. Evolution of tidal dissipation in the case of a bilayer and a
trilayer structure. Top: evolution of the tidal dissipation in the case of a
bilayer (blue curves) and a trilayer (blue dots) structure as a function of
time for stellar masses M? = {1 − 1.4} M�, with Porb = 1 d. Bottom: time
evolution of the relative difference of tidal dissipations derived from
bilayer and trilayer structures. The colored squares correspond to the
ZAMS in each model, and the colored circles show the TAMS.

convective zone (see Eq. (116) for more details), the geome-
try and mass distribution of a spherically convective core is
unfavorable to the excitation and dissipation of tidal gravity
waves.

We find that a massive star structure and a solar-type star
structure lead to similar prescriptions regarding tidal dissipation.
However, this symmetry is made possible by assuming a poly-
tropic behavior of stellar matter at the stellar surface, which leads
to a vanishing density there. A more detailed study of the bound-
ary conditions at the surface, detailed in Appendix C, is required
to assess the robustness of this analogy.

We also considered a linear approximation of N2 near the
convective-radiative interfaces. Taking more complex N2 pro-
files into consideration (Lecoanet & Quataert 2013) may change
the frequency dependency of the induced tidal torque and may
agree better with 3D numerical simulations of internal wave
breaking (Barker 2011; Ivanov et al. 2013). Nonetheless, accord-
ing to Barker (2011), an improved prescription may deviate from
ours by a factor of 2 at most, meaning that our model pro-
vides a suitable order of magnitude of the dissipation of tidal
gravity waves to follow the secular evolution of a star–planet
system.

Taking dissipation processes (Zahn et al. 1997; Barker &
Ogilvie 2010) and angular momentum transport in stellar inte-
riors into account (see Mathis & Alvan 2013 for a review) is
also one of the perspectives of this work. In this context, we
need to factor in stellar rotation (Ogilvie & Lin 2004). Regarding
our formulation, adding the Coriolis acceleration may directly
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alter the forcing term F because gravito-inertial waves are no
longer evanescent in a sub-inertial regime (where |ω| < 2Ω?)
in the convective zone. This effect is expected to increase tidal
dissipation in the radiative zone (Rocca 1987, 1989; Ogilvie &
Lin 2007; Witte & Savonije 2002). In the same propagation
regime, low-frequency waves in the radiative zone are trapped
near the equatorial plane, which leads to a geometry that is sig-
nificantly different from what we considered here (Rieutord &
Valdettaro 1997; Dintrans et al. 1999). This change is likely to
modify the tidal dissipation accordingly. In addition, because
we find that the dissipation through IGW is highest during the
radiative core formation when the star is spinning up, a progres-
sive trapping of gravito-inertial waves in the subinertial regime
may occur. Stellar rotation also increases the radial wavenum-
ber of the gravito-inertial waves, leading to a stronger radiative
damping. These are therefore deposited closer to their excitation
region than in the nonrotating case (Pantillon et al. 2007; Mathis
et al. 2008).

Differential rotation on tides should also be taken into
account because it affects propagation of gravito-inertial waves,
leading to a large variety of resonant cavities and chaotic zones
(Mathis 2009; Prat et al. 2018). It also allows the deposition
of angular momentum in critical layers and therefore interac-
tions between waves and mean flows (Goldreich & Nicholson
1989; Alvan et al. 2013; Astoul et al. 2021). A strong differen-
tial rotation may set up during the PMS due to stellar contraction
(Charbonnel et al. 2013; Hypolite & Rieutord 2014; Gouhier et
al. 2021), when the tidal dissipation through gravity waves is
highest. This effect can therefore be significant on the evolution
of binary and planetary systems. A magnetic field may also affect
tidal dissipation by modifying the propagation and the damping
of tidal gravity waves (Mathis & de Brye 2011, 2012).

Despite these limitations, a consistent formulation of the
dynamical tide in stellar radiative zones provides a way to an
exhaustive study of the fate of star–planet systems. In this spirit,
systematically comparing tidal dissipation in radiative and con-
vective zones (Mathis 2015; Gallet et al. 2017) requires a secular
evolution model to track the complex evolution of the tidal
forcing frequency (Benbakoura et al. 2019). We compared the
capacity of the star to dissipate progressive tidal gravity waves
in the radiative zone and inertial modes tidally excited in the
convective zone. In a more realistic model, we need to esti-
mate the passing of a gravito-inertial wave from one zone to
another and possible reflections. This undertaking then requires
to take the complex temporal evolution of the tidal frequency
into account, which is related to the orbital dynamics of a given
system.

