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Abstract

To be able to construct a generalized Perron trees as in [11] with a family of triangles T
implies that the maximal operator MT associated to this family is unbounded on Lp(R2) for
any 1 ≤ p < ∞. If T ′ is a family of triangles which is geometrically adapted to the family T ,
we prove that MT ′ is also unbounded on Lp(R2) for any 1 ≤ p < ∞.

We work in the euclidean plane R2 ; if U is a measurable subset of R2 we denote by |U | its two
dimensional Lebesgue measure.

1 Introduction

Denote by R the collection containing all rectangles of R2 ; for r ∈ R we define its orientation as
the angle ωr ∈ [0, π) that its longest side makes with the Ox-axis and its eccentricity as the ratio
κr ∈ (0, 1] of its shortest side by its longest side.

If B is an arbitrary non empty family contained in R, we define the associated derivation basis
B∗ by

B∗ =
{
t⃗+ hr : t⃗ ∈ R2, h > 0, r ∈ B

}
.

The derivation basis B∗ is the smallest invariant by dilation and translation collection that contains
any element of B. We define the geometric maximal operator MB generated by B by

MBf(x) := sup
x∈r∈B∗

1

|r|

∫
r

|f |

for any f ∈ L1
loc(R

2) and x ∈ R2. Here the supremum is taken on elements r in B∗ that contain
the point x. The definitions of B∗ and MB remain valid when we consider that B is an arbitrary
family composed of open bounded convex sets. In this note, for technical reasons we will work with
triangles instead of rectangles.

For p ∈ (1,∞] we define the operator norm ∥MB∥p of MB by

∥MB∥p = sup
∥f∥p=1

∥MBf∥p.

If ∥MB∥p < ∞ we say that MB is bounded on Lp(R2). The Lp-boundedness of a maximal operator
MB is related to the geometry that the family B exhibits. We will say that the operator MB is
a good operator when it is bounded on Lp for any p > 1. On the other side, we say that the
operator MB is a bad operator when it is unbounded on Lp for any 1 < p < ∞.
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Classic examples

We first recall some well known results about classic maximal operators. Suppose that B is reduced
to a single element, say B = {c0} where c0 = [0, 1]× [0, 1]. This square yields the so-called Hardy-
Littlewood maximal operator that we will simply denote M := M{c0}. The operator M is not
bounded from L1 to L1. However it has weak-type (1, 1) i.e. there is a constant C > 0 such that

| {Mf > t} | ≤ C × ∥f∥1
t

for any f ∈ L1 and t > 0. We invite the reader to see [9] page 37. Actually, it is not difficult to see
that if

κ(B) := inf
R∈B

κR > 0

then the operator MB is pointwise bounded by a multiple of M and so MB has also weak-type (1, 1).
Using Marcinkiewicz interpolation theorem and the fact that we always have ∥MBf∥∞ ≤ ∥f∥∞,
one deduces that MB is bounded on Lp for any p > 1 in this case. More generally, as soon as MB

is bounded on Lp0 for some p0 > 1 it is then bounded on Lp for any p ≥ p0 using the same method.
Different situations can occur when κ(B) = 0 ; that is to say when B contains arbitrary thin

rectangles. Consider the family
B{0} = {r ∈ R : ωr}

i.e. the family B{0 } contains all rectangles whose sides are parallel to the Ox-Oy axis. In this
case, the operator MB{0 } is commonly called the strong maximal operator and we denote it Ms. It
is known that the operator Ms does not have weak-type (1, 1). Yet Ms is bounded on Lp for any
p > 1. We invite the reader to see [6] for a geometric proof of this fact.

Consider now the maximal operatorMR i.e. the maximal operator generated by all the rectangles
contained in the plane. In this case, because the collection R is ”too big”, we have for any 1 < p < ∞

∥MR∥p = ∞.

We invite the reader to see [9] page 116. To sum up, we have the following facts.

• The Hardy-Littlewood maximal operator M has weak-type (1, 1) and is a good operator.

