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Abstract

We characterize the Lp(R2) boundeness of the geometric maximal operator Ma,b associated
to the basis Ba,b (a, b > 0) which is composed of rectangles R whose eccentricity and orientation
is of the form

(eR, ωR) =

(
1

na
,

π

4nb

)
for some n ∈ N∗. The proof relies on the exploitation of exceptional geometric sets as con-
structed in [12], namely generalized Perron trees.

We work in the euclidean plane R2 ; if A is a measurable subset of R2 we denote by |A| its two
dimensional Lebesgue measure. We denote by A ⊔B the union of A and B when |A ∩B| = 0.

1 Introduction

Denote by R the collection containing all rectangles of R2 ; for R ∈ R we define its orientation as
the angle ωR ∈ [0, π) that its longest side makes with the Ox-axis and its eccentricity as the ratio
eR ∈ (0, 1] of its shortest side and its longest side.

For an arbitrary non empty family B contained in R, we define the associated derivation basis
B∗ by

B∗ =
{
t⃗+ hR : t⃗ ∈ R2, h > 0, R ∈ B

}
.

The derivation basis B∗ is simply the smallest collection which is invariant by dilation and translation
and that contains any element of B. Without loss of generality, we will constantly confuse the
derivation basis B∗ and one of its generator B.

Our object of interest will be the geometric maximal operator MB generated by B which is defined
as

MBf(x) := sup
x∈R∈B∗

1

|R|

∫
R

|f |

for any f ∈ L1
loc(R

2) and x ∈ R2. Observe that the supremum is taken on elements of B∗ that contain
the point x. The definitions of B∗ and MB remain valid when we consider that B is an arbitrary
family composed of open bounded convex sets. For example in this note, for technical reasons and
without loss of generality, we will work at some point with triangles instead of rectangles.

For p ∈ (1,∞] we define as usual the operator norm ∥MB∥p of MB by

∥MB∥p = sup
∥f∥p=1

∥MBf∥p.

If ∥MB∥p < ∞ we say that MB is bounded on Lp(R2). The boundedness of a maximal operator MB
is related to the geometry that the family B exhibits.
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Definition 1. We will say that the operator MB is a good operator when it is bounded on Lp for
any p > 1. On the other hand, we say that the operator MB is a bad operator when it is unbounded
on Lp for any 1 < p < ∞.

On the Lp(R2) scale, to be able to say that a operator MB is good or bad is an optimal result.
Of course, one can be interested by the behavior near endpoint (p = 1 and p = ∞) but we won’t
consider this question here ; the reader might consult [2], [3], [14] or [4].

Directional maximal operators

A lot of research has been done in the case where B is equal to RΩ := {R ∈ R : ωR ∈ Ω} where
Ω is an arbitrary set of directions in [0, π). In other words, RΩ is the set of all rectangles whose
orientation belongs to Ω. We say that RΩ is a directional basis and to alleviate the notation we
denote

MRΩ
:= MΩ.

In the literature, the operator MΩ is said to be a directional maximal operator. The study of those
operators goes back at least to Cordoba and Fefferman’s article [8] in which they use geometric
techniques to show that if Ω =

{
π
2k

}
k≥1

then MΩ has weak-type (2, 2). A year later, using Fourier

analysis techniques, Nagel, Stein and Wainger proved in [13] that MΩ is actually bounded on Lp for
any p > 1. In [1], A. Alfonseca has proved that if the set of direction Ω is a lacunary set of finite
order then the operator MΩ is bounded on Lp for any p > 1. Finally in [5], M. Bateman proved the
converse and so characterized the Lp-boundedness of directional operators. Precisely he proved the
following theorem.

Theorem 2 (Bateman’s Theorem). Fix an arbitrary set of directions Ω ⊂ [0, π). The directional
maximal operator MΩ is either good or bad.

Hence we know that a set of directions Ω always yields a directional operator MΩ that is either
good or bad. Merging the vocabulary, we use the following definition.

