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ABSTRACT

Context. Io’s spectacular activity is driven by tidal dissipation within its interior, which may undergo a large amount of melting. While
tidal dissipation models of planetary interiors classically assume that anelastic dissipation is associated only with shear deformation,
seismological observation of the Earth has revealed that bulk dissipation might be important in the case of partial melting.
Aims. Although tidal dissipation in a partially molten layer within Io’s mantle has been widely studied in order to explain its abnormally
high heat flux, bulk dissipation has never been included. The aim of this study is to investigate the role of melt presence on both shear
and bulk dissipation, and the consequences for the heat budget and spatial pattern of Io’s tidal heating.
Methods. The solid tides of Io are computed using a viscoelastic compressible framework. The constitutive equation including bulk
dissipation is derived and a synthetic rheological law for the dependence of the viscous and elastic parameters on the melt fraction is
used to account for the softening of a partially molten silicate layer.
Results. Bulk dissipation is found to be negligible for melt fraction below a critical value called rheological critical melt fraction.
This corresponds to a sharp transition from the solid behavior to the liquid behavior, which typically occurs for melt fractions ranging
between 25 and 40%. Above rheological critical melt fraction, bulk dissipation is found to enhance tidal heating up to a factor of ten.
The thinner the partially molten layer, the greater the effect. The addition of bulk dissipation also drastically modifies the spatial pattern
of tidal dissipation for partially molten layers.
Conclusions. Bulk dissipation can significantly affect the heat budget of Io, possibly contributing from 50 to 90% of the global tidal
heat power. More generally, bulk dissipation may play a key role in the tidally induced activity of extrasolar lava worlds.
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1. Introduction

Tidal heating is one of the key drivers of the evolution of plan-
ets across the Solar System and beyond, shaping their interior
structure and geological activity. Io is the most tidally deformed
and heated object in our Solar System, as evidenced by the
prodigious heat flux of 2.24± 0.45 Wm−2 estimated from astro-
metric measurements (Lainey et al. 2009), and in agreement
with results of remote observations (e.g., Veeder et al. 1994;
Spencer et al. 2000). This spectacular heat flux corresponds to
an endogenic power output roughly ranging between 65 and 125
TW. For a comparison, the internal power output at the sur-
face of the Earth is about 0.4 TW (Jaupart et al. 2007), tidal
heating being negligible in this case. Io’s interior processes
manifest themselves on the surface in a clearly detectable way
as extreme volcanic activity with hundreds of active volcanoes
(e.g., Carr 1986; McEwen et al. 1998, 2000; Spencer et al. 2000).
This moon therefore provides a unique testbed for understanding
tidally induced endogenic activity, and can serve as an archetype
of rocky exoplanets and exomoons undergoing extreme tidal
heating.

Since the pioneering work of Peale et al. (1979), a variety of
models have been proposed to determine the mechanism at the
origin of the huge tidal dissipation in Io’s interior. The amplitude
of the tidal response and the way energy is dissipated within the
interior are primarily determined by the mechanical properties

of the interior materials. For silicates that constitute Io’s mantle,
these strongly depend on temperature and melt fraction. While
fluid-body tidal heating in a magma ocean has been advocated
(Tyler et al. 2015), most models propose solid-body tidal heat-
ing in the mantle as the primary heat source (e.g., Segatz et al.
1988; Ross et al. 1990; Fischer & Spohn 1990; Spohn 1997;
Moore 2001, 2003; Hamilton et al. 2013; Bierson & Nimmo
2016; Renaud & Henning 2018; Steinke et al. 2020). These typi-
cally include two contributions: dissipation in a hot visco-elastic
mantle and enhanced dissipation in a subsurface low-viscosity
layer, resulting from partial melting.

The presence of a partially molten layer in the upper mantle
of Io is broadly consistent with several observations. Eruption
temperatures of Io’s silicate volcanism could reveal the presence
of a large melt fraction in its upper mantle, possibly up to
20–30% (Keszthelyi et al. 2007). A high melt fraction is also
consistent with electromagnetic measurements suggesting
induction in a global conducting subsurface layer (Khurana
et al. 2011), although this interpretation has been questioned
(Roth et al. 2017; Blöcker et al. 2018). Furthermore, a high
concentration of melts below Io’s lithosphere is predicted by
models describing the release of interior heat via melt extraction
(Moore 2003; Bierson & Nimmo 2016; Steinke et al. 2020;
Spencer et al. 2020). The presence of interstitial melts in
rocks is known to affect both their elastic (e.g., Budiansky
& O’Connell 1976; Mavko 1980; Takei 1998) and viscous
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(e.g., Hirth & Kohlstedt 1995a,b; Kohlstedt et al. 2000; Scott &
Kohlstedt 2006) properties. Describing the mechanical response
of partially molten rocks for a wide range of melt fraction is
essential to describe Io’s tidal friction correctly. Most previous
studies varied the elastic and viscous properties of the mantle
and of the partially molten layer in an arbitrary manner in order
to match the observed heat output (e.g., Segatz et al. 1988;
Renaud & Henning 2018; Steinke et al. 2020). To our knowledge
the only model accounting for the combined evolution of elastic
and viscous properties as a function of melt fraction is developed
by Bierson & Nimmo (2016).

Another important aspect for partially molten rocks, which
has been ignored in studies of Io, is the possible contribution
of bulk dissipation. Large-scale attenuation models of the Earth
classically consider the bulk dissipation, governed by the fac-
tor QK, to be small compared to the shear dissipation, governed
by the factor Qµ (e.g., Dziewonski & Anderson 1981; Widmer
et al. 1991; Durek & Ekström 1995; Romanowicz & Mitchell
2007). As a consequence, studies dedicated to the calculation of
tidal dissipation in planetary interiors (e.g., Segatz et al. 1988;
Moore 2003; Tobie et al. 2005; Bierson & Nimmo 2016; Renaud
& Henning 2018; Steinke et al. 2020) classically assume that
anelastic friction is associated only with shear deformation, and
do not take into account a possible bulk contribution.

Neglecting bulk dissipation is criticized, however, even in
the case of seismic attenuation in the Earth’s mantle, especially
for regions with significant porosity and melts (Morozov 2015).
Theoretical considerations indicate that bulk viscosity decreases
with increasing melt fraction and may become comparable to
shear viscosity for melt fraction exceeding 10–20% (Schmeling
et al. 2012). The potential role of bulk dissipation on the tidal
deformation of partially molten layers has been mentioned by
Beuthe (2013), but it has not been studied in detail. In the con-
text of the ice shell of Enceladus, Beuthe (2019) showed that
bulk dissipation has a negligible effect. Whether it can play a
significant role in the case of Io’s asthenosphere remains to be
investigated.

Global understanding of Io’s interior dynamics is a complex
problem involving several feedbacks. The linked mechanisms at
play are (1) the deformation of the solid matrix and the liquid, (2)
the resulting heat transfer, (3) tidal heating, and (4) melting pro-
cesses. Depending on the tidal heat distribution and efficiency
of heat transfer, melts may accumulate in the interior. In return,
the local accumulation of melts affects the mechanical proper-
ties, and hence the tidal response of the mantle. The convective
heat transport through the mantle and the melt extraction to
the surface both control the interior cooling rate and determine
where melt may accumulate in the interior (Moore 2001, 2003;
Monnereau & Dubuffet 2002). Due to decompressive melting,
melt accumulation is usually expected at the top of the mantle
beneath the lithosphere, which is consistent with the classical
view of Io’s interior (e.g., Keszthelyi et al. 2007) and is in line
with the most recent work on melt transport using a 1D two-
phase flow approach (Spencer et al. 2020). Nevertheless, it has
been proposed that melt accumulation may also occur at the
base of the mantle if the heat transport through the mantle is
very efficient (Monnereau & Dubuffet 2002). In order to test the
influence of partially molten layers on the tidal response of Io’s
mantle, here we consider the two possible melt configurations
(top and bottom) and quantify the role of bulk dissipation in the
respective layers.

In the present study we re-evaluate the heat production by
solid-body tidal friction in Io’s interior. We consider a partially
molten layer at the top and/or at the bottom of the mantle. We

specifically quantify the role of melt presence on both shear
and bulk dissipation. For this purpose the constitutive equation
including bulk dissipation is derived. A rheological parameteri-
zation is developed in order to take into account the role of melt
fraction on the elastic and viscous parameters. After providing
some background in Sect. 2, we develop our model assumptions,
rheological parameterization, and computation of tidal heating
including bulk dissipation in Sect. 3. Section 4 then presents the
influence of bulk dissipation on the total heat production and
on the radial and lateral distribution of the heating rate. Impli-
cations for the thermal budget of Io and other extrasolar tidally
heated worlds with a potentially comparable configuration are
finally discussed in Sect. 5.

2. Background

2.1. Bulk dissipation

An analysis of seismic attenuation measurements has shown that
most of the dissipation within the Earth’s interior is associ-
ated with shear deformation (e.g., Dratler et al. 1971; Sailor &
Dziewonski 1978; Buland et al. 1979). However, shear attenua-
tion models alone cannot explain the observations, highlighting
the occurrence of bulk dissipation (e.g., Durek & Ekström
1995). A common conclusion of large-scale attenuation models
of the Earth is that Q−1

K (bulk dissipation function) represents
a small percentage of Q−1

µ (shear dissipation function) (e.g.,
Dziewonski & Anderson 1981; Widmer et al. 1991; Durek &
Ekström 1995; Romanowicz & Mitchell 2007). The highest level
of bulk dissipation relative to shear dissipation is reported in
the Earth’s asthenosphere (Durek & Ekström 1995), a seismic
low-velocity zone beneath the oceanic lithosphere considered to
result from the presence of partial melts (Anderson & Sammis
1970; Karato 2012; Holtzman 2016).