• More generally, for any B ⊂ R, if κ(B) > 0 then MB has weak-type (1, 1) and is a a good
operator.

• The strong maximal operator Ms is a good operator.

• The maximal operator MR generated by all rectangles of the plane is a bad operator.

Directional maximal operators

A lot of research has been done in the case where B is equal to

BΩ := {r ∈ R : ωr ∈ Ω}

where Ω is an arbitrary set of directions in [0, π). In other words, BΩ is the set of all rectangles
whose orientation belongs to Ω. We say that BΩ is a directional basis and to alleviate the notation
we denote

MBΩ := MΩ.

In the literature, the operator MΩ is said to be a directional maximal operator. The study of those
operators goes back at least to Cordoba and Fefferman’s article [7] in which they use geometric
techniques to show that if

Ω =
{ π

2k

}
k≥1
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then MΩ has weak-type (2, 2). A year later, using Fourier analysis techniques, Nagel, Stein and
Wainger proved in [12] that MΩ is actually bounded on Lp for any p > 1. In [1], A. Alfonseca
has proved that if the set of direction Ω is a lacunary set of finite order then the operator MΩ is
bounded on Lp for any p > 1. In [4], M. Bateman completely characterized the Lp-boundedness of
directional operators. Precisely he proved the following theorem.

Theorem 1. Fix an arbitrary set of directions Ω ⊂ [0, π). The directional maximal operator MΩ

is either bounded on Lp for any 1 < p < ∞ or either unbounded on Lp for any 1 < p < ∞. In other
words, an operator MΩ is either good or bad.

Hence we know that a set of directions Ω yields an directional operator MΩ that is either good
or bad. Merging the vocabulary, we will say that a set of directions Ω is a good set of directions
when MΩ is good and that it is a bad set of directions when MΩ is bad. The notion of good/bad
is well understood for a set of directions Ω and the associated directional operator MΩ. To say it
bluntly, Ω is a good set of directions if and only if it can be included in a finite union of lacunary
sets of finite order. If this is not possible, Ω is a bad set of directions. Rather than giving the
definition of lacunarity of finite order (we refer to [4] for this) we provide some examples. In the
following cases the set of directions Ω is good i.e. MΩ is bounded on Lp for any 1 < p < ∞ :

• when Ω is finite,

• when Ω =
{

π
2k

}
k≥1

,

• more generally when Ω is included in a lacunary sequence.

On the other hand, the set of directions Ω is bad i.e. MΩ is unbounded on Lp for any 1 < p < ∞
when :

• Ω contains an open interval,

• Ω is the ternary Cantor set,

• more surprisingly, Ω =
{

π
ks

}
k≥1

for a positive fixed s > 0.

Questions

A natural question arises from all this : can one find a family B in R such that the operator MB is
unbounded on L1+ϵ for some small ϵ > 0 and bounded on L1+A for some large A > 1 ? We believe
that such a family does not exist and we thank P. Hagelstein and A. Stokolos for communicating us
the following conjecture.

Conjecture 1. Any maximal operator MB generated by a family B included in R is either bounded
on Lp for all finite p > 1 or either unbounded on Lp for all finite p > 1.

In the general setting, Hagelstein and Stokolos proved in [10] that if the operator MB satisfies
a tauberian inequality then it is bounded on Lp for large p < ∞. Precisely, they show that if there
exist 0 < η0 < 1 and C0 > 0 such that

| {MB1E > η0} | ≤ C0 × |E|

for any bounded measurable set E, then MB is at least bounded on Lp0 for a large p0. The problem
here is that p0 depends a priori on the basis B.

Another interesting problem can be phrased as follows : given B included in R find the optimal
Orlicz space LΦ on which the operator MB is bounded. This question won’t be adressed here but
the interested reader might consult Stokolos’ article [13] or more recently D’Aniello, Moonens and
Rosenblatt’s article [2] or D’Aniello and Moonens’ article [3].