Definition 3. We say that a set of directions Ω is a good set of directions when MΩ is good and
that it is a bad set of directions when MΩ is bad.

The notion of good/bad is perfectly understood for a set of directions Ω and the associated
directional operator MΩ. To say it bluntly, Ω is a good set of directions if and only if it can be
included in a finite union of lacunary sets of finite order. If this is not possible, then Ω is a bad set
of directions ; see [5].

Geometric maximal operators

We recall two results in the direction of Bateman’s Theorem for an arbitrary basis B included in R.
The first one is a result in [10] where P. Hagelstein and A. Stokolos proved the following theorem.

Theorem 4. Fix an arbitrary basis B in R and suppose that there exist constants t0 ∈ (0, 1) and
C0 > 1 such that for any bounded measurable set E ⊂ R2 one has

|{MB1E > t0}| ≤ C0 |E| .

In this case there exists p0 depending on (t0, C0) such that for any p > p0 we have ∥MB∥p < ∞.

In [9], we have shown that one can associate to any basis B include in R a geometric quantity
denoted by λ[B] ∈ N∪{∞} that we call the analytic split of the family B. We insist on the fact that
the analytic split is not defined by abstract means but really concrete ; in a certain setting one can
easily compute it.
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Theorem 5. For any basis B in R and any 1 < p < ∞ we have

log(λ[B]) ≲p ∥MB∥pp.

On one hand, observe that this Theorem implies that basis B whose analytic split is infinite
yields bad maximal operators MB. On the other hand, it is easy (in a certain setting) to exhibit a
lot of basis B whose analytic split is infinite.

Results

In this note we consider a family of geometric maximal operators which are not directional maximal
operators. Moreover we will always work with bases B such that its associated set of directions

ΩB := {ωR : R ∈ B}

is a bad set of directions. Indeed if ΩB is a good set of direction using the trivial estimate MB ≤ MΩB

we know that MB is also a good operator.
Fix two real positive numbers a, b > 0 and denote by Ba,b the basis of rectangles R whose

eccentricity and orientation is of the form

(eR, ωR) =

(
1

na
,

π

4nb

)
for some n ∈ N∗. We denote by Ma,b the operator associated to the basis Ba,b. We prove the
following theorem.

Theorem 6. If a < b then Ma,b is a good operator. If a ≥ b then Ma,b is a bad operator.

We prove Theorem 6 thanks to Theorems 7 and 8. Denote by t = {tk}k≥1 ⊂ [0, π
4 ] a sequence

decreasing to 0 and by e = {ek}k≥1 ⊂ (0, 1] any positive sequence. One should consider the
sequence t as a sequence of angles (or tangent of angles) that forms a bad set of directions whereas
the sequence e stands for an arbitrary sequence of eccentricity. For k ≥ 1 consider a rectangle

Rk := Rk(e, t)

whose orientation and eccentricity are defined by (eRk
, ωRk

) = (ek, tk). Define then the basis

B = B(t, e)

as the one generated by the rectangles {Rk}k≥1. Our first result reads as follow.

Theorem 7. Suppose there is a constant C > 0 such that for any k ≥ 1, tk ≤ Cek. In this case
the operator MB is a good operator.

We define now the following quantity associated to the sequence t

τt := sup
k≥0,l≤k

(
tk+2l − tk+l

tk+l − tk
+

tk+l − tk
tk+2l − tk+l

)
∈ (0,∞].

This quantity yields information on the goodness/badness of the set {tk}k≥1 seen as a set of direc-
tions. Indeed if τt is finite then the set of directions Ω = {tk}k≥1 forms a bad set of directions. In
some sense, this quantity indicates to which point the sequence t is uniformly distributed near 0.
For example, the sequence t = { 1

k} look likes a uniform distribution near 0 and we have τt < ∞. On
the other hand the sequence t = { 1

2k
}k≥1 converges rapidly to 0 and we have τt = ∞. The second

result reads as follow.

Theorem 8. Suppose that τt < ∞ and also that there is a constant µ0 > 0 such that for any k ≥ 1
we have ek < µ0|tk − tk+1|. In this case, the maximal operator MB is a bad operator.
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How can we prove that MB is bad ?