Motivated by seismological discoveries, studies in the field
of mineral physics have documented the expected ratio between
bulk and shear dissipation. Bulk dissipation is poorly under-
stood, notably for polycrystalline solids, which are considered
to be representative of mantle rocks (e.g., Heinz et al. 1982;
Budiansky et al. 1983). Several mechanisms that may contribute
to bulk attenuation in solids have been identified (e.g., ther-
moelastic, magnetoelastic, and phase changes; Anderson 1980;
Heinz et al. 1982; Budiansky et al. 1983). All of these bulk
attenuation mechanisms have in common the fact that they
become increasingly important as the differences in material
properties between the various coexisting phases increase. We
note that these microscale origins to friction are not unique
to bulk deformation, and concern polycrystalline deformation
more generally. Here we consider bulk attenuation in an anelastic
framework where shear and bulk dissipation are both mathemat-
ically described with one viscous term and one elastic term: the
bulk viscosity associated with the response of a material sample
to a deformation occurring due to volumetric changes is intro-
duced in addition to the classical shear viscosity. The elastic bulk
parameter is the familiar bulk modulus.

The assumption in the seismological studies of the domi-
nance of shear dissipation over bulk dissipation is also used in
tidal deformation models of planetary bodies. In this way clas-
sic tidal model construction is simplified and the assumption of
the “no bulk dissipation” condition is expressed through the lim-
itation of the bulk modulus to its elastic part, setting its viscous
part to zero. However, this assumption has been criticized for
theoretical reasons (e.g., Morozov 2015) arising from difficulties
in interpreting the viscoelastic model of the Earth, and seems
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even less valid in the presence of melt, as discussed above. While
the compaction rates of partially molten rocks have been mea-
sured experimentally (Renner et al. 2003), no direct experimental
measurement of the bulk viscosity has yet been performed to
our knowledge. Theoretical models predict that, in the presence
of interstitial melts, bulk viscosity would drop to values of the
order of shear viscosity (e.g., Takei 1998; Takei & Holtzman
2009; Schmeling et al. 2012). A few experimental estimates of
bulk viscosity for purely fluid materials exist, in particular liq-
uid water (e.g., Holmes et al. 2011), which confirms that bulk
and shear viscosities are comparable at least in the fully liquid
limit. Following the standard approach applied to two-phase flow
reported in the literature (McKenzie 1984; Scott & Stevenson
1986; Ricard et al. 2001), we assume that the bulk viscosity is
equal to the shear viscosity divided by the melt content. In the
following, when used alone the term “viscosity” refers to the
shear viscosity; “bulk viscosity” is always specified.

2.2. Viscoelastic model

Gravitational forcing during Io’s orbit around Jupiter varies peri-
odically due to its eccentricity. The materials that compose
its interior deform in response to these periodic fluctuations.
The way the materials respond to this forcing depends on their
mechanical properties. At Io’s tidal forcing period (1.769 days),
its interior behaves like a viscoelastic body. The simplest vis-
coelastic model is the Maxwell solid, which consists of an elastic
element and a viscous element combined in series, character-
ized by the elastic shear modulus µ and the shear viscosity η,
respectively. For a forcing period close to the Maxwell time,
defined as the ratio of the shear viscosity to the shear modulus,
τM = η/µ, the Maxwell rheology is a good approximation, but
it fails to reproduce correctly the dissipation function for peri-
ods much smaller than typical tidal forcing periods of close-in
moons (a few days) (e.g., Castillo-Rogez et al. 2011; Efroimsky
2012). Laboratory studies dedicated to the characterization of the
periodic deformation of silicates at periods suitable for tidal forc-
ing (e.g., Jackson et al. 2004; Faul & Jackson 2007; Sundberg
& Cooper 2010) indicate that alternative rheology models, such
as the Andrade model (Castillo-Rogez et al. 2011; Efroimsky
2012; Bierson & Nimmo 2016) or the Sundberg-Cooper model
(Sundberg & Cooper 2010; Renaud & Henning 2018) are more
appropriate.

Due to experimental difficulties, very few studies have
considered the attenuation behavior of partially molten rocks
(Jackson et al. 2004). As a result, the rheological parameters
on which the Andrade and Sundberg-Cooper models are based
cannot be derived. The simplest approach to describe the vis-
coelastic behavior of partially molten rocks is to consider a
Maxwell model, using the elastic modulus and viscosity val-
ues that has been widely studied in the literature dedicated to
these rocks (Sect. 2.3). For partially molten rocks containing
a high melt fraction (>10%), the estimated range for Maxwell
times (from hundreds of days to a few minutes) is relatively
close to Io’s tidal period, so that the Maxwell model provides
a reasonable estimate of the dissipation rate.

In this study we adopt a Maxwell rheology for layers where a
significant fraction of melt (>25%) is present (subsurface and/or
bottom molten layers) and an Andrade rheology for the other
layers (crust and mantle excluding the partially molten layers).

2.3. Rheology of partially molten rocks

The partial melting of Io’s mantle rocks necessarily occurs at
depth, albeit for partly unconstrained temperature and pressure

conditions. The presence of magma severely alters the rheo-
logical properties of the whole rock. At low melt fractions the
material is best described as a solid matrix with fluid pores
(e.g., Schmeling et al. 2012). Its deformation is dominated by
solid-state rheology. At large melt fractions (or low crystal frac-
tions), the material loses shear strength and tends to behave like
a fluid. This led to the concept of a rheological critical melt frac-
tion (RCMF) associated with a sharp transition from the solid
behavior to the liquid behavior (e.g., Renner et al. 2000).

In the context of the present study, focused on solid-body
tides, we consider melt fractions up to the RCMF and slightly
above in order to mimic the significant drop in strength. In prac-
tice, most theoretical and experimental studies devoted to the
effect of partial melts on the rheology of rocks focus on viscosity
as this parameter plays a prominent role in the dynamics. Follow-
ing the pioneering work of Arzi (1978), suggesting a threshold
value of about 25–30% for RCMF, several studies reported a
wide range of values, from 26 to 62% (e.g., Van der Molen
& Paterson 1979; Bulau et al. 1979; Vigneresse et al. 1996;
Renner et al. 2000; Scott & Kohlstedt 2006; Caricchi et al. 2007;
Costa et al. 2009). The width of the transition is also not well
constrained by these studies.

On the solid-state side of the rheological transition, exper-
imental work focused on the deformation of partially molten
materials in the laboratory for melt fractions up to 40%
(e.g., Cooper & Kohlstedt 1986; Hirth & Kohlstedt 1995b,a;
Lejeune & Richet 1995; Kohlstedt & Zimmerman 1996; Scott &
Kohlstedt 2006). Empirical laws have been proposed to param-
eterize these results. A second approach is to derive theoretical
models of the microscale physics and produce rheological laws
suitable for use on planetary scales (e.g., Cooper et al. 1989;
Takei & Holtzman 2009; Schmeling et al. 2012; Rudge 2018).
All these studies indicate an exponential decrease in viscosity as
a function of melt fraction.

Unlike viscosity, the elastic properties of partially molten
rocks are studied only for small values of the melt fraction (typ-
ically a few percent), probably due to a lack of prior community
need. On Earth this is indeed motivated by the existence of the
asthenosphere, which is supposed to involve only a small amount
of partial melts. Theoretical models were developed to describe
the effect of melt fraction on the shear and bulk modulus (e.g.,
Walsh 1968, 1969; O’Connell & Budiansky 1977; Mavko 1980;
Schmeling 1985). These models quantify the dependence of
seismic wave speeds and attenuation upon melt fraction and
fluid-filled inclusions of specified shape (e.g., ellipsoids, grain-
boundary films, or grain-edge tubes). The viscoelastic behavior
of partially molten rock is also investigated in the laboratory
through forced torsional oscillation (Berckhemer et al. 1982;
Bagdassarov & Dingwell 1993). To our knowledge, no exper-
imental work has been done on the elastic moduli for melt
fractions approaching and exceeding the RCMF. For this reason
results obtained at low melt fractions have to be extrapolated to
higher values to describe the elastic behavior up to the RCMF
transition. Above RCMF we assume a mathematical descrip-
tion similar to viscosity for which experimental constraints exist
(Costa et al. 2009).

3. Method

In this section we detail the methods and model assumptions
considered for the internal structure (Sect. 3.1), the rheological
laws used to describe the influence of melt fraction on the vis-
cous and elastic parameters (Sect. 3.2), and the computation of
the viscoelastic deformation of Io’s interior (Sects. 3.3 and 3.4).
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Table 1. Physical and orbital characteristics of Io.

