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Abstract 22 

 The Patagonian slope is the region where Subantarctic waters and bathymetry give raise to physical 23 

and ecological processes that support a rich biodiversity and a large-scale industrial fisheries. 24 

Unique among the species that depend on this region is the deep diving southern elephant seal, 25 

Mirounga leonina. We report here on changes in the foraging behavior of a female seal explained by 26 

the combined effect of a cold and high salinity water mass and a decrease in surface chlorophyll-a 27 

concentration. Behavioral and oceanographic data from about 5,000 profiles of temperature, 28 

conductivity, pressure, light and prey encounters were collected within an area ranging 59.5-61°W 29 

and 46-47.5°S, at depths of 300-700 m, on the Patagonian slope, during November-December 2018. 30 

A decrease in temperature (0.15°C) and an increase in salinity (0.03) was found below the mixed 31 

layer, during December. Light data revealed a significant increase of irradiance in December 32 

(almost reaching the ocean bottom) associated with a decrease of chlorophyll-a in the upper levels. 33 

Concomitantly, the seal had a different diving behavior in December, foraging near the surface at 34 
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night and close to the bottom during daylight hours. Also, the seal doubled the prey capture 35 

attempts in December compared to November. This study revels the importance of ocean physical 36 

properties on seal’s diving and foraging behavior, and how this changes, although small, can impact 37 

on seals diet and body composition during their post-breeding trips. 38 

 39 
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 50 

1. Introduction 51 

 52 

 The Argentine Continental Shelf is located in the Southwestern Atlantic (Figure 1). The shelf is 53 

broad and relatively shallow, with almost 850 km in its wider zone, a surface area of about 1.2 54 

million km2, an extension of 2400 km from north to south, and a smooth slope with a variable 55 

maximum depth ranging between 70 and 200 m [Parker et al., 1996; Violante and Cavallotto, 2011; 56 

Violante et al., 2014]. East of the 200 m isobath, the shelf-break is characterized by a steep slope 57 

that goes from 200 to 4000 m depth. In the upper portion of the slope, biological activity is 58 

enhanced due to large chlorophyll-a (chl-a) blooms during the austral spring and summer [Saraceno 59 

et al., 2005; Romero et al., 2006; Garcia et al., 2008, 2011]. The Malvinas Current (MC), which 60 

detaches from the Antarctic Circumpolar Current’s northern front, flows northward along the shelf-61 

break. The MC carries cold and rich nutrient waters that may play a role in the large chl-a 62 

concentrations through interaction with topography and consequent upwelling [Matano and Palma, 63 

2008]. The collision of the MC with the Brazil Curren at ~38°S, makes the confluence region one of 64 
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the most energetic of the world, with eddies and meanders reaching 50°S eastward of the slope 65 

[Piola et al., 1987; Chelton et al., 1990; Saraceno et al., 2009]. Thus, the shelf-break front and the 66 

upper slope encompass a complex region that concentrates a diversity of top predators and other 67 

species, some exploited by industrial fisheries [Martinetto et al., 2020; Rey and Huettmann, 2020]. 68 

The Southern elephant seal, Mirounga leonina, that breed and molt along the coast of the Península 69 

Valdés represent one of the main top predators inhabiting these waters. These continuous and deep-70 

diving seals spend several months at sea foraging, coming back to the location from where they left 71 

to breed or moult [Lewis et al., 2004]. After leaving the shore, post-breeding females cross the 72 

continental shelf in 3-7 days. They forage for approximately two months in deep waters off the 73 

shelf, while adult males usually forage along the outer part of the shelf break [Campagna et al., 74 

1998, 1999]. Post-breeding females on deep waters show a dive rate of 2.2 dives/hr and a mean dive 75 

duration of 22.8 minutes, where the mean dive depth range from the ocean surface to the bottom of 76 

the continental shelf (~80 m) and beyond the shelf-break (~ 600 m) [Campagna et al., 1998]. This 77 

continuous and deep diving behavior lead to the idea of using seals as ocean samplers of physical, 78 

biogeochemical and biological parameters by deploying on them small electronic devices 79 

(biologgers) allowing the conduction of a broad range of studies linking seals foraging behavior to 80 

the oceanographic environment [MEOP project; Boehlert et al., 2001; Guinet et al., 2014; Della 81 

Penna et al., 2015]. 82 

 83 

Taking advantage of the high frequency temperature, salinity, light, pressure and accelerometry 84 

measurements obtained with the instruments carried by one seal, we investigated how ocean bio-85 

physical features changed and how its foraging behavior and success responded to those 86 

environmental changes. This paper also aimed at investigating the consistency between satellite 87 

measurements (temperature and chl-a) as well as CMEMS (Copernicus Marine Environment 88 

