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ABSTRACT

Aims. Planet-forming discs are believed to be very weakly turbulent in the regions outside of 1 AU. For this reason, it is now believed
that magnetised winds could be the dominant mechanism driving accretion in these systems. However, currently, no self-consistent
approach can describe discs that are subject to a magnetised wind in a way similar to the α disc model. In this article, I explore the
parameter space of wind-driven protoplanetary discs in a systematic manner and present scaling laws that can be used in reduced
models in a similar way to α disc models.
Methods. I computed a series of self-similar wind solutions, assuming that the disc is dominated by ambipolar and Ohmic diffusion.
These solution were obtained by searching for stationary solutions in the finite-volume code PLUTO using a relaxation method and
continuation.
Results. Self-similar solutions are obtained for values of plasma β ranging from 102 to 108 for several Ohmic and ambipolar diffusion
strengths. Mass accretion rates of about 10−8 M� yr−1 are obtained for the poloidal field strength β = O(104) or equivalently, 1 mG at
10 AU. In addition, the ejection efficiency is always close to 1, implying that wind mass-loss rate can be higher than the inner mass
accretion rate when the wind-emitting region is large. The resulting magnetic lever arms are typically lower than 2, possibly reaching
1.5 in the weakest field cases. Remarkably, the mean transport properties (accretion rate and mass-loss rate) mostly depend on the
field strength and much less on the disc diffusivities or surface density. The disc internal structure is nevertheless strongly affected
by Ohmic resistivity, strongly resistive discs being subject to accretion at the surface while ambipolar only models lead to mid-plane
accretion. Finally, I provide a complete set of scaling laws and semi-analytical wind solutions, which can be used to fit and interpret
observations.
Conclusions. Magnetised winds are unavoidable in protoplanetary discs as soon as they are embedded in an ambient poloidal magnetic
field. Very detailed disc microphysics are not always needed to describe them, and simplified models such as self-similar solutions can
capture most of the physics seen in full 3D simulations. The remaining difficulty to set up a complete theory of wind-driven accretion
lies in the transport of the large-scale field, which remains poorly constrained and is not well understood.

Key words. magnetohydrodynamics (MHD) – protoplanetary disks

1. Introduction

Protoplanetary discs are relatively cold and dense objects, which
typically last for a few million years around young stellar objects
(YSOs). However, it is well known that these discs are primarily
‘accretion discs’, in which matter is slowly falling onto the cen-
tral star. This accretion rate has now been measured in dozens of
objects, and it typically lies in the range of 10−10–10−7 M� yr−1.
Accretion in astrophysical discs is usually thought to be due
to a magnetohydrodynamic (MHD) instability, the magneto-
rotational instability (MRI, Balbus & Hawley 1991), which
transports angular momentum outwards and mass inwards. It was
quickly realised that applying the MRI in the context of proto-
planetary discs is a difficult task because of the dramatically low
ionisation fraction expected in these objects. The inclusion of
Ohmic (Gammie 1996) and ambipolar diffusions (Perez-Becker
& Chiang 2011) led to the conclusion that MRI cannot account
for the observed accretion rates in these discs by two to three
orders of magnitude.

The lack of a proper mechanism to trigger turbulence and
angular momentum transport in protoplanetary discs revived an
old idea that was mostly abandoned since the finding of the MRI:

? The self-similar solutions presented in this paper are available for
download on github: https://github.com/glesur/PPDwind

magnetised winds. While the disc bulk might be too diffusive to
sustain MHD turbulence, it is still weakly coupled to the ambi-
ent large-scale field originating from the parent cloud of the
YSO. This ambient field can in principle be enough to trigger
a magnetic breaking of the disc, leading to mass accretion and
the formation of a wind. This idea was originally proposed in
the context of YSOs by Wardle & Koenigl (1993). It was later
revived through numerical simulations, first in local shearing
box setups (Bai & Stone 2013; Simon et al. 2013; Lesur et al.
2014) and then in global simulations (Gressel et al. 2015, 2020;
Béthune et al. 2017; Bai 2017; Wang et al. 2019). All of these
simulations include Ohmic and ambipolar diffusion, while some
of them also include the Hall effect, which is thought to be
important in the densest regions of the disc (around 1 AU). The
strength of these diffusions is in turn computed from ionisation
and chemical models of various complexity. In addition, almost
all of these models include some sort of heating of the disc atmo-
sphere, designed to mimic non-thermal radiation heating that is
expected in these systems (e.g. Thi et al. 2019). Each published
model is of very high complexity, and only a handful of simu-
lations can be performed to explore a (very) limited subspace of
the parameter space.

In this context, the purpose of this work is to take a step back
and simplify the physics in order to explore the coupling between
protoplanetary discs and magnetised winds in a more or less
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systematic manner. This work essentially follows the approach
initiated by Ferreira (1997) on globally self-similar models that
was later extended to viscous (Casse & Ferreira 2000a) and
weakly magnetised (Jacquemin-Ide et al. 2019) discs. I use a
relatively different technic to derive the wind solutions, how-
ever, which I present in the next section, along with the physical
model. I then focus on a fiducial series of wind solutions and
explore their physical properties. Finally, I vary the disc diffu-
sivities to offer an overview of the more exotic configurations
before concluding.

2. Model

In the following, I consider a magnetised disc orbiting a central
object of mass M. The disc is only subject to the gravitational
pull of the central object (self-gravity being neglected) and to the
Lorentz force due to electrical currents. The disc is assumed to
be weakly ionised, hence I consider a generalised Ohm law that
includes Ohmic and ambipolar diffusivities. These diffusivities
are prescribed in Sect. 2.3.