To tackle the conjecture at least two questions must be adressed.
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Question 1 : rarefaction of a directional basis

Fix an arbitrary family B contained in R satisfying the following conditions :

• the directions contained in B i.e. the set Ω(B) := {ωr : r ∈ B} is a bad set of directions ;

• for any ω ∈ Ω(B) we only have access to arbitrary thin rectangles in B in the direction ω i.e.
for any ω ∈ Ω(B) we have

κ(B,ω) := inf
r∈B,ωr=ω

κr = 0.

Loosely speaking, we assume that B is a rarefied version of the directional basis BΩ. Under those
conditions, can one show that the operator MB is still bad ? In a submitted work, we have proven
that such an operator MB is indeed bad.

Question 2 : fleeing bases

The second question is more complex and it is the one that we partially address in this note. Fix
an arbitrary family B included in R satisfying the following conditions :

• the directions that are accessible with arbitrary thin rectangles form a good set of directions
i.e. the set of directions

Ω(B, 0) := {ω ∈ [0, π) : ∀ϵ > 0,∃r ∈ B, κr < ϵ, ωr = ω}

is a good set of directions ;

• yet for any ϵ > 0 the set of directions

Ω(B, ϵ) := {ω ∈ [0, π) : ∃r ∈ B, κr < ϵ, ωr = ω}

is always a bad set of directions.

Can one show that such an operator MB is good ? or bad ? In this note, we consider different
families B satisfying those conditions and show that in those cases the operator MB is indeed good
or bad.

Results

We exhibit different geometric maximal operators verifying the condition of the last question and
which are either good or bad. Precisely we denote by

t = {tk}k≥1 ⊂ [0, 1]

a sequence decreasing to 0 and by

x = {xk}k≥1 ⊂ (0,∞)

any positive sequence. For A,B,C ∈ R2, we denote by ABC the triangle whose vertices are the
points A,B and C. If t is a point in R2, we might denote it by t⃗ to insist on the fact that it used as
a translation vector. We define two families of triangles. First, for any k ≥ 1, we define the triangle
Tk as

Tk = OAkAk+1

where O = (0, 0), Ak = (1, tk) and Ak+1 = (1, tk+1). Observe that we have only used the sequence
t in order to define the triangles Tk. Then we define the triangle Tk(x) as

Tk(x) = OAk+1(Ak+1 + X⃗k)
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T1

T2

T3

T4

O

Figure 1: A representation of the triangles Tk.

O

x1

x2

x3

x4

T1(x)

T2(x)

T3(x)

T4(x)

Figure 2: A representation of the triangles Tk(x).

where X⃗k := (0, xk). We will study the collection B defined as

B := {Tk(x)}k≥1 .

Now that we have defined the triangles Tk and Tk(x) we can interpret the sequence t as a sequence
of tangent of angles that tends to 0 and the sequence x as an arbitrary sequence of eccentricity.
Our first result reads as follow.

Theorem 2. Suppose there is a constant C > 0 such that for any k ≥ 1

tk ≤ C × xk.

In this case the operator MB is a good operator i.e. MB is bounded on Lp for any p > 1

Defining the quantity

τt := sup
k≥0,l≤k

(
tk+l+l − tk+l

tk+l − tk
+

tk+l − tk
tk+l+l − tk+l

)
we will prove the following proposition.
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Theorem 3. Suppose that
τt < ∞

and that there is a constant µ0 > 0 such that for any k ≥ 1

xk < µ0|tk − tk+1|.

In this case, the maximal operator MB is a bad operator i.e. MB is unbounded on Lp for any finite
p ≥ 1.

Structure and strategy

This note is structured as follow.

• In section 2 we give two geometric estimates involving maximal operators.

• In section 3 we recall known facts about the construction of so-called Perron trees and gener-
alized Perron trees.

• Finally in the last two sections, we prove Theorems 2 and 3.

To prove that an operator MB is a good operator we are simply going to exhibit another operator
M ′ that is known to be good and we will check that we have

MB ≤ C ×M ′.