Monitoring Service) model outputs with the in-situ hydrographic profiles provided by one seal. 89 

 90 
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2. Data and Methods 91 

2.1 In situ data 92 

 93 

 As part of an international collaboration between the Centre National de la Recherche Scientifique 94 

(CNRS), the Wildlife Conservation Society (WCS), the University of Tasmania (UTAS) and the 95 

University of Buenos Aires (UBA), nine adult female seals were tracked along the Patagonian shelf 96 

and outer ocean during the austral spring 2018. Following deployment procedures described in 97 

Campagna et al. [1998, 1999, 2006], seals were equipped with positional Argos and/or GPS 98 

systems, as well as different high frequency sampling sensors that record depth (pressure), 99 

temperature, conductivity, fluorescence, irradiance (light), and acceleration (Table 1). In oceanic 100 

Case 1 waters (i.e. waters whose optical properties are determined primarily phytoplankton 101 

concentration and dissolved organic matter), light attenuation (i.e. the variation of the irradiance 102 

signal with depth) quantifies the amount of light arriving at the ocean surface and is independent to 103 

solar angle and cloud cover, thus, it can be used as a proxy of phytoplankton concentration [Bricaud 104 

et al., 1998; Mobley et al., 2004; Jaud et al., 2012; Bayle et al., 2015]. The higher the phytoplankton 105 

concentration the greater is light attenuation from the surface within the water column (Jaud et al., 106 

2012). Acceleration measurements associated with head movements provide an index of prey 107 

capture attempts (PCA) (see Goulet et al., 2019). Satellite tags and data loggers were deployed in    108 

October 2018, Península Valdés, Argentina, on breeding seal females prior to their departure to the 109 

sea for their post-breeding foraging trip. At the end of their foraging trip, females return to shore. 110 

After being located thanks to the satellite tag, they were recaptured to recover the loggers. For this 111 

study we focus in only one seal (ID 14903) that, after leaving Península Valdés on October 25, 112 

2018, spent two months foraging in a relatively small region over the slope, near the 600 m isobath, 113 

and returned to the same departure location on January 10, 2019 (Figure 1). The studied seal was 114 

equipped with a CTD-SRDLT tag [Boehme et al., 2009], including Argos transmitter (PPT), light 115 

and accelerometry (12.5 Hz) sensors (Table 1). After recovering, the tag was calibrated following 116 
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the methodology from MEOP described in Roquet et al., [2001] and Siegelman et al., [2019]. The 117 

accuracy of each profile location is of the order of 2 km [Boehme et al., 2009]. 118 

 119 

 120 

 121 

 122 

 123 

 124 

 125 

 126 

 127 

 128 

 129 

 130 

 131 

 132 

 133 

 134 

Figure 1. Tracks for the 73-day trip of one seal (magenta line) overlapping monthly-mean sea surface temperature (°C) for November 135 

2018 from OSTIA (see section 2.3). Magenta arrows indicate direction of trajectory. The 200, 600, 1000, 2000 and 3000 m isobaths 136 

are indicated with thin black lines. The white arrow illustrates the main path of the upper slope portion of Malvinas Current (MC) 137 

through the western (WBB) and eastern (EBB) passages of the Burdwood Bank (BB). The top left inset zooms into the trajectory on 138 

the slope. Note that the scale of the temperature contours is different. 139 

 140 

 141 

 142 

 143 

 144 

 145 

 146 
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Table 1. Main characteristics of the instruments deployed on the studied seal. 147 

CTD-SRDL Range Accuracy Resolution Frequency 

 Temperature -5 to 35 °C ± 0.005°C 0.001°C 2 Hz 

 Salinity 0 to 50  ± 0.01  0.002  2 Hz 

 Pressure 0 to 2000 dBar 2 dBar ± 0.01% / K 0.05 dBar 2 Hz 

Light 8.31x10-7 to 3000 
μmol/m2s 

1% 0.1% 2 Hz 

 148 

 149 

 For the purpose of this study, and based on the sensor’s accuracy, only dives deeper than 15 meters 150 

were considered. Bottom depth, light and the temperature profiles associated with each dive were 151 

extracted following the methodology described in Dragon et al., [2012a]. Each dive was divided 152 

into a descent, bottom and ascent phase. The bottom phase corresponds to the period between the 153 

end of the descent and the beginning of the ascent. The different dive phases were defined 154 

according to Dragon et al., [2012a] using a custom-written MATLAB code (version 7.0.1; available 155 

on request). Accelerometer data was processed following Viviant et al., [2010] and Gallon et al., 156 