2.1. Equations

In the following, I use either spherical (r, θ, ϕ) or cylindrical
(R, ϕ, z) coordinates, depending on the context. The cylindrical
radius is written in upper case, and the spherical radius is lower
case. I solve the non-ideal MHD equations, here in spherical
coordinates,

∂tρ + ∇ · ρu = 0, (1)

∂tρu + ∇ · ρuu = −∇ρc2
s +

J × B
c
− GMρ

r2 er, (2)

∂t B = −∇×E (3)

E = −u× B +
4π
c

(
ηO J + ηH J × B̂ − ηA J × B̂× B̂

)
, (4)

where I have defined the isothermal sound speed cs(r), assum-
ing the flow was locally isothermal, the plasma current J =
c∇× B/4π, the gravitational constant G the magnetic field direc-
tion B̂, the electromotive field E, and the Ohmic, Hall, and
ambipolar diffusivities ηO, ηH, and ηA. The diffusivities are also
functions of space and magnetic field strength. I stress that ‘no
turbulence is assumed’ in this model, only molecular magnetic
diffusivities that result from the low ionisation fraction of the
plasma. If accretion occurs, it is only the result of torques that
are self-consistently computed in the model.

2.2. Self-similar ansatz

In the context of protoplanetary discs, the strong diffusivities
are known to almost suppress all non-axisymmetric structures
(Béthune et al. 2017; Bai 2017) in the regions outside 1 AU.
For this reason, I assume that the flow is 2.5D: I conserve three
components for u and B but neglect ϕ derivatives.

In order to simplify the problem even more, I assume that
the flow is globally self-similar. This implies that with increas-
ing distance from the central object, the flow “looks” the same.
This approach has several advantages: first it avoids issues with
the inner boundary conditions, which are usually problematic
in global numerical models. Second, it allows us to systemat-
ically explore the parameter space at exquisite resolution with
limited numerical cost because the problem essentially becomes

a 1D problem. I follow Ferreira & Pelletier (1993) and define the
self-similar scaling for any field Q as

Q(r, θ) =

(
r
r0

)γQ

Q̃(θ), (5)

where γQ is the self-similar exponent, and Q̃ is a 1D function that
completely determines the flow. The scaling of the gravitational
force as 1/r2 imposes the self-similar scaling to all of the other
components, that is,

γv = −1
2

; γB = −5
4

; γρ = −3
2

; γη =
1
2
.

Similarly to the velocity field, the sound speed cs is proportional
to r−1/2, and c̃s is a prescribed function of θ. The self-similar
scaling is here written in spherical coordinates, but can be trans-
formed into cylindrical (R, z, ϕ) coordinates by noting that r =
R sin(θ) and z/R = tan−1(θ),

Q(R, z) =

(
R
R0

)γQ

Q̂(z/R),

where Q̂(z/R) = sinγQ (θ)Q̃(θ).
In the following, it will be useful to define the Keplerian

velocity vK(R) ≡ √GM/R and the Keplerian angular frequency
ΩK ≡ vK/R. I also use the disc geometrical thickness h ≡
cs(R, z = 0)/ΩK(R). By construction from the self-similar scal-
ing, h/R ≡ ε is a constant of the problem.

2.3. Diffusivities

The diffusivities η are usually computed from complex thermo-
chemical networks (e.g. Thi et al. 2019). It is customary to use
dimensionless numbers to quantify the diffusivities: the Ohmic
Reynolds number Rm and the ambipolar Elsasser number ΛA,
defined as

Rm ≡ ΩKh2

ηO
(6)

ΛA ≡
V2

A

ΩKηA
(7)

these dimensionless numbers are more useful than the more tra-
ditionally used Elsasser numbers because in most cases, they
do not depend on the magnetic field strength (Wardle & Ng
1999). Hence, they only depend on the gas properties (density,
temperature, and composition).

The use of the self-similar ansatz implies that Rm and ΛA
must be functions of z/R (or θ) only. This is not true in full chem-
ical models, except for ambipolar diffusion, which is known to
be of the order of unity across a wide range of scales (see e.g.
Thi et al. 2019, Fig. 8, middle panel). In the following, I there-
fore mostly focus on models dominated by ambipolar diffusion,
and introduce Ohmic diffusion subsequently.

Following the Thi et al. (2019) models, I prescribe the
ambipolar diffusion profile to be

ΛA(z/R) = ΛA0 exp
[

z4

(λh)4

]
, (8)

where λ is a free parameter quantifying the thickness of the non-
ideal layer in units of h.
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In models including Ohmic diffusion, I use the following
diffusivity profile:

Rm(z/R) = Rm0 exp
(

z4

(λh)4

)(
ρ̂(z/h)
ρ̂(0)

)−1

.

This profile, and in particular the dependence on the density
ratio, is chosen to be consistent with the ambipolar diffusion pro-
file, assuming the plasma is made of two types of charged species
(such as electrons and molecular ions).

2.4. Numerical method

In contrast to commonly employed self-similar approaches
(Casse & Ferreira 2000a; Jacquemin-Ide et al. 2019) where sta-
tionary equations are solved with shooting methods through the
critical points of the flow, here I solved the time-dependent
Eqs. (1)–(3) using the code PLUTO, a finite-volume, shock-
capturing scheme (Mignone et al. 2007). I used a spherical
domain, with the shape of a shell with only one grid point in
the radial direction and 2048 points distributed homogeneously
in the θ direction. I chose the grid to be centred on r = r0 = 1,
and the shell extended from θ = 0.15 to θ = π − 0.15. The radial
boundary conditions were set enforcing the self-similar relations
described in Sect. 2.2. For the boundary in the θ direction, I used
standard outflow boundary conditions.

The initial condition was a disc in hydrostatic equilibrium
threaded by a large-scale vertical (z) magnetic field whose initial
value was set to have β = 105 in the disc mid-plane. This initial
condition is strongly unstable and the disc very quickly (in less
than 10 Ω−1) launched an outflow before reaching a quasi steady-
state.

