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Non Directional Geometric Maximal

Operators and the All-p/No-p

Conjecture

Anthony Gauvan

July 22, 2021

Abstract

The All-p/No-p conjecture states that given a collection of rectangles
in the plane which is invariant by dilation and translation, either the
associated maximal operator is bounded in Lp for any 1 < p ≤ ∞ or it is
unbounded on Lp for any 1 ≤ p < ∞. Focusing on the case of triangles,
we exhibit non-directional geometric maximal operators which satisfy the
All-p/No-p conjecture. To the best of our knowledge, those are among
the first examples of this kind. To do so, we develop techniques relying
on geometric estimates and generalized Perron trees as constructed in [11]
by K. Hare and J.-O. Rönning.

We work in the euclidean plane R2 ; if U is a measurable subset of R2 we
denote by |U | its two dimensional Lebesgue measure.

1 Introduction

Denote by R the collection containing all rectangles of R2 ; for R ∈ R we define
its orientation as the angle ωR ∈ [0, π) that its longest side makes with the
Ox-axis and its eccentricity as the ratio κR ∈ (0, 1] of its shortest side by its
longest side.

If B is an arbitrary non empty family contained inR, we define the associated
derivation basis B∗ by

B∗ =
{
~t+ hR : ~t ∈ R2, h > 0, R ∈ B

}
.

The derivation basis B∗ is the smallest invariant by dilation and translation
collection that contains any element of B. We define the geometric maximal
operator MB generated by B by

MBf(x) := sup
x∈R∈B∗

1

|R|

∫
R

|f |

for any f ∈ L1
loc(R

2) and x ∈ R2. Here the supremum is taken on elements R in
B∗ that contain the point x. The definitions of B∗ and MB remain valid when
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we consider that B is an arbitrary family composed of open bounded convex
sets. For example in this note, we will work with triangles instead of rectangles.

For p ∈ (1,∞] we define the operator norm ‖MB‖p of MB by

‖MB‖p = sup
‖f‖p=1

‖MBf‖p.

If ‖MB‖p <∞ we say that MB is bounded on Lp(R2). The Lp-boundedness of
a maximal operator MB is related to the geometry that the family B exhibits.
We will say that the operator MB is a good operator when it is bounded on
Lp for any p > 1. On the other side, we say that the operator MB is a bad
operator when it is unbounded on Lp for any 1 < p <∞.

Classic examples

We first recall some well known results about classic maximal operators. Sup-
pose that B is reduced to a single element, say B = {c0} where c0 = [0, 1]× [0, 1].
This square yields the so-called Hardy-Littlewood maximal operator that we will
simply denote M := M{c0}. The operator M is not bounded from L1 to L1.
However it has weak-type (1, 1) i.e. there is a constant C > 0 such that

| {Mf > t} | ≤ C × ‖f‖1
t

for any f ∈ L1 and t > 0. We invite the reader to see [9] page 37. Actually, it
is not difficult to see that if

κ(B) := inf
R∈B

κR > 0

then the operator MB is pointwise bounded by a multiple of M and so MB has
also weak-type (1, 1). Using Marcinkiewicz interpolation theorem and the fact
that we always have ‖MBf‖∞ ≤ ‖f‖∞, one deduces that MB is bounded on Lp

for any p > 1 in this case. More generally, as soon as MB is bounded on Lp0 for
some p0 > 1 it is then bounded on Lp for any p ≥ p0 using the same method.

Different situations can occur when κ(B) = 0 ; that is to say when B contains
arbitrary thin rectangles. Consider the family

I = {[a, b]× [c, d] : a < b, c < d}

i.e. the family I contains all rectangles whose sides are parallel to the Ox-Oy
axis. In this case, the operator MI is commonly called the strong maximal
operator and we denote it Ms. It is known that the operator Ms does not have
weak-type (1, 1). Yet Ms is bounded on Lp for any p > 1. We invite the reader
to see [6] for a geometric proof of this fact.

