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ABSTRACT

Context. Over the last two decades, a large population of close-in planets has been detected around a wide variety of host stars. Such
exoplanets are likely to undergo planetary migration through magnetic and tidal interactions.
Aims. We aim to follow the orbital evolution of a planet along the structural and rotational evolution of its host star, simultaneously
taking into account tidal and magnetic torques, in order to explain some properties of the distribution of observed close-in planets.
Methods. We rely on a numerical model of a coplanar circular star–planet system called ESPEM, which takes into account stellar
structural changes, wind braking, and star–planet interactions. We browse the parameter space of the star–planet system configurations
and assess the relative influence of magnetic and tidal torques on its secular evolution. We then synthesize star–planet populations and
compare their distribution in orbital and stellar rotation periods to Kepler satellite data.
Results. Magnetic and tidal interactions act together on planetary migration and stellar rotation. Furthermore, both interactions can
dominate secular evolution depending on the initial configuration of the system and the evolutionary phase considered. Indeed, tidal
effects tend to dominate for high stellar and planetary masses as well as low semi-major axis; they also govern the evolution of planets
orbiting fast rotators while slower rotators evolve essentially through magnetic interactions. Moreover, three populations of star–planet
systems emerge from the combined action of both kinds of interactions. First, systems undergoing negligible migration define an area
of influence of star–planet interactions. For sufficiently large planetary magnetic fields, the magnetic torque determines the extension
of this region. Next, planets close to fast rotators migrate efficiently during the pre-main sequence, which engenders a depleted region
at low rotation and orbital periods. Then, the migration of planets close to slower rotators, which happens during the main sequence,
may lead to a break in gyrochronology for high stellar and planetary masses. This also creates a region at high rotation periods and
low orbital periods not populated by star–planet systems. We also find that star–planet interactions significantly impact the global
distribution in orbital periods by depleting more planets for higher planetary masses and planetary magnetic fields. However, the
global distribution in stellar rotation periods is marginally affected, as around 0.5% of G-type stars and 0.1% of K-type stars may spin
up because of planetary engulfment. More precisely, star–planet magnetic interactions significantly affect the distribution of super-
Earths around stars with a rotation period higher than around 5 days, which improves the agreement between synthetic populations and
observations at orbital periods of less than 1 day. Tidal effects for their part shape the distribution of giant planets.
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1. Introduction

Since the detection of 51 Pegasi b by Mayor & Queloz (1995),
more than 4000 exoplanets have been detected. The observed
populations show a wide variety of host stars, orbital architec-
tures, planetary sizes, and masses. Moreover, because of the
biases of the most successful detection methods, namely, the
transit and radial velocity techniques, a majority of the discov-
ered planets orbit close to their host stars, whether they are
of mass comparable to that of Jupiter (forming the popula-
tion of hot Jupiters, e.g., Mayor & Queloz 1995; Henry et al.
2000; Charbonneau et al. 2000) or slightly larger than that of
the Earth (the so-called super-Earths, such as 55 Cnc e; see
Dawson & Fabrycky 2010). Close-in planets orbit in a dense
and magnetized medium, which leads to the emergence of star–
planet interactions that can affect the dynamics and evolution
of the orbital systems (Cuntz et al. 2000). In particular, angu-
lar momentum exchanges can occur between the planetary orbit
and the stellar spin, leading to migration of the planet. Poten-
tial signatures of these interactions may have been identified in

individual systems (e.g., HD 189733 ; see Dowling Jones et al.
2018; Cauley et al. 2018) as well as in the distribution of some
planetary populations. More precisely, McQuillan et al. (2013)
estimated the rotation period of 737 stars hosting Kepler objects
of interest using an auto-correlation method, and identified a
possible dearth of planets with orbital periods shorter than 2–
3 days around fast rotators (with a rotation period shorter than
10 days). Teitler & Königl (2014) first proposed that such a phe-
nomenon may be attributed to the engulfment of close-in planets
by their host stars through tidal interactions. Lanza & Shkolnik
(2014) suggested an alternative scenario based on secular pertur-
bations in multiplanet systems. These latter authors showed that
remote planets which are excited on a sufficiently eccentric orbit
around old stars may be tidally circularized on shorter orbits.
Furthermore, Walkowicz & Basri (2013) found a concentration
of massive planets with an orbital period equal to either the rota-
tion period of their host star or half that period, which could
be the signature of tidal interactions. In view of these different
aspects, understanding how compact systems form and evolve is
a key astrophysical question to be addressed.
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Fig. 1. Sketch of the main features and locations of interest involved in a star–planet system undergoing tidal and magnetic interactions. The planet
(in blue) orbits the star (in orange) with an orbital angular velocity n. As a result of the presence of a planet, the star presents a bulge misaligned with
the line joining the centers of the two celestial bodies, which induces a lag angle δ. This angle has been greatly exaggerated here for visualization
purposes (it is indeed much smaller than 1 degree in almost all cases). If the planetary mean motion is greater than twice the stellar rotation rate,
inertial waves cannot be excited in the stellar convective zone and no dynamical tide is raised within the convective envelope of the star (see the
purple area). The relative motion between the planet and the ambient wind (represented with orange arrows) leads to the formation of Alfvén wings
(orange lobes around the planet) if the planet is below the Alfvén radius (in blue). Beyond this distance, no Alfvén wings can connect the star and
the planet (see the gray area). For both tidal and magnetic interactions, a planet situated below the co-rotation radius (see the black dashed line)
undergoes an inward migration, and a planet situated beyond this distance migrates outwards. The relative position of the different orbits of interest
may vary depending on the initial configuration of the system considered.

The role of the protoplanetary disk in shaping the observed
structure of planetary systems is strongly emphasized in the
literature. Indeed, the disk structure and evolution have a sig-
nificant influence on the mass and semi-major axis distribution
of the young planets (e.g., Mordasini et al. 2009a,b). In particu-
lar, planet migration in the disk through Lindblad resonances is
thought to be efficient in shaping planetary systems (Baruteau
et al. 2014; Bouvier & Cébron 2015; Heller 2019). Moreover,
population synthesis models have been developed to better
understand the interplay between the properties of the disk and
the different processes shaping planetary systems (we refer the
reader to Mordasini 2018, for an extended review). The pre-
dicted distributions were then compared to Kepler observations
in order to constrain models of planetary formation and evo-
lution (Mulders et al. 2019). For a large range of multi-planet
system properties (e.g., orbital period ratios, mutual inclination,
position of the innermost planet), these synthetic populations
are in good agreement with Kepler global distributions, if
multiple interacting seed planet cores per disk are taken into
account.

After the dissipation of the disk, dynamical interactions,
in particular Kozai oscillations, may occur in multiplanet sys-
tems, leading to an intricate evolution of their orbital architecture
(Laskar et al. 2012; Bolmont et al. 2015). However, isolated
close-in planets can already suffer efficient migration because
of magnetic and tidal interactions with their host star. We con-
sider this simpler case in the present work, where we aim to
account for the variety of such star–planet interactions. We there-
fore consider a simplified system comprising a star and a single
planet on a circular orbit perpendicular to the stellar rotation

axis. One of the main physical processes acting in such a config-
uration are tidal interactions. These result from the gravitational
response of a star to the presence of a planet and play a key role
in the evolution of the orbital configuration of the system. Two
components arise from the stellar response: the hydrostatic non-
wavelike equilibrium tide, dissipated by turbulent friction (Zahn
1966; Remus et al. 2012; Ogilvie 2013), and the dynamical tide,
which consists in the excitation of waves inside the star by the
tidal potential as well as their dissipation. A dynamical tide can
exist in both radiative zones (through internal gravity waves,
Zahn 1975; Goldreich & Nicholson 1989; Goodman & Dickson
1998; Terquem et al. 1998) and convective zones (Ogilvie &
Lin 2007; Ogilvie 2013; Mathis 2015). We focus on the latter
in this study and leave a detailed investigation of internal grav-
ity waves to future work (Barker 2020; Ahuir et al. 2021). In
the stellar convective zone, if the orbital period of the planet
is longer than half of the stellar rotation period, inertial waves
restored by the Coriolis force are excited and dissipated in the
envelope of solar-type stars. Otherwise, inertial waves cannot be
excited and no dynamical tide is raised in the star (see the vio-
let area in Fig. 1). The associated dissipation, which depends on
stellar internal structure as it arises from the reflection of the
waves on the radiative core (Ogilvie 2013; Goodman & Lackner
2009; Mathis 2015), can be several orders of magnitude higher
than the dissipation of the equilibrium tide (Ogilvie & Lin 2007;
Bolmont & Mathis 2016). When tidal dissipation is taken into
account, the stellar response presents a delay and the associated
bulge is misaligned with the line joining the centers of the two
celestial bodies. This misalignment then induces a lag angle δ,
which increases with dissipation magnitude, and is at the origin
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of an exchange of angular momentum between the star and the
planet. Indeed, a net tidal torque is applied both on the planetary
orbit and on stellar rotation to reduce the angle δ. The position
of the planet with respect to the co-rotation radius (for which
n = Ω?, see the black dashed line in Fig. 1) then determines the
evolution of the system. If the planet is situated beyond this char-
acteristic distance, an outward migration makes it move away
from the host star, which then spins down. Otherwise the planet
migrates inward, moving closer to the spinning-up star. In the
latter case, the fate of the system is determined by the orbital
angular momentum Lorb of the planet and the stellar angular
momentum L?: if Lorb ≥ 3 L?, an equilibrium state is reached
where the angular velocities Ω? and n are synchronized. Oth-
erwise, the planet migrates too efficiently and it spirals towards
its host star until its disruption at the Roche limit (Hut 1980,
1981). It is important to note that such a condition is based on the
conservation of the total angular momentum of the star–planet
system. Damiani & Lanza (2015) derived a similar criterion by
taking into account magnetic braking. More generally, to provide
a realistic and complete equilibrium criterion, it is necessary to
take into account magnetic braking, angular momentum redis-
tribution within the star, and the various star–planet interactions
simultaneously.

Tidal interactions are modulated by the structural and rota-
tional evolution of the star. The stellar rotation rate generally
exhibits a complex evolution due to the initial disk–star inter-
action, the internal redistribution of angular momentum within
the star during contraction phases, and the angular momen-
tum extraction by the stellar wind (e.g. Weber & Davis 1967;
Skumanich 1972; Kawaler 1988; Matt et al. 2012; Réville et al.
2015a). As this intricacy may significantly affect the evolution of
a given star–planet system, it is necessary to take such processes
into account as much as possible. This requires models cali-
brated on gyrochronology and rotational distributions in open
clusters (Gallet & Bouvier 2015; Matt et al. 2015), leading up to
general frameworks combining stellar rotation, wind, and mag-
netism (Johnstone et al. 2015; Ahuir et al. 2020). Past studies
have taken these constraints into account to some extent. For
instance, Zhang & Penev (2014) relied on the two-layer rota-
tional model of MacGregor & Brenner (1991) and a constant
tidal dissipation to deal with the secular evolution of star–planet
systems, and subsequently adopted a statistical approach to their
numerical simulations in order to apply constrains to tidal the-
ory. Bolmont & Mathis (2016) then first incorporated the effects
of dynamical tide in stellar convection zones and studied their
impact on the secular evolution of star–planet systems by con-
sidering a one-layer rotational model for the central star. More
recently, Benbakoura et al. (2019) performed a study based on the
amalgamation of the two previous studies, taking a bi-layer struc-
ture for the star and both the equilibrium and dynamical tides
into account. This allowed them to provide a criterion for plan-
etary engulfment due to tidal effects, taking into account stellar
evolution. They were also able to characterize the influence of
such a phenomena on the rotation of the host star. In parallel,
Gallet et al. (2018) and Gallet & Delorme (2019) relied on a simi-
lar model to investigate the rotational evolution of planet-hosting
stars in open clusters (in particular in the Pleiades) in more
detail, which allowed them to assess some limits of gyrochronol-
ogy (Barnes 2003). Finally, the evolution of star–planets system
under tidal interactions during the red giant phase has also been
extensively investigated (Privitera et al. 2016a,b; Meynet et al.
2017; Rao et al. 2018).

However, in past studies, tidal effects and magnetism have
not been taken into account together systematically (apart from

wind braking). Bouvier & Cébron (2015) first explored the
possibility that tidal and magnetic interactions may compete
with accretion and contraction in the case of a close-in planet
embedded in a disk. Furthermore, after the dissipation of the
latter, star–planet magnetic interactions may occur because of
the relative motion between the planet and the ambient wind at
the planetary orbit (represented with orange arrows in Fig. 1).
If the planet is below the Alfvén radius (at which the wind
velocity is equal to the local Alfven speed; see the blue line
in Fig. 1), the magnetic torque applied to the planet can lead
to efficient transport of angular momentum between the planet
and the star through the so-called Alfvén wings (Neubauer 1998,
see the orange lobes around the planet in Fig. 1). Beyond the
Alfvén radius, the wind becomes superalfvénic. In this case,
Alfvén wings may still exist but do not connect back the star
(see the gray region in Fig. 1). In this case, the planet may
transfer energy and angular momentum to the ambient wind
instead. In the context of close-in planets, we only consider here
the subalfvenic scenario. Several regimes then appear depend-
ing on the star–planet configuration (Strugarek 2017). If Alfvén
waves have enough time to go back and forth between the star
and the planet before the magnetic field lines slip through the
planet, the interaction acts as a unipolar generator, leading to the
so-called unipolar interaction (Laine et al. 2008; Laine & Lin
2012). In the opposite case, magnetic interactions between the
planet and the star still occur and the interaction becomes dipo-
lar (Saur et al. 2013; Strugarek et al. 2015; Strugarek 2016). As
the relative motion between the planet and the ambient wind is
at the origin of the subsequent magnetic torques, these are then
expected to act in the same way as tidal effects in most cases.
The co-rotation radius then plays a determining role in plane-
tary migration in both cases. Many other notable effects, such as
anomalous emissions or planet inflation, may result from star–
planet magnetic interactions (we refer the reader to Lanza 2018,
for a recent review). Strugarek et al. (2017) performed a first
study on planetary migration taking into account tidal and mag-
netic torques simultaneously. In particular, they computed the
migration timescale of the planet for both contributions, find-
ing that both effects could play a key role depending on the
characteristics of the star–planet system considered. Thus, fol-
lowing the orbital evolution of a planet along the rotational and
structural evolution of the host star by taking into account the
coupled effects of tidal and magnetic torques is essential to better
understanding the evolution of star–planet systems. Furthermore,
synthesizing planetary populations by taking into account the
whole variety of star–planet interactions to explain the observed
distributions of exoplanets still has to be performed.

Following Strugarek et al. (2017) and Benbakoura et al.
(2019), the main goal of this work is to assess the relative con-
tribution of both tidal and magnetic interactions on the secular
evolution of star–planet systems, and to investigate the role of the
associated torques in shaping the distributions of planetary pop-
ulations. In Sect. 2, we present the hypotheses of our study, detail
the interactions involved in our modeled star–planet systems, and
describe the modeling approach used in this work. In Sect. 3, we
investigate the influence of the main characteristics of a star–
planet system (e.g., stellar mass, stellar magnetism, semi-major
axis, planetary type, etc.) on its secular evolution by assess-
ing the relative contribution of magnetic and tidal torques. All
these parameters are then taken into account simultaneously in
Sect. 4 in order to classify planetary populations emerging from
the action of star–planet interactions and to highlight regions of
interest resulting from their evolution. Populations of star–planet
systems are then synthesized in Sect. 5 and are confronted with
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a statistical distribution obtained from Kepler data. All of those
results are then summarized, discussed, and put into perspective
in Sect. 6.