Parameter Value

Mean radius Rs (km) 1821.6
Mean density ρ (kg m−3) 3527.8
GM (m3 s−2) 1.795
MoI factor C/MR2 0.37824
Semi major axis a (km) 422 × 103

Eccentricity e 0.0041
Orbital and rotation period T
(days)

1.769

~ ~~
~~ ~ ~ ~~~ ~~~ ~~~ ~~~~~~~~ ~~~~

~~~ ~~~~ ~~~ ~ ~~ ~~~

Crust 

Silicate mantle 

Metallic core Andrade 

Maxwell including bulk 

dissipation and melt 

fraction dependency

~ ~~
~
~~
~

Inviscid liquid core

Case A

Case B

Case C

Fig. 1. Model of Io’s internal structure used for the computations. The
considered rheology can be divided into three groups: (1) the solid
mantle and crust, described by an Andrade rheology neglecting bulk
dissipation; (2) the partially molten layers, either beneath the crust (case
A) or at the core mantle boundary (case B), or a combination of both
(Case C), described by a Maxwell rheology including both shear and
bulk dissipation and accounting for the effect of melt on the viscoelas-
tic parameters (following the rheological law described in Sect. 3.2); (3)
the inviscid liquid metallic core.

3.1. Properties of Io’s interior structure

The internal structure of Io is constrained from the mean density,
mean radius, and moment of inertia (Table 1), deduced from the
Galileo gravity data (Anderson et al. 2001; Sohl et al. 2002).
The interior model consists of (moving from surface to center) a
silicate crust, a silicate mantle, and a liquid metallic core (Fig. 1).
The density of each layer is assumed to be uniform (see Table 2).

Estimates of the thickness of Io’s crust are uncertain. The
only direct constraints come from lithospheric support of moun-
tain ranges (Schenk et al. 2001), suggesting a lower limit of 20
km (e.g., Carr et al. 1998). We set the crustal thickness to 30
km, with a density of 3000 kg m−3. The core radius is given
as 955 km (thus a mantle thickness of 836.6 km), providing
reasonable values for the densities of the silicate mantle and
metallic core satisfying the observed mass and moment of iner-
tia. Core density is 5165 kg m−3 in agreement with the eutectic
Fe-FeS composition (∼5150 kg m−3, Usselman 1975; Anderson
et al. 1996). The mantle density is 3263 kg m−3, similar to
Earth’s olivine-rich upper mantle (3300 kg m−3, Dziewonski &

Table 2. Density, rheological solid-state parameters, and interior struc-
ture characteristics assumed for Io’s interior.

Crust Mantle Core

Density ρ (kg m−3) 3000 3263 5165
Shear viscosity ηs (Pa s) 1023 1019 0
Shear modulus µs (GPa) 65 60 0
Bulk modulus Ks (GPa) 200 200 200
Thickness d (km) 30 836.6 955
Andrade parameter αa 0.3 0.3 n/a
Andrade parameter βa

(∗) 3.4× 10−15 5.7× 10−14 n/a

Notes. (∗)Assuming βa = µ−(1−αa)η−αa (Castillo-Rogez et al. 2011).

Anderson 1981). As will be discussed later, changing the crustal
thickness, core size, and mantle densities over reasonable ranges
of values does not significantly change the results that are
presented in this study.

As noted above, the presence of a partially molten layer
beneath the crust in the upper part of Io’s mantle is a long-
standing hypothesis in the literature (e.g., Segatz et al. 1988;
Ross et al. 1990; Khurana et al. 2011). The melt content and
thickness of this layer is a matter of debate, however. Proposed
thickness values range between 50 and 200 km, which we adopt
as a range for this parameter for both top and bottom molten lay-
ers. The melt fraction is varied between 25% and values slightly
above the RCMF (Sect. 3.2).

For the sake of completeness, we also investigate the influ-
ence of a partially molten layer at the base of Io’s mantle, not
accessed by magnetic sounding but indicated as a possibility in
some convection models dedicated to Io’s mantle (Monnereau &
Dubuffet 2002). Three configurations are considered: one with a
top partially molten layer (case A), one with a bottom partially
molten layer (case B), and one with both top and bottom partially
molten layers (case C).

A reference value of 100 TW for the tidally dissipated power
is chosen to represent Io’s heat budget. It should be noted that
this value, selected in order to quantify the role of bulk dissipa-
tion compared to a reference state, is far from certain, and the
typical variability range is between 65 and 125 TW (e.g., Lainey
et al. 2009). This choice is discussed further in Sect. 5.

3.2. Rheology of partially molten layers

Here we describe the effect of melt fraction φ on the four
viscoelastic parameters used to describe the rheology of the par-
tially molten layers: (shear) viscosity η, bulk viscosity ζ, shear
modulus µ, and bulk modulus K. This is displayed in Fig. 2.

A single relationship defined for the whole melt range. In
the following we restrict our investigation to a range of melt frac-
tion values around the RCMF, shown as a shaded rectangle in
Fig. 2. The choice of the minimum value for melt fraction φ is
motivated by a weak dissipation for values smaller than φ= 0.25.
The choice of the maximum value φ= 0.33 is dictated by numer-
ical limitations. As is shown below, for all cases investigated this
range enables us to capture the reference value of 100 TW for the
tidally dissipated power. We note that for larger values of φ, not
accessed by our numerical procedure, the rheological parameters
η, µ, and K approach the much lower values associated with the
liquid phase, albeit in a very uncertain way; in this domain the
dissipation mechanisms envisioned in our viscoelastic formal-
ism, which essentially correspond to solid-body tides, are less
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μ

K

η

ζ

Melt fraction ф

Fig. 2. Effect of melt fraction φ on the viscoelastic parameters: shear
viscosity η and modulus µ (solid lines), bulk viscosity ζ and modulus
K (dash-dotted lines). The red vertical dashed line denotes the rheolog-
ical critical melt fraction (φc) where the transition between solid-state
and liquid-state behaviors occurs. The shaded rectangle illustrates the
restriction of our investigation to a range of melt fraction values around
the RCMF.

pertinent as other mechanisms might contribute to the dissipated
budget.

Since the rheological parameters are poorly constrained by
experiments and theory in the RCMF range, we adopt the semi-
empirical model developed by Costa et al. (2009) that proposes
a single formalism to describe the shear viscosity η from the
purely solid-state to the purely liquid-state. Notably, this formal-
ism includes the strong decrease in η characterizing the transition
from solid-state behavior to liquid-state behavior. Since this tran-
sition is not constrained for elastic parameters µ and K, we use
the same formalism (which appears to be a physically reasonable
assumption),

•(φ) = •l
1 + Θδ

[1 − F(Θ, ξ, γ)]B(1−φ∗) , (1)

where rheological parameter • is the shear viscosity η, the shear
modulus µ, or the bulk modulus K. Two auxiliary functions are
introduced:

Θ = (1 − φ)/(1 − φ∗) (2)

F = (1 − ξ) er f
[ √

π

2(1 − ξ)Θ(1 + Θγ)
]
. (3)

Except for parameter B, the Einstein coefficient (which is set
to 2.5), all other parameters are tuned to reproduce the avail-
able constraints on the specific rheological parameter, from the
solid-state endmember •s to the fully liquid-state endmember •l.
The chosen solid- and liquid-state parameters of reference for
the viscosity, shear modulus, and bulk modulus are described
below. The values of δ, ξ, γ, and φ∗ also depend on the specific
rheological parameters considered; they are listed in Table 3.

Solid-state end-member •s. The solid-state viscosity of
mantle rocks ηs is uniform throughout the mantle. It is set to
1019 Pa s (Table 2), consistent with the typical value expected
for dry olivine-dominated rocks near their melting point (e.g.,
Karato & Wu 1993). The solid-state shear and bulk modulus, µs
and Ks of the mantle are set to 60 and 200 GPa, respectively

Table 3. Parameter values employed for the various rheological param-
eters (Eqs. (1)–(3)) for the partially molten layers.

η µ K

•l 1 Pa s 10 Pa 109 Pa
δ 25.7 2.10 2.62
ξ 1.17× 10−9 7.08× 10−7 0.102
γ 5 5 5
φ∗ 0.569 0.597 0.712

(Table 2). We note that the effect of temperature and pressure
change with depth on the silicate bulk modulus is only moder-
ate: values typically range between 150 and 250 GPa for Io’s
mantle pressure conditions (e.g., Jackson 1998). Our results are
generally insensitive to this value.

Liquid-state end-member •l. The shear viscosity of the
melt phase ηl is set to 1 Pa s, a typical value for basaltic
melts (e.g., Shaw et al. 1968). Ultrasonic velocity measurement
indicate that the bulk modulus of basaltic melts is one order
of magnitude lower than those of expected mantle minerals,
ranging between 1 and 30 GPa. These bulk moduli have been
measured on silicate magma types ranging from basalt to silica-
rich synthetic and natural compositions, all exhibiting the same
decrease from the solid-state value. We use here a value of Kl = 1
GPa, as suggested by Stolper et al. (1981), Murase & McBirney
(1973), and Rivers & Carmichael (1987). Varying K of 1 GPa