This will immediately imply that MB is good also. Conversely, to prove that an operator MB is
bad, it is enough to find a small fixed value 0 < η0 < 1 such that for any ϵ > 0 there is a subset X
in R2 such that

|X| ≤ ϵ× | {MB1X > η0} |.

Indeed if this holds then for any p > 1 we have∫
(MB1X)p ≥ ηp0 × | {MB1X > η0} | ≥ ηp0 ×

∥1X∥pp
ϵ

since |X| = ∥1X∥pp. Hence we have for any ϵ > 0 the following lower bound on the Lp-norm of MB

∥MB∥pp ≥ ηp0
ϵ

i.e. for any p > 1 we have ∥MB∥pp = ∞ since ϵ > 0 is arbitrary low in the latter inequality. This
exactly means that MB is bad. We are going to build our set X as a generalized Perron tree. Before
discussing about those trees, we are going to detail some geometric estimates that will be useful.

Acknowledgments

I thank Laurent Moonens and Emmanuel Russ for their kind advices.

2 Geometric estimates

We fix an arbitrary open triangle T1 = ABC. Consider the triangle T2 defined as

T2 := B⃗ +
1

2
(T1 − A⃗),

see figure 3.
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Lemma 1 (Geometric estimate I). The following inclusion holds

T2 ⊂
{
M{T1}1T1

≥ 1

4

}
.

In other words, the level set
{
M{T1}1T1

≥ 1
4

}
contains an affine copy of T1.

A

B

C

T1

T2

x0

Figure 3: A representation of the triangles T1 and T2.

x

−→
Bx+ T

Figure 4: The proof of lemma 1 consists in observing that the blue shaded area represents a quarter

of the triangle
−→
Bx+ T .

Proof. Fix x ∈ B⃗ + 1
2 (T1 − A⃗). It suffices to observe (see figure 4) that we have

x ∈
−→
Bx+ T1

and that

|T1 ∩ (
−→
Bx+ T1)| ≥

1

4
|
−→
Bx+ T1|.

Hence x ∈
{
M{T1}1T1 ≥ 1

4

}
.

We now fix an arbitrary positive constant µ0 > 0 and for all triangles T with vertices (A,B,C)
we define the triangle Tµ0

as

Tµ0
:= AB(B + µ0 ×

−−→
BC).

For any 0 < x < µ0 we define similarly the triangle

T (x) = AB(B + x×
−−→
BC).
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Lemma 2 (Geometric estimate II). For any couple (T1, T (x)) as defined above, the following in-
clusion holds

T2 ⊂
{
M{T (x)}1T1

≥ η(µ0)
}

where η(µ0) = inf
{

1
4 ,

1
4µ0

}
.

1
2

−→
AC + T (x)

1
2

−→
AC + T (x)

Figure 5: In the proof of lemma 2, we distinguish two cases : either x is very small as on the left
side of the figure, either x is close to the parameter µ0 as on the right of the figure.

Proof. The proof is akin to the proof of lemma 1, see figure 5 for a geometric representation. It is
enough to check

x0 ∈
{
MT (x)1T1 > η(µ0)

}
where x0 = B + 1

2

−→
AC because this is the ”worst case”. To begin with, observe that we have

x0 ∈ 1

2

−→
AC + T (x).

Now either we have ∣∣∣∣T1 ∩
(
1

2

−→
AC + T (x)

)∣∣∣∣ ≥ 1

4
|T (x)|

and in this case we have x0 ∈
{
M{T (x)}1T1

> 1
4

}
; or we have∣∣∣∣T1 ∩

(
1

2

−→
AC + T (x)

)∣∣∣∣ = 1

4
|T1|

and in this case we have x0 ∈
{
M{T (x)}1T1 ≥ 1

4µ0

}
since

|T1|
|T (x)|

≥ |T1|
|Tµ0

|
=

1

µ0
.

3 Generalized Perron trees

We are going to recall how one can construct a Perron tree as in [9] and more generally how one
can construct a generalized Perron tree as in [11].