Given that the code is time-dependent and my choice of
boundary conditions, the disc mass is not necessarily conserved.
A fraction of the accreted material can be lost in the wind, lead-
ing to a slow decrease of the disc mass. In previous models, this
has been taken into account by slightly adjusting the power expo-
nent γρ to ensure that mass is constant in the disc. This is not
possible in our case because the solution is dynamically evolv-
ing: γρ would need to be changed as a function of time. Instead, I
therefore chose to renormalise the mass at each time step to keep
the total mass inside the domain constant.

For similar reasons, the total magnetic flux threading the
disc can evolve on secular timescales in this approach. This is
not allowed in commonly used self-similar approaches, which
usually assume that the total toroidal electromotive field is null.
Here, I chose not to enforce such a constraint. This allowed me
to measure the transport of magnetic flux, but it also implies that
the magnetic flux evolves with time. As for the density, I there-
fore multiplied the each component of the field by a fixed factor
at each time step, adjusted so that the magnetic flux threading
the disc was equal to the desired value.

2.5. Accretion theory and diagnostics

Several diagnostics can be derived from self-similar solution.
The most useful diagnostics are related to accretion theory, that
is, how the disc surface density and mass accretion rate evolve
with space and time. I therefore developed the mass, angular
momentum, and magnetic flux conservation equations as

∂Σ

∂t
+

1
R
∂

∂R
Ṁacc

2π
=

[
ρvz

]z0

−z0
, (9)

ṀaccvK

4π
=

∂

∂R

(
R2

∫ z0

−z0

dz TRϕ

)
+ R2

[
Tzϕ

]z0

−z0
, (10)

∂Bz0

∂t
= − 1

R
∂

∂R
REϕ0, (11)

where the overline denotes an azimuthal and ensemble average
(in the case of a self-similar stationary solution, this average is
not strictly needed), Σ =

∫ z0

−z0
dz ρ is the disc surface density, z0

is the disc surface, Ṁacc ≡ −2πR
∫ z0

−z0
dz ρvR is the mass accretion

rate, Txφ = ρvx(vϕ− vK)−BxBϕ/4π is the stress ϕ component, and
Bz0 = Bz(z = 0) and Eϕ0 are the vertical magnetic field strength
and azimuthal EMF in the disc plane, respectively. It should be
noted that in principle, accretion theory only require the first two
relations. However, it is now well established that in a wind-
driven disc, stresses and mass-loss rates are also a function of
the mean poloidal field strength. In this context, accretion theory
therefore has to be supplemented by Eq. (11).

Although Eqs. (9)–(11) fully describe the secular evolution
of any disc at hand, it should be realised that the right hand-side
terms are a priori unknown. This closure problem is well known
in the disc community, and is usually solved by using the α disc
paradigm when only the Trϕ term is present. In the case of a
wind-driven disc, four terms are actually present. Following the
α disc idea, I therefore define four parameters,

ζ± ≡ ±ρvz(±z0)
ΣΩK

, (12)

α ≡
∫ z0

−z0
dz TRϕ∫ z0

−z0
dzP

=

∫ z0

z0
dz TRϕ

ΣΩ2
Kh2

, (13)

υ± ≡ ±
Tzϕ(±z0)

ΣΩ2
Kh

, (14)

vB ≡
Eϕ0

ΩKhBz0
, (15)

where I have assumed that the disc was isothermal to define
α. With these definitions, a positive vB implies that the field is
‘transported outwards’. The mass-loss rate ζ is comparable to
the definition of Scepi et al. (2018), up to a factor of the order of
unity. In numerical applications, I use z0 = 6h.

It is also customary to measure the magnetic field strength as
a function of the plasma β parameter. In this manuscript, I define
the plasma β on the strength of the mean vertical field threading
the disc mid-plane,

β ≡ 8πρ(z = 0)c2
s

Bz0
2 . (16)

The transport coefficients ζ, α, υ, and vB being dimensionless
coefficients, they are expected to depend only on dimensionless
numbers. We therefore expect them to depend on the magnetic
field strength β, but also on the diffusivity of the disc Rm and
ΛA. In principle, when all of these dependencies are known,
accretion theory is said to be complete and the evolution of
a wind-driven protoplanetary disc can be computed in a way
similar to the historical α disc. Therefore, determining these
dependencies is the main objective of this article.
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Fig. 1. Space-time diagram showing the evolution for the first 1000 Ω−1

of Bθ (top), Bϕ (middle), and vθ (bottom) for the fiducial run. The sys-
tem quickly reaches steady state. In order to continue the solution as a
function of the field strength, the field is slowly increased every 300 Ω−1.

3. Fiducial simulation

3.1. Time evolution

In the following, I define the fiducial run as a simulation with
ambipolar diffusion only, ΛA = 1 and λ = 3, so that the non-
ideal MHD zone extends up to 3h above the disc mid-plane. The
disc aspect ratio was fixed to ε = 0.1 and the disc and atmo-
sphere were assumed to be locally isothermal, that is, cs(R,Z) =
cs(R, z = 0). As for all the simulations, the fiducial run was
started with a mid-plane β = 105. I have also run this simulation
at half-resolution (i.e. 1024 points in θ) to confirm the conver-
gence of the solution. The two solutions differ by less than 1%,
so I am confident that the full resolution simulations presented
here are perfectly resolved.

While most of the solutions presented in this article are
quasi-steady state, I briefly discuss the space-time evolution of
the simulations used to compute the solutions. This space-time
evolution is shown in Fig. 1 for the fiducial run. The system
clearly rapidly relaxes into steady state. During the first 100 Ω−1,
I applied a linear damping to the equations of motion to damp
epicyclic oscillations more rapidly than the system would natu-
rally do. These oscillations are due to the sudden launching of
the wind, and are a spurious result of my wind-free initial con-
ditions (we used a similar procedure in the shearing box Lesur
et al. 2013).