[2013] using custom-written MATLAB code (available on request) to assess PCA. While PCA 157 

provide fine scale insights of local variations of prey encounters, seal net foraging gain can be 158 

assessed by monitoring change in seal body density (i.e. the change in the relative proportion in 159 

between lipid and protein content) through its foraging trip. This is achieved by monitoring of the 160 

descent rate, when the seal is sinking passively through the water column during special 161 

resting/food processing dives qualified as ‘drift dives’ [Crocker et al., 1997; Biuw et al., 2003]. The 162 

descent speed during these drift phases is directly related to buoyancy, with more buoyant seals (i.e. 163 

with a higher lipid proportion) sinking at a slower rate compared with leaner ones [Crocker et al., 164 

1997; Biuw et al., 2003; Miller et al., 2012]. However, such ‘drift rate’ data obtained from time-165 

depth recorder tags can only provide a general temporal trend in body composition change and with 166 

a temporal lag of about 3 to 6 days compared to change of PCA rate [Dragon et al., 2012b; Richard 167 
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et al., 2014, 2016]. Each dive was attributed to either day or night periods. This was defined 168 

according to the solar angle, taking into account the geographical location of the seal provided by 169 

the Argos transmitter and the time at the beginning of the dive (see Guinet et al., 2014). 170 

 171 

 The animal spent most of the time in a boundary region with strong year-round zonal temperature 172 

gradients (Figure 1, inset-panel), generated by the cold MC waters and the warmer continental shelf 173 

waters [Saraceno et al., 2004; Piola et al., 2013]. Over the two-month period, the seal tended to dive 174 

mostly in the southwestern part of the foraging area in November and in the northeastern part in 175 

December (Figure 1, inset-panel). Thus, to be able to compare the monthly mean temperature and 176 

salinity between November and December, the zonal movement of the seal was taken into account. 177 

To achieve this, we kept only with a sub-sample of the data (~28% of the total dives in the upper 178 

slope, i.e. 1146 from 4150 total profiles) after dividing the area in equal longitudinal bins and 179 

selecting the same amount of profiles on each longitude bin for November and December,  180 

discarding the rest. The selection of the discarded profiles was done randomly. This methodology 181 

was repeated a hundred times, to compute finally a mean temperature averaged from the hundred 182 

samples. 183 

 184 

2.2 Numerical model and reanalysis data 185 

 186 

 The Operational Mercator global ocean analysis and forecast system (PSY4QV3R1) is based on 187 

NEMO ocean model [Madec et al., 2019] and provides 3D global ocean forecasts updated daily, 188 

starting in January 2016 for daily outputs and January 2007 for monthly outputs. It has a 1/12° 189 

degree horizontal resolution with regular longitude/latitude equi-rectangular projection, resolved 190 

over 50 vertical levels, ranging from 0 to 5500 m. Model outputs include daily and monthly mean 191 

files of temperature, salinity, currents, sea level and mixed layer depth among others. Comparison 192 

with satellite and Argo float data showed that the system correctly reproduced the general 193 

circulation and the complex hydrographic features of the Southwestern Atlantic Ocean (Artana et 194 
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al., 2018b). Model data is available through Copernicus Marine Environment Monitoring Service 195 

(CMEMS, http://marine.copernicus.eu/). To compare seal data with model, we downloaded daily 196 

values of temperature and salinity for the levels corresponding to the 0-600 m depth range in seal’s 197 

foraging domain (46.2-47.3°S and 60.7-59.8°W). Valid seal measurements (after sensors stabilize in 198 

the water column) begin at ~18 m depth, thus, model values from 18 m were interpolated to seal 199 

location. Finally, a 4-hour moving average was applied to both series. For the temperature-salinity 200 

diagram (Figure 4), seal profiles were selected when the distance between a given profile and the 201 

nearest model grid point was less than 1 km. This procedure provided a total of  205 profiles for 202 

each data set. Also, to have the same number of vertical values per profile, we selected the values 203 

from the seal records that coincide with a depth level of the model (i.e. 32 levels, from the surface 204 

to 550 m). 205 

Cloud cover mentioned in Section 3.2 is a product of ERA5 global reanalysis. We used monthly 206 

values of cloud area fraction in seal’s foraging region, with a spatial resolution of 0.25°. Data is 207 

available at https://cds.climate.copernicus.eu/cdsapp#!/home 208 

 209 

2.3 Satellite data 210 

 211 

 Sea surface temperature (SST) considered here was produced by the Group for High Resolution 212 