To prove that an operator MB is bad, the idea is to create an exceptional geometric set adapted to
the basis B ; precisely, one can try to find a small fixed value 0 < η0 < 1 such that for any ϵ > 0
there is a subset X in R2 satisfying

|X| ≤ ϵ| {MB1X > η0} |.

If this holds then for any p > 1 we have∫
(MB1X)p ≥ ηp0 | {MB1X > η0} | ≥ ηp0

∥1X∥pp
ϵ

since |X|
1
p = ∥1X∥p. Hence for any ϵ > 0 we have ∥MB∥p ≥ ηp0ϵ

− 1
p and ∥MB∥pp = ∞ for any

1 < p < ∞. The question remains to understand how one can find/construct such a set X ? Of
course this possibility depends on the basis B. For example consider the case where B := R is as
big as possible. The following property is true (it is a consequence of proposition 1) : for any large
constant A > 1 there exists a finite family of rectangles {Ri}i≤m in R satisfying∣∣∣∣∣∣

⋃
i≤m

2Ri

∣∣∣∣∣∣ ≥ A

∣∣∣∣∣∣
⋃
i≤m

Ri

∣∣∣∣∣∣ .
Considering then the set X =

⋃
i≤m Ri it is easy to see that one has

|X| ≤ 1

A

∣∣∣∣{MR1X >
1

4
}
∣∣∣∣

which implies that the maximal operator MR is a bad operator. A Perron tree (or generalized
Perron tree) formed with a basis B of rectangles is a concrete construction of such a set X (or more
precisely a sequence of sets) for any ϵ > 0 and a fixed value η0.

From rectangles to triangles

Ak

Ek

O

Figure 1: A rectangle Rk and a triangle Tk, both object are oriented along ≃ tk and have an
eccentricity ≃ ek.

Without loss of generality, we will work at some point with triangles instead of rectangles. For
any k ≥ 1 define the triangle Tk as

Tk := Tk(e, t) = OAkEk
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where O = (0, 0), Ak = (1, tk) and Ek = (1, tk + ek). Loosely speaking, the triangle Tk is a triangle
which is oriented along the direction tk and of eccentricity ek. Denoting by B′ the basis generated
by the triangles Tk one can observe that we have the following property. For any R ∈ B there exists
T ∈ B′ satisfying for some vector t⃗ ∈ R2

t⃗+
1

16
T ⊂ R ⊂ T

and conversely for any T ∈ B′ there exists R ∈ B satisfying for some vector t⃗ ∈ R2

t⃗+
1

16
R ⊂ T ⊂ R.

This implies that for any f ∈ L1
loc(R

2) and x ∈ R2 we have

MBf(x) ≃ MB′f(x).

Hence it is equivalent to work with B or with B′ and we will denote both basis by B.

Acknowledgments
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2 Proof of Theorem 7

It is well know that the operator M{0} associated to the basis R{0} = {R ∈ R : ωR = 0} is a good
operator. Now by geometric inspection and using the property that tk < Cek one can prove that
for any R ∈ B there exists a rectangle P ∈ R{0} such that

R ⊂ P

and also
|P | ≤ 8(1 + C)|R|.

This property allow us to use the operator M{0} to dominate pointwise MB. Fix any f ∈ L1
loc(R

2)
and any R ∈ B and the associated rectangle P ∈ R{0} ; we have

1

|R|

∫
R

|f | ≤ 8(1 + C)

|P |

∫
P

|f |

and this shows that for any x ∈ R2 we have

MBf(x) ≤ 8(1 + C)M{0}f(x).

The conclusion comes from the fact that the strong maximal operator M{0} is a good operator.

3 Geometric estimates

We establish two geometric estimates that will be useful. Fix an arbitrary open triangle ∆ = ABC
and consider the triangle ∆2 defined as ∆2 := B⃗ + 1

2 (∆− A⃗).