2. Star–planet interaction model

2.1. ESPEM: an overview

ESPEM (French acronym for Evolution of Planetary Systems
and Magnetism; see Benbakoura et al. 2019) is a numerical code
computing the secular evolution of a star–planet system by fol-
lowing the semi-major axis of the planetary orbit as well as the
stellar rotation rate. Furthermore, we assume here a coplanar and
circular orbit, and a synchronized planetary rotation, as the reser-
voir of angular momentum of the planet is less important than
the one in its orbit (Guillot et al. 1996). In this model, we con-
sider a two-layer solar-type star composed of a radiative core
and a convective envelope. Tidal dissipation is only considered
in the stellar envelope in this work. The core is interacting with
the envelope through internal coupling, and the latter exchanges
angular momentum with the orbit through tidal and magnetic
interactions (SPMI). Moreover, the whole system loses angular
momentum through magnetic braking by the stellar wind. Hence,
the angular momentum of the planetary orbit, Lorb, the stellar
convective zone, Lc, and radiative zone, Lr, are evolved by the
following system of equations:

dLorb

dt
= −Γtide − Γmag (1)

dLc

dt
= Γint + Γtide − Γwind + Γmag (2)

dLr

dt
= −Γint, (3)

where Γint is the internal torque, coupling the core and the
envelope of the star, Γwind is the wind-braking torque, and Γtide
and Γmag are the tidal and MHD torques between the star and
the planet, respectively. A schematic global view of the system
studied by ESPEM is provided in Fig. 2.

2.2. Stellar structure and evolution

Stellar structure and evolution are taken into account in ESPEM
during the pre-main sequence (PMS) and the main sequence
(MS). The internal structure of the star, especially the radii, the
masses, and the moments of inertia of radiative and convective
zones are provided at each ESPEM time-step through grids pre-
computed with the stellar evolution model STAREVOL (Siess
et al. 2000; Palacios et al. 2006; Amard et al. 2016, 2019).

The coupling between the radiative zone and the convective
zone following the model proposed in MacGregor & Brenner
(1991) is taken into account as an exchange of angular momen-
tum allowing the synchronization of their spins on a character-
istic timescale τc−e, which is determined by internal transport
processes in the radiative core (Brun & Zahn 2006; Mathis 2013;
Aerts et al. 2019) as well as the effective coupling between the
radiative and the convective zones (Brun et al. 2011; Strugarek
et al. 2011). The amount of angular momentum to be transferred
between the two layers of the star to equilibrate their angular
velocities can be expressed as

∆L =
IrIc

Ir + Ic
(Ωr −Ωc) , (4)

Convective
envelope

Radiative 
core

Γmag

Γtide

Γwind

Fig. 2. Schematic view of the system and its interactions (adapted from
Benbakoura et al. 2019). The radiative core (in yellow) and the convec-
tive envelope (in orange) exchange angular momentum (green arrows).
Stellar wind carries away angular momentum from the envelope and
spins the star down (purple arrows). Stellar rotation and planetary
orbit are coupled through tidal (red arrows) and magnetic effects (blue
arrows).

where Ir,Ωr are the moments of inertia and the rotation rate
of the core, and Ic, Ωc are the same quantities assessed in the
envelope.

Moreover, the expansion of a radiative core during the PMS
involves a rapid conversion of convective state to radiative state
(Emeriau-Viard & Brun 2017). During this transition phase, a
significant mass transfer occurs, which is accompanied by a
transport of angular momentum. This way, the coupling between
the core and the envelope can be modeled as a torque with two
components applied to the convective zone:

Γint =
∆L
τc−e

− 2
3

Rr
2Ωc

dMr

dt
, (5)

where Mr and Rr are the mass and radius of the radiative core.
The coupling timescale τc−e is a free parameter of our model and
has been calibrated with the Gallet & Bouvier (2015) study as
follows:

τc–e (Myr) = 3.05
(

M?

M�

)−5.02 (
Prot,c

Prot,�

)0.67

, (6)

where M? is the stellar mass and Prot,c is the rotation period of
the stellar convective zone. Star–disk interaction is taken into
account in a simplified way at the beginning of the PMS by
assuming a constant surface rotation rate during the disk’s life-
time, which is also fixed by the Gallet & Bouvier (2015) study
as

τdisk [Myr] = 13.41
(

Prot,c

Prot,�

)−0.56

. (7)

During this phase, the semi-major axis of the planet is assumed
to be constant and the rotation of the radiative zone is only
constrained through internal coupling. We focus here on the evo-
lution after the disk dissipation. A more precise treatment of the
early phase could be added in future works (Bouvier & Cébron
2015; Gallet et al. 2019).
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2.3. Wind braking torque

The wind braking torque is given in our model by Matt et al.
(2015):

Γwind = Γ�

(
R?

R�

)3.1 (
M?

M�

)0.5 (
Ro
Ro�

)−2 (
Ωc

Ω�

)
, Ro > Rosat, (8)

Γwind = Γ�

(
R?

R�

)3.1 (
M?

M�

)0.5 (
Rosat

Ro�

)−2 (
Ωc

Ω�

)
, Ro ≤ Rosat, (9)

with Γ� = 6.3× 1030 erg. Such a prescription allows us to
account for the mass and age dependencies of the distribution
of stellar rotation periods in open clusters (Rodríguez-Ledesma
et al. 2009; Agüeros et al. 2011) and in the sample of stars
observed by the Kepler satellite (McQuillan et al. 2014). We
use the stellar Rossby number for simplicity purposes, expressed
as

Ro =
Prot,c

τc
, (10)

where Prot,c is the rotation period of the stellar convective zone
(see Landin et al. 2010; Brun et al. 2017, for a discussion on
the various definitions found in the literature). The convective
turnover time τc can be assessed with the Sadeghi Ardestani et al.
(2017) prescription:

log10 τc [s] = 8.79 − 2| log10(mCZ)|0.349 − 0.0194 log2
10(mCZ)

− 1.62 min
[
log10(mCZ) + 8.55, 0

]
, (11)

where mCZ is the mass of the convective envelope normalized
to the stellar mass. The formulation obtained by these latter
authors has the advantage of being valid during the pre-main
sequence and the main sequence for metallicities ranging from
[Fe/H] = −0.5 to 0.5 and was obtained with the CESAM stel-
lar evolution code (Morel & Lebreton 2008). Their prescription
leads to a solar value of Ro� = 1.113 and a saturation value of
Rosat = 0.09.

Figure 3 shows the typical rotational evolution obtained with
our model for isolated stars. We show our results for three stellar
masses, and for three initial rotation periods (1.4, 5, and 8 days)
covering fast, median, and slow rotators from Gallet & Bouvier
(2015). The initial rotation spread is reduced over the MS as all
the stars converge towards a sequence where their rotation rate is
fully determined by their age and mass (Barnes 2003). As seen in
the top panel, solar-mass stars spin down to reach the solar rate at
the solar age whereas less-massive stars reach a lower rotation at
the same age. A steeper evolution of the stellar rotation rate com-
pared to the Skumanich law occurs for each stellar mass because
of the core-envelope coupling, in accordance with the Gallet &
Bouvier (2015) results, as the angular momentum stored in the
radiative zone is redistributed on secular timescales.

2.4. Planetary properties

We consider in our model a planet of mass Mp, ranging between
0.5 and 1589 M⊕ (corresponding to 5 MJup), and a radius Rp. It
is assumed to be punctual and its rotation is synchronized with
its orbit. Furthermore, we adopt the probabilistic mass–radius
relations proposed by Chen & Kipping (2017) based on a sample

100

101

102

/

M = 1 M

100

101

102

/

M = 0.8 M

106 107 108 109 1010

Age (yr)

100

101

102

/
M = 0.5 M

Fig. 3. Secular evolution of the rotation rate of the convective envelope
(solid lines) and of the radiative core (dashed lines) for stars with a mass
M? = {1, 0.8, 0.5} M� (from top to bottom). Slow (orange), median
(light blue), and fast (dark blue) rotators are considered. The solar rota-
tion rate at solar age is represented by a black circle in each panel. The
dots with error bars correspond to the 25th, 50th, and 90th percentiles of
rotational distributions of observed stellar clusters published by Gallet
& Bouvier (2015). In black: Skumanich law normalized to the Sun.

of well-constrained planets:

Rp ∝


M0.28
p , Mp < 2.0 M⊕ (6.29× 10−3 MJup)

M0.59
p , 2.0 M⊕ ≤ Mp < 0.4 MJup

M−0.04
p , Mp ≥ 0.4 MJup.

(12)

Recent studies show that the distribution of planetary radii in the
Kepler sample presents a gap between 1.5 R⊕ and 2 R⊕ (Fulton
et al. 2017). Such a bimodality in the distribution may be due
to photoevaporation which may drive atmospheric mass loss on
close-in planets. If so, the gap would originate from a discrep-
ancy between planets with H/He envelopes of small mass and
bare rocky cores. In this first statistical study, as such a feature
does not appear in the star–planet sample we have considered (we
refer the interested reader to Sect. 5.1 for more details), the incor-
poration of this radius valley in our model is left for future work.
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The equatorial field at the planetary surface Bp, which is
of prime importance in star–planet interactions, is by default
assumed to be constant. Nevertheless, this is varied in Sect. 3.3.

2.5. Tidal effects

Tidal interactions lead to an angular momentum exchange
between the star and the planet, which can be translated into a
tidal torque applied to the stellar envelope (Murray & Dermott
1999; Benbakoura et al. 2019):

Γtide = −sign(ωtide)
9

4Q′
GM2

p

a6 R5
?, (13)

where Mp is the planetary mass, R? the stellar radius, G the
gravitational constant, a the semi-major axis, ωtide = 2(Ωc − n),
which is the tidal frequency in the case of a planet with a circu-
lar orbit and a synchronized rotation, and n is the mean motion
of the planetary orbit. The equivalent quality factor Q′ takes
into account the nature and the efficiency of tidal dissipation
as a function of the internal structure and rotation of the star.
Here, it is used to describe the so-called equilibrium (Zahn 1966;
Remus et al. 2012) and dynamical tides (Ogilvie 2013; Mathis
2015). We now summarize their treatment (we refer the reader to
Benbakoura et al. 2019, for a more detailed description).

The equilibrium tide is taken into account in ESPEM by
following the Hansen (2012) prescription, relying on a con-
stant value for the dimensionless dissipation factor σ̄? along the
evolution of the system. This quantity is calibrated using obser-
vations and leads to the quality factor (Bolmont & Mathis 2016)

Q′eq =
3
2

1
σ0σ̄?

G
R5
?|ωtide|

, (14)

where σ0 =

√
G/(M�R7

�). In this work, the value of σ̄?, which
decreases with stellar mass, is taken from Fig. 3 of Hansen
(2012). Such a formulation provides the same order of magnitude
as prescriptions derived from physical models (for two different
approaches, see Strugarek et al. 2017; Barker 2020).

The dynamical tide, and more precisely the dissipation of
tidal inertial waves (governed by the Coriolis acceleration)
within the convective zone, is based on the prescription of
Ogilvie (2013) and Mathis (2015), who introduced a frequency-
averaged effective constant tidal quality factor. Indeed, when
computing the frequency dependence of the tidal torque due to
tidal inertial waves in stellar convection zones (see e.g., Ogilvie
& Lin 2007), its frequency dependence is highly resonant and
erratic. This complex behavior relies on the physics of the fric-
tion applied by the turbulent convection on tidal inertial waves
(e.g., Ogilvie & Lin 2004; Auclair-Desrotour et al. 2015); works
are ongoing to improve its complex modeling (Duguid et al.
2020). Therefore, as explained in Sect. 4.2 of Benbakoura et al.
(2019), a consistent treatment of the frequency dependence of the
torque induced by tidal inertial waves would require a coupling
of ESPEM with 2D hydrodynamical computation of tidal iner-
tial modes at each time-step, which is beyond the scope of this
work and would also not allow us to explore the broad parameter
space describing the diversity of star–planet systems.

To get an order of magnitude of this dissipation for a given
stellar mass, age, and rotation, we perform the frequency average
of the dissipation as proposed and described in Ogilvie (2013),
Mathis (2015), and Barker (2020) which provides us with good
trends when compared with observational constraints. In the case

of a two-layer star, the formulation of the frequency-averaged
tidal dissipation Q′dyn

1 provided by these latter authors gives

3

2Q′dyn

=
100π

63

(
Ωc

Ωcrit

)2 (
α5

1 − α5

)
(1 − γ)2(1 − α)4

×
(
1 + 2α + 3α2 + 3

2α
3
)2 [

1 +
(

1−γ
γ

)
α3

]
[
1 + 3

2γ + 5
2γ

(
1 + 1

2γ − 3
2γ

2
)
α3 − 9

4 (1 − γ)α5
]2 ,

(15)

where α =
Rr

R?
, β =

Mr

M?
, and γ =

α3(1 − β)
β(1 − α3)

. The latter quantity

corresponds to the ratio of the density of the envelope to that of

the core. Ωcrit =

√
GM?/R3

? is the critical angular velocity of
the star. Such a contribution will affect the secular evolution of
the system if inertial waves are likely to be excited by the tidal
potential, i.e., Porb >

1
2 Prot (Bolmont & Mathis 2016). The total

quality factor Q′, accounting for the sum of the tidal dissipation,
is then given by:

1
Q′

=
1

Q′eq
+

1

Q′dyn

. (16)

2.6. Magnetic star–planet interactions

When a planet orbits in a magnetized medium, MHD distur-
bances propagate away from the planet vicinity while transport-
ing energy and angular momentum, forming the so-called Alfvén
wings (Neubauer 1998; Saur et al. 2013). Two Alfvén wings are
always produced. Depending on the magnetic topology and the
alfvenic Mach number of the interaction, one, both, or neither
of the two may reach back to the star (for more details, see
Strugarek et al. 2015). If Alfvén waves do not have enough time
to travel back and forth between the star and the planet before the
magnetic field lines slip through the planet, the magnetic inter-
action is dubbed dipolar (Saur et al. 2013; Strugarek et al. 2015;
Strugarek 2016). Otherwise the interaction becomes unipolar
(Laine et al. 2008; Laine & Lin 2012).

The existence of Alfvén wings results in a magnetic torque
applied to the planet. Assuming the planet possesses a magne-
tosphere, it can be written as a drag torque (Strugarek 2016):

Γmag = −sign(ωmag)cd

(
A0Mβ

a Λα
P πR2

p

)
ptot a, (17)

where cd ≈ Ma/
√

1 + M2
a is a drag coefficient representing the

efficiency of the magnetic reconnection between the wind and
the planetary magnetic fields, Ma is the alfvenic Mach number
in the frame rotating with the planet, and ΛP = (B2

p/2µ0)/ptot is
the ratio between the planetary magnetic pressure and the total
pressure of the ambient wind at the planetary orbit. ωmag corre-
sponds to the difference between the rotation rate of the ambient
wind and the planetary mean motion. As the wind is in a first
approximation co-rotating with the star below the Alfvén radius,
one can assume that ωmag and ωtide have the same sign in the
vast majority of cases. In the case of close-in planets, the total
wind pressure can be approximated by the magnetic pressure of

1 We refer the reader to Eq. (1) from Mathis (2015) as well as the
Appendix B from Ogilvie (2013) for an explicit definition of such an
average.
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the wind (Réville et. al. 2015b). The quantities A0, α, β are deter-
mined from a set of 3D MHD simulations in Strugarek (2016).
Only the case of a planetary dipole aligned with the stellar mag-
netic field at the planetary orbit is considered from now on in
our model. Such a configuration, which maximizes the torque,
gives A0 = 10.8, α = 0.28, β = −0.56. This way, the consid-
ered torque provides an upper bound of the influence of magnetic
effects on planetary migration in the dipolar regime.