Consider now the maximal operatorMR i.e. the maximal operator generated
by all the rectangles contained in the plane. In this case, because the collection
R is ”too big”, we have for any 1 < p <∞

‖MR‖p =∞.

We invite the reader to see [9] page 116. To sum up, we have the following facts.
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• The Hardy-Littlewood maximal operator M has weak-type (1, 1) and is a
good operator.

• More generally, for any B ⊂ R, if κ(B) > 0 then MB has weak-type (1, 1)
and is a a good operator.

• The strong maximal operator Ms is a good operator.

• The maximal operator MR generated by all rectangles of the plane is a
bad operator.

Directional maximal operators

A lot of research has been done in the case where B is equal to

BΩ := {R ∈ R : ωR ∈ Ω}

where Ω is an arbitrary set of directions in [0, π). In other words, BΩ is the set
of all rectangles whose orientation belongs to Ω. We say that BΩ is a directional
basis and to alleviate the notation we denote

MBΩ := MΩ.

In the literature, the operator MΩ is said to be a directional maximal operator.
The study of those operators goes back at least to Cordoba and Fefferman’s
article [7] On differentiation of integrals in which they use geometric techniques
to show that if

Ω =
{ π

2k

}
k≥1

then MΩ has weak-type (2, 2). A year later, using Fourier analysis techniques,
Nagel, Stein and Wainger proved in [12] Differentiation in lacunary directions
that MΩ is actually bounded on Lp for any p > 1.

In [1] Strong type inequalities and an almost-orthogonality principle for fam-
ilies of maximal operators along directions in R2, Alfonseca has proved that if
the set of direction Ω is a lacunary set of finite order then the operator MΩ is
bounded on Lp for any p > 1.

In [4] Kakeya sets and directional maximal operators in the plane, M. Bate-
man completely characterized the Lp-boundedness of directional operators. Pre-
cisely he proved the following theorem.

Theorem 1. Fix an arbitrary set of directions Ω ⊂ [0, π). The directional
maximal operator MΩ is either bounded on Lp for any 1 < p < ∞ or either
unbounded on Lp for any 1 < p <∞. In other words, an operator MΩ is either
good or bad.

Hence we know that a set of directions Ω yields an directional operator MΩ

that is either good or bad. Merging the vocabulary, we will say that a set of
directions Ω is a good set of directions when MΩ is good and that it is a bad
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set of directions when MΩ is bad. The notion of good/bad is well understood
for a set of directions Ω and the associated directional operator MΩ. To say it
bluntly, Ω is a good set of directions if and only if it can be included in a finite
union of lacunary sets of finite order. If this is not possible, Ω is a bad set of
directions. Rather than giving the definition of lacunarity of finite order (we
refer to [4] for this) we provide some examples. In the following cases the set of
directions Ω is good i.e. MΩ is bounded on Lp for any 1 < p <∞ :

• when Ω is finite,

• when Ω =
{
π
2k

}
k≥1

,

• more generally when Ω is included in a lacunary sequence.

On the other hand, the set of directions Ω is bad i.e. MΩ is unbounded on Lp

for any 1 < p <∞ when :

• Ω contains an open interval,

• Ω is the ternary Cantor set,

• more surprisingly, Ω =
{
π
ks

}
k≥1

for a positive fixed s > 0.

Questions

A natural question arises from all this : can one find a family B in R such that
the operator MB is unbounded on L1+ε for some small ε > 0 and bounded on
L1+A for some large A > 1 ? We believe that such a family does not exist
and we thank P. Hagelstein and A. Stokolos for communicating us the following
conjecture.

Conjecture 1. (All-p/No-p) Any maximal operator MB generated by a family
B included in R is either bounded on Lp for all finite p > 1 or either unbounded
on Lp for all finite p > 1.

In the general setting, Hagelstein and Stokolos proved in [10] Tauberian
conditions for geometric maximal operators that if the operator MB satisfies a
tauberian inequality then it is bounded on Lp for large p < ∞. Precisely, they
show that if there exist 0 < η0 < 1 and C0 > 0 such that

| {MB1E > η0} | ≤ C0 × |E|

for any bounded measurable set E, then MB is at least bounded on Lp0 for a
large p0. The problem here is that p0 depends a priori on the basis B.