Lemma 1 (Geometric estimate I). The following inclusion holds

∆2 ⊂
{
M{∆}1∆ ≥ 1

4

}
.

In other words, the level set
{
M{∆}1∆ ≥ 1

4

}
contains ∆2.
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A

B

C

∆ ∆2

Figure 2: The triangles ∆ and ∆2 will usually be in this position.

A

B

C

x

−→
Bx + ∆

Figure 3: The proof of lemma 1 relies on the fact that |∆ ∩
(−→
Bx+∆

)
| = 1

4 |∆|.

Proof. Fix x ∈ B⃗+ 1
2 (∆−A⃗). It suffices to observe that we have x ∈

−→
Bx+∆ and that |∆∩(

−→
Bx+∆)| ≥

1
4 |
−→
Bx+∆|. Hence x ∈

{
M{∆}1∆ ≥ 1

4

}
.

We will need a more general version of the previous estimate. For e ∈ R+ and ∆ = ABC as
before, define the triangle T as

T := T (e,∆) = AB(B + e
−−→
BC).

Lemma 2 (Geometric estimate II). For any couple (∆, T ) as defined above, the following inclusion
holds ∆2 ⊂

{
M{T}1∆ ≥ η(e)

}
where η(e) = inf

{
1
4 ,

1
4e

}
.

Proof. The proof is akin to the proof of lemma 1 and we invite the reader to look at figure ?? for a
geometric representation. It is enough to check

x0 ∈
{
M{T}1∆ > η(e)

}
where x0 = B + 1

2

−→
AC because this is the worst case. To begin with, observe that we have x0 ∈

1
2

−→
AC + T . We distinguish then two situations ; if we have

0 < e ≤ 1
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∆ T = T (∆, e) T = T (∆, e′)

Figure 4: A representation of ∆ and T = T (∆, e) for e ≪ 1 and e′ > 1.

∆ ∆2

x0

1
2

−→
AC + T

Figure 5: An illustration of the argument of lemma 2 ; the left side represents the case 0 < e ≤ 1

and the right side the case e > 1 ; the triangle in shaded blue represents 1
2

−→
AC + T .

we claim that we are in the situation corresponding to the left situation in figure ?? that is to say
we have ∣∣∣∣∆ ∩

(
1

2

−→
AC + T

)∣∣∣∣ = 1

4
|T |

and so

x0 ∈
{
M{T}1∆ ≥ 1

4

}
.

The second situation corresponds to the case where 1 < e ; in this case, we have (see figure ??)∣∣∣∣∆ ∩
(
1

2

−→
AC + T

)∣∣∣∣ ≥ 1

4
|∆| ≥ 1

4e
|T |.

This shows that we have x0 ∈
{
M{T}1∆ > 1

4e

}
which concludes.

4 Generalized Perron trees

Denote by ∆k the triangle whose vertices are the points O,Ak = (1, tk) and Ak+1 = (1, tk+1). Recall
that we have supposed τt < ∞.
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tl

tl+1

tl+2

∆k

∆k+2N

X

Figure 6: A representation of some ∆k and on the left side a Perron tree X generated with those
triangles. The idea is that for large n one has |X| ≪ |∆k ⊔ · · · ⊔∆k+2N | ; plus the second property
of proposition 1.

Proposition 1 (Generalized Perron Tree). For any positive ratio α close to 1 and any integer
n ≥ 1, there exists an integer N ≫ 1 and 2n vectors s⃗k := (0, sk) such that defining the set

X =
⋃

N+1≤k≤N+2n

(s⃗k +∆k)

we have the following properties

• |X| ≤
(
α2n + τt(1− α)

)
|∆N+1 ⊔ · · · ⊔∆N+2n |;

• for any k ̸= l the triangles
(
A⃗k + s⃗k

)
+ 1

2∆k and
(
A⃗l + s⃗l

)
+ 1

2∆l are disjoint.

We say that the set X is a generalized Perron tree of scale (α, n) and we denote it by Xα,n(t).