After the first 100 Ω−1, the system reaches a quasi-steady
state, from which I can compute the required information: angu-
lar momentum transport, mass flux, etc. In order to continue
the solution as a function of β, I slowly increased the total field
strength between 300 Ω−1 and 400 Ω−1, and let the system reach
its new equilibrium for the next 200 Ω−1. I then repeated this pro-
cedure until the code stopped because of singular points in the
solution. In doing so, I reached β = 35 in the fiducial run in steps
of 10% decrease in β. In the fiducial setup, I also continued the
solutions from β = 105 up to β = 108 in steps of 10% increase to
study the domain in which the solutions obtained by this proce-
dure are valid. Hence, the domain explored for the fiducial setup
is wider than for the other solutions (Sect. 4). In the following,
I average the quasi-steady flow obtained for the last 100 Ω−1 of
“relaxation” for each magnetisation and use the result to compute
the flow properties.

3.2. Flow topology

The 2D topology of the flow can be deduced from the 1D “shell”
solutions of the simulation by reconstructing the 2D fields using
the self-similar scalings (5). Using this procedure, I computed
the flow topology for the two extreme cases (β = 105 and β = 35)
and for an intermediate case (β = 103) shown in Fig. 2. In this
fiducial simulation, the flow was symmetric with respect to the
disc mid-plane, as seen here. The strongly magnetised solution
produces a super-sonic accretion flow, while the weaker magne-
tised case tends to produce subsonic accretion (vp/cs < 0.1). In
the weak-field case, the field lines are almost straight, indicating
that the decoupling between the field and the flow is efficient,
thanks to ambipolar diffusion. As the field becomes stronger,
however, the field lines are clearly pinched around the mid-plane.
This indicates an efficient field dragging by the accretion flow.

The wind was super fast-magnetosonic in all cases. The fast
surface was closer to the disc surface when the magnetisation
became stronger, while the Alfvén surface tended to stay at
the same altitude (around 4.5h). Generally speaking, stronger
magnetisation leads to faster and more massive winds (for an
identical disc). Interestingly, while the shape of the stream and
field lines differ significantly in the disc, their aspect is very sim-
ilar in the wind region starting above the disc surface. In all of
these cases, the flow showed signs of collimation towards the
axis.

3.3. Transport properties

The transport properties defined in Sect. 2.5 can be evaluated as
a function of the magnetisation for the fiducial run. This gives
the dependencies shown in Fig. 3. The resulting transport coef-
ficients are remarkably close to power laws of β (except for vB,
which shows a shallower dependence on β than a power law).
Several important trends can be deduced from this result.

First, it should be pointed out that because the solutions are
all steady state and laminar, the α measured here is a ‘pure lam-
inar stress’. It is not due to any form of turbulence because it
is just the result of the large-scale wind that transports angular
momentum both radially and vertically. Nevertheless, it can be
compared to what is found in turbulent discs. The dependence of
α on β−1 is steeper than the one usually found in ideal-MHD
shearing-box simulations, which usually give α ∝ β−1/2 (e.g.
Salvesen et al. 2016; Scepi et al. 2018). However, the ideal and
non-ideal values for α match for β ∼ 10. Hence, my values of α
are generally lower than their ideal MHD counterpart by a ratio
∼ β1/2/3. This is most likely the signature of ambipolar diffusion
in the disc.

In general, the values for α, υ, and ζ are compatible with
the values found in the shearing-box literature for β ∼ 104−105

and equivalent diffusivity regimes dominated by ΛA = 1 (e.g.
Bai 2013; Lesur et al. 2014), even though the dependence on β is
slightly steeper than Bai (2013).

Interestingly, vB > 0 for all the cases explored in the fidu-
cial run. This indicates that despite the strong accretion in the
disc mid-plane, the field is always diffusing outwards. This is
qualitatively consistent with Bai & Stone (2017), but the diffu-
sion speeds are reduced by an order of magnitude in my case.
For β = 104, I obtain vB = 1.7× 10−3, while Bai & Stone (2017)
obtained1 vB = 4× 10−2. A careful examination of the ideal

1 I measured vB in units of cs, while Bai & Stone (2017) quoted vB in
units of vK, hence a factor of ε should be added when the two results are
compared.
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Fig. 2. Flow topology in the fiducial run (ambipolar diffusion only ΛA = 1). Top row: poloidal streamlines (white) and log of the sonic Mach
number. Bottom row: poloidal field and log of density, normalised so that the mid-plane density at R = 1 is unity. The colour scales are identical in
the columns. From left to right, the disc magnetisation increases: β = 105, 103, and 35. The green lines denotes critical lines of the flow: Alfvénic
(plain) and fast magnetosonic (dot-dashed). The dashed green line represents the disc “surface” where the flow becomes ideal, which is arbitrarily
located at z = 3.5h for all of the solutions.

and non-ideal contributions to Eϕ (Fig. 4) shows that advection
almost completely balances diffusion, diffusion winning only by
a 1% excess. It is also worth noting that while the ideal and
ambipolar EMFs vary strongly in the disc, their sum is approx-
imately constant with θ, indicating that poloidal field lines are
“moving” radially without much vertical deformation in the disc.

Using Eq. (10), the safe-similar scalings (Eq. (5)) and the
definitions of Sect. 2.5, it is straightforward to show that the mass
accretion rate is directly related to α and υ±

Ṁacc

2πΣR2ΩK
≡ ṁ = ε

(
αε︸︷︷︸
ṁR

+ 2(υ+ + υ−)︸      ︷︷      ︸
ṁz

)
,

where I have split Ṁacc in a contribution from the radial (ṁR)
and vertical (ṁz) stresses. Even though these are usually referred
to as “turbulent” and “wind” contributions (even when the flow
is laminar), I emphasise that there is no turbulent stress. Hence
both contributions are intrinsically due to the wind. Using the
power-law scalings in Fig. 3, I find that

ṁz

ṁR
= 1.5β0.26.