In the case of exoplanetary systems, for example, a secular
evolution model with a formalism that coherently models tidal
effects in stellar convective and radiative zones would allow us to
study the migration of nearby planets and their lifetime through-
out the stellar evolution, thus reconciling the results of recent
studies (e.g., Barker & Ogilvie 2010; Guillot et al. 2014; Barker
2020; Bolmont & Mathis 2016; Gallet et al. 2017; Bolmont et al.
2017; Benbakoura et al. 2019). This approach would ultimately
allow us to take other star–planet interactions into account and
to explain the observed statistical distributions (McQuillan et al.
2013). The implementation of secular evolution models like this
is of primary importance for analyzing data of upcoming space
missions such as PLATO (Rauer et al. 2014).
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Appendix A: Computation of a particular solution
in the radiative zone near the interface

The goal of this section is to compute a particular solution
of Eq. (20) in the radiative zone, near the interface. In this
configuration, Eq. (20) becomes

d2ψ

dη2 + v2ηψ= v2ηZ. (A.1)

For a given function f , we write in this section d f
dη = f ′. We

choose ψ1(η) = Ai[v
2
3 (−η)] and ψ2(η) = Bi[v

2
3 (−η)] as the two

basis solutions of the corresponding homogeneous equation.
Their Wronskian ΛA can be written as

ΛA =ψ1ψ
′
2 − ψ2ψ

′
1 =− v

2
3

π
. (A.2)

Then a particular solution of the inhomogeneous Airy equation
that vanishes at the interface can be expressed as

ψp(η) = −
(∫ η

0
Λ−1

A v2ηZψ2(η)dη
)
ψ1(η)

+

(∫ η

0
Λ−1

A v2ηZψ1(η)dη
)
ψ2(η).

(A.3)

From Eq. (A.1) we obtain

ψp(η)

v−
2
3 π

=

(∫ η

0
−Zψ′′2 (η)dη

)
ψ1(η) +

(∫ η

0
Zψ′′1 (η)dη

)
ψ2(η), (A.4)

which leads to

ψp(η)

v−
2
3 π

= − Z(η)ΛA + Z(0)
[
ψ′2(0)ψ1(η) − ψ′1(0)ψ2(η)

]

+
[
Z′ψ2

]η
0 ψ1 − [

Z′ψ1
]η
0 ψ2 + I,

(A.5)

with I=−
(∫ η

0 Z′′ψ2(η)dη
)
ψ1 +

(∫ η

0 Z′′ψ1(η)dη
)
ψ2. This term is

neglected from now on by assuming that the equilibrium tide
varies slower than the dynamical tide in the radiative zone.
Because ψ′1(0) = − v 2

3 Ai′(0) and ψ′2(0) =−v 2
3 Bi′(0), we obtain

ψp(η) = Z(η) − Z(0)π
[
Bi′(0)ψ1(η) − Ai′(0)ψ2(η)

]

− v− 2
3 πZ′(0)

[
Bi(0)ψ1(η) − Ai(0)ψ2(η)

]
.

(A.6)

We know that π= [Ai(0)Bi′(0) − Bi(0)Ai′(0)]−1 =
1
2 3

3
2 Γ

(
4
3

)
Γ
(

2
3

)
, therefore the particular solution becomes

ψp(η) = Z(η) +

(
τ

2

) 1
3 [
αrad,pJ 1

3
(τ) + βrad,pJ− 1

3
(τ)

]
, (A.7)

where αrad,p =−dZ
dη

(0)
(
v

3

)− 2
3

Γ

(
4
3

)
and βrad,p =−Z(0)Γ

(
2
3

)
.

Appendix B: Forcing term and radial displacement
for a low-mass star

We aim in this section to link the forcing term to the radial dis-
placement that is connected to the dynamical tide. This compares
formulations from Zahn (1975) and Goodman & Dickson (1998).
The derivative of the radial displacement at the interface linked
to the dynamical tide can be expressed with the notations we
used in Sect. 2,

∂rξ
dyn
r

∣∣∣∣
int

= ∂r

[
ρ
− 1

2
0 r−2(ρ−

1
2

0 X − Z)
]

int
. (B.1)

By expressing the radial displacement ξr in the (S +, S −) basis,
knowing that T1 = 0, we obtain from Eqs. (44), (60) and (63)

∂rξ
dyn
r

∣∣∣∣
int

= ∂r

(
ρ
− 1

2
0 r−2

)∣∣∣∣∣
int


βconv + βconv,p

Γ
(

2
3

) − Z(0)