The dipolar interaction regime considered here is likely to
be realized in most compact star–planet systems. Generally, for
planets sustaining a magnetosphere against the ambient pressure,
alfvenic perturbations do not have enough time to travel back
and forth between the star and the planet before the magnetic
field line slips around the planet, unless the planetary magne-
tosphere of the planet is sufficiently large (comparable to the
size of the Sun; see Strugarek 2017, for an extensive review
of star–planet magnetic interactions). In the case of a weakly
magnetized planet, the time-dependent component of the stel-
lar magnetic field is either dissipated in the planetary interior
or screened by the magnetic field induced by large surface cur-
rents, depending on the planetary resistivity. Therefore, we only
consider the steady component of the stellar magnetic field. In
this configuration, if the planetary diffusivity is sufficiently high,
the time-independent component of the stellar magnetic field is
efficiently dissipated inside the planet, creating a true magnetic
cavity in the planetary interior. The dipolar regime is found to
generally hold in this case. Otherwise, if magnetic diffusivity is
sufficiently low, the magnetic field lines are frozen in the planet
interior and dragged with the orbital motion of the planet. In that
case, propagating Alfvén waves can generally reach back to the
planet, and the interaction becomes unipolar. Such a configura-
tion has been extensively treated by Laine et al. (2008), Laine &
Lin (2012) and is found to lead to far stronger magnetic torques
than for the dipolar regime (typically 4 or 5 orders of magnitude;
see Strugarek et al. 2017). More complex situations can occur
depending on the conductive properties of the planet material
and its degree of ionization. As the transition between the unipo-
lar and the dipolar regimes is still poorly understood, we focus
in this work on the dipolar regime, which is more likely to occur
in exosystems, and leave the study of the unipolar regime to a
future study.

In this context, if the planet is not able to sustain a magneto-
sphere, we consider in this work that it screens the surrounding
wind magnetic field, which leads to a dipolar star–planet inter-
action. The effective area of the planetary obstacle then corre-
sponds to the geometrical cross-section of the planet. Hence-
forth, we rely on the following prescription for the dipolar torque:

Γmag =

−sign(ωmag)Ma√
1 + M2

a

(
10.8M−0.56

a Λ0.28
P

)
πR2

p ptota, ΛP > 1.

−sign(ωmag)Ma√
1 + M2

a

πR2
p ptota, otherwise. (18)

Star–planet magnetic interactions occur because of the relative
motion between the planet and the ambient wind at the planetary
orbit. We must therefore estimate the radial profiles of the main
characteristics of the wind, such as its velocity or its density. To
this end, we incorporate a 1D isothermal magnetized wind model
in ESPEM (see Lamers & Cassinelli 1999; Preusse et al. 2005;
Johnstone 2017, for an extensive description of the model). Such
a modeling requires knowledge of the temperature Tc and density
nc at the base of the wind. For consistency with the observational

constraints on stellar rotation, wind, and magnetism, we rely on
the Ahuir et al. (2020) prescriptions for those quantities. More
precisely, as the stellar magnetic field measured from Zeeman
broadening and Zeeman-Doppler imaging (see Montesinos &
Jordan 1993; Vidotto et al. 2014; See et al. 2017) have only exhib-
ited linear or super-linear dependencies between the large-scale
magnetic field and the Rossby number, we consider for the sake
of simplicity the following scaling law to assess the magnetic
field at the stellar surface B? (Ahuir et al. 2020):

B? [G] = 2.0
(

Ro
Ro�

)−1 (
M?

M�

)−1.76

, Ro > Rosat. (19)

This leads to the following expressions for the coronal properties
(Ahuir et al. 2020):

Tc [MK] = 1.5
(

Ro
Ro�

)−0.11 (
M?

M�

)0.12

, Ro > Rosat, (20)

nc [cm−3] = 7.25× 107
(

Ro
Ro�

)−1.07 (
M?

M�

)1.97

, Ro > Rosat. (21)

Stellar magnetic field as well as wind temperature and density are
assumed to be independent of the Rossby number in the rotation-
saturated regime (Ro ≤ Rosat).

For the sake of simplicity as well as to provide an upper
bound on magnetic effects in the dipolar regime, we assume that
the planet is located in an open field region. The stellar magnetic
field is then assumed to be radial. For more complex topologies,
the magnetic field decays faster with distance to the star, which
reduces the efficiency of the star–planet magnetic interactions
accordingly.

3. Tidal and magnetic interactions: an evolutive
approach of star–planet systems

3.1. Outline of star–planet secular evolution

3.1.1. Planet migration: reference case

We now aim to investigate the influence of the main proper-
ties of a star–planet system on its secular evolution by assessing
the relative contribution of tidal and magnetic torques. Such an
approach allows us to study star–planet magnetic interactions
from a dynamical and evolutive point of view and to compare
the associated results to the Strugarek et al. (2017) study, which
relied on the instantaneous migration timescale of the planet. For
the sake of simplicity, we use a reference case to investigate the
influence of each parameter of our model on the secular evo-
lution of star–planet systems. We consider a young star–planet
system formed by a fast-rotating K star orbited by a strongly
magnetized hot Neptune whose main features are presented in
Table 1.

3.1.2. Secular evolution of a reference star–planet system
and influence of initial semi-major axis

We summarize the secular evolution of our reference system in
Fig. 4. The top panel shows the evolution of the semi-major axis
of the planetary orbit and the bottom panel the tidal and mag-
netic torques applied to the planet (see the thick curves in the
figure). Our reference model thus shows an outward migration
of the planet after the disk dissipation (gray area on the left),
followed by an inward migration after t∼ 350 Myr. This change
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Table 1. Star–planet parameters of the reference case.

Star Planet

M? = 0.8 M� Mp = 0.1 MJup
Prot,ini = 1.4 days aini = 0.035 AU

Bp = 10 G
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aini = 0.035 AU
aini = 0.045 AU

Fig. 4. Secular evolution of a star–planet system formed by a
fast-rotating K star (M? = 0.8 M�, Prot,ini = 1.4 days) orbited by
a strongly magnetized hot Neptune (Mp = 0.1 MJup, Bp = 10 G)
for four different initial semi-major axes: aini = 0.019 AU,
0.025 AU, 0.035 AU, 0.045 AU (dark to light colors). The thick
curves correspond to our reference case discussed in Sect. 3.1.1 with
aini = 0.035 AU. Top panel: semi-major axis (solid lines), co-rotation
radius of the star (black dashed lines), and limit of excitation of
the dynamical tide (black dotted lines). Wind braking + tides are
shown in shades of red; wind braking + tides + magnetic effects are
shown in shades of blue. The gray bands on the left correspond to
the disk-locking phase. The cavity formation limit, corresponding to
Λp = 1, is shown in green. Bottom panel: tidal (shades of red) and
magnetic (shades of blue) torques in the case of an evolution with all
the combined interactions. The red circles correspond to the crossing
of the dynamical tide excitation limit by the planet.

occurs when the co-rotation radius rcorot = (GM?/Ω
2
c)1/3 (for

which the orbital period is equal to the rotation period of the
stellar envelope; see the black dashed line in Fig. 4) crosses the
orbital distance. Indeed, the co-rotation radius varies through-
out the life of the system in a similar way to the stellar rotation
rate (see Fig. 3): during the PMS, while the star is contracting,
the induced spin-up leads to a decrease in the co-rotation radius;
and after the ZAMS, as the stellar structure has stabilized, stel-
lar wind spins the star down, leading to an increase in rcorot. The
limit of excitation of the dynamical tide, defined as Porb = 1

2 Prot,
evolves in the same way (see the black dotted line in Fig. 4).

The initial outward migration in our reference model can
be attributed to the dynamical tide. As the star–planet system
reaches higher semi-major axis (near the ZAMS), the dissipa-
tion of inertial waves becomes less and less effective (see the red
curves in the bottom panel). The secular evolution of the sys-
tem is then driven by magnetic torques (in blue), which leads
to a more efficient inward migration after 100 Myr compared
to a system evolving through tidal effects only (in red in the
top panel of Fig. 4), no longer evolving significantly at older
ages. Interestingly, the tidal torque drops by two orders of magni-
tude when the planet then crosses the dynamical tide excitation
limit (see bottom panel of Fig. 4) as the equilibrium tide then
remains the only contributor. However, because the magnetic
torques already dominate during that phase, this does not affect
the overall evolution of the system.

We finally also track the limit of formation of a planetary
magnetosphere, corresponding to Λp = 1, as a limit orbital dis-
tance acav below which, in our model, a magnetic cavity is
formed around the planet. Within our model hypotheses (see
Sect. 2.6), this limit can be expressed as

acav = R?

(
B?
Bp

) 1
2

. (22)

As we consider a constant planetary magnetic field, acav evolves
in the same way as the magnetic field at the stellar surface. In
the case of our reference system, the orbital semi-major axis is
always beyond the cavity formation limit (green curve), which
means that the planet is able to sustain a magnetosphere through-
out the whole ESPEM simulation. This will be generally the
case in what follows, and we highlight the special cases when
a magnetic cavity is formed and influences the secular evolution.

We now focus on the influence of the initial semi-major axis
on the secular evolution of the system. To this end, we vary
the initial semi-major axis of our reference case by considering
aini = 0.019, 0.025, 0.035, and 0.045 AU. For the three highest
values of aini, only outward migration occurs initially as they
orbit outside the co-rotation radius. Remote planets migrate less
efficiently because both tidal and magnetic torques decrease with
higher semi-major axis (from dark to light colors in Fig. 4). How-
ever, an increase in the initial semi-major axis by a factor of 1.8
leads to a decrease in the magnetic torque by a factor of 2.5 and a
drop in tidal torque by at most a factor of 30 when the dynamical
tide dominates. Hence, for planets that are able to sustain a mag-
netosphere, the tidal torque presents a higher sensitivity to the
orbital distance than the magnetic torque, which means that for
remote planets the secular evolution will likely be dominated by
magnetic torques for a higher fraction of the system’s lifetime. In
the case of aini = 0.019 AU, the planet is initially located below
the co-rotation radius and beyond the tidal excitation limit. The
planet therefore migrates inward efficiently because of the rise
in dynamical tide until it is engulfed very early on, after about
5 Myr (which explains why evolutionary tracks are so short in
that case). In this case, the dynamical tide is so efficient that the
addition of magnetic torques does not change the already fast
evolution of the star–planet system.

In what follows we assess the sensitivity of the secular evo-
lution of a given system to the free parameters of the ESPEM
model, namely aini, Prot,ini, M?, Mp, and Bp. To this end, we
focus on characterizing the time at which the co-rotation radius
exceeds the semi-major axis of the orbit. This gives us as a first
idea of the sensitivity of our model to the initial conditions and
physical prescriptions we chose. For instance, we have seen that
the crossing of the co-rotation radius can be delayed by hundreds
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of millions of years when the initial semi-major axis varies from
0.025 AU to 0.045 AU. We also found that the addition of mag-
netic torque to the tidal torques induces a delay of the order of
10 Myr in our reference case. Let us now characterize the sensi-
tivity of our model to stellar (Sect. 3.2) and planetary (Sect. 3.3)
parameters.

3.2. Influence of stellar parameters on planet migration

3.2.1. Influence of initial stellar rotation and stellar mass

We now investigate the influence of stellar rotation and stel-
lar mass on the evolution of a star–planet system. The relative
contribution of magnetic and tidal torques depending on the
instantaneous stellar rotation is presented in Appendix B. To
highlight the role of initial stellar rotation on the fate of the
system, we consider models rotating initially slower than our
reference case, that is Prot,ini = 2.67 and 5 days.

The first striking effect of the initial stellar rotation period
is that the planet is generally always closer to its host along the
secular evolution for slower initial rotators. Indeed, our reference
model shows a first phase of outward migration, followed by an
inward migration after the crossing of the co-rotation radius. If
a star rotates slowly initially, the first outward migration phase
is very inefficient because both the tidal torque and the stel-
lar magnetic field (and thus the magnetic torque) are small. On
the contrary, the late inward migration phase is as efficient in
all cases as stars converge on the same rotational tracks on the
main sequence and therefore the magnetic torques that domi-
nate the evolution here are of comparable amplitude. We note
that planetary migration is negligible in the tidal case alone (in
red in the upper panel) for the two slowest rotations. Indeed, as
the dynamical tide is raised in this configuration, higher stellar
rotation periods result in lower values of the tidal torque. How-
ever, in both cases, the addition of the magnetic torque affects
the secular evolution. We also considered the particular case
where the planet is initially situated exactly at the co-rotation
orbit (Prot,ini = 2.67 days); it weakly migrates outwards after the
dissipation of the disk (see the gray shaded area in Fig. 5) as
the star contracts and spins up, before the system evolves in the
same way as our reference case, albeit with less efficient plane-
tary migration. The tidal torque is indeed an order of magnitude
lower, allowing the magnetic torque to dominate at all times. By
taking magnetic interactions into account, a typical variation of
Prot,ini (from 1.4 to 5 days) leads to a delay in the crossing of the
co-rotation radius of around 100 Myr.

To investigate the influence of stellar mass on tidal and mag-
netic torques, we now consider our reference case for three
different stellar masses: M? = 0.5, 0.8, and 1 M�. As shown in
the top panel of Fig. 6, the co-rotation radius, the tidal excitation
limit and the semi-major axis have an overall similar evolu-
tion as in Sect. 3.1.1 due to the initial conditions adopted. The
planet, initially beyond the co-rotation radius, undergoes an out-
ward migration through the dynamical tide in all cases. Near the
ZAMS, the secular evolution of the system is driven by magnetic
torques in all cases as well (in blue in the top panel of Fig. 6).