Sea Surface Temperature (GHRSST) and is provided by the Operational Sea Surface Temperature 213 

and Ice Analysis (OSTIA). The product merges in situ data, infra-red and micro-wave radiometers 214 

and has a 0.05° x 0.05° horizontal resolution [Bell et al., 2000; Stark et al., 2007; Donlon et al., 215 

2012]. Near real time L4 product was downloaded from http://marine.copernicus.eu/. To compare 216 

SST with seal temperature measurements at 18 m (Figure 3a), data was interpolated to seal location 217 

and finally a 4-hour moving average applied. 218 

 219 
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Monthly mean composites and daily gridded L3 chlorophyll-a concentration MODIS-Aqua ocean 220 

color data, with a spatial resolution of 4 km from the Ocean Biology Processing Group 221 

(NASA/GSFC/OBPG) were downloaded from https://oceandata.sci.gsfc.nasa.gov. 222 

 223 

3. Results 224 

 225 

 Sixty-three days out of the 73 day-long foraging trip were spent on the slope of the Patagonian 226 

shelf break (Figure 1). The seal covered 4,500 kilometers and performed a total of 4,951 dives (i.e. 227 

hydrographic profiles), from which 92% of them occurred over the slope. In this study we focus 228 

only on the data provided by the seal while foraging over the Patagonian slope from 4 of November 229 

2018 to 6 of January 2019. 230 

 231 

3.1 Physical environmental changes 232 

 233 

 Temperature and salinity profiles evidenced contrasted oceanographic changes over the study 234 

period between a warming upper layer (0-35 m) and cooling waters below (from 50 m to the 235 

bottom; Figure 2). In the upper layer, the depth-averaged temperature increased (1.6°C) within the 236 

two months due to higher net incoming heat radiation associated with the arrival of austral summer 237 

(Figure 2a). This change in temperature was accompanied by a salinity increase of 0.09 in the upper 238 

35 m, enhanced in the last two weeks (Figure 2b). Waters below the upper layer show a very 239 

different behavior, with a mean temperature decrease in December of 0.25°C (Figure 2a) and an 240 

increase in salinity of 0.04 (Figure 2b). If we minimize the zonal displacement of the seal (see  241 

methods, Section 2.1), the temperature decrease and salinity increase in the subsurface layer 242 

accounts for 0.15°C and 0.03  respectively.  243 

 244 

 245 

 246 
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 252 

 253 

 254 

 255 

 256 

 257 

 258 

 259 

 260 

 261 

 262 

 263 

 264 

Figure 2. Temperature (°C, upper panel), and salinity (bottom panel) profiles measured by the seal in the Patagonian slope (top and 265 

bottom panels respectively). 266 

 267 

Near surface temperature (T18) and salinity (S18) values obtained by the seal were compared with 268 

those from Mercator model and satellite observations following procedures described in Section 2 269 

(Figure 3). The seal T18 signal presented visible discrepancies compared to Mercator temperature at 270 

18 m and to OSTIA L4 surface values. Temperatures recorded by the seal were lower than OSTIA 271 

during both months, and slightly higher than Mercator in December. Also, there were amplitude 272 

differences between seal data and both series that result in a root mean square error of 0.62°C with 273 

OSTIA and 1°C with Mercator. Nevertheless, they all described the same temperature increase 274 

pattern during both months, and were highly correlated (r = 0.91 with Mercator and r = 0.94 with 275 

OSTIA, at the 99% significance level) (Figure 3, left panel). As we were unable to compare our data 276 
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with satellite surface salinity measurements with spatial and temporal resolution comparable to the 277 

horizontal diving range of the seal, we only compared salinity recorded by the seal and Mercator 278 

outputs at 18 m (Figure 3, right panel). Mercator salinity showed higher values in November and 279 

early December compared to our data (root mean square error =  0.08), and a salinity decrease since 280 

December 11, the opposite of what was observed in our records, that increased during all December. 281 

Also, the two-month salinity time series were not significantly correlated; yet, if we split the series 282 

by month we found a significant correlation in November (r = 0.5 ), and no correlation in 283 

December. 284 

 285 
Figure 3. Four hours moving average of temperature at 18 m from seal records (blue) and Mercator (orange) and at surface for 286 

OSTIA (green)   (°C, left panel). Right panel shows the salinity from seal records at 18 m (blue), Mercator (orange). 287 

 288 

Subsurface data obtained by the seal in the upper slope were compared with those from Mercator 289 

model in a temperature-salinity diagram (Figure 4) following the methodology explained in Section 290 