+ ρ
− 1

2
0 (rint)r−2

int


βconv + βconv,p

Γ( 2
3 )

d
dr (ρ−

1
2

0 Xh)int

(ρ−
1
2

0 Xh)int

+ T − ∂rZ(0)



(B.2)

with

T = ρ
1
2
0 (rint)r2

int


−ρ
′
0(rint)
ρ0(rint)

−

(
ρ
− 1

2
0 Z

)′
int(

ρ
− 1

2
0 Z

)

int

+
X′1(rint)
X1(rint)



(
ϕT

g

)

int

+ ρ
1
2
0 (rint)F .

(B.3)

Because C2 = 0, the homogeneous solution Xh in the convective
zone is proportional to the basis solution X1, which leads to

∂rξ
dyn
r =

∂r(ρ−1
0 r−2Xh)

ρ−1
0 r−2Xh

∣∣∣∣∣∣
int

ξ
dyn
r (rint) + r−2

intF , (B.4)

where ξ
dyn
r (rint) = ρ

− 1
2

0 (rint)r−2
int


βconv + βconv,p

Γ
(

2
3

) − Z(0)

. By

assuming slow variations of the density and the radius compared
to the characteristic length of variation of the gravity waves

in the radial direction λ= v−
2
3 =ω

2
3 [l(l + 1)]−

1
3

∣∣∣∣ dN2

d ln r

∣∣∣∣
− 1

3

rint
rint

(Goodman & Dickson 1998; Kushnir et al. 2017), we obtain
from Eq. (44)

∂rξ
dyn
r

∣∣∣∣
int
∼ Γ( 2

3 )

3
2
3 Γ( 4

3 )

αconv

βconv

ξ
dyn
r (rint)
λ

+ r−2
intF . (B.5)

Because ξdyn
r (rint) ∼ λ ∂rξ

dyn
r

∣∣∣∣
int

(Goodman & Dickson 1998) and
αconv � βconv, we have

∂rξ
dyn
r

∣∣∣∣
int
∼ r−2

intF , (B.6)

which ensures the equivalence between the formulations from
Zahn (1975) and Goodman & Dickson (1998).
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Appendix C: Stress-free condition at the stellar
surface

The goal of this section is to investigate the consequences on
tidal dissipation of low-mass stars of a stress-free boundary con-
dition coupled with a nonzero density at the stellar surface. In
this case, the Lagrangian perturbation of pressure vanishes at
r = R?,

δP = ρ0(R?)
[
y − g0(R?)ξr(R?)

]
= 0. (C.1)

We considered the case where ρ0(R?) > 0 and ρ′0(R?)
ρ0(R?) is the only

large parameter involved to account for the density behavior near
the photosphere. From Eqs. (12) in the anelastic approximation,
we obtain

ξr(R?) =−ϕT (R?)
g0(R?)

+
ω2

ω2
dyn

1
l(l + 1)R?

∂r(r2ξr). (C.2)

By assuming low-frequency waves, i.e. ω � ωdyn, the stress-free
condition becomes

X(R?) =−ρ0(R?)R2
?

ϕT (R?)
g0(R?)

, (C.3)

which accounts for the equilibrium tide. In the convective
zone, we choose the basis solution X1 as the solution of
the homogeneous equation associated with Eq. (35) verify-
ing X1(R?) = X(R?) and X′1(R?) = X′(R?). In this way, we fix
C2 =T0 =T2 = 0. As in Sect. 5.1, near the surface, X1 is a
solution of the following equation:

X′′ − ρ
′
0

ρ0
X′ = 0, (C.4)

which leads to X′1 ∝ ρ0. We now impose that X′(R?) =

X′1(R?) = R2
?ρ0(R?). When we assume that the interface between

convective and radiative zone is close to the stellar surface, we
can assume that

X′1(r) = R2
?

[
ρ0(R?) + ρ′0(R?)(r − R?)

]

X1(r) = X1(R?)+R2
?

[
ρ0(R?)(r − R?)+

1
2
ρ′0(R?)(r − R?)2

]
.

(C.5)

These expressions are adopted as a boundary condition in our
numerical treatment of tidal dissipation to consider the surface
singularity in the case of solar-type stars. Furthermore, when we

assume that
ρ0(R?)
ρ′0(R?)