To tackle the conjecture, we formulate two questions.
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Question 1 : rarefaction of a directional basis

Fix an arbitrary family B contained in R satisfying the following conditions :

• the directions contained in B i.e. the set Ω(B) := {ωR : R ∈ B} is a bad
set of directions ;

• for any ω ∈ Ω(B) we only have access to arbitrary thin rectangles in B in
the direction ω i.e. for any ω ∈ Ω(B) we have

κ(B, ω) := inf
R∈B,ωR=ω

= 0.

Loosely speaking, we assume that B is a rarefied version of the directional basis
BΩ. Under those conditions, can one show that the operator MB is still bad ?
In a submitted work, we have proven that such an operator MB is indeed bad.

Question 2 : fleeing bases

The second question is more complex and it is the one that we partially address
in this note. Fix an arbitrary family B included in R satisfying the following
conditions :

• the directions that are accessible with arbitrary thin rectangles form a
good set of directions i.e. the set of directions

Ω(B, 0) := {ω ∈ [0, π) : ∀ε > 0,∃R ∈ B, κR < ε, ωR = ω}

is a good set of directions ;

• yet for any ε > 0 the set of directions

Ω(B, ε) := {ω ∈ [0, π) : ∃R ∈ B, κR < ε, ωR = ω}

is always a bad set of directions.

Can one show that in this case the operator MB is always good ? or bad ? In
this note, we consider different families B satisfying those conditions and show
that in those cases the operator MB is indeed good or bad.

Results

We exhibit different non-directional maximal operators verifying the All-p/No-p
conjecture. Precisely we denote by

t = {tk}k≥1 ⊂ [0, 1]

a sequence decreasing to 0 and by

x = {xk}k≥1 ⊂ (0,∞)
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Figure 1: A representation of the triangles Tk.

O

x1

x2

x3

x4

T1(x)

T2(x)

T3(x)

T4(x)

Figure 2: A representation of the triangles Tk(x).

any positive sequence. For A,B,C ∈ R2, we denote by ABC the triangle whose
vertices are the points A,B and C. If t is a point in R2, we might denote it by ~t
to insist on the fact that it used as a translation vector. We define two families
of triangles. First, for any k ≥ 1, we define the triangle Tk as

Tk = OAkAk+1

where O = (0, 0), Ak = (1, tk) and Ak+1 = (1, tk+1). Observe that we have
only used the sequence t in order to define the triangles Tk. Then we define the
triangle Tk(x) as

Tk(x) = OAk+1(Ak+1 + ~Xk)
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where ~Xk := (0, xk). We will study the collection B defined as

B := {Tk(x)}k≥1 .

Now that we have defined the triangles Tk and Tk(x) we can interpret the
sequence t as a sequence of tangent of angles that tends to 0 and the sequence
x as an arbitrary sequence of eccentricity. Our first result reads as follow.

Theorem 2. Suppose there is a constant C > 0 such that for any k ≥ 1

tk ≤ C × xk.

In this case the operator MB is a good operator i.e. MB is bounded on Lp for
any p > 1

Defining the quantity

τt := sup
k≥0,l≤k

(
tk+l+l − tk+l

tk+l − tk
+

tk+l − tk
tk+l+l − tk+l

)
we will prove the following proposition.

Theorem 3. Suppose that
τt <∞

and that there is a constant µ0 > 0 such that for any k ≥ 1

xk < µ0|tk − tk+1|.

In this case, the maximal operator MB is a bad operator i.e. MB is unbounded
on Lp for any finite p ≥ 1.

Structure and strategy

This note is structured as follow.

• In section 2 we give two geometric estimates involving maximal operators.

• In section 3 we recall known facts about the construction of so-called
Perron trees and generalized Perron trees.

• Finally in the last two sections, we prove Theorems 2 and 3.