In the tidal case alone (in red in the top panel of Fig. 6),
the planet undergoes a more efficient migration around more
massive stars at the beginning of the evolution. After dozens of
millions of years, migration becomes negligible. Indeed, during
the PMS, higher mass stars undergo a stronger tidal torque (in
red in the bottom panel). Then, as the stellar structure has stabi-
lized around the ZAMS, stellar spin-down leads to a continuous
decrease in tidal dissipation towards the end of the evolution,
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Fig. 5. Secular evolution of a star–planet system formed by a K star
(M? = 0.8 M�) orbited by a strongly magnetized hot Neptune (aini =
0.035 AU, Mp = 0.1 MJup, Bp = 10 G) for three different initial stel-
lar rotation periods: Prot, ini = 1.4 days, 2.67 days, 5 days (dark to light
colors). The thick curves correspond to our reference case discussed in
Sect. 3.1.1. Top panel: semi-major axis (solid lines), co-rotation radius
of the star (black dashed lines). Wind braking + tides are shown in
shades of red; wind braking + tides + magnetic effects are shown in
shades of blue. The gray bands on the left correspond to the disk lock-
ing phase. Bottom panel: tidal (shades of red) and magnetic (shades of
blue) torques in the case of evolution with all the combined interactions.
The white squares correspond to the ZAMS and the red circles to the
crossing of the dynamical tide excitation limit by the planet.

varying weakly with stellar mass. In the presence of magnetic
interactions, planetary migration is found to be more and more
efficient as stars are less massive. Indeed, those have a higher rel-
ative convective mass, a smaller Rossby number (Eqs. (10)–(11)),
and thus a stronger stellar magnetic field. This tends to enhance
the stellar wind flow as well as star–planet magnetic interactions
for low-mass stars. The magnetic torque then significantly affects
the later evolution of the semi-major axis and tends to dominate
the tidal torque over a longer phase (in blue in the top panel of
Fig. 6). More precisely, when magnetic interactions overcome
their tidal counterparts (at t∼ 30 Myr for M? = {0.8, 1} M�, and
immediately after the dissipation of the disk for M? = 0.5 M�),
the three evolutions behave similarly until the crossing of the
co-rotation radius. Indeed, the magnetic torque depends weakly
on stellar mass during the PMS and the beginning of the MS.
As less massive stars have a lower co-rotation radius, the planet
undergoes an outward migration during a longer phase. This
allows it to reach larger semi-major axes for low values of M?.

A typical change in stellar mass (from 0.5 to 1 M�) induces a
delay of around 600 Myr of the crossing of the co-rotation radius,
which makes it the most sensitive parameter of our model. For
low stellar masses (in particular the case M? = 0.5 M� in the top
panel of Fig. 6), magnetic torques can lead to a migration delay
of 100 Myr when compared to the case with only tidal effects.
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M* = 0.5 M̥

M* = 0.8 M̥

M* = 1.0 M̥

M* = 0.5 M̥
M* = 0.8 M̥

M* = 1.0 M̥

Fig. 6. Secular evolution of a star–planet system formed by a fast-
rotating star (Prot,ini = 1.4 days) orbited by a strongly magnetized hot
Neptune (Mp = 0.1 MJup, aini = 0.035 AU, Bp = 10 G) for three dif-
ferent stellar masses: M? = {0.5, 0.8, 1} M� (dark to light colors). The
thick curves correspond to our reference case discussed in Sect. 3.1.1.
Top panel: semi-major axis (solid lines) and co-rotation radius of the
star (black dashed lines). Wind braking + tides are shown in shades of
red; wind braking + tides + magnetic effects are shown in shades of blue.
The gray bands on the left correspond to the disk locking phase. Bot-
tom panel: tidal (shades of red) and magnetic (shades of blue) torques
in the case of evolution with all the combined interactions. The white
squares correspond to the ZAMS and the red circles to the crossing of
the dynamical tide excitation limit by the planet.

In summary, the magnetic torque tends to dominate the evo-
lution of the star–planet system during a longer fraction of its
lifetime when the stellar magnetic field is stronger and when the
dynamical tide is less efficient. This typically occurs for lower
mass stars, as was already pointed out by Strugarek et al. (2017),
and confirmed here with a fully dynamical evolution.

3.2.2. Influence of stellar magnetism on planet migration

We now aim to assess the influence of stellar magnetism on
the secular evolution of star–planet systems. To this end, we
first assess the dependency of Γmag on the stellar magnetic
field heuristically. Indeed, the magnetic torque, as expressed in
Sect. 2.6, presents the following dependencies for low alfvenic
Mach numbers:

Γmag ∝
{

M0.44
a p0.72

tot a, if Λp > 1
Ma ptota, otherwise (magnetic cavity).

(23)

By introducing the wind magnetic field at the planetary orbit,
Bwind, the alfvénic Mach number Ma = |Ωc − n|a/vA, where vA is
the Alfvén velocity, and scales as

Ma ∝ B−1
wind. (24)

Moreover, as we consider close-in exoplanets, the total wind
pressure is dominated by the magnetic component close to the
star (Preusse et al. 2005; Réville et. al. 2015b), which leads to

ptot ∝ B2
wind. (25)

This results in the following dependency for the magnetic torque:

Γmag ∝ Bwind. (26)

We now consider a multipolar topology of degree l for the mag-
netic field (Bwind ∝ a−(l+2), as the star is at the center of both the
wind and the planetary orbit). The magnetic torque then becomes

Γmag ∝ B?a−(l+2)F (a), (27)

where F is a function of the semi-major axis, independent of the
degree l at first order, and which is linked to wind acceleration.
Even if those scaling laws are based on strong assumptions on the
wind model, we can see that a more complex magnetic topology
(corresponding to higher l values) implies a stronger dependency
of the magnetic torque on the semi-major axis, which can make it
more sensitive than the tidal torque itself. If the stellar magnetic
field is dominated by small scales (large l) and its large-scale
components are weak, the magnetic torque then also weakens
efficiently and no longer affects the evolution of remote planets.

In addition, a change in the scaling law of B? (Eq. (19))
can affect the relative importance of the magnetic torque in our
model. To illustrate this we consider the alternative prescription
proposed by Ahuir et al. (2020), which shows the steepest Rossby
number dependency:

B? [G] = 2.0
(

Ro
Ro�

)−1.65 (
M?

M�

)−1.04

, Ro > Rosat. (28)

To keep a consistent wind model, the Tc and nc prescriptions
need to be updated as (Ahuir et al. 2020):

Tc [MK] = 1.5
(

Ro
Ro�

)−0.04 (
M?

M�

)0.05

, Ro > Rosat, (29)

nc [cm−3] = 7.25 × 107
(

Ro
Ro�

)−0.64 (
M?

M�

)1.49

, Ro > Rosat. (30)

A steeper dependency on the Rossby number implies higher
values of B? at young ages, and thus stronger star–planet mag-
netic interactions at the beginning of the evolution of the system
compared to a scenario in which B? and Ro−1 scale linearly
(Eqs. (19), (20), and (21)). Moreover, as Ro ∝ M?R1.2

? during the
MS in the Sadeghi Ardestani et al. (2017) formulation, the stel-
lar magnetic field in the present scenario is also more sensitive
to M?. Because of the solar normalization, a change in the pre-
scription of B? then increases the stellar magnetic field of less
massive stars, and emphasizes the significance of the magnetic
torque on the secular evolution of the star–planet system.

The influence of the choice of a magnetic scenario on the
evolution of our reference case is illustrated in Fig. 7. Planetary
migration through Eq. (28) (upper panel) is more efficient (light
blue curve) than for our reference case (dark blue curve) until
t∼ 700 Myr. Afterwards, both evolutions are similar. Indeed,
as can be seen from the scaling laws, Eq. (28) induces a more
intense magnetic torque for systems younger than the Sun.
Hence, at the beginning of the evolution, the magnetic torque is
increased by nearly an order of magnitude (in blue in the bottom
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Fig. 7. Secular evolution of a star–planet system formed by a fast-
rotating K star (M? = 0.8 M�, Prot,ini = 1.4 days) orbited by a strongly
magnetized planet (aini = 0.035 AU, Bp = 10 G) in the case of a lin-
ear B? − Ro−1 relationship (in dark colors; see Eqs. (19), (20), and
(21)) and a superlinear B? − Ro−1.65 relationship (in light colors; see
Eqs. (28), (29) and (30)). The thick curves correspond to our reference
case discussed in Sect. 3.1.1. Top panel: semi-major axis (solid lines)
and co-rotation radius of the star (black dashed lines). The gray bands
on the left correspond to the disk-locking phase. Bottom panel: tidal
(dark and light red) and magnetic (shades of blue) torques in the case of
evolution with all the combined interactions. The red circles correspond
to the crossing of the dynamical tide excitation limit by the planet.

panel of Fig. 7). The crossing of the co-rotation radius is delayed
by about 10 Myr, showing a mild influence of the stellar mag-
netism scaling law on the system here. As the planet migrates
further away from the star than in the case of a linear B? − Ro−1

scaling, the tidal torque becomes less efficient during the MS
(in red in the bottom panel of Fig. 7). However, this does not
affect the planetary migration, as the magnetic torque already
dominates the evolution in these phases.

3.3. Influence of planetary mass and magnetic field on planet
migration

We now aim to unravel the influence of planetary intrinsic prop-
erties on the fate of the system. We focus in this work on the
influence of the mass of the planet as well as its magnetic field.
The assessment of the former has a direct influence on the mass
dependency of the different torques. Indeed, from the Murray &
Dermott (1999) and the Strugarek (2016) formulations we have

Γtide ∝ M2
p (31)

Γmag ∝ R2
pB0.56

p . (32)

In view of the relative dependence on Mp and Rp of the two
torques, the mass–radius relationship used to describe the planet

0.01

0.02

0.03

0.04

0.05

0.06

a 
[A

U]

Influence of planetary mass
Tides+Wind
Tides+Mag+Wind

106 107 108 109 1010

Age [yr]
1017

1019

1021

1023

1025

1027

To
rq

ue
s [

N.
m

]

| mag|

| tide|

Mp = 1.0 MJup

Mp = 0.1 MJup

Mp = 0.01 MJup

Fig. 8. Secular evolution of a star–planet system formed by a fast rotat-
ing K star (M? = 0.8 M�, Prot,ini = 1.4 days) orbited by a strongly
magnetized planet (aini = 0.035 AU, Bp = 10 G) for three different
planetary masses: Mp = {0.01, 0.1, 1} MJup (dark to light colors). The
thick curves correspond to our reference case discussed in Sect. 3.1.1.
Top panel: semi-major axis (solid lines), co-rotation radius of the star
(black dashed lines). Wind braking + tides are shown in shades of red;
wind braking + tides + magnetic effects are shown in shades of blue.
The gray bands on the left correspond to the disk-locking phase. Bot-
tom panel: tidal (shades of red) and magnetic (shades of blue) torques
in the case of evolution with all the combined interactions. The white
squares correspond to the ZAMS and the red circles to the crossing of
the dynamical tide excitation limit by the planet.

will have a significant influence on the relative contributions of
magnetic and tidal interactions.

We now consider different scenarios to estimate the magnetic
field of the planet. First, if we assume a planetary magnetic field
independent of all the other quantities of our model, by relying
on Eq. (12) the magnetic torque scales as

Γmag ∝


M0.56
p , Mp < 2.0 M⊕ (6.29 × 10−3 MJup)

M1.18
p , 2.0 M⊕ ≤ Mp < 0.4 MJup

M−0.08
p , Mp ≥ 0.4 MJup.

(33)

The tidal torque (Eq. (31)) in the scenario we consider (Eq. (33))
is therefore more sensitive to the planetary mass than the mag-
netic torque.

To investigate these different sensitivities to planetary mass
in more detail we consider a lower and a higher planetary mass
with respect to our reference case, that is: Mp = 0.01 and 1 MJup.
As shown in Fig. 8, in the tidal case alone, the migration of mas-
sive planets is more efficient (red curves in upper panel) than
for their less massive counterparts, as the tidal torque is stronger.
In the presence of magnetic interactions (in blue), the evolution
of the super-Earths differs significantly from the tidal case alone
(upper panel). Indeed, the tidal torque decreases more substan-
tially than the magnetic torque for a decreasing planetary mass
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(see the bottom panel of Fig. 8). Hence, in the case of super-
Earths, the magnetic torque (see the blue curves in Fig. 8) is
more likely to drive the evolution of the star–planet system. By
taking magnetic interactions into account, a typical variation of
Mp (from 10−2 to 1 MJup) leads to a delay of around 100 Myr
in the crossing of the co-rotation radius. Thus, a change of two
orders of magnitude in planetary mass has a similar effect on
secular evolution, manifesting as an increase in the initial semi-
major axis by a factor of two and an increase in the initial stellar
rotation period by a factor of five.

One can assess the robustness of the previous results by con-
sidering other hypotheses for the planetary magnetic field. For
instance, one can assume that the magnetic field of the planet
we consider behaves in the same way as what is observed in the
Solar System. Then, according to Shkolnik & Llama (2017), in
the case of close-in planets with a synchronous rotation and a
dipolar magnetosphere, we obtain

Bp ∝
(

Mp

Porb

)1.21

R−3
p . (34)

In such a scenario, according to the Chen & Kipping (2017)
Mp − Rp relationships (Eq. (12)), Bp increases for an increasing
planetary mass if Mp < 2.0 M⊕ and Mp ≥ 0.4 MJup. This leads
to the following mass dependencies for the magnetic torque:

Γmag ∝


M0.77
p , Mp < 2.0 M⊕ (6.29 × 10−3 MJup)

M0.87
p , 2.0 M⊕ ≤ Mp < 0.4 MJup

M0.66
p , Mp ≥ 0.4 MJup.

(35)

This leads to a stronger mass dependency of the magnetic torque
for jovian planets as well as super-Earths and a weaker Mp-
dependency in the case of neptunian planets. However, as in the
constant surface magnetic field scenario, the tidal torque is more
sensitive to planetary mass than the SPMI torque. Hence, we
find this effect to be negligible and choose to consider a con-
stant planetary field in the remainder of this work for the sake of
simplicity.

Let us now assess the sensitivity of our results to the ampli-
tude of the planetary field. In the case of a magnetized planet, as
Γmag ∝ R2

pB0.56
p , a higher planetary magnetic field leads to more

efficient star–planet interactions and therefore to a more signif-
icant migration. Such a trend is illustrated in Fig. 9 by varying
the surface magnetic field of the planet in our reference case. In
this configuration, a factor of ten in the magnetic field leads to
an increase in the dipolar torque by a factor of 3.6, which has a
significant influence on the semi-major axis of the planet during
the main sequence. Such a variation plays a critical role if the
planet is likely to be engulfed. However, a change of one order of
magnitude in the planetary magnetic field only leads to a delay in
exceeding the co-rotation radius of the order of 10 Myr, making
Bp the least sensitive free parameter of our model.

When a magnetic cavity is formed around the planet, as the
geometrical cross-section intervenes in the magnetic torque, the
latter is independent of Bp. The magnetic torque then scales as
Γmag ∝ R2

p. From the Chen & Kipping (2017) relations, the mag-
netic torque is therefore less sensitive to the planetary mass than
its tidal counterpart in the magnetic cavity regime, but is always
negligible compared to the dynamical tide because it decreases
by one order of magnitude.

Even though planetary magnetism can affect the secular
evolution of the star–planet system significantly, the magnetic
field strength of extrasolar planets remains poorly constrained.
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Fig. 9. Secular evolution of a star–planet system formed by a fast-
rotating K star (M? = 0.8 M�, Prot,ini = 1.4 days) orbited by a mag-
netized hot Neptune (Mp = 0.1 MJup, aini = 0.035 AU) for two different
values of the planetary magnetic field: Bp = {1, 10} G (in dashed and
solid line, respectively). The thick curves correspond to our reference
case discussed in Sect. 3.1.1. Top panel: semi-major axis (solid lines)
and co-rotation radius of the star (black dashed lines). Wind braking +
tides are shown in shades of red; wind braking + tides + magnetic
effects are shown in shades of blue. The gray bands on the left cor-
respond to the disk-locking phase. Bottom panel: tidal (shades of red)
and magnetic (shades of blue) torques in the case of evolution with all
the combined interactions. The white square corresponds to the ZAMS
and the red circles to the crossing of the dynamical tide excitation limit
by the planet.

