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Abstract—In this work we will present a new 3-D full-wave
finite element formulation and its application to the numeri-
cal modelling of high temperature superconductors. This new
approach has the electric field as the main unknown, which
allows the direct calculation of the induced eddy currents
and other magnitudes of interest (e.g. Joule heating) without
resorting to derivatives. It does not require the addition of
extra unknowns (e.g Lagrange multipliers or scalar potentials)
to be stable and it can account for capacitive and inductive
effects simultaneously, even at low frequencies. The new approach
applies mass-lumping L2 projections on the curl and divergence
operators of the regularized Maxwell equations weak form and
uses first order Lagrangian nodal finite elements enriched with
an inner bubble. In this work we will also explore the possibility
of converting the time-dependent non-linear problem in several
parallel non-linear problems in frequency domain, which can be
solved independently (avoiding sequential time-stepping) with the
consequent savings of computational costs.

Keywords—Finite element method, regularized Maxwell equa-
tions, L2 projection, nodal elements, bubble elements.

I. INTRODUCTION

The success of new compact nuclear fusion reactors depends
in great measure on the capacity to generate large magnetic
fields to confine the plasma. The design of coils capable to
produce these fields will greatly benefit from the development
of numerical models and tools able to predict their behaviour
under the extreme conditions that they will suffer in a nuclear
fusion environment. High temperature superconductors are a
good candidate to carry the large currents required to create
large fields but the numerical modelling of these materials is
numerically challenging and demanding [1].

The objective of this work is to propose a numerical model
able to provide relevant engineering data to facilitate design
decisions. We have selected the electric field as the main
variable because the currents and heating losses are usually

the magnitude of interest [2]. Also, we want to consider
capacitive effects (e.g. arcing, for nuclear safety certification
purposes) and the influence that dielectric insulators can have
on the performance of the coils. And, of course, we want to
make the tool as fast as possible to simulate the maximum
amount of design possibilities in the shortest possible time.
The numerical approach we propose is explained in the next
section and it delivers all the requirements we are looking for.

II. FINITE ELEMENT FORMULATION

The finite element approach proposed in this work is based
on the regularized formulation described in [3] and imple-
mented in the open-source code ERMES [4]. The regularized
formulation [3] meets all the requirements stated at the be-
ginning of this article, i.e., (1) it calculates the electric field
without resorting to derivatives, (2) no extra unknowns are
necessary for numerical stability, (3) the resultant matrix is
well conditioned (i.e. it can be solved easily with a lightly
preconditioned iterative solver [5]), and (4) it is able to
calculate capacitive and inductive effects simultaneously at
any frequency. However, as it is mentioned in [3] and [4],
it is necessary to take special measures when dealing with
field singularities and discontinuities, i.e. we must remove the
divergence term on the elements around a field singularity and
use a double-node technique on the surfaces of discontinuity
between different media. Moreover, in the presence of sin-
gularities, we must use second order (or higher) Lagrangian
nodal elements to make the formulation converge to the
physical solution.

The application of these special measures requires some
extra effort by the ERMES user. Then, to make things simpler,
we have modified [3] and [4] in such a way that is not
longer necessary to use these measures and, at the same



time, we keep the beneficial properties of the formulation [3].
This modification is described in [6] and it consists of the
application of mass-lumping L2 projections on the curl and
divergence operator of the regularized formulation [3]. This
technique is used in combination with first order Lagrangian
nodal finite elements enriched with an inner bubble [6].

Before presenting the mathematical description of the pro-
posed formulation, we need first to introduce the following
functional spaces [6]:

Bh = {v ∈ (H1
0 )3 : v|K∈ bK(P0(K))3,K ∈ =h}

Vh = {q ∈ H1 : q|K∈ P1(K),K ∈ =h}
Uh = ( (Vh)3 ∩H0(curl) ) +Bh

(1)

where Bh is the bubble function space, Vh is a nodal-
continuous linear finite element space and Uh is the solution
space. =h is a conforming discretization of the problem
domain Ω into tetrahedrons K. Pl(K) is the space of poly-
nomials defined on K of degree not greater than l. bK is the
element bubble defined on K by bK = N1N2N3N4 with Ni
being the nodal basis function associated with the vertex i of
K. H1, H1

0 , H(curl) and H0(curl) are the Hilbert spaces
defined by:

H1 = {q ∈ L2(Ω) : ∂q/∂r ∈ L2(Ω) , r = x, y, z}
H1

0 = {q ∈ H1 : q|Γ= 0}
H (curl) = {v ∈ (L2(Ω))3 : ∇× v ∈ (L2(Ω))3}
H0(curl) = {v ∈ H(curl) : n̂× v|Γ= 0}

(2)

with L2(Ω) being the space of square integrable functions and
Γ a surface at the boundary ∂Ω of the domain Ω.

The problem we solve to obtain the approximate electric
field solution Eh consists in finding an Eh ∈ Uh such that
∀Vh ∈ Uh it is satisfied:

(3)

(Lh(µ−1∇×Eh ) , Lh(µ−1∇×Vh ) )0,µ,h

+ ( L̂h(∇ · εEh ) , L̂h(∇ · ε̄Vh ) )0,τ,h

− ω2( εEh , Vh )Ω − (µ−1∇×Eh , n̂×Vh )∂Ω

− ( τ−1∇ ·Eh , n̂ ·Vh )∂Ω = jω(J , Vh )Ω

where µ is the magnetic permeability. ε is the complex
electrical permittivity (ε = ε + jσ/ω) and ε̄ its complex
conjugate. τ is the regularization term given in [3], which
equal to εε̄µ. ω is the angular frequency and j the imaginary
unit. The L2 inner product (·, ·)Ω is defined by:

(u,v)Ω =

∫
Ω

u · v (4)

and similarly for ∂Ω. The mass-lumping discrete L2 product
(·, ·)0,µ,h is:

(u,v)0,µ,h =
∑
K∈=h

|K|
4

4∑
i=1

µi ui · vi (5)

being |K| the volume of K and µi, ui, vi the values of µ,
u, v on the vertices of K. An equivalent definition is applied

to the mass-lumping L2 product (·, ·)0,τ,h. Finally, the mass-
lumping L2 projections Lh(·) and L̂h(·) are defined for any
given u ∈ (L2(Ω))3 by:

(Lh(∇× u) , v )0,µ,h = (u , ∇× v ) ∀v ∈ (Vh)3

( L̂h(∇ · εu) , q )0,τ,h = − (u , ε∇q ) ∀q ∈ Vh ∩H1
0 .

(6)

The non-linear relation of the electrical conductivity with the
electric field σ(E) is included in the imaginary part of ε.
Problem (3) has been stated in frequency domain but, if a time
domain formulation is preferred, a similar description can be
developed by simply replacing the frequency terms by time
derivatives (−jω = ∂/∂t).

The reason to present (3) in frequency domain is because,
after implementing (3) in ERMES, we are going to exper-
iment with different possibilities of transforming the time-
dependent non-linear problem of modelling a high temperature
superconductor in a set of independent non-linear problems
in frequency domain, which can be solved in parallel. We are
going to adapt the developments described in [7]–[10] for non-
linear magnetic materials to high temperature superconductors.

III. SUMMARY

We have presented a finite element formulation which is
being implemented in the open-source code ERMES [4].
After finishing its implementation, our intention is to use this
formulation to test the possibilities of transforming a time-
dependant non-linear problem in a set of independent non-
linear problems in frequency domain, which can be solved in
parallel. This parallelisation will avoid the sequential waiting
between time steps and it will improve in great measure the
overall computational performance of the simulations.
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