To prove that an operator MB is a good operator we are simply going to exhibit
another operator M ′ that is known to be good and we will check that we have

MB ≤ C ×M ′.

This will immediately imply that MB is good also. Conversely, to prove that
an operator MB is bad, it is enough to find a small fixed value 0 < η0 < 1 such
that for any ε > 0 there is a subset X in R2 such that

|X| ≤ ε× | {MB1X > η0} |.
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Indeed if this holds then for any p > 1 we have∫
(MB1X)p ≥ ηp0 × | {MB1X > η0} | ≥ ηp0 ×

‖1X‖pp
ε

since |X| = ‖1X‖pp. Hence we have for any ε > 0 the following lower bound on
the Lp-norm of MB

‖MB‖pp ≥
ηp0
ε

i.e. for any p > 1 we have ‖MB‖pp = ∞ since ε > 0 is arbitrary low in the
latter inequality. This exactly means that MB is bad. We are going to build
our set X as a generalized Perron tree. Before discussing about those trees, we
are going to detail some geometric estimates that will be useful.

Acknowledgments

I would like to thank Laurent Moonens and Emmanuel Russ for their kind
advices.

2 Geometric estimates

We fix an arbitrary open triangle T1 = ABC. Consider the triangle T2 defined
as

T2 := ~B +
1

2
(T1 − ~A),

see figure 3.

Lemma 1 (Geometric estimate I). The following inclusion holds

T2 ⊂
{
M{T1}1T1

≥ 1

4

}
.

In other words, the level set
{
M{T1}1T1

≥ 1
4

}
contains an affine copy of T1.

Proof. Fix x ∈ ~B + 1
2 (T1 − ~A). It suffices to observe (see figure 4) that we have

x ∈
−→
Bx+ T1

and that

|T1 ∩ (
−→
Bx+ T1)| ≥ 1

4
|
−→
Bx+ T1|.

Hence x ∈
{
M{T1}1T1 ≥ 1

4

}
.
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A

B

C

T1

T2

x0

Figure 3: A representation of the triangles T1 and T2.

x

−→
Bx+ T

Figure 4: The proof of lemma 1 consists in observing that the blue shaded area

represents a quarter of the triangle
−→
Bx+ T .

We now fix an arbitrary positive constant µ0 > 0 and for all triangles T with
vertices (A,B,C) we define the triangle Tµ0 as

Tµ0
:= AB(B + µ0 ×

−−→
BC).

For any 0 < x < µ0 we define similarly the triangle

T (x) = AB(B + x×
−−→
BC).

Lemma 2 (Geometric estimate II). For any couple (T1, T (x)) as defined above,
the following inclusion holds

T2 ⊂
{
M{T (x)}1T1 ≥ η(µ0)

}
where η(µ0) = inf

{
1
4 ,

1
4µ0

}
.
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1
2

−→
AC + T (x)

1
2

−→
AC + T (x)

Figure 5: In the proof of lemma 2, we distinguish two cases : either x is very
small as on the left side of the figure, either x is close to the parameter µ0 as
on the right of the figure.

Proof. The proof is akin to the proof of lemma 1, see figure 5 for a geometric
representation. It is enough to check

x0 ∈
{
MT (x)1T1

> η(µ0)
}

where x0 = B + 1
2

−→
AC because this is the ”worst case”. To begin with, observe

that we have

x0 ∈
1

2

−→
AC + T (x).

Now either we have ∣∣∣∣T1 ∩
(

1

2

−→
AC + T (x)

)∣∣∣∣ ≥ 1

4
|T (x)|

and in this case we have x0 ∈
{
M{T (x)}1T1 >

1
4

}
; or we have∣∣∣∣T1 ∩

(
1

2

−→
AC + T (x)

)∣∣∣∣ =
1

4
|T1|

and in this case we have x0 ∈
{
M{T (x)}1T1

≥ 1
4µ0

}
since

|T1|
|T (x)|

≥ |T1|
|Tµ0 |

=
1

µ0
.