The fact that the triangles
(
A⃗k + s⃗k

)
+ 1

2∆k and
(
A⃗l + s⃗l

)
+ 1

2∆l are disjoint is not proved in

[12] but this can be proved easily by geometry inspection. Observe that for any ϵ > 0, one can first
choose α close to one and then n large enough in order to have

|Xα,n(t)| ≤ ϵ |∆N+1 ⊔ · · · ⊔∆N+2n |

for some large N . To obtain such an inequality, we need a sufficient condition on the thin triangles
Tk that ensures in some sense that they are comparable.

Indeed, suppose that we had defined for any k ≥ 1 the triangle ∆k as the one whose vertices are
the points O,Gk = (1, 1

2k
) and Gk+1 = (1, 1

2k+1 ). In this situation, for any I ⊂ N and any sequence
of vectors {s⃗i}i∈I ⊂ R2 the set XI defined as

XI =
⋃
i∈I

(s⃗i +∆i)

satisfies the following inequality

|XI | ≥ |∆i0 | ≥
1

2

∣∣∣∣∣⋃
i∈I

∆i

∣∣∣∣∣
where i0 := min I. Hence we cannot hope to stack up the triangles ∆k into a set X that has a small
area compared to the sum of the areas of the ∆k.
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1
2k

1
2k+1

1
2k+2

X

Figure 7: It quite difficult to construct a Perron ; one needs a condition to assure that the triangles
∆k are comparable in some sense. On this figure, the ∆k differs to much and one will always have
|X| ≃ | ∪∆i| as explained.

Hopefully this example shed light on the condition imposed on t which is

τt := sup
k≥0,l≤k

(
tk+2l − tk+l

tk+l − tk
+

tk+l − tk
tk+2l − tk+l

)
< ∞.

This assure that the triangles ∆k are comparable in some sense and that we can construct generalized
Perron trees with them.

5 Proof of Theorem 8

Recall that we suppose there is a constant µ0 > 0 such that for any k ≥ 1, ek < µ0|tk − tk+1|.
To begin with, we are going to construct a Perron tree Xα,n(t) with the triangles {∆k}k≥1. Then
we will exploit this Perron tree Xα,n(t) with the triangles B = {Tk}k≥1 to show that MB is a bad
operator. Precisely we prove the following claim.

Claim 1. For any α close to 1 and any n ∈ N, the Perron tree X := Xα,n(t) satisfies the following
inequality

|X| ≤ ϵ| {MB1X > η(µ0)} |

where ϵ = α2n + τt(1− α).

Proof. Fix α close to 1 and n ∈ N and consider a Perron tree of scale (α, n)

X := Xα,n(t) =
⋃

N+1≤k≤N+2n

(s⃗k +∆k)

where N is given by proposition 1. Fix any k ∈ {N + 1, . . . , N + 2n} and consider the couple of
triangles

(s⃗k +∆k, s⃗k + Tk)

or more simply the couple (∆k, Tk) which is the same up to a translation. We can apply lemma 2
to this couple which yields the following inclusion(

A⃗k+1 + s⃗k

)
+

1

2
∆k ⊂

{
M{Tk}1s⃗k+∆k

> η(µ0)
}
.

Since we have MTk
≤ MB we also have(

A⃗k+1 + s⃗k

)
+

1

2
∆k ⊂ {MB1s⃗k+∆k

> η(µ0)} .

9



We form now the union on k ∈ {N + 1, . . . , N + 2n} of the precedent inclusion which by definition
yields

2n⊔
k=1

(
A⃗k+1 + s⃗k

)
+

1

2
∆k ⊂ {MB1X > η(µ0)} .

In the latter inclusion, the fact that the union is disjoint comes from proposition 1. Hence this gives
in terms of Lebesgue measure ∑

N+1≤k≤N+2n

1

4
|∆k| ≤ | {MB1X > η(µ0)} |.

Using the fact that X is a Perron tree constructed with the triangles ∆k we have

|X| ≤
(
α2n + τt(1− α)

)
|∆N+1 ⊔ · · · ⊔∆N+2n |.