Before stating any proposition, we would like to say that loosely speaking the construction of a
Perron tree is a procedure that specifies how one can
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(1) cut a triangle T in approximatively 2n thin triangles Tk

(2) stack up those thin triangles in a new set X that is usually called a Perron tree

(3) the Perron tree X has different properties with respect to the thin triangles Tk. Among others
we have |X| ≪ |T |.

We formulate this more precisely in the following propositions. Denote by T the triangle whose
vertices are the points O, A = (1, 0) and B = (1, 1). For any n ≥ 1 and 1 ≤ k ≤ 2n denote by Tk

the triangle whose vertices are the points O,Ak = (1, k
2n ) and Ak−1 = (1, k−1

2n ).

Proposition 1 (see [9], page 112). Fix any positive ratio 1
2 < α < 1 and any integer n ≥ 1. There

exist 2n vectors
s⃗k := (0, sk)

satisfying the following properties

• the set X defined as

X =
⋃

k≤2n

(s⃗k + Tk)

satisfies
|X| ≤

(
α2n + 2(1− α)

)
× |T |;

• for any k ̸= l the triangles
(
A⃗k + s⃗k

)
+ 1

2Tk and
(
A⃗l + s⃗l

)
+ 1

2Tl are disjoint.

We say that the set X is a Perron tree of scale (α, n) and we denote it by Xα,n.

T Xα,n

Figure 6: A representation of a Perron tree Xα,n for n = 2.

Observe that for any ϵ > 0, one can first choose α close to one and then n large enough in order
to have

|Xα,n| ≤ ϵ× |T |.
To obtain such an inequality, it is sufficient to have a condition on the thin triangles Tk that ensures
in some sense that they have comparable area.

Indeed, suppose now that we define for any k ≥ 1 the triangle Tk as the one whose vertices are
the points O,Gk = (1, 1

2k
) and Gk+1 = (1, 1

2k+1 ). In this situation, for any I ⊂ N and any sequence
of vectors {s⃗i}i∈I ⊂ R2 the set XI defined as

XI =
⋃
i∈I

(s⃗i + Ti)

9



XIT1

T2

T3

T4

Figure 7: If the areas of the triangles Tk decrease too fast then we cannot stack them up efficiently.

satisfies the following inequality

|XI | ≥ |Ti0 | ≥
1

2
|
⋃
i∈I

Ti|

where i0 := min I. We hence cannot, in this case, hope to stack up the triangles Tk into a set X
that has a small area compared to the sum of the areas of the Tk, see figure 7 for an illustration of
this phenomenon.

We consider a sequence t = {tk}k≥1 which is decreasing to 0 and such that t1 = 1. We define
the following quantity

τt := sup
k≥0,l≤k

(
tk+l+l − tk+l

tk+l − tk
+

tk+l − tk
tk+l+l − tk+l

)
.

For any k ≥ 1 consider the triangle Tk whose vertices are the points O,Ak = (1, tk) and Ak+1 =
(1, tk+1). The following proposition is a generalisation of the previous one.

Proposition 2. [see [11]] Suppose that τt < ∞. In this case for any positive ratio α close to 1 and
any integer n ≥ 1, there exists an integer N ≫ 1 and 2n vectors

s⃗k := (0, sk)

satisfying the following properties

• the set X defined as

X =
⋃

N+1≤k≤N+2n

(s⃗k + Tk)

satisfies
|X| ≤

(
α2n + τt(1− α)

)
× |TN+1 ⊔ · · · ⊔ TN+2n |;

• for any k ̸= l the triangles
(
A⃗k + s⃗k

)
+ 1

2Tk and
(
A⃗l + s⃗l

)
+ 1

2Tl are disjoint.

We say that the set X is a generalized Perron tree of scale (α, n) and we denote it by Xα,n,t.