Hence whenever β � 1, the vertical stress is largely dominant
and the radial transport of angular momentum can be neglected
altogether, which is consistent with previous 3D numerical
simulations (Béthune et al. 2017).

Neglecting ṁR, I can derive the mass accretion rate in a
realistic disc using only the scaling for υ±, which gives

Ṁacc = 6.6× 10−8
(

Σ

10 g cm−2

) ( R
10 AU

)0.5

×
(

M
M�

)0.5 (
β

104

)−0.78

M� yr−1, (17)

or substituting β with the field strength and the surface density,

Ṁacc = 1.6× 10−8
(

Σ

10 g cm−2

)0.22 ( R
10 AU

)2.08 (
M
M�

)−0.28

×
(
ε

0.1

)−0.78 ( Bz

1 mG

)1.56

M� yr−1. (18)

It is worth noting that the mass accretion rate does not
depend strongly on the disc surface density, in contrast to the
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Fig. 3. Transport coefficient as a function of the disc magnetisation for the fiducial run (ambipolar diffusion only ΛA0 = 1). Each blue dot is a
steady-state solution obtained by continuation in the simulation. Because the flow is symmetric with respect to the mid-plane, only values computed
from the disc top surface (ζ+ and υ+) are shown. The best fits using power laws are shown as a plain orange line.

usual viscous disc model. Instead, I find that the field strength is
the dominant control parameter in these solutions. More quan-
titatively, I find accretion rates compatible with expected rates
from observations (∼10−8–10−7 M� yr−1) when β ∈ [103, 105] or
Bz ∼ a few mG. I caution that the observed accretion rates are
typically inferred from the material that falls onto the central
star, while here the mass accretion rate is computed in the disc
at 10 AU. If the wind extracts a significant amount of material
between the star and 10 AU, these accretion rates have no reason
to match.

A common way to quantify the fraction of the accreted mass
that is ejected is through the ejection efficiency parameter ξ,
which is defined as

ξ ≡
2πR2

[
ρvz

]z0

−z0

Ṁacc
=

d log Ṁacc

d log R
in steady state,

where the last equality results from the continuity equation
assuming ∂tΣ = 0. It is easy to show that the ejection efficiency
is directly connected to the transport coefficients:

ξ =
ζ+ + ζ−

2ε(υ+ + υ−)
= 0.4 β0.09,

where the first equality assumes that ṁR is negligible, while the
second uses the scaling found in the fiducial run (Fig. 3). This
implies that ξ = O(1) for β ∼ 104 and that the accretion rate is
approximately a linearly increasing function of radius in steady
state in these models.

Finally, while most of the scalings presented here use β and
therefore the vertical field strength as the main control parameter,
these solutions are dominated by the azimuthal field component
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Fig. 4. Zoom on the toroidal electromotive field of the disc, splitting
the ideal MHD and ambipolar diffusion contributions for β = 105 in
the fiducial case. The two electromotive fields balance almost exactly.
The total EMF at θ = π/2 is Eϕ/Bz0 ' 6× 10−5 and is approximately
constant throughout the disc. This gives vB = 6× 10−4.

Bϕ. Using the definition of υ, it easy to show that∣∣∣∣∣BϕBz

∣∣∣∣∣
z0

=

√
π

2
βυ

' 1.9β0.22, (19)

where the last equality comes from the scaling of the fiducial
run. Hence, for β = 104, |Bϕ| is more than 14 times larger than Bz
at the disc surface, indicating that the field is strongly wrapped
at this location. Finally, because υ+ = −υ−, the sign of Bφ is
reversed at the top and bottom of the disc.

3.4. Magnetic torque and currents

Although it is possible to interpret accretion in terms of angular
momentum budget (the disc angular momentum is transported
into the wind), this gives us little information about how the
disc accretes. This question can be addressed by considering the
forces acting on the disc. In particular, because the outflow is
magnetised, the Lorentz force FL = J × B/c is key. If FL,ϕ < 0,
the Lorentz force breaks down the disc rotation by creating a
negative torque, driving accretion. The magnetic torque is clearly
closely related to the poloidal current,

FL, ϕ =
Jp × Bp

c
.

Because the poloidal field is more homogeneously distributed in
the disc (Fig. 2), the magnetic torque is strongest in the regions
of strong Jp. Hence the poloidal current is a direct indicator of
the torque exerted by the wind on the disc. The distribution of
poloidal currents in the fiducial β = 105 case is shown in Fig. 5.
I find a strongly focussed current sheet in the disc mid-plane,
with currents directed outwards. This current induces a strong
negative torque that in turn is responsible for accretion in the
disc mid-plane. This current then closes back in the disc surface
and in the wind.

It might be surprising at first sight to find such a narrow cur-
rent sheet in the system given that the disc is strongly diffusive
(ΛA = 1). It is well known, however, that ambipolar diffusion
is a self-focusing diffusion process. It has been argued that in
“free” reconnection sites, the current scales as z−2/3, where z is

Fig. 5. Poloidal current in the fiducial simulation at β = 105. The current
intensity is represented in colour. There is a strong outwards current in
the disc mid-plane. The green lines represent the same characteristics
as Fig. 2.
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Fig. 6. Zoom on the radial current in the fiducial simulation at β = 105.
The current sheet is strongly focused, with a scaling compatible with
Jr ∝ z−1 (see text).

the distance from the null point (Zweibel & Brandenburg 1997).
In the particular case presented here, I find that the current is
even more focused with Jr ∝ z−1 close to the mid-plane. This is
expected because in the present case, I focus on a reconnection
site that is “forced” by the outflow launched from the surface,
hence the scaling need not be identical to that of Zweibel &
Brandenburg (1997).