2.2. Following the water masses definitions described by Piola and Gordon [1989] and by   291 

Maamaatuaiahutapu et al. [1994], the temperature and salinity distribution indicated that the 292 

foraging region of the seal was composed mostly of three water masses: Subantarctic Surface 293 

Waters (temperature  > 5°C, salinity ~ 33.82), Subantarctic Mode Waters (temperature ~ 4.7°C, 294 

salinity ~ 34.19) and Upper Antarctic Intermediate Waters (temperature < 4°C, salinity ~34.18) 295 
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(Figure 4a). A closer inspection of the bottom water distribution (blue box in Figure 4a) is coherent 296 

with the ~0.15°C December cooling observed in Figure 2, while a salinity change was 297 

imperceptible (Figure 4b). Some major differences arise when comparing seal data with Mercator 298 

temperature-salinity distribution. Subantarctic Surface Water for model distribution were less 299 

disperse in salinity but showed a strong dispersion in the transition through Subantarctic Mode 300 

Waters, that, in turn, presented a higher temperature, reaching 6°C (Figure 4c). The Antarctic 301 

Intermediate Waters for model data (blue box in Figure 4c) appeared as two distinct waters masses, 302 

one fresher and other saltier and slightly colder, the former being from November and the latter 303 

from December (Figure 4d). The cooling observed in December may be due to intrusions of the MC 304 

core [Piola et al., 2010; Matano et al., 2010; Combes and Matano, 2014] or to the increased 305 

transport of Upper Antarctic Intermediate Waters from the Eastern passage of the Burdwood Bank 306 

[Piola and Gordon, 1989; Matano et al., 2019]. 307 

 308 

 309 

 310 

 311 

 312 
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 313 
Figure 4. Potential temperature – salinity diagrams from data recorded by the seal (a) and Mercator outputs (c). The colorbar 314 

indicates the depth of each dot and the gray lines the potential density isolines (sigma-theta). Deep waters (indicated with a blue box 315 

on both diagrams) are amplified in panel b) for the data recorded by the seal and panel d) for Mercator. The red dots in panels b and d 316 

correspond to November data and the black ones to December. The different water masses are indicated in panels a,c as SASW 317 

(Subantarctic Surface Waters), SAMW (Subantarctic Mode Waters) and AAIW-U (Upper Antarctic Intermediate Waters). 318 

 319 

3.2 Change in phytoplankton concentration 320 

 321 

 Light attenuation in open ocean waters partially depends on the concentration of inorganic and 322 

organic particles suspended within the water column. In particular, phytoplankton (quantified 323 

through active measurement of chlorophyll-a fluorescence) constitutes the main source of particles 324 

in suspension within the euphotic layer, and it has been shown to be the main cause of light 325 

attenuation for Case 1 waters [Bricaud et al., 1998; Jaud et al., 2012]. In November, the irradiance 326 

in the Patagonian upper slope region, where the seal spent time, reached more than -8 ln 327 
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(µmol/m²/s) only in the upper 150 m of the water column (Figure 5). However, the same amount of 328 

irradiance reached 500 m depth in December, revealing a sharp decline in phytoplankton 329 

concentration. Seasonal solar incidence angle and daylight duration also contributed, in a minor 330 

way, to light increase in December. Cloudiness also affects the amount of light that reaches the 331 

ocean surface. However, total cloud cover was higher in December compared to November (not 332 

shown). Thus, the irradiance increase observed between November and December can be mostly 333 

explained by the decrease in chlorophyll-a (chl-a hereafter) concentration.  334 

 335 

Figure 5. Amount of light (irradiance) as logarithmic photosynthetic photon flux density (ln(µmol/m²/s)) along depth (m) measured 336 

by the seal in the slope region during November and December. 337 

 338 

 In-situ assessments of phytoplankton concentration were consistent with the MODIS-Aqua ocean 339 

color satellite measurements over the study period for November 2018 (Figure 6a). This result 340 

revealed large amounts of chl-a (> 6 mg/m3) over the region where the seal dove, and over the 200 341 

m isobath, the shelf-break front (SBF). These large concentrations of chl-a generated a barrier of 342 

suspended particles that inhibited light beyond the upper layers. In December 2018 (Figure 6b), the 343 

chl-a concentration decreases (< 2 mg/m3), thus allowing the light to reach greater depths. The chl-a 344 

concentration decrease was also observed in daily MODIS-Aqua ocean color chl-a and surface chl-a 345 

concentration estimated by seal irradiance data and a linear functional model (LFM) (Figure 6c). 346 
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The linear functional model described in Bayle et al. 2015 is a predictive tool enabling to infer chl-a 347 

concentration from irradiance along the water column through a per-profile functional approach 348 

based on a learning dataset of concomitant vertical profiles. Light in the ocean has a direct 349 

correlation with the vertical distribution of many marine organisms, ranging from zooplankton [Liu 350 

et al., 2003] to fish [Batty et al., 1990] and marine mammals [Horning and Trillmich, 1999]. 351 