� R2
?(α − 1)2 , we obtain

X′1(R?)
X1(rint)

=
1

− ϕT (R?)
g(R?) + R?(α − 1) + 1

2
ρ′0(R?)
ρ0(R?) R

2
?(α − 1)2

� 1, (C.6)

X1(R?)
X1(rint)

=
− ϕT (R?)

g(R?)

− ϕT (R?)
g(R?) + R?(α − 1) + 1

2
ρ′0(R?)
ρ0(R?) R

2
?(α − 1)2

� 1. (C.7)
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Fig. C.1. Value of T1/r−2
intF for all the possible values of α= Rr/R? and

β= Mr/M?. In black we show values of α and β for which the ratio is
equal to 1.

The T1 term then becomes

T1 =
ϕT (R?)
g(R?)

α−2 ρ
′
0(R?)
ρ0(R?)

X1(R?)
X1(rint)

∼ −2
(
ϕT (R?)
g(R?)

)2

α−2(1 − α)−2R−2
? .

(C.8)

Furthermore, in the case of a thin convective layer, we have from
Eq. (127)

r−2
intF = 3

1 − γ
1 − α

α5

β

(
2α
3
− 1

)
α−2ϕT (R?)

g(R?)
R−1
? . (C.9)

Then we obtain

T1

r−2
intF

= − 2
3

β

α5(1 − γ)(1 − α)
(

2α
3
− 1

) ϕT (R?)
g(R?)

R−1
? . (C.10)

Because γ=
α3(1−β)
β(1−α3) , we have

T1

r−2
intF

= − 2
3

β2(1 + α + α2)

α5

(
2α
3
− 1

)
(β − α3)

ϕT (R?)
g(R?)

R−1
? . (C.11)

The values of this ratio for all the possible values of α= Rr/R?

and β= Mr/M? are represented in Fig. C.1. As we assumed that
the convective zone is sufficiently thin to linearize the density
profile, only values of α close to 1 are relevant in this analysis.
Therefore we can assume that the T1 term affects our prescrip-
tion for tidal dissipation only marginally in the radiative zone in
the case of a surface density that is sufficiently weak. A more
detailed study of surface boundary conditions is left for future
work.
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Appendix D: Wave-breaking criterion for
solar-type stars

To provide a general criterion for wave braking in the case of
solar-type stars, we rely on the nonlinearity factor εnl, which is
the ratio of the amplitude of the radial displacement to the radial
wavelength (Press 1981; Barker & Ogilvie 2010; Barker 2020),

εnl = |krξr |. (D.1)

Nonlinearities become significant when εnl ≥ 1. In particular,
wave braking is likely to occur. This nonlinearity factor can be
assessed through the energy luminosity of the tidal gravity wave.
We have from Eq. (75)

|LE|= ω3

2l(l + 1)
|CW|2. (D.2)

Furthermore, by defining ξdyn
r the radial displacement linked to

the dynamical tide, we obtain in the WKBJ approximation

ξ
dyn
r (r) = ρ

− 1
2

0 r−2CW
1√
kr

eεi(τW−τ0), (D.3)

where kr ≈
√

N2

ω2
l(l+1)

r2 is the radial wavenumber. This leads to

|CW|2 = ρ0r3 N
ω

√
l(l + 1)

∣∣∣∣ξdyn
r

∣∣∣∣
2
. (D.4)

The energy luminosity then becomes

|LE|= Nω2ρ0r3

2
√

l(l + 1)

∣∣∣∣ξdyn
r

∣∣∣∣
2
. (D.5)

We can therefore assess εnl as

εnl =

√
2[l(l + 1)]

3
2 N |LE|

ρ0r5ω4 , (D.6)

which is similar to the expression obtained in Eq. (53) in Barker
(2020). Furthermore, in the case of a solar-type star, we find that
the energy luminosity LE is equal to

LE =−
3

2
3 Γ2

(
1
3

)

8π
ω

11
3 [l(l + 1)]−

4
3 ρ0(rint)rint

∣∣∣∣∣∣
dN2

d ln r

∣∣∣∣∣∣
− 1

3

rint

F 2, (D.7)

with

F =

∫ R?

rint

[(
r2ϕT

g0

)′′
− l(l + 1)

r2

(
r2ϕT

g0

)]
X1

X1(rint)
dr. (D.8)

As LE ∝ F 2, we introduce |LE|= LE,0 m2
pn4ω

11
3 , where LE,0 is

independent of the tidal frequency and planetary properties, mp
is the planetary mass, and n the mean motion of its orbit. This
means that wave braking may occur if εnl ≥ 1, which leads to

2[l(l + 1)]
3
2 NLE,0m2

pn4

ρ0r5 ω−
1
3 ≥ 1. (D.9)

In the absence of stellar rotation, we have ω= 2n. Furthermore,
near the stellar center, the radial profile of the Brunt–Väisälä
is approximately linear. We then assume that N ≈ Cr, where
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Fig. D.1. Evolution of the critical planetary mass Mcr as a function of
the age of the system for stellar masses (M?) between 0.4 and 1.4 M�.
Wave braking may occur for planetary masses higher than Mcr.