For instance, tidal effects may heat the planetary core, hence
affecting its dynamics. Those processes may alter the planetary
dynamo in a manner that is not yet fully understood. However,
we can gain initial insight into the possible values in various
ways. For instance, McIntyre et al. (2019) estimated the magnetic
moment of rocky planets from dynamo models, which leads to a
surface magnetic field of between 1.5× 10−2 and 1.45 G, assum-
ing a dipolar topology. We can also rely on what is observed in
the Solar System to assess Bp. While the maximal field strength
in this system is observed in Jupiter with a value of around 4 G,
the Shkolnik & Llama (2017) scaling law applied to a super-
Jupiter of mass Mp = 10 MJup and an orbital period of 0.5 days
(situated near the Roche limit of a 1 M� star for example) leads to
a planetary magnetic field that can reach 10 G. Hence, we adopt
in the rest of this work two different values for the planetary
magnetic field: Bp = 1 G, and Bp = 10 G, the latter acting as an
upper bound compared to the values measured in the Solar Sys-
tem. Such values of Bp seem to be in agreement with the possible
detections of exoplanet radio emission (e.g., τ Boötis b, we refer
the reader to Turner et al. 2021). However, one has to keep in
mind that it is possible for some planets to have an even stronger
magnetic field. Indeed, values as high as 28 G or even hundreds
of Gauss have been estimated for hot Jupiters using observed
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abnormal stellar activity correlated to the planet orbital motion
(Cauley et al. 2015, 2019).

3.4. Impact on stellar rotation

We now investigate the impact of the planet on the rotation
rate of its host star. Indeed, the transfer of angular momentum
between the planet and the star can affect stellar rotation, espe-
cially in the case of a planet spiralling inwards, which may spin
up the host star by transferring its orbital angular momentum into
stellar spin (Yee et al. 2020).

We can assess the upper bound of the angular momentum
transferred from the orbit to the star by considering the case
of a planet engulfment. In this configuration, the initial orbital
angular momentum Lorb,ini is entirely transferred to the stellar
envelope over the migration timescale. Hence, a planet-hosting
star with a rotation period Prot and an angular momentum L? has
a modified rotational state compared to an isolated star with a
rotation period of Prot, al and an angular momentum L?,al. In this
context, the difference in angular momenta δL = L? − L?,al can
be written as

δL
L?,al

=
Prot,al

Prot
− 1 =

Lorb,ini

L?,al
. (36)

The corresponding difference in rotation periods δP = Prot −
Prot,al then becomes

δP
Prot,al

=
−Lorb,ini/L?,al

1 + Lorb,ini/L?,al
∼ − Mp

√
GM?ainiProt,al

2πI?
, (37)

where I? is the total moment of inertia of the star. Hence, stellar
rotation is the most impacted by the star–planet interaction when
the engulfed planet is massive or when it has a high initial semi-
major axis. Furthermore, all things equal, a later engulfment
leads to a larger relative over-rotation of the star because older
stars rotate slower. As an example, a 1 M� star engulfing a planet
at t = 1 Gyr (corresponding to Prot,al = 9.33 days) undergoes a
three-times-smaller spin-up than if it had destroyed the same
planet at solar age (for which Prot,al = 28 days). More details on
this process and on the influence of the different physical quan-
tities can be found in Gallet et al. (2018) and Benbakoura et al.
(2019). Here we simply illustrate the influence of the magnetic
torque on stellar rotation by varying the planetary mass.

To this end, we consider a star–planet system formed
by a median rotating solar twin (M? = 1 M�, Prot,ini = 5 days,
acorot,ini = 0.057 AU) orbited by a magnetized planet (aini =
0.02 AU, Bp = 1 G) for three different planetary masses: Mp =
{0.01, 0.1, 1} MJup. As visible in Fig. 10, the planet can have a
strong impact on stellar rotation. Indeed, as the planet migrates
inwards, angular momentum is transferred from the orbit to the
star, resulting in an increase of the stellar spin until planetary
engulfment. More details on the modeling of such a phenomenon
in ESPEM can be found in Benbakoura et al. (2019). After the
destruction of the planet, the Ω3

? dependency of wind braking
makes the star spin down efficiently, hence causing the two rota-
tional histories (single star and host star engulfing a planet) to
converge again. Depending on its lifetime, the star may not come
exactly back to an unperturbed rotational state. Furthermore, for
low-mass planets, their migration is less efficient, which results
in a later engulfment, which in turn leads to a later and smaller
peak in stellar rotation, because of the lower initial orbital angu-
lar momentum. The magnetic effects accentuate the behavior
obtained based on tidal effects only: here the planet experiences
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Fig. 10. Secular evolution of a star–planet system formed by a median
rotating solar twin (M? = 1 M�, Prot,ini = 5 days) orbited by a mag-
netized planet (aini = 0.02 AU, Bp = 1 G) for three different planetary
masses: Mp = {0.01, 0.1, 1}MJup (dark to light colors). Top panel: semi-
major axis (solid lines). In shades of red: wind braking + tides, in shades
of blue: wind braking + tides + magnetic effects, in shades of purple:
Roche limit, defined as in Benbakoura et al. (2019). In dashed-dotted
black: stellar radius. Middle panel: time evolution of the rotation rate
of the stellar envelope (solid line) and of the stellar core (dashed line).
Bottom panel: departure of the rotation period of the planet-hosting star
compared to an isolated star.

an earlier engulfment compared to the pure tidal case (for Mp =
{1, 0.1} MJup; see the dark blue curves in Fig. 10). The destruc-
tion of these planets leads to a spin-up of their host star of around
∆Prot = 8.9 days and 22.4 days (for Mp = {1, 0.1} MJup respec-
tively). These values are slightly lower than the over-rotations
obtained through tidal effects only, as planetary engulfment hap-
pens earlier. It is also worth noting that a stellar spin-up of around
20% lasts between 4 and 6 Gyr in this configuration. Thus, by
relying on gyrochronology, stellar age could be underestimated
by about 10%. For Mp = 0.01 MJup, tidal effects alone are not
strong enough to disrupt the planet. The addition of the magnetic
torque allows an engulfment at the end of the evolution (see the
light blue curves in Fig. 10), leading to a stellar spin-up of around
∆Prot = 18.5 days. Hence, star–planet magnetic interactions may
actually lead to a late destruction of hot super-Earths.
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Fig. 11. Evolution between 1 Myr and 10 Gyr of a planetary population designed from eight orbital periods Porb,ini, equally spaced in logarithm
between 0.6 and 10 days, and four initial stellar rotation periods Prot,ini between 1 and 10 days. Those initial parameters correspond to the white
circles. Panel A: sketch representing the evolution of the Steady population (S, in yellow), the Young Migrators (Y, in dark orange), and the Old
Migrators (O, in light orange) in the (Porb, Prot) plane. The black arrows correspond to the possible paths of each population. Panel B: evolution of
the planetary population for M? = 1 M� and Mp = 0.01 MJup. Panel C: evolution of the planetary population for M? = 1 M� and Mp = 1 MJup.
Panel D: evolution of the planetary population for M? = 0.6 M� and Mp = 0.01 MJup. Panel E: evolution of the planetary population for M? = 0.6 M�
and Mp = 1 MJup. Magnetic and tidal dominance are shown in blue and red, respectively. The shades of blue and red correspond to the overall
migration timescale of the system, displayed in logarithmic scale (see key on the right). Regions where the overall migration timescale is greater
than the age of the Universe are shown in gray. The black dashed line corresponds to co-rotation and the black dotted line to the tidal excitation
limit.

4. Star–planet interactions and classification of
planetary populations

4.1. ESPEM sample and migration timescales

Knowing the influence of each parameter of our model on the
fate of a given star–planet system, we now adopt a more global
approach by simultaneously varying them. To this end we design
a sample including 7000 ESPEM simulations which browses the
parameter space. The range for each free parameter we con-
sider as well as their distribution are presented in Table 2. To
highlight the behavior of star–planet systems through magnetic
and tidal interactions, we first focus on a subsample comprising
eight initial orbital periods Porb,ini and four initial stellar rota-
tion periods Prot,ini, which are evenly spaced in logarithm, two
planetary masses Mp = {0.01, 1} MJup, and two stellar masses
M? = {0.6, 1} M�.

We show in Fig. 11 the evolutive track of our representative
subsample of star–planet models in the (Porb, Prot) plane. The
efficiency of planetary migration at each time-step is assessed
through the characteristic timescale

τmig =

∣∣∣∣∣∣Porb

Ṗorb

∣∣∣∣∣∣ =
1
3

∣∣∣∣∣∣Lorb

L̇orb

∣∣∣∣∣∣ . (38)

As Porb ∝ a3/2 and Lorb ∝ a1/2, for a given migration, the orbital
period is more impacted than the semi-major axis, which is itself
more sensitive than the orbital angular momentum. Hence, our
expression of τmig gives the shortest timescale characterizing

Table 2. Range and distribution of star–planet parameters considered
in the ESPEM sample.

Parameter Range Sample distribution

M? [M�] 0.5–1.1 Uniform
Prot,ini (days) 1–10 Uniform
aini [AU] 5 × 10−3–0.2 Uniform in logarithm
Mp [M⊕] 0.5–1589 (=5 MJup) Uniform in logarithm
Bp (G) 0 (a), 1, 10 –

Notes. (a)This case corresponds to an evolution of the system through
tidal effects only.

planet migration. The overall migration timescale due to the sum
of tidal and magnetic torques can be split into two contributions

τmig =

(
1
τM

+
1
τT

)−1

, (39)

where τM and τT are the magnetic and tidal migration timescales
respectively. From the expressions of Γmag and Γtide, those
timescales can be written as

τT [Myr] = 89.31 ×
(

Q′

106

) (
M?

M�

) 8
3
(

MJup

Mp

) (
R�
R?

)5 (Porb

1 d

) 13
3

(40)

τM = τM,0

(
RJ

Rp

)2 (
Mp

MJup

) (
M?

M�

) 5
3
(

R?

R�

)−4 ( B?
10 G

)−2 (Porb

1 d

) 7
3

, (41)
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with

τM,0 [Myr] =

405.3 ×
(

10 Rp

Rm

)1.68

M−0.44
a , Rm ≥ Rp

2.095 × 105, otherwise,
(42)

where Rm = RpΛ
1
6
P is the size of the planet magnetosphere if

we assume a dipolar magnetic field. As we only consider sub-
aflvenic interactions between the star and the planet, the Ma
dependency only increases the migration timescale through mag-
netic torques. Therefore, one can neglect the influence of this
quantity to provide a lower bound for τM .

The instantaneous overall migration timescale is shown for
each system in Fig. 11. As already presented in Sect. 3 for each
parameter of the model independently, we can see from Fig. 11
that tidal effects tend to dominate star–planet magnetic inter-
actions (shown in red) for high stellar and planetary masses,
long rotation periods (beyond several dozen days in the case
of the equilibrium tide) or short rotation periods (below two
approximately days in the case of the dynamical tide), and small
semi-major axis.

4.2. Classification of planetary populations

Overall, we find that three populations arise from the action of
star–planet interactions. The Steady population is composed of
planets for which the mean migration timescale is greater than
the age of the Universe along most of their evolution because of
negligible tidal and magnetic torques. This population is situated
at long orbital periods (from 1 to 10 days depending on stellar
rotation period; see gray areas in Fig. 11). The Young Migrators
are exoplanets that experience a significant migration during the
PMS of their host stars. Situated at short orbital and rotation peri-
ods (less than two days approximately), these latter are subject to
extreme star–planet interactions. Two fates are possible for those
systems: If the planet is initially below the co-rotation radius, it is
engulfed by the star during the early stages of its evolution. Con-
versely, if the planet is initially beyond the co-rotation radius, it
migrates outward efficiently and may join the Steady population
during the MS. However, if magnetic and tidal interactions are
efficient enough later on (in the case of low stellar and planetary
masses; see panel D in Fig. 11), these can still undergo a signif-
icant migration during the MS of their host star, thus becoming
Old Migrators (our third migration population; see Fig. 11). Sit-
uated at high rotation periods and low orbital periods, the latter
population presents the highest sensitivity to the physical param-
eters of our model, such as the planetary mass and the stellar
mass. Their location in the (Porb, Prot) plane is that of the most
efficient angular momentum transfer from the planet to the star,
as is made more explicit below.

The evolution of the three aforementioned populations
allows us to define different regions in the (Porb, Prot) plane.
First, a depleted area is visible at low orbital and rotation peri-
ods (Teitler & Königl 2014; Benbakoura et al. 2019). Such a
region becomes larger for high stellar and planetary masses, up
to orbital periods of 6 days and rotation periods of 2 days in
our sample (see e.g., panel C). The depopulation of this region
is due to the rapid engulfment of Young Migrators within the
co-rotation radius, as well as the efficient outward migration of
individuals from the same population initially beyond rcorot. As
the dynamical tide dominates the evolution of the systems in this
region, the efficiency of this interaction has a direct influence on
the extension of the depleted area.

Furthermore, Old Migrators are able to efficiently transfer
their orbital angular momentum to their host star. As seen in
panel C of Fig. 11, such planets, spiraling inwards, spin up
the star and lead to a break in the gyrochronology (e.g., Gallet
et al. 2018; Benbakoura et al. 2019), the highest rotation periods
remaining unreached (Gallet & Delorme 2019). Such a deserted
area at high rotation periods and low orbital periods, only visible
for the most massive planets, is extended for high stellar masses
(panel C). Then, star–planet systems with an orbital period of
less than 3 days and a stellar rotation period of more than 20 days
cannot appear, because of the spin-up of the host star. Such a
process is driven by magnetic interactions (in blue) for the least
massive stars of our sample and by the equilibrium tide (in red)
for their massive counterparts.

In addition, the region in the (Porb, Prot) plane populated by
Young and Old Migrators defines an area of influence of star–
planet interactions. Such a region is the most extended in the case
of less massive planets orbiting K-type stars (panel D). There,
planets with orbital periods up to 10 days may undergo some
migration through the magnetic torque. Indeed, the enhancement
of stellar magnetism and stellar wind leads to strong star–planet
magnetic interactions. In addition, for giant planets orbiting
K-type stars (panel E) and super-Earths orbiting G-type stars
(panel B), the range in orbital periods of star–planet interac-
tions is entirely defined by the magnetic torque, as it favors the
migration of more distant planets around slower rotators (cf.
Sects. 3.1.2 and 3.2.1).

Therefore, a larger number of planets from our sample under-
goes slow migration, as the associated timescale is of the order of
1 Gyr. Furthermore, in the case of super-Earths orbiting slowly
rotating G-type stars (panel B), the area of influence of star–
planet interaction is dictated by the equilibrium tide, as the
closest planets are engulfed by the star. If the planet and the star
are both massive (panel C), the most distant planets undergoing
star–planet interactions are Young Migrators, moving away from
the star under the action of the dynamical tide. The area of influ-
ence strongly depends on the initial stellar rotation in this case.
It can extend up to an orbital period of 2 days for Prot = 10 days,
and beyond 10 days for Prot = 0.2 days. Magnetic effects then
expand the area of influence of star–planet interactions to slower
rotators, for which the dynamical tide is less efficient. It is there-
fore necessary to consider magnetic interactions to determine if
a planet is likely to undergo a migration, because in most cases
they affect the area of influence of star–planet interactions.