and 30 GPa in our calculations has only a minor effect on the
results. We note that while the shear modulus is expected to be
zero for a liquid, we use a (non-zero) small value (µl = 10 Pa), for
numerical reasons. We performed tests for µl values five orders
of magnitude smaller and larger than our reference value, keep-
ing the same value for µs. As we focused on φ values near the
transition value φc (described below), these tests showed that the
value assumed at φ= 1 does not impact the results displayed in
the present study.

Rheological critical melt fraction (φc). As noted in Sect. 2.3,
a transition occurs at the rheological critical melt fraction (φc)
between two main regimes of deformation: solid-dominated
behavior (0<φ<φc) and liquid-dominated behavior (φc <φ< 1).
In Fig. 2 this corresponds to a dramatic rupture of the slope in the
relationship introduced by Costa et al. (2009). Given the values
of the rheological parameter for the liquid •l and solid •s phases,
the location of φc is controlled by parameter φ∗ in Eqs. (1)–(3),
which differs for η, µ, and K. For the results presented here-
after, we set the value of φc to 0.3. We also tested values ranging
between 0.25 and 0.4; this does not induce significant changes to
the main behavior presented here. What matters is not the exact
value of φc, but the difference between the value of φ considered
in the partially molten layer and the threshold value φc.

Transition to the liquid-state behavior above φc. For suf-
ficiently large melt fractions (or sufficiently small crystal frac-
tions), it is commonly assumed in the literature that the viscosity
of the partially molten material increases with the crystal frac-
tion. The classical exponential relationship proposed by Roscoe
(1952) introduces a drastic increase in viscosity as φ decreases
toward φc; this is embedded in the formalism of Costa et al.
(2009) used in this study.

The width of this transition is controlled by the parameter γ
(Eqs. (1) and (3)). In the absence of further constraints, γ is set to
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5, as in Costa et al. (2009). Some studies considered arbitrarily a
much sharper decrease in the shear modulus µ at the rheological
transition (e.g., Fischer & Spohn 1990; Moore 2001). We have
conducted tests with such a sharp decrease, although this has no
rheological justification. Results indicate a significant increase
in bulk dissipation. We thus consider that adopting the same for-
malism for η and µ (Eqs. (1)–(3)) leads to a conservative estimate
of the role of bulk dissipation. The parameter ξ (Eqs. (1) and (3))
is chosen to mimic the appropriate decrease in strength as the
melt fraction increases. For φ < φc, the effect of melt fraction φ
on these elastic parameters is moderate. The constraints used to
define the slope of curves for φ < φc (parameter δ in Eq. (1)) are
described in Appendix A.

Bulk viscosity. In the framework of two-phase flow, the full
description of an isotropic linear medium requires the use of two
viscosities, a bulk viscosity ζ and a shear viscosity η (McKenzie
1984; Scott & Stevenson 1986; Ricard et al. 2001). Bulk viscos-
ity describes the rate of volume change of the material. Although
more work was devoted to viscosity than to any other rheologi-
cal property of silicate melts, no measurements exist for the bulk
viscosity of natural or analog systems applicable to the crust or
mantle. As a consequence, in large-scale geodynamic models,
bulk viscosity is usually described by a simplified law propor-
tional to η/φ based on theoretical considerations (e.g., Ricard
et al. 2001; Simpson et al. 2010; Schmeling et al. 2012). In the
absence of constraints, we adopt this simplified relationship:

ζ =
η

φ
. (4)

As shown in Fig. 2, this formalism superimposes an increase
in the bulk viscosity ζ at low melt fraction φ, while preserv-
ing the rheological transition embedded in η (Eqs. (1)–(3), ζ is
plotted for φ > 0.01 in Fig. 2).

3.3. Tidal dissipation including bulk dissipation

The constitutive equation for a Maxwell rheology is rewritten,
including bulk dissipation, in order to take it into account in
the calculation of tidal dissipation in Io’s partially molten layers.
For a Maxwell compressible medium with no bulk dissipation,
the constitutional relationship between stress and strain tensors
is (e.g., Peltier 1974)

σ̇kl +
µ

η

(
σkl − 1

3
σnnδkl

)
= 2µε̇kl +

(
K − 2

3
µ

)
ε̇nnδkl, (5)

where σkl and εkl are the stress and strain tensor elements,
respectively, and δkl is the Kronecker symbol. Following the con-
vention, repeated indices imply summation. The point above the
variables represents a derivative with respect to time. Bulk dis-
sipation can be considered by adding a term taking into account
bulk viscosity ζ:

σ̇kl +
µ

η

(
σkl − 1

3
σnnδkl

)
+

K
ζ

1
3
σnnδkl = 2µε̇kl +

(
K − 2

3
µ

)
ε̇nnδkl.

(6)

In the Fourier domain, the constitutive relationship becomes

σ̃kl = λ̃(ω)ε̃nnδkl + 2µ̃(ω)ε̃kl, (7)

where ω is the frequency, and the tilde (∼) indicates Fourier
transform. According to the correspondence principle, this

corresponds to a generalized Hooke’s law with complex moduli
µ̃, λ̃, and K̃ written as

λ̃(ω) = K̃(ω) − 2
3
µ̃(ω), (8)

µ̃(ω) =
µω2η2

µ2 + ω2η2 + i
µ2ωη

µ2 + ω2η2 , (9)

K̃(ω) =
Kω2ζ2

K2 + ω2ζ2 + i
K2ωζ

K2 + ω2ζ2 . (10)

3.4. Computation of tidal dissipation

The viscoelastic deformation of Io under the action of periodic
tidal forces is computed following the method of Tobie et al.
(2005, 2019). A novel step is taken with the inclusion of bulk
dissipation in addition to shear dissipation in the calculation
(Sect. 3.3). The only difference relative to the approach of Tobie
et al. (2005) is the consideration of a non-zero imaginary part for
the complex bulk modulus, as defined in Eq. (10).

The tidal response of Io’s interior is computed by integrating
the radial and tangential displacements (y1 and y3, respectively),
the radial and tangential stresses (y2 and y4) and the gravitational
potential (y5), as defined by Takeuchi & Saito (1972). The full set
of equations, the boundary conditions (center, liquid-solid inter-
face, surface), and the numerical scheme to solve them in detail
are provided in Appendix B.

The complex Love number k2 is determined from the
radial functions y5(Rs) at the moon surface. The global dissi-
pated power is determined by the imaginary part of the Love
number, Im(k2) and the orbit characteristics (Table 1). For a
synchronously rotating body in an eccentric orbit, the global
dissipated power is

Pglob =−21
2

Im(k2)
(ωRs)5

G
e2 (11)

(e.g., Segatz et al. 1988) with ω the angular orbital frequency
(ω= 2π/T ), T being the orbital and rotational period, Rs the
radius of the satellite, G the gravitational constant, and e the
orbital eccentricity. This formulation to the first order in eccen-
tricity in the tidal potential (Eq. (B.7)) is valid for low eccen-
tricity (<5%, Wisdom 2008; Běhounková et al. 2011), and is
therefore applicable to Io.

The radial distribution of the tidal dissipation rate, taking
into account both shear and bulk dissipations, can be determined
for the radial sensitivity functions to shear and bulk moduli, Hµ

and HK, introduced by Tobie et al. (2005):

H̄tide(r) =−21
10

ω5R4
se2

r2

(
HµIm(µ) + HKIm(K)

)
. (12)

Here Hµ and HK are determined from the radial functions
y1, y2, y3, and y4 (see Eq. (33) in Tobie et al. 2005, and our
Appendix C for more details). Im(µ) and Im(K) are the imag-
inary part of the complex shear modulus and bulk modulus,
respectively. The only difference relative to the approach of
Tobie et al. (2005) is the consideration of a non-zero Im(K) term
in the partially molten layer.

The local tidal heating rate per unit of volume averaged over
one cycle is evaluated at any point inside the body from the
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Case A: Top layer Case B: Bottom layer Case C: Top+Bottom layers
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Fig. 3. Io’s tidal heat budget as a function of melt fraction φ and the thickness dmelt of the partially molten layer(s). Three configurations are
considered for the internal structure (see Fig. 1): with one partially molten layer at the top (case A, left column) or at the bottom of the mantle (case
B, middle column), or with partially molten layers both at the top and bottom of the mantle (case C, right column). The color scale refers to the
global tidal power Pbulk, including the contribution of bulk dissipation (top panel), and to the ratio (Pbulk − Pnobulk)/Pnobulk, with Pnobulk designating
the reference global tidal power produced with shear dissipation only (bottom panel). The red curves highlight the 100 TW value. The black curve
indicates the parameters required to obtain this same value without bulk dissipation. For each configuration the red star denotes a reference case
corresponding to a thickness dmelt = 100 km. The white dashed line indicates the value of φc.

complex stress and strain tensors, determined from the radial