Elephant seals depend on suitable and abundant prey (fishes and squid) present at the fronts 352 

[Campagna et al., 2007; Eder et al., 2010]. The area frequented by the studied animal, is associated 353 

with the SBF. The SBF has high concentrations of chl-a and high primary production, which would 354 

attract organisms of different trophic levels [Martinetto et al., 2020]. Moreover, the SBF is an area 355 

of intense fishing activity [Portela et al., 2012; Alemany et al., 2014] (Figure 6a,b). The main 356 

commercial species, at different times of the year, are Patagonian grenadier (Macruronus 357 

magellanicus), shortfin squid (Illex argentinus) and Argentine hake (Merluccius hubbsi) [Portela et 358 

al., 2012; Alemany et al., 2014]. Figure 6a,b shows that the fishing effort (in hours, Global Fishing 359 

Watch, 2020) in the SBF was much larger in December 2018 (18031 hours) than in November 2018 360 

(4841 hours), and that the international fishing fleet concentrated north of the seal foraging ground. 361 

Figure 6 also shows that the largest fishing activity along the shelf-break did not correspond to the 362 

period of time when the largest chl-a concentration was observed. 363 

 364 

 365 

 366 

 367 

 368 

 369 

 370 

 371 
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 375 

       376 

 377 

 378 

 379 

 380 

 381 

 382 

 383 

 384 

                  385 

 386 

 387 

 388 

 389 

    390 

 391 

 392 

 393 

 394 

 395 

 396 

 397 

 398 

Figure 6. Modis-Aqua monthly mean chl-a concentration (mg/m3) for November (a) and December (b) 2018. The magenta circles 399 

represent the fisheries activity for each month, the size is proportional to the fishing effort (hours). The white line represents the limit 400 

of the Argentine Exclusive Economic Zone. The black lines indicate the seal trajectory and the isobaths. Daily surface chl-a 401 

concentration (c) in mg/m3  for satellite Modis-Aqua (orange) and estimated by the LFM method (blue). 402 

 403 

3.3 Elephant seal foraging behavior 404 
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 405 

 The overall mean diving depth of the seal was 263.8 ± 192.0 m at night, with a mean dive duration 406 

of 17.4 ± 4.3 minutes. During the day, the mean diving depth was 331.5 ± 186.7 m, with a mean 407 

dive duration of 19.8 ± 3.9 minutes. 408 

To better understand how ocean dynamics and light can affect elephant sea foraging behavior we 409 

analyzed dive maximum depth (DMD) for each dive, and number of PCA performed. In November, 410 

DMD were either on shallow waters (<200 m) or sweeping the ocean bottom, avoiding the middle 411 

depths and with a minor difference between day and night (Figure 7). The sea floor (shading gray in 412 

figures 7 and 8) is an interpolation of GEBCO 2019 bathymetry (15 arc-second resolution) to seal 413 

diving locations, and DMD extending beyond the sea floor are due to possible errors on seal 414 

location or bathymetric chart product. In December, the animal dove predominantly (58%) near the 415 

surface at night (blue dots in Figure 7), and reached the ocean bottom (80%) during the day (red 416 

dots in Figure 7). The mean DMD increased from 337.5 ± 173.7 m in November to 359.4 ± 180.4 m 417 

in December and the mean dive duration increased from 17.6 ± 3.5 minutes in November (9.4 ± 3.3 418 

minutes in the bottom phase) to 19.6 ± 4.5 minutes in December (11.1 ± 4.0 minutes in the bottom 419 

phase). 420 

 421 

Figure 7.  Dive maximum depth (DMD) with different colors for day (red) and night (blue). The shading gray is the bottom 422 

topography from GEBCO 2019 interpolated along the elephant seal diving trip. 423 
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 424 

Compared to November, December was characterized by a significant increase in number of PCA 425 

(287 versus 125 PCA per day) (Figure 8). Statistics for both DMD and PCA are summarized in 426 

Table 2. In agreement with early studies [Guinet et al., 2014; Gallon et al., 2013; Schreer et al., 427 

2001], the majority of the PCA (~86%) occurred during the bottom phase of the dive. In November, 428 

77% of the observed PCA were skimming the ocean bottom, both during day (red dots) and night 429 

(blue dots) and with the particularity that an increase of PCA near the surface can be seen between 430 