In other words we have

|X| ≤ 4
(
α2n + τt(1− α)

)
| {MB1X > η(µ0)} |.

The claim implies that for any p > 1 we have

∥MB∥p ≥ η(µ0)(4α
2n + 4τt(1− α))−

1
p

for any α close to 1 and any n ∈ N. The fact that constant η(µ0) is independant of the scale (α, n)
concludes : we have ∥MB∥p = ∞ for any p > 1 i.e. MB is a bad operator.

6 Proof of Theorem 6

b < a < b + 1b + 1 < a

Tk

Tk+1

Tk

Tk+1

Figure 8: On the left side a representation of the regime a > b + 1. In this situation, the triangles
Tk do not overlap at all for large k (actually the gap gets bigger with k). On the right side a
representation of the regime b + 1 > a > b. In this situation, the triangles Tk tend to completely
overlap each other.

We are now ready to prove Theorem 6 ; the case a ≤ b is consequence of Theorem 7 and the
case a ≥ b + 1 is a consequence of Theorem 8. It remains to deal with the case b < a < b + 1. In
this regime, the problem is that the triangles {Tk} are too much overlapped. The idea is to extract
some of them {Tkn}n≥1 which are almost disjoint (up to some intersection of a fixed ratio) and to
construct a Perron tree with this family. The following lemma will be helpful.
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Lemma 3. If there exists a polynome P ∈ R[X] such that for any k ≥ 1 we have 1 ≤ P (k)tk then
τt < ∞.

We consider the triangle Tk defined as Tk = OAkEk where O = (0, 0), Ak = (1, π
4nb ) and

Ek = (1, π
4nb + 1

na ). Since we suppose that b < a < b+ 1 the triangles Tk and Tk+1 tend to overlap
completely and this forbid a direct construction of a Perron tree with the triangles {Tk}k≥1. Fix an
integer k and let’s look for l > k such that Tk and Tl are disjoint. If we consider l = 2k, we have

π

4(2k)b
+

1

(2k)a
<

π

4kb

and so Tk ∩ T2k = O and the triangles are disjoint. However we can easily verify that the extracted
sequence

t′ =

{
π

4(2nk)b

}
n≥1

won’t satisfy the condition
τt′ < ∞.

Tk

Tk+kε

Tk

Tk+kε

(i) (1− b) > 0 (ii) (1− b) < 0

' (1− b) 1
lb

Figure 9: If we recursively set l ≃ k + kϵ with ϵ = b+ 1− a ; on long scale we obtain the following
situation depending on the sign of (1− b). The triangles Tk and Tl are almost adjacent and we can
apply Theorem 8.

Hence we fix a small constant ϵ > 0 and look for a l of the form

l = k + kϵ.

We have
π

4lb
+

1

lb
≃ 1

kb(1 + kϵ−1)b
+

1

lb
≃ 1

kb
(1− bkϵ−1) +

1

lb

and so (
π

4lb
+

1

lb

)
− π

4kb
≃ 1

lb
− b

kb+1−ϵ
≃ 1

ka
− b

kb+1−ϵ
.

Hence, if we choose
ϵ := b+ 1− a > 0

we have (
π

4lb
+

1

lb

)
− π

4kb
≃ (1− b)

1

lb
.

This means that either (i) the triangles Tk and Tl are disjoint but not too far (ii) either a constant
fraction of Tl is out of Tk, depending on the value of b. We have set

l := k1 = k + kϵ := k0 + kϵ0 = F (k0).
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We define by induction
kn+1 = F (kn).

We have
kn+1 − kn = kϵn.

This leads to the following majoration : there exists a polynome P such that for every k ≥ 1, we
have

kn ≤ P (n).

Using Lemma 3 shows that we have τt′ < ∞ where t′ = {tkn
}b≥1 and so we can construct a

generalized Perron tree as before with the triangles {∆kn
}n≥1 associated to the sequence t′ and

exploit it with the triangles {Tkn
}n≥1 ; that is to say we apply Theorem 8. This concludes the case

b < a < b+ 1.
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