4.3. Influence on the global distributions

The existence of different planetary populations with diverse
evolution paths is likely to influence the global distributions of
stellar rotation periods and orbital periods in our ESPEM sam-
ple. In order to highlight the role played by the different physical
parameters of our model, we represent in Fig. 12 the global dis-
tribution in Porb for two different planetary masses (see panel
A in Fig. 12) and three different planetary magnetic fields (see
panel B in Fig. 12). These distributions are obtained by consider-
ing 2000 evolutionary states between the dissipation of the disk
and the terminal-age main sequence (TAMS) of our solar-mass
models and five initial stellar rotations.

Planetary mass may affect the distribution in orbital periods
of the sample significantly. Indeed, as Mp increases, a steeper
Porb distribution is observed (in red in the panel A of Fig. 12),
as planetary migration becomes more efficient with higher Mp
(see Sect. 3.3). Therefore, less close-in planets are likely to
be detected due to higher engulfment rate. A similar effect is
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observed by increasing the planetary magnetic field (panel B).
Indeed, this directly increases the intensity of the magnetic
torque, which reinforces the migration of close-in planets. As
seen in panel B of Fig. 12, if M? = 1 M� and Mp = 0.01 MJ,
an increase of one order of magnitude of Bp induces a stronger
depopulation only at low orbital periods. However, under more
favorable conditions, a stronger planetary magnetic field may
favor the repopulation of the same region by more distant plan-
ets, as is the case for the lowest stellar masses (see panel D in
Fig. 11).

Star–planet interactions may also influence the distribution
of Prot in our sample. Following the same analysis, Fig. 13 shows
the percentage of stars with modified rotation as a function of
stellar rotation period. In accordance with the results of the
previous section, the transfer of angular momentum from the
planetary orbit to the star is favored for giant planets orbiting
the most massive stars. Thus, the most significant influence of

3500400045005000550060006500
Teff [K]

100

101

P r
ot

 [d
]

0

10

20

30

40

50

60

70

Nu
m

be
r o

f i
nd

iv
id

ua
ls

Fig. 14. Observed distribution of rotation periods from MMA14 as a
function of the effective temperature. The black circle correspond to the
solar values.

star–planet interactions on the Prot distribution is due to the spin-
up of the more massive stars, which depopulates rotation periods
longer than 20 days in favor of Prot values between 8 and 20 days
(in red in Fig. 13), corresponding to stellar ages ranging between
80 Myr and 2 Gyr. However, such effects affect at most 0.5% of
the (1 M�, 1 MJup) ESPEM subsample, which represents 0.07%
of the whole sample. Indeed, such a configuration requires the
engulfment of massive planets, thus reducing its probability of
occurrence. For Mp = 0.6 M�, only 0.1% of the corresponding
subsample (i.e., 0.01% of the total ESPEM sample) undergoes
modified rotation for Prot ≥ 30 days (corresponding to systems
older than 5 Gyr). We can therefore consider that star–planet
interactions essentially impact the distribution in orbital peri-
ods, the distribution in stellar rotation periods being marginally
affected here.

5. Building a synthetic population of exoplanets

5.1. Observational data

Knowing the possible evolutions of planetary populations as well
as the influence of our model physical parameters on the distri-
butions of orbital and stellar rotation periods, we now aim to
confront our results with the statistics of observed star–planet
systems. To do so, we focus on data from the Kepler mission, and
more specifically on two studies performed by McQuillan et al.
(2013, hereafter MMA13) and McQuillan et al. (2014, hereafter
MMA14).

The MMA14 study provides the largest homogeneous rota-
tion dataset in the Kepler field to date, involving F-type to
M-type stars; it includes 34 030 Kepler MS stars whose rota-
tion period has been measured through an autocorrelation-based
method, which represents 25.6% of the 133 030 MS Kepler tar-
gets detected at that time (excluding known eclipsing binaries
and Kepler objects of interest). In this sample, only effective
temperatures lower than 6500 K are considered in order to keep
only solar-type stars with convective envelopes. We reproduce
the Prot distribution of the MMA14 targets as a function of their
effective temperature in Fig. 14. The MMA14 sample can be seen
to present a concentration of stars with rotation periods ranging
between 10 and 40 days and effective temperatures between 4000
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and 6000 K. Thus, slow-rotating F-type and G-type stars are the
most represented in this sample. Furthermore, the distribution
of rotation periods presents an upper envelope that increases
with decreasing temperature. The Sun is situated close to this
upper envelope, which means that few stars older than the Sun
have been detected. Indeed, more slowly rotating stars in the MS
would not have been removed by exclusion processes of evolved
stars. This dataset is used in the remainder of this study to design
a synthetic stellar population taking into account the observa-
tional biases of the Kepler field as well as the potential influences
of the stellar distribution in the galaxy.

MMA13 is one of very few studies to date that combine the
orbital period of detected exoplanets and the stellar rotation of
their host star, making the associated dataset a valuable tool in
the study of star–planet interactions. The main highlight of the
study was the observed lack of close-in planets around fast rota-
tors (we also refer the reader to Pont 2009). The MMA13 dataset
includes 737 KOI with detected orbital and stellar rotation peri-
ods. The targets are all in the MS, and were selected using the
same processes as in the MMA14 sample. Thus, comparing these
two studies allows us to keep identical target selection processes
as well as detection methods between the populations of isolated
and planet-hosting stars. Moreover, for the sake of consistency,
as our model does not deal with interactions between several
planets, we do not take into account multiplanetary systems in
the MMA13 dataset. Therefore, in the remainder of this work we
aim to compare ESPEM results with the MMA13 sample which
has been filtered to exclude detected multiplanetary systems. As
seen in the top panel of Fig. 15, the distribution in stellar effec-
tive temperatures is marginally affected by the choice of dataset
(MMA13 vs. MMA14) as well as the removal of multiplanetary
systems (black line). Therefore, we can rely on the Teff distri-
bution from the MMA14 study to design a stellar population and
compare the ESPEM results to the filtered MMA13 sample with-
out adding significant biases. In addition, as shown in the bottom
panel of Fig. 15, the initial MMA13 sample as well as its fil-
tered analog mostly contain planets with radii between 0.6 and
8 R⊕, corresponding to planetary masses ranging between 0.2
and 72 M⊕ according to Chen & Kipping (2017) conversion laws
(cf. Eq. (12)). Thus, low-mass planets are extensively represented
in these samples.

5.2. Synthetic populations and Kepler observations:
comparison of global distributions

In the remainder of this work, we aim to generate a synthetic
population of star–planet systems out of our whole sample of
ESPEM simulations, and then to compare the distributions we
obtain with the filtered MMA13 dataset. To do so, we first design
a realistic population of stars based on the MMA14 study. For
the sake of consistency, as we assume a two-layer structure for
the star, we consider stellar masses ranging between 0.5 and
1.1 M� with a bin size of 0.1 M�. This corresponds to effec-
tive temperatures of between 3700 and 6000 K, which allows
us to cover most of the MMA14 sample. The associated surface
gravity log g ranges between 4.25 and 5.07, which is consistent
with the selection processes used in MMA13 and MMA14 to
exclude likely giants (Ciardi et al. 2011). Furthermore, in order
to account for the rotational evolution of stars in open clusters
(Gallet & Bouvier 2015), in our synthetic populations generated
with ESPEM we consider five initial rotation periods evenly dis-
tributed between 1 and 10 days. We then rely on a common
sampling of stellar age for all evolutionary tracks in order to
remove biases due to the adaptative time-step used in the ESPEM
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Fig. 15. Top: distribution in effective temperature from MMA14
(in red), MMA13 (in blue), and a subsample of MMA13 excluding
multiplanetary systems (in black). Bottom: distribution in planetary
radii from MMA13 (in blue) and a subsample of MMA13 excluding
multiplanetary systems (in black).

integrator (for more details, we refer the reader to Benbakoura
et al. 2019) as well as to account for the relative duration of the
different stages of stellar evolution for each stellar mass. More
precisely, stellar age is sampled between 1 Myr and 10 Gyr to
obtain 2000 equally spaced instants. Then, for a given star, only
stellar ages that fall in the MS are taken into account. To make
sure that, in the absence of planets, our stellar sample repro-
duces the MMA14 stellar distribution, we introduce a coefficient
Cstellar(Prot,Teff) to weight a given star–planet system at a given
age according to the rotation period of the host star as well as
its effective temperature (for more details, we refer the reader to
Appendix A). This allows us to indirectly bias the stellar masses
and ages of the systems according to the observations of the
Kepler mission.

We then include planets by considering 40 initial semi-major
axes ranging between 5× 10−3 and 0.2 AU, evenly spaced in
logarithm. The corresponding orbital periods are then situated
between 0.12 and 46 days, which allows us to initially populate
all the orbital distances for which star–planet interactions may
act efficiently. Five planetary masses between 0.5 Earth masses
and 5 Jupiter masses, uniformly spaced in logarithm, are consid-
ered in this planetary population. This corresponds to planetary
radii of between 0.8 and 12.7 R⊕, thus covering the majority of
the planets considered by the MMA13 study, as seen in Fig. 15.
Each planetary mass is weighted in our population in order to
reproduce the Rp distribution of the filtered MMA13 subsam-
ple. Moreover, three configurations are investigated for a given
population of planetary systems: we make it evolve through
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Fig. 16. Distribution of stellar rotation periods (left) and orbital periods
(right). The Prot distribution from the MMA14 study is shown in violet.
The gray bars correspond to the distributions obtained with the unbiased
MMA13 sample. The ESPEM distributions with Bp = 0, 1, 10 G are
shown in red, light blue and dark blue respectively. The calculation of
the error bars for the synthetic distributions is presented in Appendix A.

tidal effects only, or along with magnetic effects by considering
Bp = 1 G and 10 G. As the initial configuration of the systems
and the engulfment ratio are unknown in the MMA13 study, we
only take into account the planets that survived. This allows us to
define a density of probability of presence DPPESPEM(Porb, Prot).
The probability dPESPEM of finding a star–planet system with an
orbital period included within the interval [Porb, Porb +dPorb] and
a stellar rotation period in [Prot, Prot + dProt] is then defined as

dPESPEM(Porb, Prot) = DPPESPEM(Porb, Prot)dPorbdProt. (43)

To compare these results with the observed distributions,
we assume that each individual from the ESPEM sample corre-
sponds to a detected star–planet system. This way, the probability
PESPEM can be interpreted as a distribution of detected systems
assuming that only star–planet interactions affect the initial pop-
ulation. However, several biases may be involved in the MMA13
distributions (such as the probability of transit, which is equal to
R?/a, and also biases linked to the selection of KOIs as well as
the detectability of stellar rotation period). Thus, synthetic dis-
tributions may show a larger number of systems with increasing
orbital period when compared with the corresponding observed
planet population. Hence, to compare consistently synthetic and
observed distributions, we first consider a subsample of the fil-
tered MMA13 sample, for which orbital periods are shorter than
20 days. This way, we only focus on close-in planets, for which
our study is relevant. Each system is then weighted by the inverse
of the probability of transit a/R? to remove the associated bias.
In the remainder of Sect. 5.2, both synthetic and observed distri-
butions are normalized to 1. Finally, we systematically quantify
the differences between the planetary global distributions by per-
forming a two-sample Kolmogorov-Smirnov (KS, Kolmogorov
1933; Smirnov 1948) test. The corresponding statistics of the test
and p-values are presented in Table C.1.

The probability of finding a planet-hosting star at a rotation
period Prot, regardless of the position of the planet, is presented
in panel A of Fig. 16. By construction, the synthetic populations
produced by ESPEM for isolated stars reproduce the MMA14
distribution (in violet in panel A of Fig. 16). In the presence
of a planet, the ESPEM distributions show fewer fast rotators
(for which Prot < 10 days) and more stars whose rotation period
ranges between 10 and 30 days. Hence, they tend to reproduce
the MMA13 distribution (shown in gray in panel A of Fig. 16).
Moreover, taking into account magnetic torques for a planetary
magnetic field Bp = 1, 10 G marginally affects the Prot distribu-
tions. This implies that only tidal effects are likely to play a role
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Fig. 17. Observed distribution of stellar rotation periods from the
whole MMA13 sample as a function of the orbital period of the planet.
The purple dashed line corresponds to the lower edge of the distri-
bution fitted in MMA13. The black dashed line corresponds to the
synchronization between Porb and Prot.

in the distribution of stellar rotation periods. Furthermore, no
significant difference in the KS statistic and the corresponding
p-value is observed between the synthetic populations (we refer
the reader to Appendix C for more details). Such a discrepancy
between the Prot distribution of isolated stars and planet-hosting
stars cannot be explained by the alteration of stellar rotation
through star–planet interactions, whether the planet is detected or
not. Indeed, as seen in Sect. 4.3, planetary migration marginally
affects the distribution in stellar rotation periods; the most favor-
able case of a massive star and a massive planet emphasizes the
lowest periods of rotation (see the red curve in Fig. 13). We
can therefore conclude that the engulfment of planets orbiting
fast rotators through tidal effects makes the detection of these
stars less likely, favoring slower rotators in the Prot distribution
of MMA13.

The distributions in orbital periods, regardless of stellar rota-
tion, are shown in panel B of Fig. 16. Taking into account
star–planet magnetic interactions, in particular for Bp = 10 G (see
the dark blue curve in panel B), significantly affects the Porb dis-
tributions by depopulating orbital periods shorter than 2 days.
Such a modification then makes it possible to approach the
MMA13 distribution for Porb < 1 days (see the gray histogram
in panel B) with a confidence level of 1σ (we refer the reader to
Appendix A for more details about the calculation of the error
bars), where the populations for Bp = 0 and 1 G show a more
significant excess of planets at these orbital periods compared
to observations (red and light blue curves in panel B). More
precisely, taking into account star–planet magnetic interactions
with a stronger planetary magnetic field tends to improve the
goodness of fit by lowering the value of the test statistic from
0.32 to 0.27 and increasing the corresponding p-value from 0.17
to 0.34 (we refer the reader to Table C.1 for more details). For
orbital periods of greater than 10 days, the ESPEM distributions
become uniform, as star–planet interactions are negligible for
remote planets. In any case, taking the magnetic torque for large
values of Bp into account is necessary to account for the distribu-
tion of close-in planets. Such a scenario seems to be supported by
planetary dynamo considerations. Indeed, as planetary rotation
is synchronized in our model, close-in planets may rotate with
periods shorter than 1 day. They are therefore likely to generate
high magnetic fields. Moreover, Cauley et al. (2019) inferred val-
ues of Bp of between 20 G and 120 G for planets whose orbital
period ranges between 2 and 4 days. Such a configuration would
lead to even stronger modifications of the Porb distribution than
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Fig. 18. Distribution of orbital periods for super-Earths (left column) and giant planets (right column). Each row corresponds to a population of
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planet systems. The gray histogram corresponds to the distributions obtained with the unbiased MMA13 sample. The ESPEM distributions with
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respectively. The calculation of the error bars for the synthetic distributions is presented in Appendix A.

what is presented in this work. Furthermore, as we consider a
sufficiently wide range of initial semi-major axes, corresponding
to orbital periods of between 0.12 and 46 days, the initial con-
ditions adopted to generate our synthetic populations have no
influence on the planetary distributions at low orbital periods.
Despite a better goodness of fit at high planetary magnetic fields,
we see an excess of exoplanets for all the synthetic populations at
low orbital periods compared to the observed distribution. This
may highlight that other star–planet interactions not considered
in this work, or the initial distribution of orbital periods resulting
from planetary formation, may have played a role in shaping the
observed population from MMA13.