13-17 of November (Figure 8). In December, the majority of the PCA occurs in the upper (< 300 m) 431 

part of the water column during night (54%) and in the lower part (> 300 m) during daylight hours 432 

(89%). A strong decrease of PCA, especially near the ocean bottom was observed between 21-23 of 433 

December. 434 

 435 

Figure 8.  Depth location of prey capture attempts (PCA) with different colors for day (red) and night (blue). The shading gray is the 436 

bottom topography from GEBCO 2019 interpolated along the elephant seal diving trip. 437 

 438 

 439 

 440 

 441 

 442 
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 443 

 444 

 445 

 446 

 447 

Table 2.  Total dives and percentages of DMD and PCA during November and December 2018. Upper water column (< 300 m) and 448 

lower water column (> 300 m). 449 

 Dives  DMD  PCA PCA  

 

Total 

Mean 

 Duration 

(minutes) 

 Upper  

Water Column 

(%) 

Lower  

Water Column 

(%) 
Total 

Upper  

Water Column 

(%) 

Lower  

Water 

Column 

(%) 

November 2093 17.6 40 60 3745 23 77 

Day 1285 18.5 41 59 2194 20 80 

Night 808 16.8 38 62 1551 29 71 

December 2050 19.6 34 66 8617 24 76 

Day 1287 21.2 20 80 5967 11 89 

Night 763 18.0 58 42 2650 54 46 

 450 

 451 

The monitoring of the female body density, reveals that seal density increased to remain high 452 

through the whole month of November and started to decrease (i.e. improvement of body condition 453 

due to an increase in lipid content, which is linked to a higher prey ingestion) by early December 454 

(Figure 9), which matches well with the change in environmental conditions (keeping in mind that 455 

there is a lag of 3 to 7 days between prey ingestion and body density changes [Dragon et al., 2012b; 456 

Richard et al., 2014, 2016]). 457 

 458 
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 459 

 460 

 461 

 462 

 463 

 464 

 465 

 466 

 467 

 468 

 469 

 470 

 471 

Figure 9. Seal daily mean density (kg/m3) estimated along the trip (blue line) and standard deviations (red lines). 472 

 473 

4. Summary and Discussion 474 

 475 

 High frequency data collected along the upper portion of the Patagonian slope during November 476 

and December 2018 by one post-breeding female elephant seal equipped with multiple sensors was 477 

used to investigate the interaction between ocean dynamics and seal diving and foraging behavior. 478 

Measurements obtained by the seal showed a decrease in temperature (0.15°C) and a salinity 479 

increase (0.03) below the mixed layer during December in the Patagonian slope, at 46-47.5°S. 480 

Temperature outputs from Mercator model at 18 m and OSTIA satellite data were in agreement with 481 

the increase pattern observed from seal data at 18 m. Nevertheless, our records showed higher 482 

temperatures than Mercator in December, and discrepancies in amplitude oscillations. On the other 483 

hand, salinity outputs from Mercator showed major differences with that obtained by the seal at 18 484 

m, mostly in December, when Mercator data showed an opposite pattern. The differences between 485 

seal and Mercator data may be due to a mismatch between seal location and ARGOS positioning 486 

system, but also to the fact that seal’s data used for the comparison was from around 18 meters 487 
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(where sensors stabilize and give more accurate measurements). Given that temperature and salinity 488 

profiles recorded by the seal indicate a mixed layer depth of ~25 m in November and ~18 m in 489 

December (not shown), measuring at this depth level may lead to uncertainties, mostly in 490 

December. Also, SRLD-CTD sensors could surfer an erosion of its accuracy during the seal’s trip, 491 

specially for salinity measurements [Santini et al., 2018]. Light data also revealed a significant 492 

increase of irradiance in December (almost reaching the ocean bottom) associated with a decrease 493 

of chl-a in the upper levels revealed by our records and satellite Modis-Aqua data. Indeed, the 494 

largest concentration of chl-a values in the Patagonian shelf and slope are usually observed in 495 

November, during the austral spring bloom [Saraceno et al., 2005; Romero et al., 2006; Rivas et al., 496 