3.5. Wind properties

Winds in protoplanetary discs are often refereed to as magneto-
thermal winds. This is because most (if not all) of the global

A35, page 7 of 13

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202040109&pdf_id=0
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202040109&pdf_id=0
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202040109&pdf_id=0


A&A 650, A35 (2021)

simulations published so far used a “hot atmosphere”. These hot
atmospheres are either achieved by a prescribed heating func-
tion (Béthune et al. 2017), or with a more complete treatment of
the thermodynamics, including various sources of heating and
cooling (Wang et al. 2019; Gressel et al. 2020). In any case,
the energetics of these winds is partially dominated by thermal
heating, hence their name.

In the fiducial solution presented here, the equation of state is
locally isothermal. The temperature of the atmosphere therefore
is that of the disc at the same cylindrical radius R. For this reason,
my fiducial wind is not magneto-thermal, as I show below.

Because the wind is a steady-state ideal MHD flow, sev-
eral conserved quantities can be derived from the equations of
motion. I therefore considered a streamline passing through the
mid-plane at R0. I define Ω0 as the Keplerian angular velocity
at R0: Ω0 ≡ ΩK(R0). I then follow Blandford & Payne (1982),
defining

– the mass-loading parameter

κ =
4πρupΩ0R0

BpB0
,

where vp and Bp are the poloidal velocity and field strength,
which quantifies the mass that is loaded onto the field
lines.

– the rotation parameter

ω ≡ Ω

Ω0
− κB0Bϕ

4πρRR0Ω2
0,

which measures the rotation speed of magnetic surfaces.
– the magnetic lever arm

λ ≡ ΩR2

Ω0R2
0

− RBϕ
R0κB0,

which measures the angular momentum that is extracted by
the wind.

– the Bernoulli invariant

B =
v2

2Ω2
OR2

0︸  ︷︷  ︸
Kinetic

− R0√
R2 + z2︸        ︷︷        ︸

Gravitational

−ωRBϕ
κR0B0︸   ︷︷   ︸

Magnetic

+
w

Ω2
0R2

0︸  ︷︷  ︸
Thermal

which measures the energy content of the flow. In this
definition, I included the thermal contribution to the flow
energetics as the work done by thermal pressure forces along
the field line,

w ≡
∫ ∞

s
−d` · ∇P

ρ
.

If the flow is adiabatic, this is simply the enthalpy. How-
ever, the locally isothermal approximation does not lead to
an adiabatic flow, hence I have to use the integral form.

I computed the mass loading, rotation, and lever arm parameters
along a magnetic field line for the fiducial simulation at β = 105

(Fig. 7). As expected, these parameters are constant once above
the non-ideal region of the disc. Surprisingly, the lever arm is
very small, reaching only λ = 1.56. As is well known, cold MHD
winds require λ > 3/2, so this is just above this limit value. A
close inspection of the Bernoulli invariant (Fig. 8) shows that
thermal driving is indeed negligible in the energy budget of the
outflow, confirming that the solution is a cold MHD wind, not a
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Fig. 7. MHD invariants plotted along one given field line for the fiducial
run at β = 105. As expected, the invariants are approximately constant
once in the ideal-MHD region lies above the disc. The asymptotic values
are κ = 30.2, ω = 0.99, and λ = 1.56.

10−1 100 101

Z/R0

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

B

Kinetic

Gravitational

Magnetic

Thermal

Total

Fig. 8. Bernoulli invariant plotted along one given field line for the fidu-
cial run at β = 105. The Bernoulli invariant becomes constant once in
the ideal MHD region, as expected. The thermal contribution to the
energetics is negligible compared to the magnetic contribution, hence
the wind is classified as a “cold” MHD wind.

magneto-thermal wind. It also shows that B > 0, indicating that
the wind is free to escape the gravitational potential well up to
infinity.

A systematic exploration of the κ, λ parameters as a func-
tion of β in the fiducial simulation gives Fig. 9. This figure can
directly be compared to Fig. 2 in Blandford & Payne (1982). It is
interesting to note that these new solutions at low magnetisation
have a much larger κ and much smaller λ than the previous solu-
tions of Blandford & Payne (1982). This trend has been observed
by Jacquemin-Ide et al. (2019) in ideal MHD for β > 1. The solu-
tions I obtained here have even smaller λ, with an asymptote in
the high β limit close to λ = 1.4. This is smaller than the λ = 3/2
limit demonstrated by Blandford & Payne (1982). It should be
pointed out, however, that this limit is computed for a wind emit-
ted from z = 0, while here the wind is emitted from z = 5H, so
the lever arm is physically allowed to be slightly smaller than
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Fig. 9. Dependence on κ and λ of the fiducial solutions as a function
of the disc magnetisation β. As the field strength increases, λ increases,
while the mass-loading parameter decreases.

3/2. This is confirmed by analysing the Bernoulli invariant at
β = 107, which still shows that the magnetic energy dominates
the energetics at the disc surface (not shown).

4. Parameter space exploration

4.1. Ambipolar diffusion

In order to explore the effect of the disc diffusivity on the
behaviour of the outflow, I varied the strength of ambipolar dif-
fusion in the disc plane ΛA0 (Eq. (8)), keeping the same vertical
profile. The resulting transport properties are shown in Fig. 10.
The general trend is that as diffusion is increased, the mass-loss
rate and angular momentum fluxes decrease, while magnetic flux
transport increases. This overall suggests that wind-driven accre-
tion tends to be reduced when ambipolar diffusion increases, as
expected naively. It should be noted, however, that not all trans-
port coefficients vary in the same proportion. Taking β = 104 as
the reference case, I find that a decrease in ΛA0 by a factor 16
leads to a decrease in ζ, α, and υ by a factor 3.2, 4.0, and 2.25,
respectively, while vψ increases by a factor 4.0. This therefore
suggests a relatively weak sensitivity of the transport coefficient
on ΛA0 (shallower than Λ0.5

A ), especially for the vertical angular
momentum coefficient υ. The weak dependence of υ on the disc
dissipation properties has been observed in shearing-box sim-
ulations (see Lesur 2020, Fig. 39 and related text) and is here
confirmed in global geometry. Overall, this confirms that wind-
driven angular momentum extraction is only moderately affected
by the strength of ambipolar diffusion, and that the mass accre-
tion rate (17) is approximately valid (up to a factor of a few) for
the range of ambipolar diffusion considered here.