5.3. Synthetic populations and Kepler observations:
comparison of young, middle-aged, and old star–planet
systems

We now turn to the detailed distributions of star–planet systems
at different ages. To do so, we rely on the (Porb, Prot) distribution
of the whole MMA13 sample shown in Fig. 17, which allows us

to define three regions. For stars rotating with a period shorter
than around 4.7 days (the so-called Region 1 in Fig. 17), few
planets are detected. Moreover, in Region 2, corresponding to
stellar rotation periods ranging between 4.7 and 20 days, the
detected exoplanets have an orbital period greater than around
1 day. Finally, a wide range of orbital periods, namely between
0.4 and 500 days, is observed for exoplanets orbiting around the
slowest rotators (Prot > 20 days; see the Region 3 in Fig. 17).

For each of these regions, each corresponding to a row in
Fig. 18, we compare the distributions of the synthetic popula-
tions to their MMA13 counterparts in the case of super-Earths
(Mp < 10 M⊕, see the first column of Fig. 18 ) and giant planets
(Mp ≥ 10 M⊕, see the second column of Fig. 18). The observed
star–planet systems are selected and unbiased with the same
method as in Sect. 5.2. Both synthetic and observed distribu-
tions of super-Earths and giant planets for all the stellar rotation
periods considered are then normalized to 1.

In the case of fast rotators (panels A and B), Young Migra-
tors have already migrated outwards or been engulfed, depending
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on their initial position relative to the co-rotation orbit (see the
horizontal gray bands at the top of each panel in Fig. 18). The
frequency of occurrence then may be higher for orbital peri-
ods longer than 3 days for the most massive planets (panel
B), and longer than around 1 day in the case of super-Earths,
as star–planet interactions are less efficient (panel A). Taking
into account star–planet magnetic interactions has a marginal
influence on the distribution of giant planets, as tidal interac-
tions dominate secular evolution. However, a slight shift towards
higher orbital periods is observed if Mp < 10 M⊕ (see red and
dark blue curves in panel A), with more planets being engulfed.
In those regions, the small number of observations and the
low probability of occurrence in the case of synthetic popu-
lations prevent significant discrimination between the different
distributions (see upper rows in Table C.2).

In the case of giant planets located in Region 2 (panel D), no
significant migration takes place for orbital periods longer than
3 days. The associated distribution is then almost uniform. When
Porb < 3 days, Old Migrators get closer to the star through the
action of the equilibrium tide and to a lesser extent star–planet
magnetic interactions. This induces a depopulation of the lowest
orbital periods, slightly enhanced by the adjunction of the mag-
netic torque. More precisely, the case Bp = 10 G leads to slightly
better KS statistic compared to the other synthetic populations.
In the case of the slowest rotators (Region 3 ; see panel F in
Fig. 18), the frequency of occurrence decreases with decreasing
orbital period. This can be attributed to planetary engulfment,
which is at the origin of the deserted area presented in Sect. 4.2.
Moreover, as the extension of this region decreases with stel-
lar mass (see Sect. 4.2; we also refer the reader to Gallet &
Delorme 2019), the frequency of the occurrence of massive plan-
ets decreases smoothly with their orbital period. Such a behavior
results from the action of tidal effects, with magnetic torque play-
ing a negligible role. Moreover, we see that the probability of
detecting a massive planet around slow rotators in the MMA13
sample is generally lower than what can be expected from syn-
thetic populations. As giant planets are more likely to be detected
than super-Earths, such a discrepancy might not be entirely
attributed to the low number of systems detected in this region.
Therefore, other migration mechanisms may be responsible for
the engulfment of giant planets, thus reducing their frequency of
occurrence around slowly rotating stars. For instance, the excita-
tion of tidal gravity waves in the stellar radiative zone may affect
the evolution of the system (Barker & Ogilvie 2010; Guillot et al.
2014; Ahuir et al. 2021). Such a contribution will be studied
in future work. Furthermore, magnetic fields of strength greater
than 10 G (Cauley et al. 2015, 2019) may also significantly affect
the distributions of the giant planets by depopulating the shortest
orbital periods.

Star–planet magnetic interactions significantly affect Porb
distributions in the case of low-mass planets orbiting slower rota-
tors (panels C and E). Indeed, Older Migrators efficiently get
closer to the star at the beginning of the MS thanks to the mag-
netic torque. The closest planets are then likely to be engulfed
through the combined action of the equilibrium tide and mag-
netic torque. In this configuration, we recover the characteristics
of the global distribution in orbital periods. Therefore, taking
into account a strong magnetic torque (for Bp = 10 G; see the
dark blue curve on panels C and E of Fig. 18) significantly mod-
ifies the distributions by depopulating the orbital periods shorter
than two days, and these distributions then show a better agree-
ment with the observations of MMA13 at low orbital periods
with a confidence level of 1σ. Indeed, the cases Bp = 0 G and
Bp = 1 G present an excess of planets at periods of between 1 and

2 days. More precisely, taking into account star–planet magnetic
interactions with a planetary magnetic field of 10 G significantly
improves the KS statistic and the corresponding p-value com-
pared to the other synthetic populations (we refer the reader to
Table C.2 for more details). However, as in the global Porb distri-
bution, an excess of planets at orbital periods shorter than 3 days
is still noticeable.

Thus, it is possible to approach the Porb − Prot distribution
observed in Kepler systems (e.g., from the MMA13 study) by
relying on a realistic stellar population (such as the MMA14 dis-
tribution) and star–planet interactions after the dissipation of the
protoplanetary disk. More precisely, the magnetic torque tends to
modify the distribution of super-Earths around slower rotators,
which improves the agreement between synthetic populations
and observations.

6. Summary and discussions

6.1. Results

In this paper, we focus on the secular evolution of star–planet
systems by taking stellar magnetic braking and star–planet mag-
netic and tidal interactions into account simultaneously. The
two latter effects act together on planetary migration and stel-
lar rotation. Furthermore, both interactions may dominate the
other throughout secular evolution depending on the initial con-
figuration of the system and the evolutionary phase considered.
More precisely, tidal effects are found to dominate star–planet
magnetic interactions for high stellar and planetary masses as
well as low semi-major axis. This implies in particular that
super-Earths close to their host star essentially migrate through
magnetic torques. Those interactions may actually lead to a late
destruction of hot super-Earths. The dynamical tide governs the
evolution of planets orbiting fast rotators while slower rotators
evolve through magnetic interactions. However, at high rotation
periods, the equilibrium tide may become the dominating con-
tribution during planetary engulfment. Moreover, stellar rotation
may be significantly impacted at any age due to the engulfment
of a close-in planet. In this configuration, an alteration of the
stellar rotation period of several dozens of days may last more
than a few million years. However, such events are scarce, as
they require high stellar and planetary masses, or sufficiently
high planetary magnetic fields in the case of super-Earths, to be
truly effective.

Three populations of star–planet systems emerge from the
combined action of magnetic and tidal torques. Systems under-
going negligible migration define an area of influence of star–
planet interactions, which can extend for instance up to orbital
periods of 10 days for super-Earths orbiting K-type stars. Fur-
thermore, for sufficiently large planetary magnetic fields, the
magnetic torque determines the extension of this region. Plan-
ets outside this influence region form our first population, which
we dub a “Steady” population.

The second population we identified, which we call the
“Young Migrators”, is composed of planets initially close to fast
rotators that migrate efficiently during the PMS. They may either
be expelled away from the star or be rapidly engulfed, which
engenders a depleted region at low rotation and orbital periods.

Finally, we identified a third population of “Old Migrators”,
composed of planets migrating inward around slower rotators,
which happens during the MS. This population is more sensitive
to the physical parameters involved in our modeling. They can
also lead to an efficient angular momentum transfer from the
planetary orbit to stellar rotation, like Young Migrators. They
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could induce a break of gyrochronology for high stellar and plan-
etary masses, as the star can efficiently spin up. This population
finally creates a region at high stellar rotation periods and low
orbital periods not populated by star–planet systems.

Furthermore, star–planet interactions significantly impact the
global distribution in orbital periods. Indeed, for higher plan-
etary mass and planetary magnetic fields, magnetic and tidal
torques are more efficient. Low orbital periods are then more
likely to be depopulated. However the global distribution in stel-
lar rotation periods is marginally affected. Indeed, around 0.5%
of G-type stars and 0.1% of K-type stars may spin up because
of planetary engulfment. As a significant stellar over-rotation
requires the destruction of massive planets, its probability of
occurrence in a given planetary population is found to be
relatively low.

Finally, we designed synthetic populations based on
observed stellar distributions (such as the MMA14 distribu-
tion). We found that star–planet magnetic interactions, after the
dissipation of the disk, significantly affect the distribution of
super-Earths around slower rotators, which improves the agree-
ment between synthetic populations and observations, while
tidal effects shape the distribution of giant planets. Such a result
is obtained without relying on specific prescriptions for the
initial semi-major axis distribution of planets after the disk dis-
sipation. However, we found that all these populations present
an excess of exoplanets at low orbital periods compared to the
distribution observed in Kepler systems (e.g., from the MMA13
study). This may indicate that additional star–planet interactions
not taken into account in this work, such as the dynamical tide in
the stellar radiative zone (e.g., Terquem et al. 1998; Goodman &
Dickson 1998; Barker & Ogilvie 2010) or magnetic interactions
in the unipolar regime (Laine et al. 2008; Laine & Lin 2012), are
at play in shaping the observed close-in planet population in the
Kepler field. Another possibility is that part of the observed dis-
tribution is actually already present immediately after the disk
dissipation, and differs from the initial uniform distribution in
Porb we assume here. A combination of the two aspects could be
shaping the observed distribution, and a detailed investigation is
left for future work.

6.2. Discussions

The results presented in this work may have strong implications
on exoplanet detection. For instance, they imply that the detec-
tion of jovian planets with orbital periods shorter than 6 days
around solar twins rotating with a period shorter than 2 days is
very unlikely because of the presence of a depleted area. More-
over, similar systems having an orbital period of shorter than
3 days and a stellar rotation period of longer than 20 days could
hardly be detected because of potential planetary engulfment.
Such a drop in the frequency of occurrence is less significant
when considering weaker stellar and planetary masses. More
generally, planets with orbital periods of up to 10 days orbiting
stars with a rotation period shorter than 10 days are most likely
to undergo migration through magnetic (and to a lesser extent
tidal) interactions. In the case of slower rotators, stellar mass,
initial rotation, and planetary mass have a strong impact on the
possibility of planetary migration (cf. Sect. 4.2).

Moreover, regarding the influence of star–planet interactions
on stellar rotation, with ESPEM we recover the results from
previous studies (e.g., Zhang & Penev 2014; Gallet et al. 2018;
Benbakoura et al. 2019; Gallet & Delorme 2019). Indeed, as seen
in Fig. 10, the engulfment of a jovian planet by a solar twin may
lead to an alteration of the stellar rotation period of more than

90%, which corresponds to an error of 45% in the estimation of
stellar age if we assume the Skumanich law. It is worth noting
that an over-rotation of around 20% is likely to last for a few bil-
lion years. A deviation from gyrochronology is also possible for
stars hosting super-Earths as star–planet magnetic interactions
may lead to their engulfment later on during the main sequence.
The induced spin-up is less significant is this case. We show in
this work that these effects are barely noticeable in global Prot
distributions, as at most 0.07% of a population of star–planet
systems may see its stellar rotation significantly altered. A signa-
ture of planetary migration may nevertheless become apparent
at a given age, in particular in stellar open clusters (Teitler &
Königl 2014; Gallet et al. 2018), and confronted with alternative
scenarios that have been proposed to account for the observed
Prot distribution of low-mass stars (Brown 2014; van Saders et al.
2016).

Theoretical models predict that planetary migration within
the protoplanetary disk is more efficient than the effects consid-
ered in this work (e.g., Baruteau et al. 2014; Bouvier & Cébron
2015; Heller 2019). This leads to the idea that the planetary
population achieved immediately after disk dissipation is close
to being steady until later phases of stellar evolution after the
main sequence. Nonetheless, we show that the magnetic and tidal
interactions occurring after the dissipation of the disk have a
significant influence on planetary populations during the PMS
and MS. As a result, our work shows that the observed popula-
tions need to be carefully studied to derive constraints on planet
formations, as both disk (not taken into account here) and post-
disk migration come into play for the population on short-period
orbits.

In addition, studying planetary populations for orbital peri-
ods of less than 2 days is essential for understanding planetary
systems and their evolution. Indeed, such orbital periods seem
to highlight the presence of strong planetary magnetic fields
(cf. Sect. 5.3). They may also highlight the presence of some
star–planet interactions not taken into account in this work (see
Sect. 6.3). Uncertainties remain regarding the value of the plan-
etary magnetic field Bp. Indeed, this latter could reach values
much higher than those assumed in this work (e.g., Cauley
et al. 2015, 2019). In particular, from dynamo considerations,
magnetic fields as high as 4000 G are expected in hot Jupiters
during the PMS (Hori 2021). This would significantly affect the
planetary distributions by enhancing the depopulation of star–
planet systems at short orbital periods, whether in the case of
super-Earths or even giant planets. Finally, although star–planet
interactions may be necessary to account for planetary popula-
tions, they only concern planets close to their host star, which are
thus located below the habitable zone (for an extensive study of
the secular evolution of this region, we refer the reader to Gallet
et al. 2017b).

6.3. Perspectives

The present work is a first attempt to study the secular evolution
of star–planet systems through magnetic and tidal interaction
with a fully dynamical approach. We also attempt to investigate
their role in shaping the distributions of planetary populations.
In order to best account for the observations, we need to take
these types of interactions into account in a comprehensive man-
ner. For instance, to get a complete picture of tidal dissipation
in stars, the dynamical tide in the stellar radiative zone needs to
be taken into account (e.g., Zahn 1975; Goldreich & Nicholson
1989; Goodman & Dickson 1998; Terquem et al. 1998), which is
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likely to compete with the dissipation of inertial waves in convec-
tive layers (Ivanov et al. 2013) and to affect secular evolution of
star–planet systems (Barker & Ogilvie 2010; Barker 2011; Guillot
et al. 2014; Barker 2020). Moreover, in differentially rotating
stellar convective zones, tidal inertial waves may interact with
mean flows at critical layers; they can therefore either deposit
or extract angular momentum from or to the surrounding fluid,
which leads to exchanges of angular momentum between the star
and the planet (Astoul et al. 2021). Finally, tides can be affected
by stellar and planetary magnetic fields (Wei 2016; Lin & Ogilvie
2018; Astoul et al. 2019).