C ≈ 8× 10−11 m−1 s−1 for the current Sun (Barker 2020). This
quantity is here estimated at a given stellar mass and stellar
age by relying on STAREVOL grids. Following Goodman &
Dickson (1998), we can estimate the location rinner of the inner
turning point, defined as N =ω, as follows:

rinner =
2n
C
. (D.10)

Then, estimating the nonlinearity factor at the inner turning point
gives

2−
10
3 [l(l + 1)]

3
2 C5LE,0

ρ0(rinner)
m2

pn−
1
3 ≥ 1 (D.11)

which, by introducing the orbital period Porb, gives the following
criterion on the planetary mass:

mp ≥ (2π)
1
6

2
5
3 ρ0(rinner)

[l(l + 1)]
3
4 C

5
2 L

1
2
E,0

P
− 1

6
orb ≡ Mcr. (D.12)

We then find a similar result as the Barker & Ogilvie (2010)
criterion (see also Barker 2011, 2020), which is based on an over-
turning of the stratification. This condition weakly depends on
the orbital period (a decrease by one order of magnitude in Porb
leads to an increase of Mcr of about 31.9%). If a given planet has
a mass higher than Mcr, then wave breaking may occur in the
star, and the tidal quality factor is expected to behave according
the results of our work. Otherwise, other dissipation processes
such as radiative damping in the case of progressive waves or
critical layers may lead to a similar tidal dissipation. We present
in Fig. D.1 the evolution of Mcr as a function of the age of
the system for stellar masses (M?) between 0.4 and 1.4 M�. As
was pointed out in Barker (2020), for stellar masses higher than
0.9 M�, the critical planetary mass may fall below 1 Jupiter mass
for all ages greater than 10 Gyr. It then allows super-Earths and
hot Neptunes to trigger wave braking in their host stars during
the subgiant phase and the RGB.
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Appendix E: Angular momentum transport and
tidal torque

The goal of this section is to clarify the relationship between
the angular momentum transport and the net torque applied to
the radiative zone. To this end, we considered a radiative zone
between r = r0 and r = r1 > r0. The equation for the transport of
angular momentum, horizontally averaged and focusing only on
waves, is given by Mathis (2009),

ρ0
d
dt

(
r2

∫ θ= π

θ= 0
sin3 θ Ωdθ

)
=− 1

2πr2 ∂r

(
r2

∫ θ= π

θ= 0
FJ sin θdθ

)
,

(E.1)

where Ω is the angular velocity of the radiative zone and FJ is the
radial component of flux of angular momentum transported by
the Reynolds stresses of the gravity waves, whose expression is
given in Eq. (78). By integrating along the radial and latitudinal
directions, this leads to

dJRZ

dt
=−

∫ r1

r0

(∂rLJ)dr, (E.2)

where JRZ = ρ0

∫ r = r1

r = r0

∫ θ= π

θ= 0

∫ ϕ= 2π

ϕ= 0
r4 sin3 θ Ω dϕdθdr is the

total angular momentum of the radiative zone and LJ =

2π
∫ θ= π

θ= 0
r2FJ sin θdθ is the luminosity of angular momentum.

Hence we obtain

dJRZ

dt
= LJ(r0) − LJ(r1). (E.3)

In the case of an inward energy transport (ε = 1, corresponding
to the configuration of solar-type stars), tidal gravity waves are
excited at r = r1 and are totally dissipated before reaching the
radius r = r0. Hence we obtain

dJRZ

dt
=−LJ(r1). (E.4)

In the case of an outward energy transport (ε =−1, correspond-
ing to the massive and intermediate-mass stars’ configuration),
tidal gravity waves are excited at r = r0 and are totally dissipated
before reaching the radius r = r1. In this configuration, we have

dJRZ

dt
= LJ(r0). (E.5)

This means that we can compute the torque T applied to the
whole radiative zone with a single expression,

T =−εLJ,exc, (E.6)

where LJ,exc is the luminosity of angular momentum estimated in
the excitation region of tidal gravity waves.
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