2006] and start decreasing in December due to nutrient consumption and ocean stratification that 497 

inhibits the upwelling of nutrients to the euphotic zone.  498 

 499 

 Fishing effort in December (larger compared to November,) was concentrated north of the seal 500 

foraging ground. The spatial mismatch between the fishing activity and the seal foraging ground 501 

can be due to several causes, as seal trying to avoid fishing lines and nets and/or a different spatial 502 

distribution or differences in the targeted fish/squids species by seal and fisheries. Indeed, the seal 503 

might be eating preys that are not of commercial interest, like lantern fish (Myctophids) that are 504 

very common in this area [Figueroa et al., 1998; Eder et al., 2010; McGovern et al., 2019]. Yet, we 505 

do not have data to explain the spatial distribution mismatch. Also, the largest fishing activity along 506 

the shelf-break did not corresponded to the period of time when the largest chl-a concentration was 507 

observed. This fact can be explained considering different possibilities: (i) the most interesting 508 

commercial species arrived in December with the colder and saltier water mass observed above; (ii) 509 

the species that took advantage of the large phytoplankton bloom in November grow enough so in 510 

December became prey of commercial species. Last but not least, the fact that both in November 511 

and in December relatively large chl-a concentrations were observed along the upper portion of the 512 
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Patagonian slope in comparison to adjacent waters is a clear indication that a physical forcing 513 

related to the bathymetry drives the large concentration of chl-a observed. 514 

 515 

The elephant seal also showed a distinct behavior during the two-months trip. In December, the 516 

PCA increased more than double with respect to November with the seal diving preferentially at 517 

surface during the night and in the bottom layers during the day. The increase in PCA observed in 518 

December can be attributed to a higher concentration of prey items due to the arrival of preys with 519 

cold nutrient rich Antarctic Intermediate Waters. This result was also reflected in the larger fishing 520 

effort detected in December. The density change of the seal along the trip, reflected quite well the 521 

increment of PCA at the beginning of December. Moreover, the density increase observed around 522 

the 23-26 of December matched with the observed decrease in PCA between 21-23 of December. 523 

The increase of PCA in December can be seen both in the surface and bottom layers, suggesting that 524 

the arrival preys migrated along the whole water column in response of light variability. Results 525 

also showed that in December DMD increased 6% compared to November (66% of the dives in 526 

December were below 300 m depth against 60% in November) and an increase of 2 minutes in 527 

dives duration. These results are in agreement with previous studies that found a negative 528 

correlation between surface chl-a concentration and both DMD and dive duration [Dragon et al., 529 

2010]. 530 

 531 

The relationship between prey location in the water column and light is known to dominate seals 532 

diving behavior [Jaud et al., 2012; Guinet et al., 2014]. Several studies have shown that light level 533 

precisely controls the vertical distribution of many species, in particular myctophids, which are part 534 

of the seals diet [Catul et al., 2011]. Lower surface chl-a concentration means higher light 535 

penetration, thus a deeper distribution of myctophids species. According to this, seal behavior in 536 

December suggests that shallower dives during the night are related to preys that tend to concentrate 537 

near the surface. During the day, as light increases in the water column, prey items tend to displace 538 
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to higher depths, and so does the seal, with predominant DMD and PCA near the seabed in 539 

December.  540 

 541 

We can expect that low irradiance (light) in November due to high chl-a concentration should be 542 

associated with myctophids prey located in shallower waters, conditioning the seal to dive and 543 

forage closer to the surface. However, November data showed that the seal dived predominantly 544 

near the seabed, where most of the PCA were detected. This result suggests that a different prey 545 

item, other than myctophids, can be the main diet for seals in the ocean bottom. This hypothesis is 546 

in agreement with McIntyre et al., [2011] which came to the conclusion that seals can have different 547 

forage strategies and dives, reaching greater depths at night compared with the day and that the 548 

change can be associated with foraging of different prey resources. Furthermore, Goulet et al., 549 

[2020] suggest that female seals in Península Valdés are mainly pursuing larger or harder to catch 550 

prey that do not produce bioluminescence as a predator defense and are probably more dispersed in 551 

the water column. 552 

 553 

The Patagonian slope is a very complex region, where subantarctic waters and bathymetry give 554 

raise to a unique area of ecological processes and one of the greatest fisheries in the world. The 555 

uniqueness of simultaneous high resolution in-situ data (physical, biogeochemical and biological) 556 

collected by seals are a valuable resource to address oceanographic research and to calibrate and 557 

validate ocean numerical models and satellite data. In particular, the data obtained from one seal 558 

allowed us to improve our knowledge of the MC in the upper portion of the Patagonian slope, at 559 

47°S, and also to link the sharp change in the water masses to the animal behavior. To deepen this 560 

study, future campaigns in the region are thought to track fully equipped male elephant seals that 561 

are known to dive preferentially in the Patagonian slope. Also, it is planned to incorporate 562 

photographic cameras to the seals to try to unveil the prey items. Complementary data from 563 

fisheries will also help elucidate the diving behavior and forage strategies in the region. 564 
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