Regarding star–planet magnetic interactions, the unipolar
interaction may occur for a weakly magnetized planet with a low
magnetic diffusivity (Laine et al. 2008; Laine & Lin 2012). Tak-
ing such a regime into account is likely to increase the magnetic
torque by several orders of magnitude and to make the subse-
quent planetary migration even more efficient (Strugarek et al.
2017). New behaviors could then be expected. As an example, if
the planet gets closer to its host star, the latter may significantly
spin up, which may enhance the stellar magnetic field, favor-
ing a transition from the dipolar to the unipolar regime, which
has been found to be at the origin of a strong increase in mag-
netic torque. Planetary migration is then likely to enter a runaway
regime.

Here we only considered isolated, circularized star–planet
systems. More complex geometries, for example including
eccentricities, inclinations (Kaula 1961), and dynamical interac-
tions in multi-planet systems (e.g., Laskar et al. 2012; Bolmont
et al. 2015), have to be implemented in a future work to fully
characterize the PMS and MS evolution of multi-planetary
systems.
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Appendix A: Synthesis of a population of
star–planet systems

A.1. Stellar population
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Fig. A.1. Values of the Cstellar coefficient as a function of the stellar
rotation period Prot and the effective temperature Teff.

To confront the MMA13 planetary distribution with the one
obtained through the action of star–planet interactions, we rely
on a synthetic population of star–planet systems generated with
our ESPEM code. The goal of this section is to explain in more
detail the methods to generate this population.

We first need to design a stellar population. To do so, we con-
sider stellar masses ranging between 0.5 and 1.1 M� with a bin of
0.1 M�. Five initial rotation periods evenly distributed between
1 and 10 days are chosen to account for the rotational evolu-
tion of stars in open clusters (Gallet & Bouvier 2015). Stellar
age is sampled between 1 Myr and 10 Gyr to obtain 2000 dates
equally spaced, regardless of the simulation being processed.
Then, for a given star, only the stellar ages falling inside the
MS are taken into account. The stellar sample is then generated
thanks to ESPEM by making each star evolve without a planet.
This way, the stellar rotation period evolves due to changes in
stellar structure, redistribution of angular momentum inside the
star, and magnetic braking. We then determine the frequency of
occurrence fESPEM,al(Teff, Prot) of a star at a given pair (Teff, Prot).
By defining the same frequency of occurrence fMMA14(Teff, Prot)
for the MMA14 sample, we introduce the coefficient

Cstellar(Teff, Prot) =
fMMA14(Teff, Prot)

fESPEM,al(Teff, Prot)
. (A.1)

Such a ratio quantifies the difference between the Prot distribu-
tion obtained by ESPEM for isolated stars and the one observed
in the MMA14 study. This difference may be due to the limi-
tations of our rotational evolution model, to the distribution of
stars in the galaxy, to observational biases, or to uncertainties on
the detection of rotation periods in MMA14 (for an assessment
on the reliability of the MMA14 results, see Santos et al. 2019).

As shown in Fig. A.1, high values of Cstellar(Prot,Teff) indi-
cate an under-representation of the corresponding stars in the
ESPEM population compared to the MMA14 distribution. In
order to reproduce the latter, it is necessary to give greater weight
to stars with effective temperatures between 5000 and 6000 K
and rotation periods between 1 and 30 days. This then amounts
to favoring the presence of G-type stars younger than the Sun
within the synthetic stellar population.

We now aim to assess in a first approach the influence of the
uncertainties in effective temperature and stellar rotation period
on the Cstellar coefficient. To this end, we consider that each star
from the MMA14 sample has an effective temperature Teff and a
stellar rotation period Prot. We define the associated uncertainties
σ[Prot], given in MMA14, and σ[Teff]. For the latter quantity, we
assume a typical value of 200 K (we refer the reader to Huber
et al. 2014, for more details). We assume as a first approxima-
tion that each observation from MMA14 follows a 2D normal
distribution N(Teff, σ[Teff]) × N(Prot, σ[Prot]).

We now introduce a bin in effective temperature and stellar
rotation period (Tk, Pk), with dimensions (∆Tk,∆Pk), and pik the
probability that the observation i falls into the bin k. Hence we
have:

pik =

[
ΦTeff, σ[Teff]

(
Tk +

∆Tk

2

)
− ΦTeff, σ[Teff]

(
Tk − ∆Tk

2

)]
×

[
ΦProt, σ[Prot]

(
Pk +

∆Pk

2

)
− ΦProt, σ[Prot]

(
Pk − ∆Pk

2

)]
,

(A.2)

where

Φµ,σ(x) =
1
2

[
1 + erf

(
x − µ
σ
√

2

)]
(A.3)

is the cumulative distribution function of a normal distribution
with a mean µ and a standard deviation σ. The number Nk of
observations in the bin k can now be interpreted as a sum of
Bernoulli variables Bik, equal to 1 if the observation i is in the
bin k, and 0 otherwise. By assuming that all the observations
from the MMA14 sample have been performed independently,
the standard deviation associated to Nk becomes

σ[Nk] =

√∑
i

pik(1 − pik). (A.4)

By introducing the number of stars NMMA14 in the MMA14
sample, we obtain

σ[ fMMA14] =
σ[Nk]√
NMMA14

. (A.5)

Next, from Eq. (A.1), one can assess the associated standard
deviation σ[Cstellar] as

σ[Cstellar]
Cstellar

=
σ[ fMMA14]

fMMA14
. (A.6)

As shown in Fig. A.2, the relative uncertainty of Cstellar is
higher at low effective temperatures and low rotation periods,
reaching values as high as 100%. However, it marginally affects
synthetic populations, as few systems from the MMA14 sample
are located in this region. In the regions favored by the MMA14
sample,σ[Cstellar]/Cstellar is less than 1%. A more extensive study
of those uncertainties is left for future work.

A.2. Star–planet population

Once the stellar parameters have been chosen and consistently
biased, we include the planets by choosing 40 initial semi-major
axes ranging between 5× 10−3 and 0.2 AU, uniformly spaced in
logarithm, and five planetary masses between 0.5 Earth masses
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Fig. A.2. Values of σ[Cstellar]/Cstellar as a function of the stellar rotation
period Prot and the effective temperature Teff.

and 5 Jupiter masses, uniformly spaced in logarithm. From these
initial conditions, we can define three different star–planet popu-
lations by making them evolve through tidal effects only, or along
with magnetic effects by considering a planet magnetic field
equal to 1 and 10 G. Each system is weighted by the Cstellar factor.
This way, the stellar distribution is consistent with the MMA14
study. Furthermore, each planetary mass is also weighted to
reproduce the MMA13 distribution of planetary radii. We then
compute a biased frequency of occurrence f biased

ESPEM(Porb, Prot),
accounting for both the MMA13 and MMA14 distributions:

f biased
ESPEM = fESPEM(Porb, Prot)Cstellar(Teff, Prot) fMMA13(Mp). (A.7)

The associated distribution function DFESPEM is defined as

dnESPEM(Porb, Prot) = DFESPEM(Porb, Prot)dPorbdProt, (A.8)

where dnESPEM is the fraction of systems with an orbital period
included within the interval [Porb, Porb + dPorb] and a stellar rota-
tion period in [Prot, Prot + dProt]. As the rotation periods as well
as the orbital periods are sampled, we calculate this distribution
by considering the frequency of occurrence at each bin of surface
∆Porb∆Prot as

DFESPEM(Prot, Porb) =
f biased
ESPEM(Prot, Porb)

∆Porb∆Prot
. (A.9)

The function obtained is then normalized such as"
DFESPEM(Porb, Prot)dPorbdProt = 1 −D, (A.10)

with D the ratio of the planets from the initial population that
have been engulfed. Such an approach makes it possible to com-
pare synthetic populations with different values of Bp, as the
rate of planet engulfment may change because of the variable
efficiency of the magnetic torque (see Table A.1).

However, in the case of planetary populations observed by
the Kepler mission we have no idea of the associated initial pop-
ulation. In particular, the rate of planets engulfed by their host
star is unknown. To compare our synthetic populations with the
observations, we only take into account the planets in our sam-
ple that have survived. To do so, we define a probability density
of presence DPPESPEM(Porb, Prot), obtained by normalizing the
distribution function DFESPEM(Porb, Prot) so that"

DPPESPEM(Porb, Prot)dPorbdProt = 1. (A.11)

Table A.1. Engulfment ratio of the synthetic star–planet population for
different planetary magnetic fields.

Bp (G) D
0 (a) 10.05%

1 10.78%
10 12.68%

Notes. (a)Tidal effects only.
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Fig. A.3. Probability of presence PESPEM (solid lines) and fraction
nESPEM of systems present in the synthetic population (dashed lines) as a
function of orbital period. In red: ESPEM distributions with Bp = 0 G.
In light blue: ESPEM distributions with Bp = 1 G. In dark blue: ESPEM
distributions with Bp = 10 G.

Thus, as shown in Fig. A.3, only the relative shape of the
distributions is considered with such a normalization. More
precisely, a higher concentration of planets at a given orbital
period induces higher probabilities of presence, regardless of the
number of planets destroyed in the sample. The probability of
presence PESPEM (solid lines in Fig. A.3) is thus higher than the
fraction nESPEM (dashed lines in Fig. A.3) of systems present in
the sample. This is particularly true in case Bp = 10 G, because
the associated planet destruction rate is the highest.

To assess the influence of uncertainties of the MMA14 sam-
ple on these distributions, we consider for the sake of simplicity
the relative uncertainty of Cstellar averaged in effective temper-
atures. Furthermore, to decorrelate the contributions from the
MMA13 and MMA14 samples, we do not consider any uncer-
tainty in planetary radii, as the same distribution is used in
both observed and synthetic populations. Hence, from Eq. (A.7),
the standard deviation σ [DPPESPEM] linked to the density of
probability of presence can be assessed as

σ[DPPESPEM]
DPPESPEM(Porb, Prot)

=

(
σ[Cstellar]

Cstellar

)
(Prot). (A.12)

We then rely on this prescription to build the error bars associ-
ated to the distributions presented in Sects. 5.2 and 5.3.
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Appendix B: Influence of instantaneous stellar
rotation
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Fig. B.1. Ratio between the tidal and magnetic torques as a function
of the stellar rotation period for our reference case (solid line) and for
a similar star–planet system with Prot,ini = 9 days and aini = 0.025 AU
(dotted line). In gray: regions where the overall migration timescale is
greater than the age of the universe. Blue background: magnetic domi-
nance. Red background: tidal dominance. The white circles correspond
to the beginning of the evolution. The white squares correspond to the
ZAMS. The orange circles correspond to solar age.

To highlight the role of instantaneous stellar rotation on the
fate of the system, we consider the ratio between the tidal and
magnetic torques as a function of the stellar rotation period for
the reference case presented in Sect. 3.1 and a similar star–
planet system with an initial stellar rotation period Prot,ini =
9 days and an initial semi-major axis aini = 0.025 AU. In both
cases, the planet is able to sustain a magnetosphere. As seen in
Fig. B.1, when inertial waves are excited in the stellar envelope,
the associated torque tends to dominate for lower rotation peri-
ods. Thus, the dynamical tide generally dominates the evolution
during most of the PMS. If the inertial waves cannot be excited
by the tidal potential, only the equilibrium tide contributes to the
evolution of the system. In this case the ratio between the tidal
and magnetic torques increases for higher rotation periods, as the
tidal torque is less sensitive to stellar rotation than the magnetic
torque. Hence, at the end of the MS (see the highest rotation
periods in Fig. B.1) the tidal torque can be of the same order of
magnitude as the magnetic torque or even dominate the latter,
depending on the initial configuration of the system.

Appendix C: Results of the Kolmogorov–Smirnov
test

We perform a two-sample Kolmogorov–Smirnov test to assess
whether the observed and synthetic samples show the same
underlying probability distribution in orbital and stellar rotation
periods, which constitutes the null hypothesis. To perform the
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A. Distribution of stellar rotation periods
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Fig. C.1. Cumulative distributions of stellar rotation periods (left)
and orbitals periods (right). In gray: unbiased MMA13 sample. In red:
ESPEM distributions with Bp = 0 G. In light blue: ESPEM distributions
with Bp = 1 G. In dark blue: ESPEM distributions with Bp = 10 G.

Table C.1. Kolmogorov–Smirnov test statistic DKS and p-values for
the synthetic and observed global distributions.

Bp (G) DKS, p-value

Prot distribution
0 (*) 0.11, 0.99

1 0.11, 0.99
10 0.11, 0.99

Porb distribution
0 (∗) 0.32, 0.17

1 0.31, 0.19
10 0.27, 0.34

Notes. (∗)Tidal effects only.

KS test, the probability distributions are first normalized to 1.
We then compute the KS statisticDKS, defined as

DKS = supPorb

∣∣∣FESPEM(Porb) − FMMA13,unbiased(Porb)
∣∣∣ , (C.1)

where F corresponds to the cumulative distribution function. We
then rely on the Kolmogorov distribution K to estimate the p-
value as follows:

P

K ≥
√

N
2
DKS

 = 2
+∞∑
k=1

(−1)k−1e
−2k2

(√
N
2 DKS

)2

, (C.2)

where N is the size of both observed and synthetic samples. We
present the global cumulative distribution functions in Porb and
Prot, for both the observed and synthetic samples, in Fig. C.1. The
corresponding KS statistics and p-values, mentioned in Sect. 5.2,
are presented in Table C.1. We also present the cumulative distri-
bution functions for super-Earths and giant planets, for both the
observed and synthetic samples, in Fig. C.2. The corresponding
KS statistics and p-values, mentioned in Sect. 5.3, are presented
in Table C.2.
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E. Region 3 (Prot [d] 20; 40.32 % of the unbiased MMA13 sub-sample)
MMA13 (unbiased)
Tide+Wind
Tide+Mag+Wind (Bp = 1 G)
Tide+Mag+Wind (Bp = 10 G)

100 101

Porb [d]
0.0

0.2

0.4

0.6

0.8

1.0 F. Region 3 (Prot [d] 20; 11.65 % of the unbiased MMA13 sub-sample)
MMA13 (unbiased)
Tide+Wind
Tide+Mag+Wind (Bp = 1 G)
Tide+Mag+Wind (Bp = 10 G)

Super-Earths (Mp < 10 M ) Giant planets (Mp 10 M )

Fig. C.2. Cumulative distributions of orbital periods for super-Earths (left column) and giant planets (right column). Each row corresponds to a
population of young (Region 1, for which Prot < 4.7 days), middle-aged (Region 2, for which 4.7 ≤ Prot (days) < 20), and old (Region 3, Prot ≥ 20 d)
star-planet systems. In gray: unbiased MMA13 sample. In red: ESPEM distributions with Bp = 0 G. In light blue: ESPEM distributions with Bp = 1
G. In dark blue: ESPEM distributions with Bp = 10 G.

Table C.2. Kolmogorov–Smirnov test statistic DKS and p-values for
the synthetic and observed sub-populations.

Bp (G) Super-Earths Giant planets

Region 1 DKS, p-value DKS, p-value
0 (∗) 0.32, 0.18 0.24, 0.50

1 0.31, 0.20 0.25, 0.42
10 0.28, 0.29 0.27, 0.35

Region 2
0 (∗) 0.43, 0.023 0.35, 0.11

1 0.43, 0.023 0.35, 0.11
10 0.38, 0.064 0.33, 0.16

Region 3
0 (∗) 0.38,0.060 0.39, 0.054

1 0.38, 0.068 0.39, 0.056
10 0.30, 0.22 0.38, 0.058

Notes. (∗)Tidal effects only.
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