4.2. Ohmic diffusion

In addition to the strength of ambipolar diffusion, I also explored
the effect of Ohmic diffusion on the flow topology. In proto-
planetary discs, this leads to wind solutions that are valid in the
Gammie (1996) historical “dead zone”, found around 1 AU in
typical chemical models. To limit the computation time required
by such models, I chose to focus on Rm0 > 1. In the litera-
ture, Ohmic diffusion is frequently evaluated in terms of the
Ohmic Elsasser number ΛO, which depends on the field strength.
Typically, Λ0 = Rm0β, so that Rm0 & 1 typically corresponds
to the mid-plane value quoted at R . 1 AU by several authors

(Bai & Stone 2013, Fig. 1; Thi et al. 2019, Fig. 8). I finally point
out that in all of these models, I kept ambipolar diffusion fixed
to its fiducial value ΛA0 = 1. This means that Ohmic diffusion is
added to the diffusivity tensor of the fiducial run.

As for ambipolar diffusion, I started with the transport
coefficients as a function of Rm0 (Fig. 11). Here, the angular
momentum transport coefficients α and υ are barely affected
by Ohmic diffusion, even when Rm0 = 1. This suggests that
the accretion rate in the Gammie (1996) dead zone probably
is not so different from that observed in regions dominated by
ambipolar diffusion. I note, however, that the field diffusion rate
is increased by possibly several orders of magnitude. This is
probably the most stringent effect of adding Ohmic diffusion to
the system. While Rm0 ≥ 10 solutions are top-down symmet-
ric (therefore only ζ+ and υ+ are plotted), the Rm0 = 1 solution
breaks this top-down symmetry around β ' 104. The direction
of this symmetry breaking is random. Starting from slightly dif-
ferent initial condition, I could obtain ζ+ > ζ− or the opposite,
which shows that there is ‘no physically preferred direction’ for
this symmetry breaking.

The fact that the transport coefficients are approximately
unaffected by Ohmic diffusion should not lead to the incorrect
impression that the solutions are physically identical. A care-
ful examination of the solution at Rm0 = 1 (Fig. 12) shows that
the solution in the disc is very different from the fiducial solu-
tion. First, the current sheet that was initially localised in the
mid-plane (Fig. 5) is now localised on the disc surfaces. This
can be easily interpreted as a result of Ohmic diffusion. While
ambipolar diffusion can have a focusing effect, Ohmic diffusion
is really only a diffusive process. The current sheet therefore
cannot form in the strongly diffusive mid-plane, and is therefore
pushed away, at the disc surface. This change in localisation of
the current sheet in turn affects the accretion flow because accre-
tion is driven by the magnetic torque created by the poloidal
current (see Sect. 3.4). This is more evidently seen in Fig. 13,
where the accretion flow clearly moves from the disc mid-plane
towards the disc surface as Rm0 is decreased, thereby follow-
ing the localisation of the current layer. Finally, poloidal current
and accretion flows are both localised at the disc surface. How-
ever, because the current is set globally by the electrical circuit
enforced by the wind, its intensity is not really affected by this
change in localisation, implying that total torques and accretion
rates are not dramatically modified, as indicated by transport
coefficients.

After understanding that the current sheet becomes divided
into two parts and pushed towards the surface, this process might
be imagined to be not be totally symmetric for some range of
parameters. This is what happens in the Rm0 = 1 solution around
β = 104. In this case, the current sheet is more pronounced in the
southern hemisphere (Fig. 14), leading to an accretion stream
that is more pronounced on the bottom side of the disc, and
inclined field lines in the disc bulk. I stress that while accretion
occurs in the southern side of the disc in this particular exam-
ple, the wind is more pronounced on the northern side of the
disc because |ζ+| > |ζ−| and υ+ > υ−. Hence angular momentum
and mass flow away on the side opposite to that of accretion.
This behaviour was also observed by Béthune et al. (2017) in
dissymmetric solutions.

5. Discussion and conclusions

I have used a finite-volume code to derive self-similar wind solu-
tions applicable to the diffusive regime of protoplanetary discs.
In contrast to previous self-similar solutions, no assumption
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Fig. 10. Transport coefficients as a function of the disc magnetisation and mid-plane Elsasser number ΛA0.

was made on flux stationarity or top-down symmetry. I also
circumvented the difficulties of full-blown 3D numerical sim-
ulations, which are often limited by their integration time and
inner boundary conditions. Using this technic, it is possible to
explore systematically a wide range of parameters at a reduced
numerical cost.

Using this tool, I have presented a series of wind solutions
ranging from β = 108 to β = 35 that are valid in the non-ideal
regions of protoplanetary discs R & 1 AU. I showed that cold
wind solutions (i.e. that do not require atmospheric heating) exist
in this entire range of parameters. Some of these solutions are
very similar to the solution found using 2.5D and 3D simula-
tions, in the same range of parameters. These solutions exhibit
several important properties, some of which can be confirmed
observationally.