functions (see Appendix D):

Htide(r, θ, φ) =−ω
2

(
Im(σi j)Re(εi j) − Re(σi j)Im(εi j)

)
. (13)

By integrating radially the volumetric heating rate Htide over a
given layer, for instance the partially molten layer, we then derive
the tidal heat flux qtide, which is then used to discuss the tidal
heat pattern. From the complex Love number we can assess the
total dissipated power using Eq. (11), while the two formulas in
Eqs. (12) and (13) provide information on the radial distribution
and the spatial pattern of dissipation, respectively.

4. Results

4.1. Influence of bulk dissipation on tidal heat budget

The top panel of Fig. 3 displays the global tidal power Pbulk
in Io’s interior as a function of the characteristics of the par-
tially molten layer(s), melt fraction φ and thickness dmelt. Over
the range of values considered for φ and dmelt, several tens of
TW can be generated, whatever the internal structure configu-
ration (cases A, B, or C; see Fig. 1). For a given thickness of
the partially molten layer dmelt, increasing the melt fraction φ

first results in an increase in Pbulk. Below the critical melt frac-
tion (φc = 0.3), however, the tidal power never reaches 100 TW.
A drastic increase in the tidal power is observed beyond the crit-
ical melt fraction. Typical values of hundreds of terawatts are
observed for φ in the range 0.3–0.33. Ultimately, if the melt frac-
tion φ keeps increasing, the decrease in η, ζ, K, and µ leads
to a decrease in Pbulk. This is particularly visible in the case
of a bottom layer (Fig. 3, case B), where the maximum value
of Pbulk is observed at φ ' 0.316 and dmelt = 200 km. For the
case involving a partially molten layer at the top of the mantle
(Fig. 3, case A) this maximum occurs at larger values of φ (>
0.32 for dmelt = 200 km, larger values of φ for thinner layers). For
the configuration where bottom and top partially molten layers
are introduced that surround the solid-state mantle (Fig. 3, case
C), the maximum value of Pbulk is obtained for φ values in excess
of 0.33 that do not appear in the figure.

The top panel of Fig. 3 also indicates the melt layer char-
acteristics for which Io’s estimated heat output (for which we
take as a reference value 100 TW) can be reproduced for
solutions with bulk dissipation (red isolines) and without bulk
dissipation (black isolines). For a top molten layer, owing to dis-
sipation enhancement associated with bulk dissipation, 100 TW
is reached for a melt content smaller of 0.003 than for the case
with no bulk dissipation. For a bottom molten layer, the pro-
duced tidal power never reaches 100 TW in the absence of
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Case A
Case B
Case C
Without bulk 
dissipation

Fig. 4. Io’s tidal heat budget Pglob as a function of melt fraction of the
partially molten layer. Configurations for the interior structure involve:
a top partially molten layer (case A, red), a bottom partially molten layer
(case B, green), and a combination of the two, both layers being of equal
thickness (case C, blue). The layers thickness is dmelt = 100 km. Cases
involving bulk dissipation correspond to solid curves. Cases where
bulk dissipation is not included correspond to dash-dotted curves. The
shaded rectangle gives Io’s heat budget range (65–125 TW; see, e.g.,
Lainey et al. 2009).

bulk dissipation, which explains the absence of black isoline
in Case B. Once bulk dissipation is considered, 100 TW can
be generated for a melt content comprised between ∼0.31 and
∼0.32.

The bottom panel of Fig. 3 illustrates the morphology of the
dissipation by comparing the tidal power produced when both
bulk and shear dissipation are considered (Pbulk) to the refer-
ence tidal power that is produced when only shear dissipation is
considered (Pnobulk). As noted above, tidal heating is especially
enhanced by the addition of bulk dissipation just above φc, with a
maximum enhancement for φ= 0.312. The thinner the partially
molten layer, the greater the enhancement of tidal heating for
this melt fraction, whatever the location of the partially molten
layer. The maximum enhancement is observed for the bottom
layer configuration. On the contrary, above φ= 0.32, considering
shear dissipation only leads to an overestimation of the tidal heat
budget (Pnobulk > Pbulk).

As illustrated in Fig. 4 (for partially molten layers 100 km
in thickness), the global power with or without bulk dissipa-
tion is comparable as long as φ < φc (0.3 in this study). When
φ approches and exceeds φc, the two solutions with or without
bulk dissipation diverge. This is particularly evident in the case
of a bottom layer (Case B, green curves) where the total power
decreases with increasing melt fraction in the absence of bulk
dissipation, while it strongly increases with bulk dissipation. The
case of a top layer (Case A, red curves) is somewhat different:
when φ exceeds φc, both solutions with or without bulk lead
to an increase in dissipation. The solution with bulk dissipation
increases initially faster, but becomes less dissipative than the
no-bulk solution for φ exceeding 0.32. This observation is also
valid for Case C (blue curves).

Figure 5 shows the radial distribution of tidal dissipation
rate H̄tide (Eq. (12)) for the three interior models, in the case
where Pbulk = 100 TW (red stars in Fig. 3). When bulk dissi-
pation is considered (solid lines), the tidal power is increased
in the partially molten layers. The value of H̄tide is higher than
6× 10−6 W m−3 in the top layer and 3× 10−5 W m−3 in the bot-
tom layer, one to two orders of magnitude higher than in the solid
mantle adjacent to the partially molten layer.

10 8 10 7 10 6 10 5 10 4
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Fig. 5. Radial distribution of the tidal dissipation rate H̄tide within Io’s
interior. These profiles correspond to the reference cases denoted by red
stars in Fig. 3, i.e., they correspond to a thickness dmelt = 100 km, and
they all produce Pbulk = 100 TW for the cases including bulk dissipation.
The legend is the same as in Fig. 4.

These profiles highlight the enhancement associated with
the introduction of bulk dissipation already observed in Figs. 3
and 4. When a partially molten layer is introduced on top of the
mantle (cases A and C), the dissipation enhancement is high-
est in the middle of the layer (compare red and blue, solid and
dash-dotted lines at R ' 1750 km). In the configurations with
a bottom layer (cases B and C), the introduction of bulk dis-
sipation leads to higher heating rates than in the solid mantle
immediately above, while dissipation heating is lower when bulk
dissipation is not accounted for, as noted in Fig. 4 (compare blue
and green, solid and dash-dotted lines in the bottom 100 km
thick layer). Comparison with solutions considering a fully solid
core clearly indicates that the two-orders-of-magnitude effect for
Case B when including bulk dissipation (bottom panel of Fig. 5)
is explained by the boundary condition imposed by the presence
of the liquid core at the base of the partially molten layer, which
results in different stress conditions at the bottom interface.

4.2. Tidal dissipation pattern including bulk dissipation

Figures 6 and 7 display the tidal heat flux qtide computed by
radially integrating the volumetric tidal heating Htide (Eq. (13))
throughout the dissipative molten layer in the reference models
for cases A (top) and B (bottom) indicated by red stars in Fig. 3.
The left panels correspond to the computation of tidal heat
including bulk dissipation and the global value of Pbulk (inte-
gration of qtide over the whole surface area), and thus amounts
to 100 TW. The right panels correspond to computations with
a similar melt configuration, but when bulk dissipation is not
accounted for. The value of Htide is much lower in the latter case.
Below, we focus on the dissipation pattern, and thus on lateral
variations in qtide rather than on the absolute values.

The degree-two shape of the tidal potential results in a mod-
ulation of tidal heating as a function of latitude and longitude.
The introduction of bulk dissipation alters the dissipation pat-
tern in both configurations. When the partially molten layer is
located at the top of the mantle (Case A, Fig. 6), the compu-
tation with no bulk dissipation (right panel) yields the classical
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Case A: Top layer

With bulk dissipation Without bulk dissipation

Fig. 6. Patterns of tidal heat flux qtide integrated over the top partially molten layer for one orbit cycle at a given location for the reference model
denoted by a red star in Fig. 3, Case A, corresponding to φ= 0.3122. Left: values obtained when bulk dissipation is accounted for (providing a total
power Pbulk = 100 TW). Right: values obtained when bulk dissipation is not accounted for; in this case the total power is less than 100 TW (45 TW).
The same scale is used to highlight the tidal power enhancement due to bulk dissipation.