The fact that the triangles
(
A⃗k + s⃗k

)
+ 1

2Tk and
(
A⃗l + s⃗l

)
+ 1

2Tl are disjoint is not proved in

[11] ; this can be proved easily by geometry inspection.
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4 Proof of Theorem 2

For any k ≥ 1 consider the rectangle Rk = [0, 1]× [0, xk + tk] ; we have

Tk(x) ⊂ Rk,

|Tk(x)| = 1
2xk and |Rk| = xk + tk. Since we have supposed that tk ≤ C × xk for all k ≥ 1, we have

|Rk| ≤ (1 + C)xk = 2(1 + C)|Tk(x)|.

Those estimations allow us to use the strong maximal operator Ms to dominate pointwise MB . Fix
any f ∈ L1

loc(R
2) and any T ∈ B∗. Using the fact that B∗ is generated by B, there exists a rectangle

R ∈ I such that
T ⊂ R

and
|R| ≤ 2(1 + C)|T |.

Hence we have
1

|T |

∫
T

|f | ≤ 2(1 + C)

|R|

∫
R

|f |

and this shows that for any x ∈ R2

MBf(x) ≤ 2(1 + C)Msf(x).

The conclusion comes from the fact that the strong maximal operator Ms is a good operator.

5 Proof of Theorem 3

Recall that we suppose there is a constant µ0 > 0 such that for any k ≥ 1

xk < µ0 × |tk − tk+1|.

To begin with, we are going to construct a Perron tree Xα,n,t with the triangles

{Tk}k≥1 .

Then we will exploit this Perron tree Xα,n,t and the sequence of triangles

B = {Tk(x)}k≥1

to show that MB is a bad operator. Precisely we prove the following claim.

Claim 1. For any α close to 1 and any n ∈ N, the Perron tree X := Xα,n,t satisfies the following
inequality

|X| ≤ ϵ× | {MB1X > η(µ0)} |

where ϵ = α2n + τt(1− α) and B = {Tk(x)}k≥1.

Proof. Fix α close to 1 and n ∈ N and consider a Perron tree of scale (α, n)

X := Xα,n,t =
⋃

N+1≤k≤N+2n

(s⃗k + Tk)

where N is given by proposition 2. Fix any k ∈ {N + 1, . . . , N + 2n} and consider the couple of
triangles

(s⃗k + Tk, s⃗k + Tk(x))

11



or more simply the couple (Tk, Tk(x)) which is the same up to a translation. We can apply lemma
2 to this couple

(s⃗k + Tk, s⃗k + Tk(x)) = (T1, T (x))

which yields the following inclusion(
A⃗k+1 + s⃗k

)
+

1

2
Tk ⊂

{
M{Tk(x)}1s⃗k+Tk

> η(µ0)
}
.

Using the fact that {Tk(x)} ⊂ B we have

MTk(x) ≤ MB

and so we can replace M{Tk(x)} by MB i.e(
A⃗k+1 + s⃗k

)
+

1

2
Tk ⊂ {MB1s⃗k+Tk

> η(µ0)} .

We form now the union on k ∈ {N + 1, . . . , N + 2n} of the precedent inclusion which by definition
yields

2n⊔
k=1

(
A⃗k+1 + s⃗k

)
+

1

2
Tk ⊂ {MB1X > η(µ0)} .

In the latter inclusion, the fact that the union is disjoint comes from proposition 2. Hence this gives
in terms of Lebesgue measure ∑

N+1≤k≤N+2n

1

4
|Tk| ≤ | {MB1X > η(µ0)} |.

Using the fact that X is a Perron tree constructed with the triangles Tk we have

|X| ≤
(
α2n + τt(1− α)

)
× |TN+1 ⊔ · · · ⊔ TN+2n |.

In other words we have

|X| ≤ 4×
(
α2n + τt(1− α)

)
× | {MB1X > η(µ0)} |.

As detailed in section 1, the claim implies that for any p > 1 we have

∥MB∥p ≥ η(µ0)(4α
2n + 4τt(1− α))−

1
p

for any α close to 1 and any n ∈ N. The fact that constant η(µ0) is independant of the scale (α, n)
concludes : we have ∥MB∥p = ∞ for any p > 1 i.e. MB is a bad operator.
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