3 Generalized Perron trees

We are going to recall how one can construct a Perron tree as in [9] and more
generally how one can construct a generalized Perron tree as in [11] Applications
of generalized Perron trees to maximal functions and density bases.

10



Before stating any proposition, we would like to say that loosely speaking
the construction of a Perron tree is a procedure that specifies how one can

(1) cut a triangle T in approximatively 2n thin triangles Tk

(2) stack up those thin triangles in a new set X that is usually called a Perron
tree

(3) the Perron tree X has different properties with respect to the thin triangles
Tk. Among others we have |X| � |T |.

We formulate this more precisely in the following propositions. Denote by T
the triangle whose vertices are the points O, A = (1, 0) and B = (1, 1). For any
n ≥ 1 and 1 ≤ k ≤ 2n denote by Tk the triangle whose vertices are the points
O,Ak = (1, k2n ) and Ak−1 = (1, k−1

2n ).

Proposition 1 (see [9], page 112). Fix any positive ratio 1
2 < α < 1 and any

integer n ≥ 1. There exist 2n vectors

~sk := (0, sk)

satisfying the following properties

• the set X defined as

X =
⋃
k≤2n

(~sk + Tk)

satisfies
|X| ≤

(
α2n + 2(1− α)

)
× |T |;

• for any k 6= l the triangles
(
~Ak + ~sk

)
+ 1

2Tk and
(
~Al + ~sl

)
+ 1

2Tl are

disjoint.

We say that the set X is a Perron tree of scale (α, n) and we denote it by Xα,n.

Observe that for any ε > 0, one can first choose α close to one and then n
large enough in order to have

|Xα,n| ≤ ε× |T |.

To obtain such an inequality, it is sufficient to have a condition on the thin
triangles Tk that ensures in some sense that they have comparable area.

Indeed, suppose now that we define for any k ≥ 1 the triangle Tk as the
one whose vertices are the points O,Gk = (1, 1

2k ) and Gk+1 = (1, 1
2k+1 ). In this

situation, for any I ⊂ N and any sequence of vectors {~si}i∈I ⊂ R2 the set XI

defined as
XI =

⋃
i∈I

(~si + Ti)
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T Xα,n

Figure 6: A representation of a Perron tree Xα,n for n = 2.

XIT1

T2

T3

T4

Figure 7: If the areas of the triangles Tk decrease too fast then we cannot stack
them up efficiently.

satisfies the following inequality

|XI | ≥ |Ti0 | ≥
1

2
|
⋃
i∈I

Ti|

where i0 := min I. We hence cannot, in this case, hope to stack up the triangles
Tk into a set X that has a small area compared to the sum of the areas of the
Tk, see figure 7 for an illustration of this phenomenon.

We consider a sequence t = {tk}k≥1 which is decreasing to 0 and such that
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t1 = 1. We define the following quantity

τt := sup
k≥0,l≤k

(
tk+l+l − tk+l

tk+l − tk
+

tk+l − tk
tk+l+l − tk+l

)
.

For any k ≥ 1 consider the triangle Tk whose vertices are the points O,Ak =
(1, tk) and Ak+1 = (1, tk+1). The following proposition is a generalisation of the
previous one.

Proposition 2. [see [11]] Suppose that τt < ∞. In this case for any positive
ratio α close to 1 and any integer n ≥ 1, there exists an integer N � 1 and 2n

vectors
~sk := (0, sk)

satisfying the following properties

• the set X defined as

X =
⋃

N+1≤k≤N+2n

(~sk + Tk)

satisfies

|X| ≤
(
α2n + τt(1− α)

)
× |TN+1 t · · · t TN+2n |;

• for any k 6= l the triangles
(
~Ak + ~sk

)
+ 1

2Tk and
(
~Al + ~sl

)
+ 1

2Tl are

disjoint.

We say that the set X is a generalized Perron tree of scale (α, n) and we denote
it by Xα,n,t.

The fact that the triangles
(
~Ak + ~sk

)
+ 1

2Tk and
(
~Al + ~sl

)
+ 1

2Tl are disjoint

is not proved in [11] ; this can be proved easily by geometry inspection.