Case B: Bottom layer

With bulk dissipation Without bulk dissipation

Fig. 7. Patterns of tidal heat flux qtide integrated over the bottom partially molten layer for one orbit cycle at a given location for the reference model
denoted by a red star in Fig. 3, Case B, corresponding to φ= 0.3106. Left: values obtained when bulk dissipation is accounted for (providing a total
power Pbulk = 100 TW). Right: values obtained when bulk dissipation is not accounted for; in this case the total power is less than 100 TW (12 TW).
The two color scales are not the same.

pattern of Io’s near surface partially molten layer (e.g., Segatz
et al. 1988; Hamilton et al. 2013; Steinke et al. 2020): four local
maxima at low latitudes; two absolute maxima at longitudes 0
and 180◦, corresponding to the sub- and anti-Jovian points; and
two secondary maxima at longitudes 90 and 270◦, correspond-
ing to the leading and trailing meridians. The maximum tidal
heat production occurs at 30◦ latitude, north and south of the
sub- and anti-Jovian points. The pattern obtained when bulk dis-
sipation is introduced (left panel) also results in maxima at low
latitudes, but with longitudinal variations different from the clas-
sical pattern. The leading and trailing meridians systematically
correspond to minimum values of qtide at all latitudes. At the
equator, these minima correspond to half the value at the sub-
and anti-Jovian points, now corresponding to the absolute max-
ima of the tidal power. More dissipation is produced at high

latitudes (>45◦), with values at the poles never less than 25%
of the maximum value.

As noted above, the configuration with a bottom partially
molten layer (Case B, Fig. 7) is extremely affected by the intro-
duction of bulk dissipation (cf. Fig. 5). Without bulk dissipation,
the tidal power is strongly inhibited in this region, as indicated
by the very low value of qtide, while with bulk dissipation, it is
strongly enhanced. It is worth noting that the pattern with bulk
dissipation (Fig. 7, left), is similar to that observed when the
partially molten is at the top (Fig. 6, left) (i.e., qtide is maximum
at low latitudes). As a consequence, discriminating between a
top or a bottom partially molten layer seems difficult on the sole
basis of the dissipation pattern. Slight modulations are observed,
however: the minima at the leading and trailing meridians (90
and 270◦) are less pronounced, and four maxima are located at
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intermediate longitudes between these meridians and those of
the sub- and anti-Jovian points. For the case that does not include
bulk dissipation (Fig. 7, right), the pattern also resembles that of
case A (Fig. 6, right) (i.e., corresponding to the classical pattern
of Io’s near surface partially molten layer).

While dissipation patterns do not change significantly
depending on the location of the layer, the inclusion of bulk
dissipation has a major effect compared to when shear dissi-
pation alone is considered. Dissipation patterns are controlled
by the different components of the stress and strain tensors. As
shown in Fig. D.1, the dissipation pattern of the top partially
molten layer is mainly controlled by the three radial compo-
nents σrrεrr, σrφεrφ, and σrθεrθ, with a stronger contribution of
the σrrεrr component when bulk dissipation is included com-
pared to the solution without bulk dissipation (six times higher).
The resulting pattern (Fig. 6, left) is a modulation of the σrrεrr,
σrφεrφ, and σrθεrθ patterns. The dissipation pattern of the bot-
tom layer including bulk dissipation is completely dominated by
the radial component σrrεrr, 30 times higher than the equivalent
computation with no bulk dissipation (see Fig. D.1).

Changing the parameters that control the rheological tran-
sition at the RCMF (Eqs. (1)–(3)) and the asymptotic elastic
value for the fully liquid state (µl and Kl) has a minor effect
on the resulting dissipation pattern. The patterns displayed in
Figs. 6 and 7 are representative of Case A and B and are mostly
determined by the depth and thickness of the assumed molten
layer.

5. Discussion and conclusion

In the present study we investigated the solid-body tides of par-
tially molten interiors and quantify the potential role of bulk
dissipation. We chose Io as the archetype of a planetary body
where tidal heating is the key driver of interior evolution and
magmatic activity. Classical models are revisited along two
lines: (1) bulk attenuation is accounted for in the computation
of tidal dissipation and (2) rheological laws for viscous and elas-
tic parameters describe the influence of partial melts from zero
melt present up to beyond the critical value associated with the
rheological transition to liquid-state behavior.

Bulk dissipation starts to contribute significantly for melt
fractions approaching the value corresponding to the rheologi-
cal transition, termed RCMF. A total power of typically 100 TW,
required to explain Io’s thermal budget, is reached only after a
few percent above the RCMF. We note that for liquid-dominated
materials, as would be the case for a magma ocean, our modeling
approach is not valid anymore. While the rheological parameter-
ization we use describes the variation of rheological parameters
over the full range of melt fraction (from 0 to 1), our numerical
approach becomes unstable when the shear modulus becomes
smaller than ∼106 Pa. Alternative formulations, such as the prop-
agator matrix technique used in various studies dedicated to Io
(e.g., Segatz et al. 1988; Renaud & Henning 2018), can han-
dle smaller values of shear modulus. However, this formulation
ignores compressibility, and therefore cannot be used to assess
the role of bulk dissipation. For these reasons we limited our
analysis to melt fractions below 0.33 (i.e., 3% above the RCMF
value chosen here). As we showed that the produced tidal power
rapidly diverges from the expected 100 TW, this appears to be
a reasonable approach. This does not exclude that other solu-
tions producing 100 TW for higher melt fraction exist, but such
a case should be explored with an alternative modeling approach
relying on fluid formulation of the problem rather than on a

solid-based viscoelastic formulation, as used here. In addition,
we should keep in mind that the reference value of 100 TW
chosen in this study to quantify the role of bulk dissipation is
associated with a significant uncertainty; the estimates typically
vary between 65 and 125 TW (e.g., Lainey et al. 2009). Indepen-
dently of the assumed total power, we show that bulk dissipation
allows the production of several hundreds of terawatts in a local
archetype present in our Solar System.

Our results show that a strong increase in tidal dissipation
occurs in partially molten layers when the melt fraction exceeds
the critical melt fraction, estimated between ∼0.25 and 0.40.
All the results presented here assumed a critical value of 0.30,
but similar behavior is observed when considering different val-
ues. Moreover, we show that once above this critical value, tidal
dissipation is enhanced in many circumstances, and reduced
in some others, by bulk dissipation. Below the critical value,
the effect of bulk dissipation remains negligible. In the case
of a subsurface partially molten layer located beneath the crust
(asthenosphere), this effect is greatest for thin layers (∼50 km):
up to four times the value without bulk dissipation. For a par-
tially molten layer located at the base of the solid-state mantle,
we show that neglecting bulk dissipation completely changes the
results. When bulk dissipation is not taken into account, calcu-
lations show a strong decrease in tidal heating in such a layer,
while our results demonstrate that a strong increase is expected
instead. The two differ typically by more than three orders of
magnitude.

Our results imply that, given all other assumptions and
parameter choices of the tests we performed, partially molten
layers within Io (either on the top or bottom of the mantle) should
have a melt fraction above the RCMF value (>0.25–0.40) in
order to match Io’s heat output (∼100 TW). This differs from the
results of Bierson & Nimmo (2016), who find solutions match-
ing the total heat output for melt fraction below the RCMF value,
ranging between 0 and 0.25. This discrepancy comes from the
different values of rheological parameters for the solid matrix.
As noted by Bierson & Nimmo (2016), the solutions depend on
the assumed rheological parameters, which are poorly experi-
mentally constrained for partially molten rocks. As the main
objective of the study is to test the effect of including bulk
dissipation, we deliberately chose to prescribe the rheological
parameters for the solid matrix (ηs = 1019 Pa s) and consider a
Maxwell rheology for the partially molten layer, in the absence of
constraints to derive the rheological parameters for an Andrade
model. The influence of the solid matrix rheology on the total