First and foremost, magnetised disc winds always exist and
are unavoidable as soon as a large-scale magnetic field threads
the disc. This statement is true even for β = 108 fields that
correspond to a few µG at 10 AU for typical surface densi-
ties. They give accretion rates Ṁacc (Eq. (18)), which essentially
depend on the field strength, and which are broadly speaking
compatible with observed accretion rates onto T Tauri stars
provided that 103 < β < 105 or equivalently Bz ∼ a few mG.
Interestingly, Ṁacc depends only weakly on the disc surface den-
sity, in contrast to viscous disc models. However, the direct
comparison between the accretion rate in the disc bulk (as mea-
sured by Eq. (18)) and the mass accretion measured onto the
star is probably misleading. The latter is probably significantly
smaller than the former because the ejection index (see below)
is about one, hence the disc mass accretion rates could be
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Fig. 11. Transport coefficients as a function of the disc magnetisation and mid-plane Reynolds number Rm0. These solutions also include ambipolar
diffusion with ΛA0 = 1. The fiducial run is physically equivalent to Rm0 = ∞.

significantly higher (possibly by an order of magnitude) than the
rates quoted here.

The ejection index ξ, which essentially quantifies the ratio
of ejected to accreted mass, depends only weakly on the mag-
netic field strength and is of the order of (but slightly lower than)
unity for the range of magnetisation I explored. This means that
the mass loss rate is comparable to the mass accretion rate at a
given radius. Consequently, when steady state is assumed, the
accretion rate is expected to increase significantly with radius.
As expected from a high ξ wind (Lesur 2020, Eq. (11.22)), the
wind lever arm is always relatively small, with typically λ < 2 for
β > 104, without requiring any heating. Such a high ξ and low λ
has been found in previous numerical work (Béthune et al. 2017;
Bai 2017), and it was initially thought that atmospheric heating,
included in all these models, was the main reason for this result,

following the argument of Casse & Ferreira (2000b). I showed
here that heating is not key to obtain these high ξ-low λ solu-
tions, a result that was also recently reported by Jacquemin-Ide
et al. (2019) in the context of fully ionised discs. The solutions
presented here are locally isothermal, and I showed that thermal
heating is negligible in the wind energy budget even for β = 108.
This means that low λ and high ξ are quite clearly signatures of
weakly magnetised (β � 1) outflows.

The vertical field strength predicted to derive accretion rates
compatible to typical T Tauri stars (about a mG at 10 AU, see
Eq. (18)) are compatible with recent upper limits obtained from
Zeeman measurements (e.g. Vlemmings et al. 2019). For field
detection, it is quite clear that the toroidal is a better candidate
than the vertical component because the former is expected to be
much stronger (by a factor 10 or so at β ∼ 104) than the latter
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Fig. 12. Flow structure for the solution Rm0 = 1 at β = 105. Left: streamlines and sonic Mach number. Middle: field lines and density map. Right:
poloidal current lines and current density. Compared to the fiducial case, the current layer is now localised at the disc surface, leading to a surface
accretion flow.
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Fig. 13. Inward mass flux (top) and radial velocity Mach number
(bottom) as a function of Ohmic diffusion strength at β = 105. The
accretion flow moves towards the disc surface as Ohmic diffusion is
increased, following the poloidal current sheet (see text).

(Eq. (19)). The toroidal component is expected to change sign
across the mid-plane, however, so that this detection is possible
only for tracers that do not average out the field through the disc
thickness.

For the disc microphysics, I find that the disc-averaged mass
accretion and ejection rates depend only weakly on ambipolar
and Ohmic diffusivities. This implies that very elaborated ion-
isation models in the disc are not required to obtain the right
accretion or ejection bulk properties. However, the disc verti-
cal structure does strongly depend on diffusion. Solutions with
large Ohmic diffusion (i.e. valid closer to 1 AU) tend to exhibit
accretion at the disc surface, while weaker Ohmic diffusion
(R > 10 AU) shows accretion in the disc mid-plane. Some of the
strong Ohmic diffusion solutions also exhibit top-down dissym-
metry, where accretion mostly occurs on one side of the disc.
An asymmetry like this was also found in simulations includ-
ing Ohmic and ambipolar diffusion (Béthune et al. 2017; Gressel
et al. 2020) in a similar range of parameters, so that this result
has been reported before. These topology properties will likely
have a strong effect on dust growth and planet migration the-
ory, but again, they barely affect the vertically averaged transport
properties.

Finally, in all of these models, the large-scale magnetic field
is found to be transported outwards, in agreement with Bai &
Stone (2017). However, the transport velocity is about an order
of magnitude lower than that measured by Bai & Stone (2017) in
similar conditions (ambipolar diffusion only). Moreover, I find
that the transport rate varies significantly with the strength of
Ohmic diffusion and to a lesser extent with ambipolar diffu-
sion. Overall, this dependence might explain why simulations
and models tend to disagree on the magnetic transport rate (Bai
& Stone 2017; Leung & Ogilvie 2019; Gressel et al. 2020).

Clearly, the large-scale field transport is the main bottleneck
of a complete theory of wind-driven accretion because the
strength of the large-scale poloidal field is the main control
parameter. This cannot be ignored for the secular evolution
of discs because the field strength is expected to vary with
time. While class II objects seem to require field strengths of a
few mG at 10 s of AU to obtain the correct accretion rates (see
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Fig. 14. Flow structure for the solution Rm0 = 1 at β = 104. Left: streamlines and sonic Mach number. Middle: field lines and density map. Right:
poloidal current lines and current density. This solution exemplifies the dissymmetric solutions found around β = 104 at Rm0 = 1.

above), core-collapse calculations tend to suggest a field strength
of 100 mG when the disc forms (e.g. Masson et al. 2016). This
means that the field strength must be reduced by at least one
order of magnitude (more probably two) between class 0 and
class 2, indicating that flux transport must be relatively efficient.
The problem of field transport therefore deserves more attention
in the future if winds are to be used in secular evolution models.
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