4 Proof of Theorem 2

For any k ≥ 1 consider the rectangle Rk = [0, 1]× [0, xk + tk] ; we have

Tk(x) ⊂ Rk,

|Tk(x)| = 1
2xk and |Rk| = xk + tk. Since we have supposed that tk ≤ C × xk

for all k ≥ 1, we have

|Rk| ≤ (1 + C)xk = 2(1 + C)|Tk(x)|.

Those estimations allow us to use the strong maximal operator Ms to dominate
pointwise MB. Fix any f ∈ L1

loc(R
2) and any T ∈ B∗. Using the fact that B∗ is

generated by B, there exists a rectangle R ∈ I such that

T ⊂ R

13



and
|R| ≤ 2(1 + C)|T |.

Hence we have
1

|T |

∫
T

|f | ≤ 2(1 + C)

|R|

∫
R

|f |

and this shows that for any x ∈ R2

MBf(x) ≤ 2(1 + C)Msf(x).

The conclusion comes from the fact that the strong maximal operator Ms is a
good operator.

5 Proof of Theorem 3

Recall that we suppose there is a constant µ0 > 0 such that for any k ≥ 1

xk < µ0 × |tk − tk+1|.

To begin with, we are going to construct a Perron tree Xα,n,t with the triangles

{Tk}k≥1 .

Then we will exploit this Perron tree Xα,n,t and the sequence of triangles

B = {Tk(x)}k≥1

to show that MB is a bad operator. Precisely we prove the following claim.

Claim 1. For any α close to 1 and any n ∈ N, the Perron tree X := Xα,n,t

satisfies the following inequality

|X| ≤ ε× | {MB1X > η(µ0)} |

where ε = α2n + τt(1− α) and B = {Tk(x)}k≥1.

Proof. Fix α close to 1 and n ∈ N and consider a Perron tree of scale (α, n)

X := Xα,n,t =
⋃

N+1≤k≤N+2n

(~sk + Tk)

where N is given by proposition 2. Fix any k ∈ {N+1, . . . , N+2n} and consider
the couple of triangles

(~sk + Tk, ~sk + Tk(x))

or more simply the couple (Tk, Tk(x)) which is the same up to a translation.
We can apply lemma 2 to this couple

(~sk + Tk, ~sk + Tk(x)) = (T1, T (x))

14



which yields the following inclusion(
~Ak+1 + ~sk

)
+

1

2
Tk ⊂

{
M{Tk(x)}1~sk+Tk

> η(µ0)
}
.

Using the fact that {Tk(x)} ⊂ B we have

MTk(x) ≤MB

and so we can replace M{Tk(x)} by MB i.e(
~Ak+1 + ~sk

)
+

1

2
Tk ⊂ {MB1~sk+Tk

> η(µ0)} .

We form now the union on k ∈ {N + 1, . . . , N + 2n} of the precedent inclusion
which by definition yields

2n⊔
k=1

(
~Ak+1 + ~sk

)
+

1

2
Tk ⊂ {MB1X > η(µ0)} .

In the latter inclusion, the fact that the union is disjoint comes from proposition
2. Hence this gives in terms of Lebesgue measure∑

N+1≤k≤N+2n

1

4
|Tk| ≤ | {MB1X > η(µ0)} |.

Using the fact that X is a Perron tree constructed with the triangles Tk we have

|X| ≤
(
α2n + τt(1− α)

)
× |TN+1 t · · · t TN+2n |.

In other words we have

|X| ≤ 4×
(
α2n + τt(1− α)

)
× | {MB1X > η(µ0)} |.

As detailed in section 1, the claim implies that for any p > 1 we have

‖MB‖p ≥ η(µ0)(4α2n + 4τt(1− α))−
1
p

for any α close to 1 and any n ∈ N. The fact that constant η(µ0) is independant
of the scale (α, n) concludes : we have ‖MB‖p = ∞ for any p > 1 i.e. MB is a
bad operator.
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