heat budget of Io will be addressed in a forthcoming study.

Including bulk dissipation also severely modifies the tidal
dissipation pattern. For a partially molten layer located on top
of the solid-state mantle, maximum tidal heating is observed
at low latitudes, as in the case when bulk dissipation is not
accounted for. However, tidal heating is non-zero at the poles
(25% of the maximum value) contrary to calculations without
bulk dissipation. This feature may explain the observed volcan-
ism at high latitudes on Io (e.g., Veeder et al. 2012; Davies et al.
2015) in addition to the apparent concentration of volcanic land-
forms around the equator (Kirchoff et al. 2011; Hamilton et al.
2013). Furthermore, while the classical pattern (i.e., without bulk
dissipation) displays local maxima at the leading and trailing
meridians (e.g., Segatz et al. 1988; Beuthe 2013; Steinke et al.
2020), these meridians correspond to minima when bulk dissi-
pation is included. These modulations are mild, however, and
might be difficult to discriminate on the basis of Io’s volcan-
ism. Moreover, it is argued in the literature that deep mantle
heating on Io leads to an inverse pattern when compared to a

A72, page 10 of 17



M. Kervazo et al.: Solid tides in Io’s partially molten interior

shallower heat source associated with a low-viscosity layer, with
maxima located at high latitudes. We show that when bulk dis-
sipation is included, a deep partially molten layer at the base of
the mantle instead yields a pattern that is roughly similar to that
of an asthenosphere (i.e., maxima are located at low latitudes).
Our results demonstrate that bulk dissipation is a crucial process
when predicting dissipation in partially molten layers, such as
the asthenosphere of Io.

While Spencer et al. (2020) argue that a partially molten
layer at the base of Io’s mantle might not be the most physi-
cally plausible on the basis of two-phase flow, Monnereau &
Dubuffet (2002) suggested that a significant amount of melt
may be present at the base of the mantle depending on the
efficiency of heat transfer through the mantle. However, based
on existing observational and theoretical constraints we cannot
determine which of the three cases tested (the top or bottom par-
tially molten layer, or a combination of both) would be more
likely. Furthermore this configuration might be of interest in
other applications. A basal magma ocean has been proposed as
possible on Earth over a long period of time (Labrosse et al.
2007). This can also be the case for Earth-sized exoplanets,
hot molten likely bodies being common in exoplanetary systems
(Henning et al. 2018). As an example, the TRAPPIST-1 system
exhibits two planets (TRAPPIST-1 b and c) where tidal dissi-
pation is expected to be the primary internal heat source (Barr
et al. 2018; Turbet et al. 2018). Especially on TRAPPIST-1 b, the
tidal heat flux estimated to be more than a few W m−2 (Turbet
et al. 2018) would likely result in a large melt production in
the interior and associated magmatic processes. Evaluating the
heat production including bulk dissipation in partially molten
layers is essential to understand the impact of tidal friction
on such rocky exoplanets. Highly volcanic exoplanets, which
can be variously characterized as “lava worlds”, “magma ocean
worlds”, or “super-Ios”, are high-priority targets for investigation
(Henning et al. 2018). Owing to their bright infrared flux and
short orbital periods, they may be among the most detectable
and characterizable low-mass exoplanets in the coming decade
(Bonati et al. 2019). Io thus provides a local archetype of a
diverse category of related silicate worlds with intense tidally
driven volcanism (Barnes et al. 2010). Results of the upcoming
observational facilities such as the Atmospheric Remote-sensing
Infrared Exoplanet Large-survey (ARIEL) and the James Webb
Space Telescope (JWST) must be examined in the light of our
findings on the role of bulk dissipation.
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Appendix A: Constraints on rheological
parameters at melt fractions φ < φc

For melt fractions beneath the rheological transition (φ < φc),
shear viscosity η, shear modulus µ, and bulk modulus K are
essentially described in our study by a power law whose slope
is δ (Eq. (1)). The following constraints have been used to
determine an appropriate value for this parameter.

The effect of a melt fraction φ on the viscosity of the solid
matrix is typically described by an exponential decrease:

η(φ) = ηs exp(−aφ). (A.1)

Experimental studies on olivine valid up to a melt fraction
φ= 0.25−0.3 report values for the exponential coefficient a in
the range 26–32 (Mei et al. 2002; Kohlstedt et al. 2000; Scott &
Kohlstedt 2006). A value of a = 30 is well described by δ= 25.7
(used in our computations; cf. Eq. (1)).

The moderate effect of melt fraction φ on elastic parame-
ters can be described using the theoretical relationship derived
by Mavko (1980) assuming the most appropriate melt geometry,
namely interconnected tubes,

µ(φ) =

(
1
µs

+
φ

µs

(
40 − 24ν

15

))−1

, (A.2)

K(φ) =

(
1
Ks

+
φ

Ks

(
5 − 4ν

3(1 − 2ν)

))−1

, (A.3)

where ν= 0.25 is the typical Poisson ratio for silicate rocks (e.g.,
Christensen 1996; Ji et al. 2018). In the formalism of Costa et al.
(2009) used here (Eq. (1)), this corresponds to δ= 2.10 for µ and
δ= 2.62 for K.

Appendix B: Computation of the radial functions

B.1. Definition of the radial functions and overview of the
differential equations

Tidal forcing by external bodies induces spheroidal modes of
deformation inside the forced body. For a spherically symmetric
interior model, the displacements u = (ur, uθ, uϕ), the potential
Ψ, and the stress components σi j induced inside the body by
the external tidal potential Φ =

∑
l,m Φm

l can be expressed as the
product between a radial part yi, which depends on the interior
structure, and an angular part, which depends on the tidal poten-
tial exerted at the body surface, Φ(Rs) =

∑
l,m Φm

l (Rs) (Alterman
et al. 1959; Takeuchi & Saito 1972):

ur(r, θ, ϕ) = y1(r, ωm
l )Φm

l (θ, ϕ), (B.1)

uθ(r, θ, ϕ) = y3(r, ωm
l )
∂Φm

l (θ, ϕ)
∂θ

, (B.2)

uϕ(r, θ, ϕ) = y3(r, ωm
l )

1
sin θ

∂Φm
l (θ, ϕ)
∂ϕ

, (B.3)

σrr(r, θ, ϕ) = y2(r, ωm
l )Φm

l (θ, ϕ), (B.4)

σϕr(r, θ, ϕ) = y4(r, ωm
l )
∂Φm

l (θ, ϕ)
∂θ

, (B.5)

Ψ(r, θ, ϕ) = y5(r, ωm
l )Φm

l (θ, ϕ). (B.6)

It should be noted that the full expression of the different compo-
nents of the stress and strain tensors is provided in Appendix D.

The five radial functions yi(r, ωm
l ) depend on the radius (r);

the radially dependent density, shear modulus, and bulk modulus
(ρ, µ and K); and the forcing angular frequency (ωm

l ), which may
vary depending on the degree l and azimuthal order m of the
forcing potential. In the particular case of a body in 1:1 spin-
orbit resonance on an orbit with low eccentricity e, there is a
single forcing frequency whatever the azimuthal order, which is
equal to the mean motion or rotational angular frequency ω:

Φ(Rs) = Rsω
2e

(
−3

2
P0

2(cos θ) cosωt

+
1
4

P2
2(cos θ)[3 cosωt cos 2ϕ + 4 sinωt sin 2ϕ]

)
. (B.7)

In addition to the five radial functions introduced above, a
sixth radial function, y6, is used to account for the continuity of
the gravitational potential gradient. It is defined so as to simplify
the boundary conditions at the surface (Takeuchi & Saito 1972)

y6 =
dy5
dr − 4πGρy1 + l+1

r y5, (B.8)

where G the universal gravitational constant.
By injecting these relationships in the Poisson equation

∇2Ψ = 4πGdiv(ρu), (B.9)

and in the equations of motions

ρ
∂2u
∂t2 = ρ f + (divσr, divσθ, divσϕ)

+
1
r

(−σθθ − σϕϕ, σrθ − σϕϕ cot θ, σϕr + σϕθ cot θ),

(B.10)

withσr,σθ, andσϕ representing the stresses exerted on the plane
perpendicular to the axis ur, uθ and uϕ, respectively, we obtain
the following set of differential equations relating the six radial
functions:

dy1

dr
=

1
K + 4

3µ

y2 −
K − 2

3µ

r
[2y1 − l(l + 1)y3]

 , (B.11)

dy2

dr
= −ω2

lmρy1 +
2
r

((
K − 2

3
µ

)
dy1

dr
− y2

)
+

1
r

(
2(K + µ/3)

r
− ρg

)
[2y1 − l(l + 1)y3]

+
l(l + 1)

r
y4 − ρ

(
y6 − n + 1

r
y5 +

2g
r
y1

)
, (B.12)

dy3

dr
=

1
µ
y4 +

1
r

(y3 − y1), (B.13)

dy4

dr
= −ω2

lmρy3 −
K − 2

3µ

r
dy1

dr

−K + 4
3µ

r2 [2y1 − l(l + 1)y3]

+
2µ
r2 (y1 − y3) − 3

r
y4 − ρr (y5 − gy1), (B.14)
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dy5

dr
= y6 + 4πGρy1 − l + 1

r
y5, (B.15)

dy6

dr
=

l − 1
r

(y6 + 4πGρy1) +
4πGρ

r
[2y1 − l(l + 1)y3]. (B.16)

This system of differential equations has six independent
solutions in general. However, the solutions can be rearranged
in such a way that three of them are regular at r = 0. Each of
these three sets of solutions (yi1, yi2, and yi3) can be integrated
independently, as detailed in Appendix B.3. The full solution
is a linear combination of these three solutions: ys

i = As × ys
i1 +

Bs × ys
i2 +Cs × ys

i3. The three constants A, B, and C are then deter-
mined by applying the appropriate boundary conditions at the
surface.

B.2. Particular case of a liquid layer

The set of differential equations presented above is applicable
only in solid internal layers. In liquid–fluid internal layers (µ= 0)
there is no tangential stress (y4 = 0) and the differential equation
dy3/dr no longer exists, y3 becomes

y3 =− 1
ω2ρr

[y2 − ρ(gy1 − y5)], (B.17)

and the set of differential equations is reduced to

dy1

dr
=

1
K

{
y2 − K

r
[2y1 − l(l + 1)y3]

}
, (B.18)

dy2

dr
= −ω2

lmρy1 +
2
r

(
K

dy1

dr
− y2

)
+

1
r

(
2K
r
− ρg

)
[2y1 − l(l + 1)y3]

−ρ
(
y6 − n + 1

r
y5 +

2g
r
y1

)
, (B.19)

dy5

dr
= y6 + 4πGρy1 − l + 1

r
y5, (B.20)

dy6

dr
=

l − 1
r

(y6 + 4πGρy1) +
4πGρ

r
[2y1 − l(l + 1)y3]. (B.21)

For a liquid layer, the solutions to this differential equation sys-
tem reduce to two independent sets of solutions: yl

i = Al × yl
i1 +

Bl × yl
i2.

We note that y3 becomes indeterminate when ω → 0, so
that a different solution should be adopted for very low fre-
quencies, typically for tidal periods exceeding 5–10 days. At low
frequency, the tidal response of a liquid layer can be approx-
imated by a static equilibrium solution, as proposed by Saito
(1974).

B.3. Solution integration and boundary conditions

Conditions at the center and initiation of integration. The
set of differential equations is solved by integrating the indepen-
dent solutions (two in liquid layers, three in solid layers) from
the center to the surface. At the center, y1(0) = 0, y3(0) = 0 and
y5(0) = 0. For initiating the integration at the first step, from
R = 0 to R = dR, the three independent analytical solutions for

a homogeneous sphere established by Pekeris & Jarosh (1958)
and rearranged by Takeuchi & Saito (1972) are used.

A first solution is given by

ry1(r) = lrl,

r2y2(r) = 2µl(l − 1)rl,

ry3(r) = rl,

r2y4(r) = 2µ(l − 1)rl,

y5(r) = (lγ − ω2)rl,

ry6(r) = (2l + 1)y5(r) − 3lγrl, (B.22)

with

−γ= 4πGρ/3.

This solution is valid for both liquid and solid cases.
Two additional independent solutions are given by

ry1(r) = − rl+2

l + 3

[
1
2

lhΨl(x) + f Φl+1(x)
]
, (B.23)

r2y2(r) = −(λ + 2µ)rl+2 f Φl(x)

+
µrl+2

2l + 3
[−l(l − 1)hΨl(x) + 2

[
2 f + l(l + 1)

]
ϕl+1(x)

]
,

(B.24)

ry3(r) = − rl+2

2l + 3

[
1
2

hΨl(x) − Φl+1(x)
]
, (B.25)

r2y4(r) = µrl+2
{

Φl(x) − 1
2l + 3

[
(l − 1)hΨl(x) + 2( f + 1)Φl+1(x)

]}
,

(B.26)

y5(r) = rl+2
[
α2 f − (l + 1)β2

r2 − 3γ f
2(2l + 3)

Ψl(x)
]
, (B.27)

ry6(r) = (2l + 1)y5 +
3lγhrl+2

2(2l + 3)
Ψl(x), (B.28)

where x stands for kr, and α and β are the shear and compres-
sional wave velocities:

α=
√
µ/ρ; β=

√(
K +

4
3
µ

)
/ρ, (B.29)

k2 =
1
2

ω2 + 4γ
α2 +

ω2

β2 ±
(ω2

β2 −
ω2 + 4γ
α2

)2

+
4l(l + 1)γ2

α2β2

1/2
 ,

(B.30)

γ= 4πGρ/3, (B.31)

f =
β2

γ

(
k2 − ω

2

β2

)
, h = f − (l + 1), (B.32)

Φl(x) =
(2l+1)!!

xl jl(x)

= 1 − x2

2(2l+3)× 1 + x4

22(2l+3)(2l+5)× 2 − ...
, (B.33)

Ψl(x) =
2(2l + 3

x2 [1 − Φl(x)] . (B.34)

For a liquid core (µ= 0), one of these two solutions disap-
pears and we have

k2 =

[
ω2 + 4γ − l(l+1)γ2

ω2

]
/α2

f = −ω2/γ, h = f − (l + 1)
. (B.35)
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Continuation of solutions at liquid-solid interface. As
explained in Appendix B.2, only two independent solutions
exists in a liquid–fluid layer (µ= 0), while in a solid layer there
are three solutions. This requires the redefinition of the third
solution at a liquid–solid interface. The continuity conditions
impose that

ys
i j = yl

i j, i = 1, 2, 5, 6, j = 1, 2,

ys
31 = ys

41 = ys
32 = ys

42 = 0,
ys

33 = 1, ys
i3 = 0, i = 1, 2, 4, 5, 6. (B.36)

Boundary conditions at the surface. At the surface the
stress must vanish to zero, so that y2(Rs) = 0 and y4(Rs) = 0. The
potential should satisfy continuity across the boundary, so that
y6(Rs) = 2l+1

Rs
. For a solid surface the constants As, Bs, and Cs can

be determined from the imposed boundary conditions:
As × y21(Rs) + Bs × y22(Rs) + Cs × y23(Rs) = 0
As × y41(Rs) + Bs × y42(Rs) + Cs × y43(Rs) = 0
As × y61(Rs) + Bs × y62(Rs) + Cs × y63(Rs) = 2l+1

Rs

.

(B.37)

For a liquid–fluid surface these relationships reduce to{
Al × y21(Rs) + Bl × y22(Rs) = 0
Al × y61(Rs) + Bl × y62(Rs) = 2l+1

Rs

. (B.38)

This particular case does not apply to the present study,
where the surface is solid, but it can be useful for planets with an
extended fluid envelop, such as lava worlds, Venus-like planets,
or ocean-planets.

Numerical integration and reconstruction of the yi radial
functions. Using for the first integration step the initial values
computed from Eqs. (B.23)–(B.35) derived for a homogeneous
sphere, the system of six differential equations (Eqs. (B.11)–
(B.16)) for a solid layer; Eqs. (B.17)–(B.21) for a liquid layer)
are solved by integrating the three or two independent solutions
(depending on whether the considered layer is solid or liquid),
using a fifth-order Runge-Kutta method with adaptive step-size
control from the center (r = dr) to the surface (r = Rs), and by
applying the appropriate continuity conditions (Eq. (B.37)) each
time a liquid–solid interface is encountered.

The constants ((As, Bs, and Cs) or (Al and Bl)) are finally
determined at the surface from the imposed surface conditions
(using Eqs. (B.37) or (B.38), depending on whether the surface
is solid or liquid). Using these constants, the full solution of the
radial functions yi is then constructed from the three independent
yi j solutions. Particular attention must be paid each time a solid–
liquid or liquid–solid interface is met. At the first solid–liquid
interface, on the solid side we have

ys
i = As × yi1 + Bs × yi2 + Cs × yi3, (B.39)

and on the liquid side

yl
i = Al × yi1 + Bl × yi2, (B.40)

with Al = As and Bl = Bs. At the base of the liquid layer, the Cs
must be redefined in order to satisfy the continuity condition
such that

Cs =− ys
41
ys

43
× As − ys

42
ys

43
× Bs. (B.41)

At each liquid–solid interface this procedure must be applied in
order to correctly determine the entire yi profiles.

Although the whole set of equations described above have
been initially derived for the elastic case, they can be used for
the viscoleastic case by invoking the correspondence principle
(Biot 1954) and defining the corresponding complex moduli,
µ̃(ω) and K̃(ω) (Eqs. (9) and (10)) and redefining all variables
of the problem as complex variables (see Tobie et al. 2005, for
more details).

Appendix C: Radial sensitivity functions to shear
and bulk moduli

Below we provide the expression of the radial sensitivity func-
tions Hµ and HK used to compute the radial distribution of the
tidal dissipation rate (Eq. (12)), taking into account both shear
and bulk dissipation processes. The full derivation of these sensi-
tivity functions from variational equations can be found in Tobie
et al. (2005) and is not repeated here:

HK = r2

|K̃+4/3µ̃|2
∣∣∣∣y2 − K̃−2/3µ̃

r [2y1 − l(l + 1)y3]
∣∣∣∣2

+2r<
{ dy∗1

dr [2y1 − l(l + 1)y3]
}

+ |2y1 − l(l + 1)y3|2 , (C.1)

Hµ = 4
3

r2

|K̃+4/3µ̃|2
∣∣∣∣y2 − K̃−2/3µ̃

r [2y1 − l(l + 1)y3]
∣∣∣∣2

− 4
3 r<

{ dy∗1
dr [2y1 − l(l + 1)y3]

}
+ 1

3 |2y1 − l(l + 1)y3|2
+l(l + 1)r2|y4|2/|µ|2 + l(l2 − 1)(l + 2)|y3|2.

(C.2)

The asterisk (∗) stands for the complex conjugate,< for the real
part of a complex quantity, and | • | corresponds to the modulus
of •.

Appendix D: Stress and strain tensors

The complex strain and stress tensors, which are used in Eq. (13)
to derive the local dissipation rate, are computed from the six
radial complex functions yi (see Appendix B) at each grid point
of the satellite interior. In spherical geometry the strain tensor
components associated with the displacement field are

εrr =
∑
l,m

∂y1(r, ωm
l )

∂r
Φm

l (θ, ϕ), (D.1)

εθθ =
1
r

∑
l,m

y3(r, ωm
l )
∂2Φm

l (θ, ϕ)
∂θ2 + y1(r, ωm

l )Φm
l (θ, ϕ), (D.2)

εθϕ =
2
r

∑
l,m

y3(r, ωm
l )

1
sin θ

[
∂2Φm

l (θ, ϕ)
∂ϕ∂θ

− cot θ
∂Φm

l (θ, ϕ)
∂ϕ

]
, (D.3)

εϕϕ =
1
r

∑
l,m

y3(r, ωm
l )

1
sin2 θ

∂2Φm
l (θ, ϕ)
∂ϕ2 + y3(r, ωm

l )

cot θ
∂Φm

l (θ, ϕ)
∂θ

+ y1(r, ωm
l )Φm

l (θ, ϕ), (D.4)

εϕr =
1
µ

∑
l,m

y4(r, ωm
l )

1
sin θ

∂Φm
l (θ, ϕ)
∂ϕ

, (D.5)
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εrθ =
1
µ

∑
l,m

y4(r, ωm
l )
∂Φm

l (θ, ϕ)
∂θ

. (D.6)

We note that two components of the tidal strain tensor (εθϕ and
εϕϕ) were misprinted in Tobie et al. (2005) (Eq. (10)).

The corresponding stress tensor components are

σrr(r, θ, ϕ) = y2Φm
l (θ, ϕ), (D.7)

σθθ(r, θ, ϕ) =

(K − 2
3
µ)

dy1

dr
+

K + 4
3µ

r
[2y1 − l(l + 1)y3] − 2µ

r
y1


Φm

l (θ, ϕ) − 2µ
r
y3

cos θ
sin θ

∂Φm
l

∂θ
+

1
sin2 θ

∂2∂Φm
l

∂ϕ2

 , (D.8)

σϕϕ(r, θ, ϕ) =

(K − 2
3
µ)

dy1

dr
+

K + 4
3µ

r
[2y1 − l(l + 1)y3] − 2µ

r
y1


Φm

l (θ, ϕ) − 2µ
r
y3
∂Φm

l

∂θ2 , (D.9)

σθϕ(r, θ, ϕ) =
2µ
r
y3

 1
sin θ

∂2Φm
l

∂θ∂ϕ
− cos θ

sin2 θ

∂Φm
l

∂ϕ

 , (D.10)

σϕr(r, θ, ϕ) = y4(1/sin θ)
∂Φm

l

∂ϕ
, (D.11)

σϕr(r, θ, ϕ) = y4
∂Φm

l

∂θ
. (D.12)
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Fig. D.1. Patterns of stress and strain components.
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